Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Jul 16;77(Pt 8):814–818. doi: 10.1107/S2056989021007192

Crystal structure and Hirshfeld surface analysis of 1,3-bis­{2,2-di­chloro-1-[(E)-phenyl­diazen­yl]ethen­yl}benzene

Namiq Q Shikhaliyev a, Zeliha Atioğlu b, Mehmet Akkurt c, Nigar E Ahmadova a, Rizvan K Askerov a, Ajaya Bhattarai d,*
PMCID: PMC8340979  PMID: 34422307

In the crystal, mol­ecules of the title compound are connected through C—H⋯π, C—Cl⋯π, Cl⋯Cl and Cl⋯H inter­actions, generating a three-dimensional network.

Keywords: crystal structure, C—H⋯π, C—Cl⋯π, Cl⋯Cl, Cl⋯H inter­actions, Hirshfeld surface analysis

Abstract

In the mol­ecule of the title compound, C22H14Cl4N4, the central benzene ring makes dihedral angles of 77.03 (9) and 81.42 (9)° with the two approximately planar 2,2-di­chloro-1-[(E)-phenyl­diazen­yl]vinyl groups. In the crystal, mol­ecules are linked by C—H⋯π, C—Cl⋯π, Cl⋯Cl and Cl⋯H inter­actions, forming a three-dimensional network. The Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (30.4%), C⋯H/H⋯C (20.4%), Cl⋯H/H⋯Cl (19.4%), Cl⋯Cl (7.8%) and Cl⋯C/C⋯Cl (7.3%) inter­actions.

Chemical context  

Azodyes and related hydrazones are of inter­est for synthetic organic chemistry, coordination chemistry, medicinal and material chemistry because of their important physical and biological properties (Mahmoudi et al., 2016, 2017a ,b ,c , 2018a ,b , 2019; Viswanathan et al., 2019). For this reason, diverse new synthetic procedures have been developed for their efficient and versatile synthesis (Gurbanov et al., 2017, 2018a ,b ; Ma et al., 2017a ,b ). Moreover, azo/hydrazone ligands can also be used as starting materials in the synthesis of coordination and supra­molecular compounds (Ma et al., 2020, 2021; Mahmudov et al., 2013; Sutradhar et al., 2015, 2016), and as building blocks in the construction of 1D, 2D or 3D networks owing to their non-covalent bond-donating and acceptor capabilities (Gurbanov et al., 2020a ; Kopylovich et al., 2011a ,b ; Asgarova et al., 2019). In fact, inclusion of suitable substituents to azo/hydrazone ligands can improve their functional properties and the catalytic or biological activity of the corresponding coordination compounds (Mizar et al., 2012; Gurbanov et al., 2020b ; Karmakar et al., 2017; Khalilov et al., 2011, 2018a ,b ; Mac Leod et al., 2012; Maharramov et al., 2019; Shikhaliyev et al., 2019; Shixaliyev et al., 2014). Thus, the attachment of halogen-containing substituents to azo/hydrazone compounds can improve their functional properties via inter­molecular halogen bonding. In order to continue our work in this perspective, we have synthesized a new halogen­ated bis-azo ligand, 1,3-bis­{2,2-di­chloro-1-[(E)-phenyl­diazen­yl]ethen­yl}benzene, which is able to provide multiple inter­molecular non-covalent inter­actions. graphic file with name e-77-00814-scheme1.jpg

Structural commentary  

The mol­ecule of the title compound consists of three nearly planar fragments: the central benzene ring and the two attached 2,2-di­chloro-1-[(E)-phenyl­diazen­yl]vinyl groups, Cl1–C8 and Cl3–C22 (Fig. 1), the largest deviations from the least-squares planes of these side groups being 0.060 (1) and 0.083 (3) Å for Cl2 and C18, respectively. These groups are nearly perpendicular to the central benzene ring, subtending dihedral angles of 77.03 (9) and 81.42 (9)°, respectively, with this ring. All bond dimensions within the mol­ecule are typical of such type of compounds (Allen et al., 1987).

Figure 1.

Figure 1

The title mol­ecule with the labelling scheme and 30% probability ellipsoids.

