In the crystal, molecules of the title compound are connected through C—H⋯π, C—Cl⋯π, Cl⋯Cl and Cl⋯H interactions, generating a three-dimensional network.
Keywords: crystal structure, C—H⋯π, C—Cl⋯π, Cl⋯Cl, Cl⋯H interactions, Hirshfeld surface analysis
Abstract
In the molecule of the title compound, C22H14Cl4N4, the central benzene ring makes dihedral angles of 77.03 (9) and 81.42 (9)° with the two approximately planar 2,2-dichloro-1-[(E)-phenyldiazenyl]vinyl groups. In the crystal, molecules are linked by C—H⋯π, C—Cl⋯π, Cl⋯Cl and Cl⋯H interactions, forming a three-dimensional network. The Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (30.4%), C⋯H/H⋯C (20.4%), Cl⋯H/H⋯Cl (19.4%), Cl⋯Cl (7.8%) and Cl⋯C/C⋯Cl (7.3%) interactions.
Chemical context
Azodyes and related hydrazones are of interest for synthetic organic chemistry, coordination chemistry, medicinal and material chemistry because of their important physical and biological properties (Mahmoudi et al., 2016 ▸, 2017a
▸,b
▸,c
▸, 2018a
▸,b
▸, 2019 ▸; Viswanathan et al., 2019 ▸). For this reason, diverse new synthetic procedures have been developed for their efficient and versatile synthesis (Gurbanov et al., 2017 ▸, 2018a
▸,b
▸; Ma et al., 2017a
▸,b
▸). Moreover, azo/hydrazone ligands can also be used as starting materials in the synthesis of coordination and supramolecular compounds (Ma et al., 2020 ▸, 2021 ▸; Mahmudov et al., 2013 ▸; Sutradhar et al., 2015 ▸, 2016 ▸), and as building blocks in the construction of 1D, 2D or 3D networks owing to their non-covalent bond-donating and acceptor capabilities (Gurbanov et al., 2020a
▸; Kopylovich et al., 2011a
▸,b
▸; Asgarova et al., 2019 ▸). In fact, inclusion of suitable substituents to azo/hydrazone ligands can improve their functional properties and the catalytic or biological activity of the corresponding coordination compounds (Mizar et al., 2012 ▸; Gurbanov et al., 2020b
▸; Karmakar et al., 2017 ▸; Khalilov et al., 2011 ▸, 2018a
▸,b
▸; Mac Leod et al., 2012 ▸; Maharramov et al., 2019 ▸; Shikhaliyev et al., 2019 ▸; Shixaliyev et al., 2014 ▸). Thus, the attachment of halogen-containing substituents to azo/hydrazone compounds can improve their functional properties via intermolecular halogen bonding. In order to continue our work in this perspective, we have synthesized a new halogenated bis-azo ligand, 1,3-bis{2,2-dichloro-1-[(E)-phenyldiazenyl]ethenyl}benzene, which is able to provide multiple intermolecular non-covalent interactions.
Structural commentary
The molecule of the title compound consists of three nearly planar fragments: the central benzene ring and the two attached 2,2-dichloro-1-[(E)-phenyldiazenyl]vinyl groups, Cl1–C8 and Cl3–C22 (Fig. 1 ▸), the largest deviations from the least-squares planes of these side groups being 0.060 (1) and 0.083 (3) Å for Cl2 and C18, respectively. These groups are nearly perpendicular to the central benzene ring, subtending dihedral angles of 77.03 (9) and 81.42 (9)°, respectively, with this ring. All bond dimensions within the molecule are typical of such type of compounds (Allen et al., 1987 ▸).
Figure 1.
The title molecule with the labelling scheme and 30% probability ellipsoids.
Supramolecular features
In the crystal, molecules are linked by C—H⋯π (Table 1 ▸) and C—Cl⋯π interactions [C15—Cl4⋯Cg3ii; Cl4⋯Cg3ii = 3.9572 (15); C15⋯Cg3ii = 4.381 (3) Å; C15—Cl4⋯Cg3ii = 92.60 (10)°; symmetry code: (ii) 2 − x, 1 − y, 1 − z] involving the terminal C17–C22 phenyl ring (Cg3). Besides this, there are the Cl⋯Cl and Cl⋯H contacts, which contribute to a three-dimensional network (Table 2 ▸, Figs. 2 ▸ and 3 ▸).
Table 1. C—H⋯π interactions (Å, °).
Cg3 is the centroid of the C17–C22 ring.
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C12—H12A⋯Cg3i | 0.93 | 2.72 | 3.610 (3) | 162 |
Symmetry code: (i) x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}.
Table 2. Intermolecular contacts (Å) in the title structure.
| Contact | Distance | Symmetry operation |
|---|---|---|
| Cl4⋯Cg3 | 1.709 (2) | 2 − x, 1 − y, 1 − z |
| Cl1⋯Cl4 | 3.4325 (12) | 2 − x, −{1\over 2} + y, {1\over 2} − z |
| Cl3⋯Cl2 | 3.5171 (13) | 2 − x, 1 − y, −z |
| H14A⋯C7 | 2.97 | x, {1\over 2} − y, −{1\over 2} + z |
| Cl3⋯H20A | 3.10 | x, y, − 1 + z |
| H13A⋯C4 | 2.95 | 1 − x, 1 − y, −z |
| H7A⋯H4A | 2.43 | 1 − x, −{1\over 2} + y, {1\over 2} − z |
| H12A⋯C21 | 2.92 | x, {3\over 2} − y, −{1\over 2} + z |
| H8A⋯H7A | 2.54 | 1 − x, −y, −z |
Figure 2.
A fragment of the molecular packing showing the C—H⋯π and C—Cl⋯π interactions.
Figure 3.
A fragment of the molecular packing showing the Cl⋯Cl and Cl—H interactions.
Hirshfeld surface analysis
The Hirshfeld surfaces and two-dimensional fingerprint plots were generated using Crystal Explorer 17.5 (Turner et al., 2017 ▸). Hirshfeld surfaces show intermolecular interactions by different hues and intensities to denote short and long contacts, as well as the intensity of the connections. In Fig. 4 ▸, the 3D Hirshfeld surface of the title molecule is mapped over d norm in the range −0.0453 to 1.4337 a.u. The red patches surrounding Cl1, Cl2, Cl3 and Cl4 are caused by the Cl1⋯Cl4, Cl3⋯Cl2 and Cl3⋯H20A interactions, which play a vital role in the molecular packing of the title compound, and highlight their functions as donors and/or acceptors; they also appear as blue and red regions on the Hirshfeld surface mapped over electrostatic potential (Spackman et al., 2008 ▸) corresponding to positive and negative potentials, as shown in Fig. 5 ▸. The blue regions indicate positive electrostatic potential (hydrogen-bond donors), while the red regions indicate negative electrostatic potential (hydrogen-bond acceptors).
Figure 4.
View of the three-dimensional Hirshfeld surface of the title compound plotted over d norm in the range −0.0453 to 1.4337 a.u.
Figure 5.
View of the three-dimensional Hirshfeld surface of the title complex plotted over electrostatic potential energy in the range −0.1379 to 0.1988 a.u. using the STO-3G basis set at the Hartree–Fock level of theory. The hydrogen-bond donors and acceptors are viewed as blue and red regions around the atoms corresponding to positive and negative potentials, respectively.
In Fig. 6 ▸, the overall two-dimensional fingerprint plot for the title compound and those delineated into H⋯H, C⋯H/H⋯C, Cl⋯H/H⋯Cl, Cl⋯Cl and Cl⋯C/C⋯Cl contacts, as well as their relative contributions to the Hirshfeld surface, are shown, while Table 2 ▸ provides data on the distinct intermolecular contacts. The percentage contributions to the Hirshfeld surfaces from various interatomic contacts are: H⋯H (30.4%; Fig. 6 ▸ b), C⋯H/H⋯C (20.4%; Fig. 6 ▸ c), Cl⋯H/H⋯Cl (19.4%; Fig. 6 ▸ d), Cl⋯Cl (7.8%; Fig. 6 ▸ e) and Cl⋯C/C⋯Cl (7.3%; Fig. 6 ▸ f). Other Cl⋯N/N⋯Cl, N⋯H/H⋯N, C⋯C, N⋯C/C⋯N and N⋯N contacts account for less than 5.9% of Hirshfeld surface mapping and have minimal directional impact on molecular packing (Table 3 ▸).
Figure 6.
The full two-dimensional fingerprint plots for the title compound, showing (a) all interactions, and delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) Cl⋯H/H⋯Cl, (e) Cl⋯Cl and (f) Cl⋯C/C⋯Cl interactions. The d i and d e values are the closest internal and external distances (in Å) from given points on the Hirshfeld surface.
Table 3. Percentage contributions of interatomic contacts to the Hirshfeld surface for the title compound.