Supra­molecular features  

In the crystal, mol­ecules are linked by C—H⋯π (Table 1) and C—Cl⋯π inter­actions [C15—Cl4⋯Cg3ii; Cl4⋯Cg3ii = 3.9572 (15); C15⋯Cg3ii = 4.381 (3) Å; C15—Cl4⋯Cg3ii = 92.60 (10)°; symmetry code: (ii) 2 − x, 1 − y, 1 − z] involving the terminal C17–C22 phenyl ring (Cg3). Besides this, there are the Cl⋯Cl and Cl⋯H contacts, which contribute to a three-dimensional network (Table 2, Figs. 2 and 3).

Table 1. C—H⋯π inter­actions (Å, °).

Cg3 is the centroid of the C17–C22 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12ACg3i 0.93 2.72 3.610 (3) 162

Symmetry code: (i) x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}.

Table 2. Inter­molecular contacts (Å) in the title structure.

Contact Distance Symmetry operation
Cl4⋯Cg3 1.709 (2) 2 − x, 1 − y, 1 − z
Cl1⋯Cl4 3.4325 (12) 2 − x, −{1\over 2} + y, {1\over 2} − z
Cl3⋯Cl2 3.5171 (13) 2 − x, 1 − y, −z
H14A⋯C7 2.97 x, {1\over 2} − y, −{1\over 2} + z
Cl3⋯H20A 3.10 x, y, − 1 + z
H13A⋯C4 2.95 1 − x, 1 − y, −z
H7A⋯H4A 2.43 1 − x, −{1\over 2} + y, {1\over 2} − z
H12A⋯C21 2.92 x, {3\over 2} − y, −{1\over 2} + z
H8A⋯H7A 2.54 1 − x, −y, −z

Figure 2.

Figure 2

A fragment of the mol­ecular packing showing the C—H⋯π and C—Cl⋯π inter­actions.

Figure 3.

Figure 3

A fragment of the mol­ecular packing showing the Cl⋯Cl and Cl—H inter­actions.

Hirshfeld surface analysis  

The Hirshfeld surfaces and two-dimensional fingerprint plots were generated using Crystal Explorer 17.5 (Turner et al., 2017). Hirshfeld surfaces show inter­molecular inter­actions by different hues and intensities to denote short and long contacts, as well as the intensity of the connections. In Fig. 4, the 3D Hirshfeld surface of the title mol­ecule is mapped over d norm in the range −0.0453 to 1.4337 a.u. The red patches surrounding Cl1, Cl2, Cl3 and Cl4 are caused by the Cl1⋯Cl4, Cl3⋯Cl2 and Cl3⋯H20A inter­actions, which play a vital role in the mol­ecular packing of the title compound, and highlight their functions as donors and/or acceptors; they also appear as blue and red regions on the Hirshfeld surface mapped over electrostatic potential (Spackman et al., 2008) corresponding to positive and negative potentials, as shown in Fig. 5. The blue regions indicate positive electrostatic potential (hydrogen-bond donors), while the red regions indicate negative electrostatic potential (hydrogen-bond acceptors).

Figure 4.

Figure 4

View of the three-dimensional Hirshfeld surface of the title compound plotted over d norm in the range −0.0453 to 1.4337 a.u.

Figure 5.

Figure 5

View of the three-dimensional Hirshfeld surface of the title complex plotted over electrostatic potential energy in the range −0.1379 to 0.1988 a.u. using the STO-3G basis set at the Hartree–Fock level of theory. The hydrogen-bond donors and acceptors are viewed as blue and red regions around the atoms corresponding to positive and negative potentials, respectively.

In Fig. 6, the overall two-dimensional fingerprint plot for the title compound and those delineated into H⋯H, C⋯H/H⋯C, Cl⋯H/H⋯Cl, Cl⋯Cl and Cl⋯C/C⋯Cl contacts, as well as their relative contributions to the Hirshfeld surface, are shown, while Table 2 provides data on the distinct inter­molecular contacts. The percentage contributions to the Hirshfeld surfaces from various inter­atomic contacts are: H⋯H (30.4%; Fig. 6 b), C⋯H/H⋯C (20.4%; Fig. 6 c), Cl⋯H/H⋯Cl (19.4%; Fig. 6 d), Cl⋯Cl (7.8%; Fig. 6 e) and Cl⋯C/C⋯Cl (7.3%; Fig. 6 f). Other Cl⋯N/N⋯Cl, N⋯H/H⋯N, C⋯C, N⋯C/C⋯N and N⋯N contacts account for less than 5.9% of Hirshfeld surface mapping and have minimal directional impact on mol­ecular packing (Table 3).

Figure 6.