| Contact | Percentage contribution |
|---|---|
| H⋯H | 30.4 |
| C⋯H/H⋯C | 20.4 |
| Cl⋯H/H⋯Cl | 19.4 |
| Cl⋯Cl | 7.8 |
| Cl⋯C/C⋯Cl | 7.3 |
| Cl⋯N/N⋯Cl | 5.9 |
| N⋯H/H⋯N | 5.6 |
| C⋯C | 1.8 |
| N⋯C/C⋯N | 1.2 |
| N⋯N | 0.2 |
Database survey
A search of Cambridge Crystallographic Database (CSD, version 5.41, update of August 2020; Groom et al., 2016 ▸) revealed a closely related compound, meso-(E,E)-1,10-[1,2-bis(4-chlorophenyl)ethane-1,2-diyl]bis(phenyldiazene), for which triclinic (refcode PAGCEI; Mohamed et al., 2016 ▸) and monoclinic (PAGCEI01; Mohamed et al., 2016 ▸) polymorphs are known. In both polymorphs, the molecules lie on inversion centres, but in PAGCEI01, the molecules are subject to whole-molecule disorder equivalent to configurational disorder with occupancies of 0.6021 (19) and 0.3979 (19). There are no hydrogen bonds in the crystal structure of PAGCEI, whereas the molecules of PAGCEI01 are linked by C—H⋯π(arene) hydrogen bonds into complex chains, which are further linked into sheets by C— H⋯N interactions.
Synthesis and crystallization
This bis-azo dye was synthesized according to a reported method (Maharramov et al., 2018 ▸; Shikhaliyev et al., 2018 ▸). A 20 mL screw neck vial was charged with DMSO (10 mL), 1,3-bis[(E)-(2-phenylhydrazineylidene)methyl]benzene (628 mg, 2 mmol), tetramethylethylenediamine (TMEDA) (581 mg, 5 mmol), CuCl (3 mg, 0.03 mmol) and CCl4 (20 mmol, 10 equiv). After 1–3 h (until TLC analysis showed complete consumption of the corresponding Schiff base), the reaction mixture was poured into a 0.01 M solution of HCl (100 mL, pH = 2–3), and extracted with dichloromethane (3 × 20 mL). The combined organic phase was washed with water (3 × 50 mL), brine (30 mL), dried over anhydrous Na2SO4 and concentrated in vacuo using a rotary evaporator. The residue was purified by column chromatography on silica gel using appropriate mixtures of hexane and dichloromethane (3/1–1/1). Crystals suitable for X-ray analysis were obtained by slow evaporation of a dichloromethane solution. Orange solid (50%); mp 402 K. Analysis calculated for C22H14Cl4N4 (M = 476.18): C 55.49, H 2.96, N 11.77; found: C 55.45, H 2.94, N 11.70%. 1H NMR (300 MHz, CDCl3) δ 6.58–8.02 (14H, Ar). 13C NMR (75MHz, CDCl3) δ 121.8, 122.15, 124.83, 126.28, 127.32, 128.04, 128.95, 130.09, 133.12, 139.07. ESI–MS: m/z: 477.32 [M + H]+.
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 4 ▸. All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å, and with U
iso(H) = 1.2U
eq (C). Owing to poor agreement between observed and calculated intensities, six outliers (
16 2,
1 12,
1 13, 8 14 1,
2 13 and
16 1) were omitted in the final cycles of refinement.
Table 4. Experimental details.
| Crystal data | |
| Chemical formula | C22H14Cl4N4 |
| M r | 476.17 |
| Crystal system, space group | Monoclinic, P21/c |
| Temperature (K) | 296 |
| a, b, c (Å) | 16.0289 (10), 13.1213 (8), 11.1286 (7) |
| β (°) | 108.073 (2) |
| V (Å3) | 2225.1 (2) |
| Z | 4 |
| Radiation type | Mo Kα |
| μ (mm−1) | 0.55 |
| Crystal size (mm) | 0.44 × 0.26 × 0.12 |
| Data collection | |
| Diffractometer | Bruker APEXII CCD |
| Absorption correction | Multi-scan (SADABS; Krause et al., 2015 ▸) |
| T min, T max | 0.621, 0.745 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 24362, 4399, 3193 |
| R int | 0.044 |
| (sin θ/λ)max (Å−1) | 0.626 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.046, 0.112, 1.01 |
| No. of reflections | 4399 |
| No. of parameters | 271 |
| H-atom treatment | H-atom parameters constrained |
| Δρmax, Δρmin (e Å−3) | 0.24, −0.25 |
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021007192/yk2154sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021007192/yk2154Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989021007192/yk2154Isup3.cml
CCDC reference: 1987627
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
Authors’ contributions are as follows. Conceptualization, NQS, MA, and AB; synthesis, NQA and NEA; X-ray analysis, RKA; writing, NQS, ZA, MA and AB; funding acquisition, NQS, NEA and RKA; supervision, NQS, MA and AB.
supplementary crystallographic information
Crystal data
| C22H14Cl4N4 | F(000) = 968 |
| Mr = 476.17 | Dx = 1.421 Mg m−3 |
| Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
| a = 16.0289 (10) Å | Cell parameters from 6439 reflections |
| b = 13.1213 (8) Å | θ = 2.5–26.4° |
| c = 11.1286 (7) Å | µ = 0.55 mm−1 |
| β = 108.073 (2)° | T = 296 K |
| V = 2225.1 (2) Å3 | Prism, colourless |
| Z = 4 | 0.44 × 0.26 × 0.12 mm |
Data collection
| Bruker APEXII CCD diffractometer | 3193 reflections with I > 2σ(I) |
| φ and ω scans | Rint = 0.044 |
| Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 26.4°, θmin = 2.1° |
| Tmin = 0.621, Tmax = 0.745 | h = −20→20 |
| 24362 measured reflections | k = −16→16 |
| 4399 independent reflections | l = −13→13 |
Refinement
| Refinement on F2 | Primary atom site location: difference Fourier map |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.046 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.112 | H-atom parameters constrained |
| S = 1.01 | w = 1/[σ2(Fo2) + (0.0456P)2 + 1.0697P] where P = (Fo2 + 2Fc2)/3 |
| 4399 reflections | (Δ/σ)max = 0.001 |
| 271 parameters | Δρmax = 0.24 e Å−3 |
| 0 restraints | Δρmin = −0.25 e Å−3 |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Cl1 | 0.74226 (5) | 0.14141 (5) | −0.10025 (7) | 0.0592 (2) | |
| Cl2 | 0.81687 (6) | 0.33515 (7) | −0.12359 (8) | 0.0777 (3) | |
| Cl3 | 0.97228 (5) | 0.57996 (7) | 0.11006 (7) | 0.0736 (3) | |
| Cl4 | 1.05825 (5) | 0.63410 (7) | 0.36813 (8) | 0.0762 (3) | |
| N1 | 0.65092 (13) | 0.24501 (16) | 0.05084 (19) | 0.0467 (5) | |
| N2 | 0.60887 (13) | 0.28678 (16) | 0.11510 (19) | 0.0488 (5) | |
| N3 | 0.88872 (14) | 0.60214 (16) | 0.40656 (19) | 0.0469 (5) | |
| N4 | 0.81623 (14) | 0.58883 (16) | 0.42594 (18) | 0.0468 (5) | |
| C1 | 0.74926 (16) | 0.2676 (2) | −0.0611 (2) | 0.0472 (6) | |
| C2 | 0.70658 (15) | 0.31073 (19) | 0.0111 (2) | 0.0435 (6) | |
| C3 | 0.55342 (16) | 0.2175 (2) | 0.1536 (2) | 0.0480 (6) | |
| C4 | 0.5054 (2) | 0.2569 (3) | 0.2249 (3) | 0.0698 (8) | |
| H4A | 0.510609 | 0.325648 | 0.246399 | 0.084* | |
| C5 | 0.4494 (2) | 0.1959 (3) | 0.2652 (3) | 0.0830 (10) | |
| H5A | 0.417287 | 0.223700 | 0.313982 | 0.100* | |
| C6 | 0.44075 (19) | 0.0957 (3) | 0.2343 (3) | 0.0721 (9) | |
| H6A | 0.402268 | 0.054889 | 0.260581 | 0.086* | |
| C7 | 0.4887 (2) | 0.0553 (3) | 0.1645 (3) | 0.0730 (9) | |
| H7A | 0.483059 | −0.013532 | 0.143736 | 0.088* | |
| C8 | 0.5458 (2) | 0.1151 (2) | 0.1240 (3) | 0.0641 (8) | |
| H8A | 0.578832 | 0.086471 | 0.077119 | 0.077* | |
| C9 | 0.71822 (15) | 0.41985 (18) | 0.0494 (2) | 0.0419 (5) | |
| C10 | 0.79331 (15) | 0.45017 (18) | 0.1441 (2) | 0.0409 (5) | |
| H10A | 0.835438 | 0.401942 | 0.183488 | 0.049* | |
| C11 | 0.80614 (15) | 0.55110 (18) | 0.1805 (2) | 0.0386 (5) | |