Figure 6

The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) Cl⋯H/H⋯Cl, (e) Cl⋯Cl and (f) Cl⋯C/C⋯Cl inter­actions. The d i and d e values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

Table 3. Percentage contributions of inter­atomic contacts to the Hirshfeld surface for the title compound.

Contact Percentage contribution
H⋯H 30.4
C⋯H/H⋯C 20.4
Cl⋯H/H⋯Cl 19.4
Cl⋯Cl 7.8
Cl⋯C/C⋯Cl 7.3
Cl⋯N/N⋯Cl 5.9
N⋯H/H⋯N 5.6
C⋯C 1.8
N⋯C/C⋯N 1.2
N⋯N 0.2

Database survey  

A search of Cambridge Crystallographic Database (CSD, version 5.41, update of August 2020; Groom et al., 2016) revealed a closely related compound, meso-(E,E)-1,10-[1,2-bis­(4-chloro­phen­yl)ethane-1,2-di­yl]bis­(phenyl­diazene), for which triclinic (refcode PAGCEI; Mohamed et al., 2016) and monoclinic (PAGCEI01; Mohamed et al., 2016) polymorphs are known. In both polymorphs, the mol­ecules lie on inversion centres, but in PAGCEI01, the mol­ecules are subject to whole-mol­ecule disorder equivalent to configurational disorder with occupancies of 0.6021 (19) and 0.3979 (19). There are no hydrogen bonds in the crystal structure of PAGCEI, whereas the mol­ecules of PAGCEI01 are linked by C—H⋯π(arene) hydrogen bonds into complex chains, which are further linked into sheets by C— H⋯N inter­actions.

Synthesis and crystallization  

This bis-azo dye was synthesized according to a reported method (Maharramov et al., 2018; Shikhaliyev et al., 2018). A 20 mL screw neck vial was charged with DMSO (10 mL), 1,3-bis­[(E)-(2-phenyl­hydrazineyl­idene)meth­yl]benzene (628 mg, 2 mmol), tetra­methylethyl­enedi­amine (TMEDA) (581 mg, 5 mmol), CuCl (3 mg, 0.03 mmol) and CCl4 (20 mmol, 10 equiv). After 1–3 h (until TLC analysis showed complete consumption of the corresponding Schiff base), the reaction mixture was poured into a 0.01 M solution of HCl (100 mL, pH = 2–3), and extracted with di­chloro­methane (3 × 20 mL). The combined organic phase was washed with water (3 × 50 mL), brine (30 mL), dried over anhydrous Na2SO4 and concentrated in vacuo using a rotary evaporator. The residue was purified by column chromatography on silica gel using appropriate mixtures of hexane and di­chloro­methane (3/1–1/1). Crystals suitable for X-ray analysis were obtained by slow evaporation of a di­chloro­methane solution. Orange solid (50%); mp 402 K. Analysis calculated for C22H14Cl4N4 (M = 476.18): C 55.49, H 2.96, N 11.77; found: C 55.45, H 2.94, N 11.70%. 1H NMR (300 MHz, CDCl3) δ 6.58–8.02 (14H, Ar). 13C NMR (75MHz, CDCl3) δ 121.8, 122.15, 124.83, 126.28, 127.32, 128.04, 128.95, 130.09, 133.12, 139.07. ESI–MS: m/z: 477.32 [M + H]+.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 4. All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å, and with U iso(H) = 1.2U eq (C). Owing to poor agreement between observed and calculated intensities, six outliers ( Inline graphic 16 2, Inline graphic 1 12, Inline graphic 1 13, 8 14 1, Inline graphic 2 13 and Inline graphic 16 1) were omitted in the final cycles of refinement.

Table 4. Experimental details.

Crystal data
Chemical formula C22H14Cl4N4
M r 476.17
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 16.0289 (10), 13.1213 (8), 11.1286 (7)
β (°) 108.073 (2)
V3) 2225.1 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.55
Crystal size (mm) 0.44 × 0.26 × 0.12
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.621, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 24362, 4399, 3193
R int 0.044
(sin θ/λ)max−1) 0.626
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.046, 0.112, 1.01
No. of reflections 4399
No. of parameters 271
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.24, −0.25

Computer programs: APEX3 and SAINT (Bruker, 2007), SHELXT2016/6 (Sheldrick, 2015a ), SHELXL2016/6 (Sheldrick, 2015b ), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2020).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021007192/yk2154sup1.cif

e-77-00814-sup1.cif (737.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021007192/yk2154Isup2.hkl

e-77-00814-Isup2.hkl (350.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021007192/yk2154Isup3.cml

CCDC reference: 1987627

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Authors’ contributions are as follows. Conceptualization, NQS, MA, and AB; synthesis, NQA and NEA; X-ray analysis, RKA; writing, NQS, ZA, MA and AB; funding acquisition, NQS, NEA and RKA; supervision, NQS, MA and AB.

supplementary crystallographic information

Crystal data

C22H14Cl4N4 F(000) = 968
Mr = 476.17 Dx = 1.421 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 16.0289 (10) Å Cell parameters from 6439 reflections
b = 13.1213 (8) Å θ = 2.5–26.4°
c = 11.1286 (7) Å µ = 0.55 mm1
β = 108.073 (2)° T = 296 K
V = 2225.1 (2) Å3 Prism, colourless
Z = 4 0.44 × 0.26 × 0.12 mm

Data collection

Bruker APEXII CCD diffractometer 3193 reflections with I > 2σ(I)
φ and ω scans Rint = 0.044
Absorption correction: multi-scan (SADABS; Krause et al., 2015) θmax = 26.4°, θmin = 2.1°
Tmin = 0.621, Tmax = 0.745 h = −20→20
24362 measured reflections k = −16→16
4399 independent reflections l = −13→13