| C12 | 0.74374 (16) | 0.62289 (19) | 0.1206 (2) | 0.0465 (6) | |
| H12A | 0.751924 | 0.691101 | 0.144018 | 0.056* | |
| C13 | 0.66925 (17) | 0.5928 (2) | 0.0259 (2) | 0.0545 (7) | |
| H13A | 0.627449 | 0.641110 | −0.014303 | 0.065* | |
| C14 | 0.65639 (16) | 0.4924 (2) | −0.0093 (2) | 0.0510 (6) | |
| H14A | 0.605927 | 0.472971 | −0.072944 | 0.061* | |
| C15 | 0.96300 (16) | 0.5965 (2) | 0.2578 (2) | 0.0498 (6) | |
| C16 | 0.88676 (15) | 0.58312 (18) | 0.2816 (2) | 0.0418 (5) | |
| C17 | 0.82000 (18) | 0.60524 (19) | 0.5545 (2) | 0.0477 (6) | |
| C18 | 0.89313 (19) | 0.6384 (2) | 0.6491 (2) | 0.0571 (7) | |
| H18A | 0.944637 | 0.653856 | 0.631148 | 0.068* | |
| C19 | 0.8890 (2) | 0.6485 (2) | 0.7705 (3) | 0.0670 (8) | |
| H19A | 0.938099 | 0.670842 | 0.834584 | 0.080* | |
| C20 | 0.8130 (3) | 0.6258 (2) | 0.7979 (3) | 0.0717 (9) | |
| H20A | 0.810894 | 0.632115 | 0.880182 | 0.086* | |
| C21 | 0.7409 (2) | 0.5940 (2) | 0.7040 (3) | 0.0699 (8) | |
| H21A | 0.689496 | 0.578686 | 0.722387 | 0.084* | |
| C22 | 0.74340 (19) | 0.5843 (2) | 0.5820 (3) | 0.0589 (7) | |
| H22A | 0.693555 | 0.563666 | 0.518131 | 0.071* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Cl1 | 0.0678 (4) | 0.0510 (4) | 0.0588 (4) | 0.0018 (3) | 0.0197 (3) | −0.0113 (3) |
| Cl2 | 0.0910 (6) | 0.0744 (5) | 0.0899 (6) | −0.0174 (4) | 0.0603 (5) | −0.0081 (4) |
| Cl3 | 0.0575 (4) | 0.1103 (7) | 0.0610 (5) | −0.0054 (4) | 0.0302 (3) | −0.0060 (4) |
| Cl4 | 0.0446 (4) | 0.0956 (6) | 0.0776 (5) | −0.0107 (4) | 0.0032 (3) | −0.0124 (4) |
| N1 | 0.0497 (11) | 0.0487 (13) | 0.0435 (12) | −0.0082 (10) | 0.0171 (10) | −0.0042 (10) |
| N2 | 0.0497 (12) | 0.0525 (13) | 0.0460 (12) | −0.0077 (10) | 0.0173 (10) | −0.0055 (10) |
| N3 | 0.0532 (12) | 0.0440 (12) | 0.0414 (11) | −0.0046 (10) | 0.0115 (10) | −0.0043 (9) |
| N4 | 0.0557 (12) | 0.0452 (12) | 0.0397 (11) | −0.0045 (10) | 0.0148 (10) | −0.0026 (9) |
| C1 | 0.0491 (14) | 0.0484 (15) | 0.0438 (14) | −0.0029 (12) | 0.0141 (11) | −0.0023 (11) |
| C2 | 0.0440 (13) | 0.0460 (14) | 0.0384 (13) | −0.0071 (11) | 0.0095 (10) | −0.0037 (11) |
| C3 | 0.0451 (13) | 0.0547 (16) | 0.0432 (14) | −0.0065 (12) | 0.0122 (11) | −0.0016 (12) |
| C4 | 0.0744 (19) | 0.065 (2) | 0.082 (2) | −0.0045 (16) | 0.0424 (18) | −0.0088 (16) |
| C5 | 0.074 (2) | 0.099 (3) | 0.095 (3) | −0.006 (2) | 0.053 (2) | −0.004 (2) |
| C6 | 0.0568 (17) | 0.093 (3) | 0.067 (2) | −0.0182 (17) | 0.0208 (15) | 0.0087 (18) |
| C7 | 0.090 (2) | 0.062 (2) | 0.071 (2) | −0.0208 (17) | 0.0303 (18) | 0.0000 (16) |
| C8 | 0.0746 (19) | 0.0585 (19) | 0.0672 (19) | −0.0088 (15) | 0.0335 (16) | −0.0058 (15) |
| C9 | 0.0448 (12) | 0.0448 (14) | 0.0382 (12) | −0.0062 (11) | 0.0159 (10) | −0.0036 (11) |
| C10 | 0.0415 (12) | 0.0418 (14) | 0.0399 (13) | −0.0003 (10) | 0.0136 (10) | 0.0027 (10) |