Refinement

Refinement on F2 Primary atom site location: difference Fourier map
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0456P)2 + 1.0697P] where P = (Fo2 + 2Fc2)/3
4399 reflections (Δ/σ)max = 0.001
271 parameters Δρmax = 0.24 e Å3
0 restraints Δρmin = −0.25 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.74226 (5) 0.14141 (5) −0.10025 (7) 0.0592 (2)
Cl2 0.81687 (6) 0.33515 (7) −0.12359 (8) 0.0777 (3)
Cl3 0.97228 (5) 0.57996 (7) 0.11006 (7) 0.0736 (3)
Cl4 1.05825 (5) 0.63410 (7) 0.36813 (8) 0.0762 (3)
N1 0.65092 (13) 0.24501 (16) 0.05084 (19) 0.0467 (5)
N2 0.60887 (13) 0.28678 (16) 0.11510 (19) 0.0488 (5)
N3 0.88872 (14) 0.60214 (16) 0.40656 (19) 0.0469 (5)
N4 0.81623 (14) 0.58883 (16) 0.42594 (18) 0.0468 (5)
C1 0.74926 (16) 0.2676 (2) −0.0611 (2) 0.0472 (6)
C2 0.70658 (15) 0.31073 (19) 0.0111 (2) 0.0435 (6)
C3 0.55342 (16) 0.2175 (2) 0.1536 (2) 0.0480 (6)
C4 0.5054 (2) 0.2569 (3) 0.2249 (3) 0.0698 (8)
H4A 0.510609 0.325648 0.246399 0.084*
C5 0.4494 (2) 0.1959 (3) 0.2652 (3) 0.0830 (10)
H5A 0.417287 0.223700 0.313982 0.100*
C6 0.44075 (19) 0.0957 (3) 0.2343 (3) 0.0721 (9)
H6A 0.402268 0.054889 0.260581 0.086*
C7 0.4887 (2) 0.0553 (3) 0.1645 (3) 0.0730 (9)
H7A 0.483059 −0.013532 0.143736 0.088*
C8 0.5458 (2) 0.1151 (2) 0.1240 (3) 0.0641 (8)
H8A 0.578832 0.086471 0.077119 0.077*
C9 0.71822 (15) 0.41985 (18) 0.0494 (2) 0.0419 (5)
C10 0.79331 (15) 0.45017 (18) 0.1441 (2) 0.0409 (5)
H10A 0.835438 0.401942 0.183488 0.049*
C11 0.80614 (15) 0.55110 (18) 0.1805 (2) 0.0386 (5)
C12 0.74374 (16) 0.62289 (19) 0.1206 (2) 0.0465 (6)
H12A 0.751924 0.691101 0.144018 0.056*
C13 0.66925 (17) 0.5928 (2) 0.0259 (2) 0.0545 (7)
H13A 0.627449 0.641110 −0.014303 0.065*
C14 0.65639 (16) 0.4924 (2) −0.0093 (2) 0.0510 (6)
H14A 0.605927 0.472971 −0.072944 0.061*
C15 0.96300 (16) 0.5965 (2) 0.2578 (2) 0.0498 (6)
C16 0.88676 (15) 0.58312 (18) 0.2816 (2) 0.0418 (5)
C17 0.82000 (18) 0.60524 (19) 0.5545 (2) 0.0477 (6)
C18 0.89313 (19) 0.6384 (2) 0.6491 (2) 0.0571 (7)
H18A 0.944637 0.653856 0.631148 0.068*
C19 0.8890 (2) 0.6485 (2) 0.7705 (3) 0.0670 (8)
H19A 0.938099 0.670842 0.834584 0.080*
C20 0.8130 (3) 0.6258 (2) 0.7979 (3) 0.0717 (9)
H20A 0.810894 0.632115 0.880182 0.086*
C21 0.7409 (2) 0.5940 (2) 0.7040 (3) 0.0699 (8)
H21A 0.689496 0.578686 0.722387 0.084*
C22 0.74340 (19) 0.5843 (2) 0.5820 (3) 0.0589 (7)
H22A 0.693555 0.563666 0.518131 0.071*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0678 (4) 0.0510 (4) 0.0588 (4) 0.0018 (3) 0.0197 (3) −0.0113 (3)
Cl2 0.0910 (6) 0.0744 (5) 0.0899 (6) −0.0174 (4) 0.0603 (5) −0.0081 (4)
Cl3 0.0575 (4) 0.1103 (7) 0.0610 (5) −0.0054 (4) 0.0302 (3) −0.0060 (4)
Cl4 0.0446 (4) 0.0956 (6) 0.0776 (5) −0.0107 (4) 0.0032 (3) −0.0124 (4)
N1 0.0497 (11) 0.0487 (13) 0.0435 (12) −0.0082 (10) 0.0171 (10) −0.0042 (10)
N2 0.0497 (12) 0.0525 (13) 0.0460 (12) −0.0077 (10) 0.0173 (10) −0.0055 (10)
N3 0.0532 (12) 0.0440 (12) 0.0414 (11) −0.0046 (10) 0.0115 (10) −0.0043 (9)
N4 0.0557 (12) 0.0452 (12) 0.0397 (11) −0.0045 (10) 0.0148 (10) −0.0026 (9)
C1 0.0491 (14) 0.0484 (15) 0.0438 (14) −0.0029 (12) 0.0141 (11) −0.0023 (11)
C2 0.0440 (13) 0.0460 (14) 0.0384 (13) −0.0071 (11) 0.0095 (10) −0.0037 (11)
C3 0.0451 (13) 0.0547 (16) 0.0432 (14) −0.0065 (12) 0.0122 (11) −0.0016 (12)
C4 0.0744 (19) 0.065 (2) 0.082 (2) −0.0045 (16) 0.0424 (18) −0.0088 (16)
C5 0.074 (2) 0.099 (3) 0.095 (3) −0.006 (2) 0.053 (2) −0.004 (2)
C6 0.0568 (17) 0.093 (3) 0.067 (2) −0.0182 (17) 0.0208 (15) 0.0087 (18)
C7 0.090 (2) 0.062 (2) 0.071 (2) −0.0208 (17) 0.0303 (18) 0.0000 (16)
C8 0.0746 (19) 0.0585 (19) 0.0672 (19) −0.0088 (15) 0.0335 (16) −0.0058 (15)
C9 0.0448 (12) 0.0448 (14) 0.0382 (12) −0.0062 (11) 0.0159 (10) −0.0036 (11)
C10 0.0415 (12) 0.0418 (14) 0.0399 (13) −0.0003 (10) 0.0136 (10) 0.0027 (10)
C11 0.0426 (12) 0.0414 (14) 0.0342 (12) −0.0043 (10) 0.0155 (10) −0.0009 (10)
C12 0.0528 (14) 0.0410 (14) 0.0471 (14) 0.0010 (11) 0.0177 (12) −0.0023 (11)
C13 0.0525 (15) 0.0534 (17) 0.0523 (16) 0.0110 (13) 0.0085 (12) 0.0036 (13)
C14 0.0461 (13) 0.0591 (17) 0.0422 (14) −0.0033 (12) 0.0056 (11) −0.0045 (12)
C15 0.0432 (13) 0.0541 (16) 0.0499 (15) −0.0022 (12) 0.0111 (11) −0.0041 (12)
C16 0.0454 (13) 0.0371 (13) 0.0419 (13) −0.0019 (10) 0.0117 (10) −0.0017 (10)
C17 0.0658 (16) 0.0389 (14) 0.0384 (13) −0.0005 (12) 0.0160 (12) −0.0020 (11)
C18 0.0664 (17) 0.0538 (17) 0.0474 (15) −0.0019 (14) 0.0125 (13) −0.0034 (13)
C19 0.090 (2) 0.0604 (19) 0.0432 (16) −0.0001 (17) 0.0098 (15) −0.0027 (13)
C20 0.112 (3) 0.062 (2) 0.0460 (17) 0.0052 (18) 0.0309 (18) 0.0006 (14)
C21 0.089 (2) 0.071 (2) 0.0593 (19) −0.0048 (18) 0.0366 (17) −0.0004 (16)
C22 0.0701 (18) 0.0583 (18) 0.0514 (16) −0.0084 (14) 0.0233 (14) −0.0052 (13)