| C11 | 0.0426 (12) | 0.0414 (14) | 0.0342 (12) | −0.0043 (10) | 0.0155 (10) | −0.0009 (10) |
| C12 | 0.0528 (14) | 0.0410 (14) | 0.0471 (14) | 0.0010 (11) | 0.0177 (12) | −0.0023 (11) |
| C13 | 0.0525 (15) | 0.0534 (17) | 0.0523 (16) | 0.0110 (13) | 0.0085 (12) | 0.0036 (13) |
| C14 | 0.0461 (13) | 0.0591 (17) | 0.0422 (14) | −0.0033 (12) | 0.0056 (11) | −0.0045 (12) |
| C15 | 0.0432 (13) | 0.0541 (16) | 0.0499 (15) | −0.0022 (12) | 0.0111 (11) | −0.0041 (12) |
| C16 | 0.0454 (13) | 0.0371 (13) | 0.0419 (13) | −0.0019 (10) | 0.0117 (10) | −0.0017 (10) |
| C17 | 0.0658 (16) | 0.0389 (14) | 0.0384 (13) | −0.0005 (12) | 0.0160 (12) | −0.0020 (11) |
| C18 | 0.0664 (17) | 0.0538 (17) | 0.0474 (15) | −0.0019 (14) | 0.0125 (13) | −0.0034 (13) |
| C19 | 0.090 (2) | 0.0604 (19) | 0.0432 (16) | −0.0001 (17) | 0.0098 (15) | −0.0027 (13) |
| C20 | 0.112 (3) | 0.062 (2) | 0.0460 (17) | 0.0052 (18) | 0.0309 (18) | 0.0006 (14) |
| C21 | 0.089 (2) | 0.071 (2) | 0.0593 (19) | −0.0048 (18) | 0.0366 (17) | −0.0004 (16) |
| C22 | 0.0701 (18) | 0.0583 (18) | 0.0514 (16) | −0.0084 (14) | 0.0233 (14) | −0.0052 (13) |
Geometric parameters (Å, º)
| Cl1—C1 | 1.707 (3) | C9—C14 | 1.383 (3) |
| Cl2—C1 | 1.706 (3) | C9—C10 | 1.389 (3) |
| Cl3—C15 | 1.710 (3) | C10—C11 | 1.381 (3) |
| Cl4—C15 | 1.709 (2) | C10—H10A | 0.9300 |
| N1—N2 | 1.251 (3) | C11—C12 | 1.385 (3) |
| N1—C2 | 1.407 (3) | C11—C16 | 1.487 (3) |
| N2—C3 | 1.427 (3) | C12—C13 | 1.383 (3) |
| N3—N4 | 1.258 (3) | C12—H12A | 0.9300 |
| N3—C16 | 1.404 (3) | C13—C14 | 1.372 (4) |
| N4—C17 | 1.430 (3) | C13—H13A | 0.9300 |
| C1—C2 | 1.333 (3) | C14—H14A | 0.9300 |
| C2—C9 | 1.489 (3) | C15—C16 | 1.340 (3) |
| C3—C4 | 1.367 (4) | C17—C18 | 1.381 (4) |
| C3—C8 | 1.380 (4) | C17—C22 | 1.382 (4) |
| C4—C5 | 1.378 (4) | C18—C19 | 1.380 (4) |
| C4—H4A | 0.9300 | C18—H18A | 0.9300 |
| C5—C6 | 1.356 (5) | C19—C20 | 1.378 (4) |
| C5—H5A | 0.9300 | C19—H19A | 0.9300 |
| C6—C7 | 1.358 (4) | C20—C21 | 1.361 (4) |
| C6—H6A | 0.9300 | C20—H20A | 0.9300 |
| C7—C8 | 1.383 (4) | C21—C22 | 1.376 (4) |
| C7—H7A | 0.9300 | C21—H21A | 0.9300 |
| C8—H8A | 0.9300 | C22—H22A | 0.9300 |
| N2—N1—C2 | 114.7 (2) | C10—C11—C16 | 120.5 (2) |
| N1—N2—C3 | 112.9 (2) | C12—C11—C16 | 120.0 (2) |
| N4—N3—C16 | 114.0 (2) | C13—C12—C11 | 119.8 (2) |
| N3—N4—C17 | 113.3 (2) | C13—C12—H12A | 120.1 |
| C2—C1—Cl2 | 122.4 (2) | C11—C12—H12A | 120.1 |
| C2—C1—Cl1 | 124.1 (2) | C14—C13—C12 | 120.6 (2) |
| Cl2—C1—Cl1 | 113.55 (15) | C14—C13—H13A | 119.7 |
| C1—C2—N1 | 115.1 (2) | C12—C13—H13A | 119.7 |
| C1—C2—C9 | 122.6 (2) | C13—C14—C9 | 120.2 (2) |
| N1—C2—C9 | 122.3 (2) | C13—C14—H14A | 119.9 |
| C4—C3—C8 | 118.9 (3) | C9—C14—H14A | 119.9 |
| C4—C3—N2 | 116.6 (3) | C16—C15—Cl4 | 124.2 (2) |
| C8—C3—N2 | 124.5 (2) | C16—C15—Cl3 | 122.0 (2) |
| C3—C4—C5 | 120.7 (3) | Cl4—C15—Cl3 | 113.76 (15) |
| C3—C4—H4A | 119.7 | C15—C16—N3 | 115.6 (2) |
| C5—C4—H4A | 119.7 | C15—C16—C11 | 121.3 (2) |
| C6—C5—C4 | 120.4 (3) | N3—C16—C11 | 123.2 (2) |
| C6—C5—H5A | 119.8 | C18—C17—C22 | 119.7 (3) |
| C4—C5—H5A | 119.8 | C18—C17—N4 | 125.0 (3) |
| C5—C6—C7 | 119.5 (3) | C22—C17—N4 | 115.3 (2) |
| C5—C6—H6A | 120.2 | C19—C18—C17 | 119.3 (3) |
| C7—C6—H6A | 120.2 | C19—C18—H18A | 120.3 |
| C6—C7—C8 | 121.0 (3) | C17—C18—H18A | 120.3 |
| C6—C7—H7A | 119.5 | C20—C19—C18 | 120.7 (3) |
| C8—C7—H7A | 119.5 | C20—C19—H19A | 119.7 |
| C3—C8—C7 | 119.5 (3) | C18—C19—H19A | 119.7 |
| C3—C8—H8A | 120.2 | C21—C20—C19 | 119.7 (3) |
| C7—C8—H8A | 120.2 | C21—C20—H20A | 120.2 |
| C14—C9—C10 | 119.1 (2) | C19—C20—H20A | 120.2 |
| C14—C9—C2 | 121.2 (2) | C20—C21—C22 | 120.5 (3) |
| C10—C9—C2 | 119.6 (2) | C20—C21—H21A | 119.7 |
| C11—C10—C9 | 120.8 (2) | C22—C21—H21A | 119.7 |
| C11—C10—H10A | 119.6 | C21—C22—C17 | 120.0 (3) |
| C9—C10—H10A | 119.6 | C21—C22—H22A | 120.0 |
| C10—C11—C12 | 119.4 (2) | C17—C22—H22A | 120.0 |
| C2—N1—N2—C3 | −179.88 (19) | C16—C11—C12—C13 | 179.5 (2) |
| C16—N3—N4—C17 | 178.1 (2) | C11—C12—C13—C14 | 0.1 (4) |
| Cl1—C1—C2—N1 | −2.4 (3) | C12—C13—C14—C9 | −0.2 (4) |
| Cl2—C1—C2—C9 | −3.6 (3) | C10—C9—C14—C13 | −0.1 (4) |
| Cl1—C1—C2—C9 | 176.39 (18) | C2—C9—C14—C13 | −178.8 (2) |
| N2—N1—C2—C1 | −177.7 (2) | Cl4—C15—C16—N3 | 0.0 (3) |
| N2—N1—C2—C9 | 3.5 (3) | Cl3—C15—C16—N3 | −178.32 (18) |
| N1—N2—C3—C4 | 179.7 (2) | Cl4—C15—C16—C11 | 179.46 (19) |
| N1—N2—C3—C8 | −0.1 (4) | Cl3—C15—C16—C11 | 1.2 (4) |
| C8—C3—C4—C5 | −0.9 (5) | N4—N3—C16—C15 | −179.9 (2) |
| N2—C3—C4—C5 | 179.3 (3) | N4—N3—C16—C11 | 0.6 (3) |
| C3—C4—C5—C6 | −0.3 (5) | C10—C11—C16—C15 | 79.5 (3) |
| C4—C5—C6—C7 | 0.9 (5) | C12—C11—C16—C15 | −99.6 (3) |
| C5—C6—C7—C8 | −0.4 (5) | C10—C11—C16—N3 | −101.1 (3) |
| C4—C3—C8—C7 | 1.4 (4) | C12—C11—C16—N3 | 79.9 (3) |
| N2—C3—C8—C7 | −178.8 (3) | N3—N4—C17—C18 | 3.8 (4) |
| C6—C7—C8—C3 | −0.7 (5) | N3—N4—C17—C22 | −175.5 (2) |
| C1—C2—C9—C14 | 102.4 (3) | C22—C17—C18—C19 | 1.1 (4) |
| N1—C2—C9—C14 | −79.0 (3) | N4—C17—C18—C19 | −178.1 (2) |
| C1—C2—C9—C10 | −76.3 (3) | C17—C18—C19—C20 | 0.0 (4) |
| N1—C2—C9—C10 | 102.4 (3) | C18—C19—C20—C21 | −0.6 (5) |
| C14—C9—C10—C11 | 0.6 (3) | C19—C20—C21—C22 | 0.1 (5) |
| C2—C9—C10—C11 | 179.3 (2) | C20—C21—C22—C17 | 1.1 (5) |
| C9—C10—C11—C12 | −0.8 (3) | C18—C17—C22—C21 | −1.7 (4) |
| C9—C10—C11—C16 | −179.8 (2) | N4—C17—C22—C21 | 177.6 (3) |
| C10—C11—C12—C13 | 0.4 (4) |
Hydrogen-bond geometry (Å, º)
Cg3 is the centroid of the C17–C22 ring.
| D—H···A | D—H | H···A | D···A | D—H···A |
| C12—H12A···Cg3i | 0.93 | 2.72 | 3.610 (3) | 162 |
Symmetry code: (i) x, −y+3/2, z−1/2.
Funding Statement
This work was funded by Science Development Foundation under the President of the Republic of Azerbaijan grant EIF-BGM-4- RFTF-1/2017–21/13/4.
References
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Asgarova, A. R., Khalilov, A. N., Brito, I., Maharramov, A. M., Shikhaliyev, N. G., Cisterna, J., Cárdenas, A., Gurbanov, A. V., Zubkov, F. I. & Mahmudov, K. T. (2019). Acta Cryst. C75, 342–347. [DOI] [PubMed]
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633.
- Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837. [DOI] [PubMed]
- Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018a). Aust. J. Chem. 71, 190–194.
- Gurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018b). Inorg. Chim. Acta, 471, 130–136.
- Gurbanov, A. V., Mahmudov, K. T., Sutradhar, M., Guedes da Silva, F. C., Mahmudov, T. A., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). J. Organomet. Chem. 834, 22–27.
- Karmakar, A., Rúbio, G. M. D. M., Paul, A., Guedes da Silva, M. F. C., Mahmudov, K. T., Guseinov, F. I., Carabineiro, S. A. C. & Pombeiro, A. J. L. (2017). Dalton Trans. 46, 8649–8657. [DOI] [PubMed]
- Khalilov, A. N., Abdelhamid, A. A., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o1146. [DOI] [PMC free article] [PubMed]
- Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Maharramov, A. M., Nagiyev, F. N. & Brito, I. (2018a). Z. Kristallogr. New Cryst. Struct. 233, 1019–1020.
- Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Nagiyev, F. N. & Brito, I. (2018b). Z. Kristallogr. New Cryst. Struct. 233, 947–948.
- Kopylovich, M. N., Mahmudov, K. T., Haukka, M., Luzyanin, K. V. & Pombeiro, A. J. L. (2011a). Inorg. Chim. Acta, 374, 175–180.
- Kopylovich, M. N., Mahmudov, K. T., Mizar, A. & Pombeiro, A. J. L. (2011b). Chem. Commun. 47, 7248–7250. [DOI] [PubMed]
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
- Ma, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526–533.
- Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). Mol. Catal. 428, 17–23.
- Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.
- Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482.
- Mac Leod, T. C., Kopylovich, M. N., Guedes da Silva, M. F. C., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Appl. Catal. Gen. 439–440, 15–23.
- Maharramov, A. M., Duruskari, G. S., Mammadova, G. Z., Khalilov, A. N., Aslanova, J. M., Cisterna, J., Cárdenas, A. & Brito, I. (2019). J. Chil. Chem. Soc. 64, 4441–4447.
- Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141.
- Mahmoudi, G., Bauzá, A., Gurbanov, A. V., Zubkov, F. I., Maniukiewicz, W., Rodríguez-Diéguez, A., López-Torres, E. & Frontera, A. (2016). CrystEngComm, 18, 9056–9066.
- Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192–205.
- Mahmoudi, G., Gurbanov, A. V., Rodríguez-Hermida, S., Carballo, R., Amini, M., Bacchi, A., Mitoraj, M. P., Sagan, F., Kukułka, M. & Safin, D. A. (2017b). Inorg. Chem. 56, 9698–9709. [DOI] [PubMed]
- Mahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108–117.
- Mahmoudi, G., Seth, S. K., Bauzá, A., Zubkov, F. I., Gurbanov, A. V., White, J., Stilinović, V., Doert, T. & Frontera, A. (2018a). CrystEngComm, 20, 2812–2821.
- Mahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018b). New J. Chem. 42, 4959–4971.
- Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017c). Eur. J. Inorg. Chem. pp. 4763–4772.
- Mahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108–112.
- Mizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. pp. 2305–2313.
- Mohamed, S. K., Younes, S. H. H., Abdel-Raheem, E. M. M., Horton, P. N., Akkurt, M. & Glidewell, C. (2016). Acta Cryst. C72, 57–62. [DOI] [PubMed]
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381.
- Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038.
- Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807–4815.
- Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.
- Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
- Sutradhar, M., Alegria, E. C. B. A., Mahmudov, K. T., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2016). RSC Adv. 6, 8079–8088.
- Sutradhar, M., Martins, L. M. D. R. S., Guedes da Silva, M. F. C., Mahmudov, K. T., Liu, C.-M. & Pombeiro, A. J. L. (2015). Eur. J. Inorg. Chem. pp. 3959–3969.
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.
- Viswanathan, A., Kute, D., Musa, A., Mani, S. K., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291–303. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021007192/yk2154sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021007192/yk2154Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989021007192/yk2154Isup3.cml
CCDC reference: 1987627
Additional supporting information: crystallographic information; 3D view; checkCIF report