Geometric parameters (Å, º)

Cl1—C1 1.707 (3) C9—C14 1.383 (3)
Cl2—C1 1.706 (3) C9—C10 1.389 (3)
Cl3—C15 1.710 (3) C10—C11 1.381 (3)
Cl4—C15 1.709 (2) C10—H10A 0.9300
N1—N2 1.251 (3) C11—C12 1.385 (3)
N1—C2 1.407 (3) C11—C16 1.487 (3)
N2—C3 1.427 (3) C12—C13 1.383 (3)
N3—N4 1.258 (3) C12—H12A 0.9300
N3—C16 1.404 (3) C13—C14 1.372 (4)
N4—C17 1.430 (3) C13—H13A 0.9300
C1—C2 1.333 (3) C14—H14A 0.9300
C2—C9 1.489 (3) C15—C16 1.340 (3)
C3—C4 1.367 (4) C17—C18 1.381 (4)
C3—C8 1.380 (4) C17—C22 1.382 (4)
C4—C5 1.378 (4) C18—C19 1.380 (4)
C4—H4A 0.9300 C18—H18A 0.9300
C5—C6 1.356 (5) C19—C20 1.378 (4)
C5—H5A 0.9300 C19—H19A 0.9300
C6—C7 1.358 (4) C20—C21 1.361 (4)
C6—H6A 0.9300 C20—H20A 0.9300
C7—C8 1.383 (4) C21—C22 1.376 (4)
C7—H7A 0.9300 C21—H21A 0.9300
C8—H8A 0.9300 C22—H22A 0.9300
N2—N1—C2 114.7 (2) C10—C11—C16 120.5 (2)
N1—N2—C3 112.9 (2) C12—C11—C16 120.0 (2)
N4—N3—C16 114.0 (2) C13—C12—C11 119.8 (2)
N3—N4—C17 113.3 (2) C13—C12—H12A 120.1
C2—C1—Cl2 122.4 (2) C11—C12—H12A 120.1
C2—C1—Cl1 124.1 (2) C14—C13—C12 120.6 (2)
Cl2—C1—Cl1 113.55 (15) C14—C13—H13A 119.7
C1—C2—N1 115.1 (2) C12—C13—H13A 119.7
C1—C2—C9 122.6 (2) C13—C14—C9 120.2 (2)
N1—C2—C9 122.3 (2) C13—C14—H14A 119.9
C4—C3—C8 118.9 (3) C9—C14—H14A 119.9
C4—C3—N2 116.6 (3) C16—C15—Cl4 124.2 (2)
C8—C3—N2 124.5 (2) C16—C15—Cl3 122.0 (2)
C3—C4—C5 120.7 (3) Cl4—C15—Cl3 113.76 (15)
C3—C4—H4A 119.7 C15—C16—N3 115.6 (2)
C5—C4—H4A 119.7 C15—C16—C11 121.3 (2)
C6—C5—C4 120.4 (3) N3—C16—C11 123.2 (2)
C6—C5—H5A 119.8 C18—C17—C22 119.7 (3)
C4—C5—H5A 119.8 C18—C17—N4 125.0 (3)
C5—C6—C7 119.5 (3) C22—C17—N4 115.3 (2)
C5—C6—H6A 120.2 C19—C18—C17 119.3 (3)
C7—C6—H6A 120.2 C19—C18—H18A 120.3
C6—C7—C8 121.0 (3) C17—C18—H18A 120.3
C6—C7—H7A 119.5 C20—C19—C18 120.7 (3)
C8—C7—H7A 119.5 C20—C19—H19A 119.7
C3—C8—C7 119.5 (3) C18—C19—H19A 119.7
C3—C8—H8A 120.2 C21—C20—C19 119.7 (3)
C7—C8—H8A 120.2 C21—C20—H20A 120.2
C14—C9—C10 119.1 (2) C19—C20—H20A 120.2
C14—C9—C2 121.2 (2) C20—C21—C22 120.5 (3)
C10—C9—C2 119.6 (2) C20—C21—H21A 119.7
C11—C10—C9 120.8 (2) C22—C21—H21A 119.7
C11—C10—H10A 119.6 C21—C22—C17 120.0 (3)
C9—C10—H10A 119.6 C21—C22—H22A 120.0
C10—C11—C12 119.4 (2) C17—C22—H22A 120.0
C2—N1—N2—C3 −179.88 (19) C16—C11—C12—C13 179.5 (2)
C16—N3—N4—C17 178.1 (2) C11—C12—C13—C14 0.1 (4)
Cl1—C1—C2—N1 −2.4 (3) C12—C13—C14—C9 −0.2 (4)
Cl2—C1—C2—C9 −3.6 (3) C10—C9—C14—C13 −0.1 (4)
Cl1—C1—C2—C9 176.39 (18) C2—C9—C14—C13 −178.8 (2)
N2—N1—C2—C1 −177.7 (2) Cl4—C15—C16—N3 0.0 (3)
N2—N1—C2—C9 3.5 (3) Cl3—C15—C16—N3 −178.32 (18)
N1—N2—C3—C4 179.7 (2) Cl4—C15—C16—C11 179.46 (19)
N1—N2—C3—C8 −0.1 (4) Cl3—C15—C16—C11 1.2 (4)
C8—C3—C4—C5 −0.9 (5) N4—N3—C16—C15 −179.9 (2)
N2—C3—C4—C5 179.3 (3) N4—N3—C16—C11 0.6 (3)
C3—C4—C5—C6 −0.3 (5) C10—C11—C16—C15 79.5 (3)
C4—C5—C6—C7 0.9 (5) C12—C11—C16—C15 −99.6 (3)
C5—C6—C7—C8 −0.4 (5) C10—C11—C16—N3 −101.1 (3)
C4—C3—C8—C7 1.4 (4) C12—C11—C16—N3 79.9 (3)
N2—C3—C8—C7 −178.8 (3) N3—N4—C17—C18 3.8 (4)
C6—C7—C8—C3 −0.7 (5) N3—N4—C17—C22 −175.5 (2)
C1—C2—C9—C14 102.4 (3) C22—C17—C18—C19 1.1 (4)
N1—C2—C9—C14 −79.0 (3) N4—C17—C18—C19 −178.1 (2)
C1—C2—C9—C10 −76.3 (3) C17—C18—C19—C20 0.0 (4)
N1—C2—C9—C10 102.4 (3) C18—C19—C20—C21 −0.6 (5)
C14—C9—C10—C11 0.6 (3) C19—C20—C21—C22 0.1 (5)
C2—C9—C10—C11 179.3 (2) C20—C21—C22—C17 1.1 (5)
C9—C10—C11—C12 −0.8 (3) C18—C17—C22—C21 −1.7 (4)
C9—C10—C11—C16 −179.8 (2) N4—C17—C22—C21 177.6 (3)
C10—C11—C12—C13 0.4 (4)

Hydrogen-bond geometry (Å, º)

Cg3 is the centroid of the C17–C22 ring.

D—H···A D—H H···A D···A D—H···A
C12—H12A···Cg3i 0.93 2.72 3.610 (3) 162

Symmetry code: (i) x, −y+3/2, z−1/2.

Funding Statement

This work was funded by Science Development Foundation under the President of the Republic of Azerbaijan grant EIF-BGM-4- RFTF-1/2017–21/13/4.

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Asgarova, A. R., Khalilov, A. N., Brito, I., Maharramov, A. M., Shikhaliyev, N. G., Cisterna, J., Cárdenas, A., Gurbanov, A. V., Zubkov, F. I. & Mahmudov, K. T. (2019). Acta Cryst. C75, 342–347. [DOI] [PubMed]
  3. Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  6. Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633.
  7. Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837. [DOI] [PubMed]
  8. Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018a). Aust. J. Chem. 71, 190–194.
  9. Gurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018b). Inorg. Chim. Acta, 471, 130–136.
  10. Gurbanov, A. V., Mahmudov, K. T., Sutradhar, M., Guedes da Silva, F. C., Mahmudov, T. A., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). J. Organomet. Chem. 834, 22–27.
  11. Karmakar, A., Rúbio, G. M. D. M., Paul, A., Guedes da Silva, M. F. C., Mahmudov, K. T., Guseinov, F. I., Carabineiro, S. A. C. & Pombeiro, A. J. L. (2017). Dalton Trans. 46, 8649–8657. [DOI] [PubMed]
  12. Khalilov, A. N., Abdelhamid, A. A., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o1146. [DOI] [PMC free article] [PubMed]
  13. Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Maharramov, A. M., Nagiyev, F. N. & Brito, I. (2018a). Z. Kristallogr. New Cryst. Struct. 233, 1019–1020.
  14. Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Nagiyev, F. N. & Brito, I. (2018b). Z. Kristallogr. New Cryst. Struct. 233, 947–948.
  15. Kopylovich, M. N., Mahmudov, K. T., Haukka, M., Luzyanin, K. V. & Pombeiro, A. J. L. (2011a). Inorg. Chim. Acta, 374, 175–180.
  16. Kopylovich, M. N., Mahmudov, K. T., Mizar, A. & Pombeiro, A. J. L. (2011b). Chem. Commun. 47, 7248–7250. [DOI] [PubMed]
  17. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  18. Ma, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526–533.
  19. Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). Mol. Catal. 428, 17–23.
  20. Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.
  21. Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482.
  22. Mac Leod, T. C., Kopylovich, M. N., Guedes da Silva, M. F. C., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Appl. Catal. Gen. 439–440, 15–23.
  23. Maharramov, A. M., Duruskari, G. S., Mammadova, G. Z., Khalilov, A. N., Aslanova, J. M., Cisterna, J., Cárdenas, A. & Brito, I. (2019). J. Chil. Chem. Soc. 64, 4441–4447.
  24. Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141.
  25. Mahmoudi, G., Bauzá, A., Gurbanov, A. V., Zubkov, F. I., Maniukiewicz, W., Rodríguez-Diéguez, A., López-Torres, E. & Frontera, A. (2016). CrystEngComm, 18, 9056–9066.
  26. Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192–205.
  27. Mahmoudi, G., Gurbanov, A. V., Rodríguez-Hermida, S., Carballo, R., Amini, M., Bacchi, A., Mitoraj, M. P., Sagan, F., Kukułka, M. & Safin, D. A. (2017b). Inorg. Chem. 56, 9698–9709. [DOI] [PubMed]
  28. Mahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108–117.
  29. Mahmoudi, G., Seth, S. K., Bauzá, A., Zubkov, F. I., Gurbanov, A. V., White, J., Stilinović, V., Doert, T. & Frontera, A. (2018a). CrystEngComm, 20, 2812–2821.
  30. Mahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018b). New J. Chem. 42, 4959–4971.
  31. Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017c). Eur. J. Inorg. Chem. pp. 4763–4772.
  32. Mahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108–112.
  33. Mizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. pp. 2305–2313.
  34. Mohamed, S. K., Younes, S. H. H., Abdel-Raheem, E. M. M., Horton, P. N., Akkurt, M. & Glidewell, C. (2016). Acta Cryst. C72, 57–62. [DOI] [PubMed]
  35. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  36. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  37. Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381.
  38. Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038.
  39. Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807–4815.
  40. Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.
  41. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  42. Sutradhar, M., Alegria, E. C. B. A., Mahmudov, K. T., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2016). RSC Adv. 6, 8079–8088.
  43. Sutradhar, M., Martins, L. M. D. R. S., Guedes da Silva, M. F. C., Mahmudov, K. T., Liu, C.-M. & Pombeiro, A. J. L. (2015). Eur. J. Inorg. Chem. pp. 3959–3969.
  44. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.
  45. Viswanathan, A., Kute, D., Musa, A., Mani, S. K., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291–303. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021007192/yk2154sup1.cif

e-77-00814-sup1.cif (737.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021007192/yk2154Isup2.hkl

e-77-00814-Isup2.hkl (350.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021007192/yk2154Isup3.cml

CCDC reference: 1987627

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES