Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Jul 16;77(Pt 8):804–808. doi: 10.1107/S205698902100709X

Withanolides from Physalis angulata L.

R Ya Okmanov a,*, M M Makhmudova a, I D Bobaev a,b, B Tashkhodjaev a
PMCID: PMC8340980  PMID: 34422305

The chemical structures of two withanolides, isolated from the leaves of Physalis angulata by column chromatography, were studied. The isolated compounds are (17S,20R,22R,24R,25S)-5β,6β:20,24-diep­oxy-4β,25-dihy­droxy-1-oxowith-2-en-26,22-olide and (20R,22R)-5α,14α,20-Trihy­droxy-1-oxo-6α,7α-ep­oxy­witha-2-enolide.

Keywords: Physalis angulata L., physangulide B, 14α-hy­droxy­ixocarpanolide, mol­ecular structure, hydrogen bonding, chloro­form solvate, crystal structure

Abstract

The compounds (17S,20R,22R,24R,25S)-5β,6β:20,24-diep­oxy-4β,25-dihy­droxy-1-oxowith-2-en-26,22-olide and (20R,22R)-5α,14α,20-Trihy­droxy-1-oxo-6α,7α-ep­oxy­witha-2-enolide were isolated from a chloro­form extract of the aerial parts of Physalis angulata L. (Solanaceae). Two products were isolated from the chromatographic separation extract. Compound I corresponds to physangulide B chloro­form monosolvate, C28H38O7·CHCl3, while compound II is 14α-hy­droxy­ixocarpanolide, C28H40O7. In the two mol­ecular structures, the conformation of the steroid part (rings A, B, C, D) does not differ. In both crystals, mol­ecules are linked by inter­molecular O—H⋯O hydrogen bonds along the c-axis direction and form a two-dimensional network parallel to the ac plane. The absolute configuration was determined from X-ray diffraction data.

Chemical context  

The genus Physalis belongs to the nightshade family of plants and is widely distributed in subtropical and tropical regions around the world. Some Physalis species are important in the diet because of their edible fruits. Phytochemical and pharmacological studies show that in plants of the genus Physalis, the main biological substances are withanolides (Huang et al., 2020). The fruits of Physalis angulata L. are edible, traditionally collected from wild populations, but the plant is now widely cultivated. In different countries of the world the fruits, roots and leaves of Physalis angulata L. are used in folk medicine as a treatment for various diseases (Salgado & Arana, 2013). The main secondary metabolites of Physalis angulata are withanolides, which are highly variable in chemical structure and exhibit inter­esting pharmacological activity (Ray & Gupta, 1994; Figueiredo et al., 2020; Sá et al., 2011; Pinto et al., 2016). The plant Physalis angulata is widespread in Uzbekistan and its reserves are sufficient for industrial use (Vasina et al., 1990). graphic file with name e-77-00804-scheme1.jpg

To study the chemical structure of withanolides, leaves of Physalis angulata collected in the Tashkent region were used. Isolation of withanolides from the leaves of Physalis angulata and separation of components into individual substances was carried out by column chromatography. The isolated compounds were identified as physangulide B chloro­form solvate (I) and 14α-hy­droxy­ixocarpanolide (II).

Structural commentary  

The asymmetric unit of I, a chloro­form solvate of physangulide B, is shown in Fig. 1. The use of Cu Kα radiation allowed the determination of the absolute configuration of the physangulide B mol­ecule. The Flack parameter refined to 0.014 (6). The chiral centres of the physangulide B mol­ecule have the following chirality: 4S, 5R, 6R, 8S, 9S,10R, 13S, 14S, 17S, 20R, 22R, 24R and 25S. The stereochemistry of physangulide B [systematic name (17S,20R,22R,24R,25S)-5β,6β:20,24-diep­oxy-4β,25-dihy­droxy-1-oxowith-2-en-26,22-olide] does not differ from that found for the acetyl derivative and confirms the absolute configuration proposed earlier for physangulide B (Maldonado et al., 2015).

Figure 1.

Figure 1

Mol­ecular structure of the chloro­form solvate of physangulide B (compound I), including atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

The mol­ecular structure of withanolide II is shown in Fig. 2. The Flack parameter refined to −0.1 (2) and allowed the absolute configuration of II to be confirmed. The chiral centres in the mol­ecule have the following chirality: 5R, 6S, 7S, 8S, 9S, 10R, 13R, 14R, 17S, 20R, 22R, 24S, 25R. According to the experimental data, the isolated compound is 14α-hy­droxy­ixocarpanolide [systematic name: (20R,22R)-5α,14α,20-trihy­droxy-1-oxo-6α,7α-ep­oxy­witha-2-enolide (Vasina et al., 1986; Ray & Gupta, 1994).

Figure 2.

Figure 2

Mol­ecular structure of the 14α-hy­droxy­ixocarpanolide (compound II), including atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

In both mol­ecules, ring C adopts a chair conformation and ring D an envelope conformation with atom C13 as the flap. Ring A exhibits a half–chair conformation, but differs slightly in the arrangement of atoms. The C1–C4 fragment is planar with r.m.s deviations of 0.0045 Å for I and 0.034 Å for II. The deviations of atoms C5 and C10 atoms from this plane are −0.225 (7) and 0.291 (7) Å, respectively, for I and −0.478 (7) and 0.280 (7) Å for II.

In the mol­ecule of I, atoms of ring B are located in one plane (with an r.m.s deviation of 0.0132 Å), except for C8 which deviates from the plane of the remaining atoms by 0.666 (4) Å. A similar envelope conformation for ring B is observed in II. Here, the C5–C9 atoms are located in one plane with an accuracy of 0.0643 Å, atom C10 being displaced from the plane through the remaining atoms by 0.696 (4) Å. This difference in the arrangement of atoms in planes is explained by the position of the ep­oxy bridge, which is located in the β-position for I and the α-position for II.

Supra­molecular features  

In both crystal structures, inter­molecular hydrogen bonds of the O—H⋯O type are observed, which link the mol­ecules along the c-axis direction. In compound I, O—H⋯O and C—H⋯O hydrogen bonds are observed between mol­ecules of physangulide B (Table 1). O4—H4⋯O26 and O25—H25⋯O56 hydrogen bonds are involved in the formation of an infinite chain along the c-axis (Fig. 3). In addition, the chloro­form mol­ecule participates in a hydrogen bond with the oxygen atom O26 of the lactone fragment. A similar hydrogen bond with a solvate mol­ecule (methanol) is observed in the structure of the acetyl derivative of physangulide B (FUQKAF; Maldonado et al., 2015).

Table 1. Hydrogen-bond geometry (Å, °) for (I) .

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O26i 0.79 (6) 2.10 (6) 2.819 (4) 151
O25—H25⋯O56ii 0.74 (5) 2.12 (5) 2.856 (4) 169
C23—H23A⋯O26iii 0.97 2.57 3.473 (4) 154
C1S—H1SA⋯O26 0.98 2.43 3.393 (6) 168

Symmetry codes: (i) x, y, z+1; (ii) x, y, z-1; (iii) x+1, y, z.

Figure 3.

Figure 3

Hydrogen bonding in the crystal structure of I (the mol­ecules are cross-linked along the c axis).

Similar inter­molecular O—H⋯O and C—H⋯O hydrogen bonds are observed in the structure of II (Table 2). The formation of an infinite O20—H20⋯O5 hydrogen-bonded chain is shown in Fig. 4. Paired hydrogen bonds are observed between mol­ecules, which extend along the c-axis direction.

Table 2. Hydrogen-bond geometry (Å, °) for (II) .

D—H⋯A D—H H⋯A DA D—H⋯A
O20—H20⋯O5i 0.76 (6) 2.22 (6) 2.973 (4) 173
C7—H7A⋯O26ii 0.98 2.59 3.367 (5) 136

Symmetry codes: (i) x, y, z+1; (ii) x-1, y, z-1.

Figure 4.

Figure 4

O20—H20⋯O5 hydrogen bonds in the crystal structure of compound II (the mol­ecules are cross-linked along the c axis).

Database survey  

A search for related structures (A, B, C, D, E rings are connected according to the order of the studied compounds) in the Cambridge Structural Database (CSD Version 5.42, update of November 2020; Groom et al., 2016) resulted in eleven hits. Of the structures found, the closest structure considering the connectivity and chirality of atoms is 17-(4-hy­droxy-4,5,7-trimethyl-3-oxo-2,6-dioxabi­cyclo­[3.2.1]oct-7-yl)-1-oxo-5,6-ep­oxy­androst-2-en-4-yl acetate methanol solvate (FUQKAF; Maldonado et al., 2015). Structures with the 5β,6β-ep­oxy-4β-hy­droxy groups in the same location in the mol­ecule as the title compounds are 4,16,20,24-tetra­hydroxy-5,6:22,26-di­epoxy­ergost-2-ene-1,26-dione methanol solvate (GANFOS, Maldonado et al., 2011), (17R,20R,22R,24S,25R)-4β,17α,20β-trihy­droxy-5β,6β-ep­oxy-1-oxowitha-2-en-26,22-olide (Philadelphicalactone A, XIVYEG; Su et al., 2002) and (17R,20S,22R)-4β-hy­droxy-1-oxo-5β,6β-ep­oxy-16α-acet­oxy­witha-2-enolide ethyl acetate clathrate (YISSOI; Alfonso et al., 1993).

Synthesis and crystallization  

Isolation of individual substances from the leaves of Physalis angulata

Collected dried leaves (4 kg) of Physalis angulata L. were poured into cold water and heated to boiling. The hot mass was squeezed out through a canvas. The plant was again poured into cold water, heated, and the hot mass was squeezed out through the canvas again. The water extract was distilled until the volume decreased to 3 L. Chloro­form (3 L) was poured into the received solution and substances were extracted. From the chloro­form layer, insoluble and soluble substances (25 g) were isolated. To the isolated dry mass, 0.5 L of chloro­form were added and the solution was filtered (the mass of the insoluble compounds was 5.8 g). From the filtrate after distillation, 19.2 g of compounds were isolated. The compounds isolated from the filtrate were loaded onto a column containing 0.5 kg of silica gel (Silica gel 60, 0.063-0.1 mm, Merck). The sums of substances were eluted with system 1 (chloro­form:methanol 99:1) to produce fractions 1–5, and eluted with system 2 (chloro­form:methanol 97:3) to produce fractions 5–9. The process was monitored by thin layer chromatography (Silica gel on TLC Al foils, fluorescent indicator 254 nm). Fractions 2–4 (6.8 g) and 6–8 (4.0 g) were shown by TLC to consist of individual substances.

The obtained fractions were purified by repeated chromatography. Rechromatography of fractions 2–4 containing physangulide B in system 3 (chloro­form:methanol 10:1) gave 5.96 g of the individual product. The R F in system 3 was 0.58, visualized as a crimson spot. The yield was 0.15%, based on the weight of the air-dry raw material. Rechromatography of fractions 6–8 in system 1 yielded 3.6 g of 14α-hy­droxy­ixocarpanolide, R F = 0.34 in system 2, visualized as a pink spot. The yield was 0.028%.

Physangulide B [(17 S ,20 R ,22 R ,24 R ,25 S )-5β,6β:20,24-diep­oxy-4β,25-dihy­droxy-1-oxowith-2-en-26,22-olide]

C28H40O7 (methanol), m.p. 553–555 K, [α]20 D = −56.0 (c = 0.21, CHCl3). UV spectrum, λCH3OHmax (logɛ 5600) 212 (4.00) nm. IR (FT–IR, νKBrmax, cm−1): 3411 (v br, O—H str), 2958 (m, Csycl—H str), 1706 (s, C=O str), 1676 (v s, C=O), 1457 (m), 1380 (m), 1272 (s), 1101 (s), 1085 (m), 1024 (m), 962 (m), 921 (w), 905 (w).

14α-hy­droxy­ixocarpanolide (5α,14α,20R-trihy­droxy-1-oxo-6α,7α-ep­oxywitha-2-enolide)

C28H40O7 (methanol), mp. 528–530 K, [α]20 D = + 29.1 ±2 (c = 1.18, CHCl3). UV spectrum, λC2H5OHmax: 225 nm (ɛ 10370). IR (FT–IR, νKBrmax, cm−1): 3584–3477 (v br, O—H str), 2949 (m, Csycl—H str), 1754 (v s, C=O str), 1458 (w), 1388 (m), 1261 (s), 1182 (m), 1094 (v), 1034 (m), 910 (m).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. The H atoms bonded to C atoms were placed geometrically (with C—H distances of 0.98 Å for CH, 0.97 Å for CH2, 0.96 Å for CH3 and 0.93 Å for Car) and included in the refinement in a riding-motion approximation with U iso(H) = 1.2U eq(C) [U iso = 1.5U eq(C) for methyl H atoms]. The hydrogen atoms on the O atoms were located in difference-Fourier maps and refined freely.

Table 3. Experimental details.

  (I) (II)
Crystal data
Chemical formula C28H38O7·CHCl3 C28H40O7
M r 605.95 488.60
Crystal system, space group Monoclinic, P21 Triclinic, P1
Temperature (K) 290 290
a, b, c (Å) 7.3633 (15), 15.952 (3), 12.657 (3) 6.2374 (12), 9.5938 (19), 11.351 (2)
α, β, γ (°) 90, 94.14 (3), 90 112.81 (3), 96.49 (3), 93.13 (3)
V3) 1482.9 (5) 618.5 (2)
Z 2 1
Radiation type Cu Kα Cu Kα
μ (mm−1) 3.17 0.76
Crystal size (mm) 0.50 × 0.34 × 0.31 0.42 × 0.28 × 0.21
 
Data collection
Diffractometer Rigaku Xcalibur, Ruby Rigaku Xcalibur, Ruby
Absorption correction Multi-scan (SADABS; Sheldrick, 2003) Multi-scan (SADABS; Sheldrick, 2003)
T min, T max 0.316, 0.376 0.776, 0.853
No. of measured, independent and observed [I > 2σ(I)] reflections 13820, 5743, 5622 4169, 2812, 2545
R int 0.028 0.025
(sin θ/λ)max−1) 0.629 0.631
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.042, 0.113, 1.04 0.041, 0.110, 1.04
No. of reflections 5743 2812
No. of parameters 365 333
No. of restraints 1 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.41, −0.34 0.17, −0.19
Absolute structure Flack x determined using 2401 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013) Classical Flack method preferred over Parsons because s.u. lower
Absolute structure parameter 0.014 (6) −0.1 (2)

Computer programs: CrysAlis PRO (Rigaku OD, 2018), SHELXS7 (Sheldrick, 2008), SHELXL2014/8 (Sheldrick, 2015), XP (Sheldrick, 1998), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2020) and publCIF (Westrip, 2010)’.

Supplementary Material

Crystal structure: contains datablock(s) I, II, Global. DOI: 10.1107/S205698902100709X/dj2029sup1.cif

e-77-00804-sup1.cif (653.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698902100709X/dj2029Isup2.hkl

e-77-00804-Isup2.hkl (456.7KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S205698902100709X/dj2029IIsup3.hkl

e-77-00804-IIsup3.hkl (224.7KB, hkl)

CCDC references: 2095478, 2095477

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are especially grateful to Dr Kambarali Turgunov for help in discussing the results.

supplementary crystallographic information

(17S,20R,22R,24R,25S)-5β,6β:20,24-Diepoxy-4β,25-dihydroxy-1-oxowith-2-en-26,22-olide chloroform solvate (I) . Crystal data

C28H38O7·CHCl3 Dx = 1.357 Mg m3
Mr = 605.95 Melting point: 553(2) K
Monoclinic, P21 Cu Kα radiation, λ = 1.54184 Å
a = 7.3633 (15) Å Cell parameters from 7825 reflections
b = 15.952 (3) Å θ = 5.5–76.0°
c = 12.657 (3) Å µ = 3.17 mm1
β = 94.14 (3)° T = 290 K
V = 1482.9 (5) Å3 Prizmatic, colorless
Z = 2 0.50 × 0.34 × 0.31 mm
F(000) = 640

(17S,20R,22R,24R,25S)-5β,6β:20,24-Diepoxy-4β,25-dihydroxy-1-oxowith-2-en-26,22-olide chloroform solvate (I) . Data collection

Rigaku Xcalibur, Ruby diffractometer 5743 independent reflections
Radiation source: Enhance (Cu) X-ray Source 5622 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.028
Detector resolution: 10.2576 pixels mm-1 θmax = 75.9°, θmin = 3.5°
ω scans h = −9→9
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) k = −19→19
Tmin = 0.316, Tmax = 0.376 l = −13→15
13820 measured reflections

(17S,20R,22R,24R,25S)-5β,6β:20,24-Diepoxy-4β,25-dihydroxy-1-oxowith-2-en-26,22-olide chloroform solvate (I) . Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0643P)2 + 0.4392P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.113 (Δ/σ)max < 0.001
S = 1.04 Δρmax = 0.41 e Å3
5743 reflections Δρmin = −0.34 e Å3
365 parameters Absolute structure: Flack x determined using 2401 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraint Absolute structure parameter: 0.014 (6)
Primary atom site location: structure-invariant direct methods

(17S,20R,22R,24R,25S)-5β,6β:20,24-Diepoxy-4β,25-dihydroxy-1-oxowith-2-en-26,22-olide chloroform solvate (I) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(17S,20R,22R,24R,25S)-5β,6β:20,24-Diepoxy-4β,25-dihydroxy-1-oxowith-2-en-26,22-olide chloroform solvate (I) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.5252 (5) 0.9171 (2) 0.5852 (2) 0.0678 (9)
O2 1.0029 (3) 0.76628 (14) 0.21727 (16) 0.0380 (5)
O3 1.1887 (3) 0.60670 (14) 0.22825 (16) 0.0357 (4)
O4 0.5431 (5) 0.8210 (2) 0.9630 (2) 0.0619 (8)
O25 1.0440 (4) 0.6971 (2) −0.02618 (18) 0.0534 (7)
O26 0.7584 (3) 0.7338 (2) 0.1201 (2) 0.0598 (7)
O56 0.7082 (3) 0.70353 (16) 0.84614 (16) 0.0419 (5)
C1 0.5220 (5) 0.8852 (2) 0.6718 (3) 0.0402 (7)
C2 0.3764 (5) 0.9089 (3) 0.7396 (3) 0.0530 (9)
H2A 0.3045 0.9551 0.7202 0.064*
C3 0.3425 (5) 0.8679 (3) 0.8265 (3) 0.0513 (9)
H3A 0.2463 0.8858 0.8646 0.062*
C4 0.4509 (5) 0.7944 (2) 0.8665 (3) 0.0442 (7)
H4B 0.3664 0.7494 0.8824 0.053*
C5 0.5835 (4) 0.7603 (2) 0.7888 (2) 0.0322 (6)
C6 0.5780 (4) 0.6705 (2) 0.7655 (2) 0.0352 (6)
H6A 0.4750 0.6394 0.7912 0.042*
C7 0.6634 (4) 0.63329 (18) 0.6726 (2) 0.0330 (6)
H7A 0.5713 0.6264 0.6145 0.040*
H7B 0.7116 0.5783 0.6915 0.040*
C8 0.8166 (4) 0.68855 (17) 0.63666 (19) 0.0271 (5)
H8A 0.9182 0.6886 0.6911 0.032*
C9 0.7496 (4) 0.77894 (17) 0.6166 (2) 0.0277 (5)
H9A 0.6484 0.7747 0.5622 0.033*
C10 0.6687 (4) 0.82253 (18) 0.7140 (2) 0.0298 (5)
C11 0.8951 (5) 0.83293 (19) 0.5672 (3) 0.0394 (7)
H11A 0.8440 0.8877 0.5499 0.047*
H11B 0.9972 0.8408 0.6191 0.047*
C12 0.9643 (5) 0.79385 (19) 0.4669 (3) 0.0385 (7)
H12A 0.8658 0.7922 0.4117 0.046*
H12B 1.0607 0.8285 0.4420 0.046*
C13 1.0362 (3) 0.70547 (18) 0.4875 (2) 0.0283 (5)
C14 0.8816 (4) 0.65438 (16) 0.53265 (19) 0.0269 (5)
H14A 0.7772 0.6588 0.4804 0.032*
C15 0.9460 (5) 0.5629 (2) 0.5285 (3) 0.0420 (7)
H15A 0.8432 0.5248 0.5209 0.050*
H15B 1.0208 0.5483 0.5921 0.050*
C16 1.0582 (5) 0.5598 (2) 0.4299 (3) 0.0401 (7)
H16A 1.0015 0.5225 0.3767 0.048*
H16B 1.1809 0.5402 0.4490 0.048*
C17 1.0614 (4) 0.65077 (18) 0.3875 (2) 0.0292 (5)
H17A 0.9476 0.6571 0.3431 0.035*
C18 1.2062 (4) 0.7062 (3) 0.5657 (3) 0.0479 (8)
H18A 1.1720 0.7221 0.6347 0.072*
H18B 1.2929 0.7458 0.5422 0.072*
H18C 1.2596 0.6513 0.5691 0.072*
C19 0.8116 (5) 0.8745 (2) 0.7823 (3) 0.0434 (7)
H19A 0.7590 0.8937 0.8451 0.065*
H19B 0.8486 0.9219 0.7423 0.065*
H19C 0.9157 0.8401 0.8016 0.065*
C20 1.2141 (4) 0.6683 (2) 0.3131 (2) 0.0332 (6)
C21 1.4095 (4) 0.6596 (3) 0.3637 (3) 0.0509 (9)
H21A 1.4926 0.6545 0.3090 0.076*
H21B 1.4176 0.6105 0.4078 0.076*
H21C 1.4401 0.7082 0.4059 0.076*
C22 1.1939 (4) 0.7507 (2) 0.2501 (2) 0.0371 (6)
H22A 1.2487 0.7980 0.2902 0.045*
C23 1.2941 (4) 0.7319 (2) 0.1529 (3) 0.0406 (7)
H23A 1.4249 0.7303 0.1687 0.049*
H23B 1.2645 0.7717 0.0964 0.049*
C24 1.2164 (4) 0.6451 (2) 0.1265 (2) 0.0336 (6)
C25 1.0239 (4) 0.6579 (2) 0.0736 (2) 0.0378 (6)
C26 0.9179 (4) 0.7211 (2) 0.1396 (2) 0.0389 (7)
C27 0.9140 (6) 0.5779 (3) 0.0607 (3) 0.0568 (9)
H27A 0.9777 0.5384 0.0197 0.085*
H27B 0.7975 0.5900 0.0251 0.085*
H27C 0.8972 0.5545 0.1292 0.085*
C28 1.3367 (5) 0.5895 (3) 0.0646 (3) 0.0470 (8)
H28A 1.4541 0.5844 0.1021 0.070*
H28B 1.3501 0.6138 −0.0038 0.070*
H28C 1.2822 0.5351 0.0560 0.070*
C1S 0.6099 (7) 0.9209 (3) 0.2081 (4) 0.0664 (11)
H1SA 0.6333 0.8640 0.1832 0.080*
Cl1 0.4179 (2) 0.96088 (8) 0.13542 (10) 0.0782 (4)
Cl2 0.5718 (2) 0.91662 (10) 0.34355 (10) 0.0863 (4)
Cl3 0.8008 (3) 0.98341 (14) 0.18974 (14) 0.1059 (5)
H4 0.605 (7) 0.785 (4) 0.989 (4) 0.063 (15)*
H25 0.958 (7) 0.692 (3) −0.060 (4) 0.051 (13)*

(17S,20R,22R,24R,25S)-5β,6β:20,24-Diepoxy-4β,25-dihydroxy-1-oxowith-2-en-26,22-olide chloroform solvate (I) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.085 (2) 0.0663 (18) 0.0546 (15) 0.0371 (16) 0.0221 (14) 0.0254 (14)
O2 0.0421 (11) 0.0384 (11) 0.0345 (10) 0.0095 (9) 0.0089 (8) 0.0018 (9)
O3 0.0427 (11) 0.0366 (11) 0.0287 (9) 0.0043 (9) 0.0091 (8) −0.0020 (8)
O4 0.080 (2) 0.075 (2) 0.0318 (12) 0.0277 (17) 0.0112 (12) −0.0065 (12)
O25 0.0432 (13) 0.088 (2) 0.0295 (11) 0.0046 (13) 0.0045 (10) 0.0098 (12)
O26 0.0373 (12) 0.091 (2) 0.0506 (14) 0.0193 (13) 0.0029 (10) −0.0003 (14)
O56 0.0490 (12) 0.0505 (13) 0.0262 (9) 0.0114 (10) 0.0030 (8) 0.0049 (9)
C1 0.0474 (17) 0.0348 (15) 0.0387 (15) 0.0085 (13) 0.0053 (13) 0.0011 (12)
C2 0.0483 (19) 0.059 (2) 0.053 (2) 0.0247 (17) 0.0064 (15) 0.0003 (17)
C3 0.0397 (17) 0.069 (2) 0.0473 (18) 0.0138 (17) 0.0137 (14) −0.0081 (16)
C4 0.0468 (17) 0.0505 (19) 0.0378 (16) 0.0021 (15) 0.0187 (13) −0.0022 (13)
C5 0.0333 (13) 0.0391 (15) 0.0246 (12) 0.0024 (12) 0.0054 (10) 0.0014 (11)
C6 0.0389 (14) 0.0351 (14) 0.0329 (13) −0.0017 (12) 0.0103 (11) 0.0062 (11)
C7 0.0392 (15) 0.0277 (13) 0.0328 (13) −0.0013 (11) 0.0073 (11) 0.0025 (10)
C8 0.0294 (12) 0.0292 (13) 0.0227 (11) 0.0003 (10) 0.0024 (9) 0.0000 (9)
C9 0.0314 (13) 0.0270 (13) 0.0250 (12) −0.0003 (10) 0.0047 (9) −0.0021 (9)
C10 0.0322 (13) 0.0309 (13) 0.0273 (12) 0.0023 (11) 0.0081 (10) −0.0029 (10)
C11 0.0497 (18) 0.0273 (14) 0.0438 (16) −0.0060 (13) 0.0213 (13) −0.0064 (12)
C12 0.0487 (17) 0.0290 (14) 0.0405 (16) −0.0010 (12) 0.0211 (13) 0.0006 (11)
C13 0.0265 (12) 0.0343 (14) 0.0244 (11) 0.0002 (10) 0.0040 (9) −0.0038 (10)
C14 0.0303 (12) 0.0259 (13) 0.0246 (11) 0.0012 (10) 0.0030 (9) 0.0002 (9)
C15 0.059 (2) 0.0291 (15) 0.0398 (15) 0.0091 (14) 0.0154 (14) 0.0044 (12)
C16 0.0487 (17) 0.0335 (15) 0.0393 (15) 0.0095 (13) 0.0118 (13) −0.0007 (12)
C17 0.0288 (12) 0.0326 (14) 0.0260 (12) 0.0038 (10) 0.0008 (9) −0.0025 (10)
C18 0.0309 (14) 0.075 (2) 0.0369 (15) −0.0029 (16) −0.0012 (11) −0.0169 (16)
C19 0.0470 (17) 0.0451 (17) 0.0389 (15) −0.0091 (14) 0.0085 (13) −0.0156 (13)
C20 0.0280 (12) 0.0431 (16) 0.0285 (12) 0.0027 (11) 0.0028 (10) −0.0063 (11)
C21 0.0295 (14) 0.083 (3) 0.0400 (16) 0.0072 (16) 0.0036 (12) −0.0052 (17)
C22 0.0344 (14) 0.0407 (16) 0.0369 (14) −0.0052 (12) 0.0073 (11) −0.0061 (12)
C23 0.0353 (15) 0.0499 (18) 0.0379 (15) −0.0082 (13) 0.0112 (12) −0.0015 (13)
C24 0.0305 (13) 0.0444 (16) 0.0267 (12) 0.0014 (12) 0.0067 (10) −0.0012 (11)
C25 0.0340 (14) 0.0517 (18) 0.0284 (13) −0.0010 (13) 0.0072 (10) 0.0006 (12)
C26 0.0361 (15) 0.0492 (18) 0.0322 (14) 0.0049 (13) 0.0071 (11) 0.0087 (12)
C27 0.048 (2) 0.066 (2) 0.057 (2) −0.0129 (18) 0.0001 (16) −0.0146 (19)
C28 0.0440 (17) 0.060 (2) 0.0383 (16) 0.0092 (15) 0.0133 (13) −0.0056 (14)
C1S 0.092 (3) 0.048 (2) 0.060 (2) 0.014 (2) 0.009 (2) 0.0038 (19)
Cl1 0.1089 (10) 0.0598 (6) 0.0632 (6) 0.0123 (6) −0.0128 (6) −0.0165 (5)
Cl2 0.1101 (10) 0.0872 (9) 0.0626 (6) 0.0276 (8) 0.0136 (6) 0.0239 (6)
Cl3 0.1052 (11) 0.1223 (14) 0.0904 (10) −0.0186 (10) 0.0085 (8) 0.0238 (9)

(17S,20R,22R,24R,25S)-5β,6β:20,24-Diepoxy-4β,25-dihydroxy-1-oxowith-2-en-26,22-olide chloroform solvate (I) . Geometric parameters (Å, º)

O1—C1 1.211 (4) C13—C17 1.559 (4)
O2—C26 1.338 (4) C14—C15 1.536 (4)
O2—C22 1.459 (4) C14—H14A 0.9800
O3—C24 1.454 (3) C15—C16 1.547 (4)
O3—C20 1.458 (3) C15—H15A 0.9700
O4—C4 1.418 (5) C15—H15B 0.9700
O4—H4 0.79 (6) C16—C17 1.547 (4)
O25—C25 1.427 (4) C16—H16A 0.9700
O25—H25 0.74 (5) C16—H16B 0.9700
O26—C26 1.200 (4) C17—C20 1.544 (4)
O56—C5 1.447 (4) C17—H17A 0.9800
O56—C6 1.448 (4) C18—H18A 0.9600
C1—C2 1.470 (5) C18—H18B 0.9600
C1—C10 1.539 (4) C18—H18C 0.9600
C2—C3 1.319 (6) C19—H19A 0.9600
C2—H2A 0.9300 C19—H19B 0.9600
C3—C4 1.486 (5) C19—H19C 0.9600
C3—H3A 0.9300 C20—C22 1.538 (5)
C4—C5 1.536 (4) C20—C21 1.538 (4)
C4—H4B 0.9800 C21—H21A 0.9600
C5—C6 1.463 (4) C21—H21B 0.9600
C5—C10 1.537 (4) C21—H21C 0.9600
C6—C7 1.496 (4) C22—C23 1.511 (4)
C6—H6A 0.9800 C22—H22A 0.9800
C7—C8 1.526 (4) C23—C24 1.525 (5)
C7—H7A 0.9700 C23—H23A 0.9700
C7—H7B 0.9700 C23—H23B 0.9700
C8—C14 1.533 (3) C24—C28 1.511 (4)
C8—C9 1.539 (4) C24—C25 1.537 (4)
C8—H8A 0.9800 C25—C27 1.515 (5)
C9—C11 1.541 (4) C25—C26 1.554 (4)
C9—C10 1.570 (3) C27—H27A 0.9600
C9—H9A 0.9800 C27—H27B 0.9600
C10—C19 1.553 (4) C27—H27C 0.9600
C11—C12 1.535 (4) C28—H28A 0.9600
C11—H11A 0.9700 C28—H28B 0.9600
C11—H11B 0.9700 C28—H28C 0.9600
C12—C13 1.522 (4) C1S—Cl1 1.751 (5)
C12—H12A 0.9700 C1S—Cl3 1.753 (6)
C12—H12B 0.9700 C1S—Cl2 1.758 (5)
C13—C18 1.539 (4) C1S—H1SA 0.9800
C13—C14 1.543 (4)
C26—O2—C22 120.5 (2) C16—C15—H15B 111.0
C24—O3—C20 110.5 (2) H15A—C15—H15B 109.0
C4—O4—H4 112 (4) C15—C16—C17 105.8 (2)
C25—O25—H25 109 (4) C15—C16—H16A 110.6
C5—O56—C6 60.70 (19) C17—C16—H16A 110.6
O1—C1—C2 118.9 (3) C15—C16—H16B 110.6
O1—C1—C10 121.9 (3) C17—C16—H16B 110.6
C2—C1—C10 119.2 (3) H16A—C16—H16B 108.7
C3—C2—C1 123.3 (3) C20—C17—C16 114.3 (2)
C3—C2—H2A 118.3 C20—C17—C13 121.9 (2)
C1—C2—H2A 118.3 C16—C17—C13 103.8 (2)
C2—C3—C4 123.1 (3) C20—C17—H17A 105.1
C2—C3—H3A 118.5 C16—C17—H17A 105.1
C4—C3—H3A 118.5 C13—C17—H17A 105.1
O4—C4—C3 105.7 (3) C13—C18—H18A 109.5
O4—C4—C5 111.8 (3) C13—C18—H18B 109.5
C3—C4—C5 114.3 (3) H18A—C18—H18B 109.5
O4—C4—H4B 108.3 C13—C18—H18C 109.5
C3—C4—H4B 108.3 H18A—C18—H18C 109.5
C5—C4—H4B 108.3 H18B—C18—H18C 109.5
O56—C5—C6 59.7 (2) C10—C19—H19A 109.5
O56—C5—C4 108.1 (2) C10—C19—H19B 109.5
C6—C5—C4 117.8 (3) H19A—C19—H19B 109.5
O56—C5—C10 116.2 (2) C10—C19—H19C 109.5
C6—C5—C10 121.1 (2) H19A—C19—H19C 109.5
C4—C5—C10 118.2 (3) H19B—C19—H19C 109.5
O56—C6—C5 59.61 (19) O3—C20—C22 101.0 (2)
O56—C6—C7 113.8 (2) O3—C20—C21 108.2 (2)
C5—C6—C7 122.6 (2) C22—C20—C21 110.2 (3)
O56—C6—H6A 116.1 O3—C20—C17 105.5 (2)
C5—C6—H6A 116.1 C22—C20—C17 115.1 (2)
C7—C6—H6A 116.1 C21—C20—C17 115.5 (2)
C6—C7—C8 111.5 (2) C20—C21—H21A 109.5
C6—C7—H7A 109.3 C20—C21—H21B 109.5
C8—C7—H7A 109.3 H21A—C21—H21B 109.5
C6—C7—H7B 109.3 C20—C21—H21C 109.5
C8—C7—H7B 109.3 H21A—C21—H21C 109.5
H7A—C7—H7B 108.0 H21B—C21—H21C 109.5
C7—C8—C14 109.5 (2) O2—C22—C23 108.6 (2)
C7—C8—C9 110.8 (2) O2—C22—C20 110.4 (2)
C14—C8—C9 107.9 (2) C23—C22—C20 102.6 (3)
C7—C8—H8A 109.5 O2—C22—H22A 111.6
C14—C8—H8A 109.5 C23—C22—H22A 111.6
C9—C8—H8A 109.5 C20—C22—H22A 111.6
C8—C9—C11 111.5 (2) C22—C23—C24 99.3 (2)
C8—C9—C10 114.9 (2) C22—C23—H23A 111.9
C11—C9—C10 112.6 (2) C24—C23—H23A 111.9
C8—C9—H9A 105.6 C22—C23—H23B 111.9
C11—C9—H9A 105.6 C24—C23—H23B 111.9
C10—C9—H9A 105.6 H23A—C23—H23B 109.6
C5—C10—C1 109.0 (2) O3—C24—C28 109.7 (3)
C5—C10—C19 107.0 (2) O3—C24—C23 105.2 (2)
C1—C10—C19 106.1 (3) C28—C24—C23 114.9 (3)
C5—C10—C9 113.1 (2) O3—C24—C25 104.9 (2)
C1—C10—C9 108.2 (2) C28—C24—C25 114.1 (3)
C19—C10—C9 113.2 (2) C23—C24—C25 107.1 (3)
C12—C11—C9 113.0 (2) O25—C25—C27 111.3 (3)
C12—C11—H11A 109.0 O25—C25—C24 107.0 (2)
C9—C11—H11A 109.0 C27—C25—C24 113.8 (3)
C12—C11—H11B 109.0 O25—C25—C26 106.3 (3)
C9—C11—H11B 109.0 C27—C25—C26 108.6 (3)
H11A—C11—H11B 107.8 C24—C25—C26 109.6 (2)
C13—C12—C11 111.5 (3) O26—C26—O2 117.3 (3)
C13—C12—H12A 109.3 O26—C26—C25 121.5 (3)
C11—C12—H12A 109.3 O2—C26—C25 121.1 (3)
C13—C12—H12B 109.3 C25—C27—H27A 109.5
C11—C12—H12B 109.3 C25—C27—H27B 109.5
H12A—C12—H12B 108.0 H27A—C27—H27B 109.5
C12—C13—C18 111.1 (3) C25—C27—H27C 109.5
C12—C13—C14 107.2 (2) H27A—C27—H27C 109.5
C18—C13—C14 110.7 (2) H27B—C27—H27C 109.5
C12—C13—C17 116.1 (2) C24—C28—H28A 109.5
C18—C13—C17 112.8 (2) C24—C28—H28B 109.5
C14—C13—C17 98.0 (2) H28A—C28—H28B 109.5
C8—C14—C15 118.9 (2) C24—C28—H28C 109.5
C8—C14—C13 114.5 (2) H28A—C28—H28C 109.5
C15—C14—C13 104.6 (2) H28B—C28—H28C 109.5
C8—C14—H14A 106.0 Cl1—C1S—Cl3 110.3 (3)
C15—C14—H14A 106.0 Cl1—C1S—Cl2 110.3 (3)
C13—C14—H14A 106.0 Cl3—C1S—Cl2 109.7 (3)
C14—C15—C16 104.0 (2) Cl1—C1S—H1SA 108.8
C14—C15—H15A 111.0 Cl3—C1S—H1SA 108.8
C16—C15—H15A 111.0 Cl2—C1S—H1SA 108.8
C14—C15—H15B 111.0
O1—C1—C2—C3 168.0 (4) C18—C13—C14—C8 61.1 (3)
C10—C1—C2—C3 −13.6 (6) C17—C13—C14—C8 179.2 (2)
C1—C2—C3—C4 1.4 (7) C12—C13—C14—C15 167.9 (2)
C2—C3—C4—O4 113.0 (4) C18—C13—C14—C15 −70.8 (3)
C2—C3—C4—C5 −10.3 (6) C17—C13—C14—C15 47.4 (3)
C6—O56—C5—C4 112.2 (3) C8—C14—C15—C16 −161.5 (3)
C6—O56—C5—C10 −112.2 (3) C13—C14—C15—C16 −32.3 (3)
O4—C4—C5—O56 46.6 (4) C14—C15—C16—C17 3.4 (3)
C3—C4—C5—O56 166.5 (3) C15—C16—C17—C20 161.1 (3)
O4—C4—C5—C6 111.2 (3) C15—C16—C17—C13 26.1 (3)
C3—C4—C5—C6 −128.8 (3) C12—C13—C17—C20 71.2 (3)
O4—C4—C5—C10 −88.0 (4) C18—C13—C17—C20 −58.6 (4)
C3—C4—C5—C10 32.0 (4) C14—C13—C17—C20 −175.1 (2)
C5—O56—C6—C7 115.1 (3) C12—C13—C17—C16 −158.1 (3)
C4—C5—C6—O56 −95.6 (3) C18—C13—C17—C16 72.1 (3)
C10—C5—C6—O56 104.1 (3) C14—C13—C17—C16 −44.4 (3)
O56—C5—C6—C7 −100.4 (3) C24—O3—C20—C22 18.6 (3)
C4—C5—C6—C7 164.0 (3) C24—O3—C20—C21 −97.2 (3)
C10—C5—C6—C7 3.8 (5) C24—O3—C20—C17 138.7 (2)
O56—C6—C7—C8 −43.7 (3) C16—C17—C20—O3 56.0 (3)
C5—C6—C7—C8 24.3 (4) C13—C17—C20—O3 −177.9 (2)
C6—C7—C8—C14 −172.2 (2) C16—C17—C20—C22 166.4 (2)
C6—C7—C8—C9 −53.3 (3) C13—C17—C20—C22 −67.5 (3)
C7—C8—C9—C11 −173.0 (2) C16—C17—C20—C21 −63.3 (4)
C14—C8—C9—C11 −53.1 (3) C13—C17—C20—C21 62.7 (4)
C7—C8—C9—C10 57.3 (3) C26—O2—C22—C23 38.6 (4)
C14—C8—C9—C10 177.2 (2) C26—O2—C22—C20 −73.1 (3)
O56—C5—C10—C1 −172.3 (2) O3—C20—C22—O2 75.4 (3)
C6—C5—C10—C1 118.8 (3) C21—C20—C22—O2 −170.3 (2)
C4—C5—C10—C1 −41.4 (4) C17—C20—C22—O2 −37.6 (3)
O56—C5—C10—C19 −58.1 (3) O3—C20—C22—C23 −40.2 (3)
C6—C5—C10—C19 −126.9 (3) C21—C20—C22—C23 74.1 (3)
C4—C5—C10—C19 72.9 (3) C17—C20—C22—C23 −153.2 (2)
O56—C5—C10—C9 67.3 (3) O2—C22—C23—C24 −71.4 (3)
C6—C5—C10—C9 −1.6 (4) C20—C22—C23—C24 45.4 (3)
C4—C5—C10—C9 −161.8 (3) C20—O3—C24—C28 133.8 (3)
O1—C1—C10—C5 −149.7 (4) C20—O3—C24—C23 9.7 (3)
C2—C1—C10—C5 32.0 (4) C20—O3—C24—C25 −103.1 (3)
O1—C1—C10—C19 95.4 (4) C22—C23—C24—O3 −34.1 (3)
C2—C1—C10—C19 −82.9 (4) C22—C23—C24—C28 −154.9 (3)
O1—C1—C10—C9 −26.4 (5) C22—C23—C24—C25 77.2 (3)
C2—C1—C10—C9 155.4 (3) O3—C24—C25—O25 178.9 (3)
C8—C9—C10—C5 −28.7 (3) C28—C24—C25—O25 −60.9 (4)
C11—C9—C10—C5 −157.8 (2) C23—C24—C25—O25 67.4 (3)
C8—C9—C10—C1 −149.5 (2) O3—C24—C25—C27 −57.7 (3)
C11—C9—C10—C1 81.3 (3) C28—C24—C25—C27 62.4 (4)
C8—C9—C10—C19 93.2 (3) C23—C24—C25—C27 −169.3 (3)
C11—C9—C10—C19 −35.9 (3) O3—C24—C25—C26 64.1 (3)
C8—C9—C11—C12 53.6 (3) C28—C24—C25—C26 −175.8 (3)
C10—C9—C11—C12 −175.6 (3) C23—C24—C25—C26 −47.4 (3)
C9—C11—C12—C13 −55.3 (4) C22—O2—C26—O26 176.1 (3)
C11—C12—C13—C18 −65.2 (3) C22—O2—C26—C25 −7.0 (4)
C11—C12—C13—C14 55.9 (3) O25—C25—C26—O26 72.9 (4)
C11—C12—C13—C17 164.2 (3) C27—C25—C26—O26 −46.8 (4)
C7—C8—C14—C15 −55.9 (3) C24—C25—C26—O26 −171.7 (3)
C9—C8—C14—C15 −176.6 (3) O25—C25—C26—O2 −103.9 (3)
C7—C8—C14—C13 179.6 (2) C27—C25—C26—O2 136.4 (3)
C9—C8—C14—C13 58.9 (3) C24—C25—C26—O2 11.5 (4)
C12—C13—C14—C8 −60.3 (3)

(17S,20R,22R,24R,25S)-5β,6β:20,24-Diepoxy-4β,25-dihydroxy-1-oxowith-2-en-26,22-olide chloroform solvate (I) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O4—H4···O26i 0.79 (6) 2.10 (6) 2.819 (4) 151
O25—H25···O56ii 0.74 (5) 2.12 (5) 2.856 (4) 169
C23—H23A···O26iii 0.97 2.57 3.473 (4) 154
C1S—H1SA···O26 0.98 2.43 3.393 (6) 168

Symmetry codes: (i) x, y, z+1; (ii) x, y, z−1; (iii) x+1, y, z.

(20R,22R)-5α,14α,20-Trihydroxy-1-oxo-6α,7α-epoxywitha-2-enolide (II) . Crystal data

C28H40O7 F(000) = 264
Mr = 488.60 Dx = 1.312 Mg m3
Triclinic, P1 Melting point: 528(3) K
a = 6.2374 (12) Å Cu Kα radiation, λ = 1.54184 Å
b = 9.5938 (19) Å Cell parameters from 1941 reflections
c = 11.351 (2) Å θ = 4.3–75.5°
α = 112.81 (3)° µ = 0.76 mm1
β = 96.49 (3)° T = 290 K
γ = 93.13 (3)° Prizmatic, colorless
V = 618.5 (2) Å3 0.42 × 0.28 × 0.21 mm
Z = 1

(20R,22R)-5α,14α,20-Trihydroxy-1-oxo-6α,7α-epoxywitha-2-enolide (II) . Data collection

Rigaku Xcalibur, Ruby diffractometer 2812 independent reflections
Radiation source: Enhance (Cu) X-ray Source 2545 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.025
Detector resolution: 10.2576 pixels mm-1 θmax = 76.7°, θmin = 4.3°
ω scans h = −7→7
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) k = −12→11
Tmin = 0.776, Tmax = 0.853 l = −14→10
4169 measured reflections

(20R,22R)-5α,14α,20-Trihydroxy-1-oxo-6α,7α-epoxywitha-2-enolide (II) . Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0647P)2 + 0.0383P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.110 (Δ/σ)max < 0.001
S = 1.03 Δρmax = 0.17 e Å3
2812 reflections Δρmin = −0.19 e Å3
333 parameters Absolute structure: Classical Flack method preferred over Parsons because s.u. lower.
3 restraints Absolute structure parameter: −0.1 (2)
Primary atom site location: structure-invariant direct methods

(20R,22R)-5α,14α,20-Trihydroxy-1-oxo-6α,7α-epoxywitha-2-enolide (II) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(20R,22R)-5α,14α,20-Trihydroxy-1-oxo-6α,7α-epoxywitha-2-enolide (II) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 1.0734 (4) 1.2216 (4) 0.3845 (3) 0.0674 (8)
O2 1.0070 (4) 0.6040 (2) 0.9120 (2) 0.0441 (5)
O5 0.8575 (4) 0.8791 (3) 0.0969 (2) 0.0524 (6)
O14 0.9050 (4) 0.6585 (3) 0.3671 (2) 0.0468 (5)
O20 0.7306 (4) 0.7378 (3) 0.8118 (2) 0.0444 (5)
O26 1.0412 (5) 0.5281 (3) 1.0706 (2) 0.0591 (7)
O67 0.6045 (4) 0.6709 (3) 0.1319 (2) 0.0555 (6)
C1 0.9157 (5) 1.1689 (4) 0.3017 (3) 0.0431 (7)
C2 0.8775 (6) 1.2312 (5) 0.2017 (4) 0.0551 (9)
H2A 0.9624 1.3185 0.2108 0.066*
C3 0.7256 (6) 1.1664 (5) 0.0993 (4) 0.0605 (10)
H3A 0.7103 1.2095 0.0387 0.073*
C4 0.5794 (6) 1.0290 (4) 0.0768 (3) 0.0534 (8)
H4A 0.5570 0.9639 −0.0146 0.064*
H4B 0.4396 1.0589 0.1014 0.064*
C5 0.6713 (5) 0.9395 (4) 0.1537 (3) 0.0417 (7)
C6 0.5077 (6) 0.8077 (4) 0.1384 (3) 0.0472 (7)
H6A 0.3725 0.7928 0.0798 0.057*
C7 0.4970 (5) 0.7531 (4) 0.2412 (3) 0.0444 (7)
H7A 0.3550 0.7054 0.2427 0.053*
C8 0.6366 (4) 0.8339 (3) 0.3704 (3) 0.0346 (6)
H8A 0.5414 0.8946 0.4290 0.042*
C9 0.8236 (5) 0.9479 (3) 0.3713 (3) 0.0357 (6)
H9A 0.9315 0.8878 0.3238 0.043*
C10 0.7426 (5) 1.0460 (3) 0.2988 (3) 0.0358 (6)
C11 0.9330 (6) 1.0353 (4) 0.5127 (3) 0.0535 (9)
H11A 1.0577 1.1011 0.5140 0.064*
H11B 0.8316 1.0994 0.5613 0.064*
C12 1.0074 (5) 0.9316 (4) 0.5799 (3) 0.0490 (8)
H12A 1.0653 0.9934 0.6694 0.059*
H12B 1.1229 0.8769 0.5387 0.059*
C13 0.8206 (4) 0.8163 (3) 0.5748 (3) 0.0343 (6)
C14 0.7262 (4) 0.7268 (3) 0.4299 (3) 0.0360 (6)
C15 0.5738 (5) 0.5985 (4) 0.4314 (3) 0.0471 (7)
H15A 0.5507 0.5132 0.3481 0.056*
H15B 0.4347 0.6329 0.4535 0.056*
C16 0.6930 (5) 0.5546 (4) 0.5361 (3) 0.0451 (7)
H16A 0.7500 0.4576 0.4966 0.054*
H16B 0.5941 0.5457 0.5935 0.054*
C17 0.8822 (4) 0.6823 (3) 0.6131 (3) 0.0353 (6)
H17A 1.0134 0.6476 0.5756 0.042*
C18 0.6480 (6) 0.9019 (4) 0.6520 (3) 0.0478 (7)
H18A 0.5306 0.8303 0.6479 0.072*
H18B 0.5940 0.9709 0.6161 0.072*
H18C 0.7113 0.9579 0.7405 0.072*
C19 0.5529 (5) 1.1315 (4) 0.3550 (3) 0.0459 (7)
H19A 0.5891 1.1821 0.4472 0.069*
H19B 0.4257 1.0605 0.3342 0.069*
H19C 0.5250 1.2052 0.3189 0.069*
C20 0.9287 (5) 0.7102 (3) 0.7577 (3) 0.0367 (6)
C21 1.0997 (5) 0.8455 (4) 0.8335 (3) 0.0458 (7)
H21A 1.0430 0.9375 0.8361 0.069*
H21B 1.2274 0.8323 0.7921 0.069*
H21C 1.1360 0.8517 0.9200 0.069*
C22 1.0006 (5) 0.5651 (3) 0.7731 (3) 0.0378 (6)
H22A 0.8854 0.4817 0.7265 0.045*
C23 1.2147 (6) 0.5111 (4) 0.7296 (3) 0.0461 (7)
H23A 1.3111 0.5980 0.7375 0.055*
H23B 1.1877 0.4423 0.6392 0.055*
C24 1.3270 (5) 0.4300 (3) 0.8076 (3) 0.0404 (6)
H24A 1.4316 0.5062 0.8766 0.048*
C25 1.1654 (5) 0.3683 (4) 0.8731 (3) 0.0430 (7)
H25A 1.0508 0.3003 0.8057 0.052*
C26 1.0632 (5) 0.5015 (4) 0.9602 (3) 0.0414 (7)
C27 1.2617 (7) 0.2800 (5) 0.9482 (4) 0.0610 (9)
H27A 1.1503 0.2463 0.9859 0.091*
H27B 1.3742 0.3445 1.0153 0.091*
H27C 1.3216 0.1935 0.8909 0.091*
C28 1.4558 (6) 0.3074 (4) 0.7249 (4) 0.0525 (8)
H28A 1.5525 0.2760 0.7797 0.079*
H28B 1.5384 0.3474 0.6764 0.079*
H28C 1.3576 0.2216 0.6666 0.079*
H5 0.858 (7) 0.793 (6) 0.113 (4) 0.069 (13)*
H14 0.884 (8) 0.628 (6) 0.289 (5) 0.069 (14)*
H20 0.768 (9) 0.767 (7) 0.884 (6) 0.09 (2)*

(20R,22R)-5α,14α,20-Trihydroxy-1-oxo-6α,7α-epoxywitha-2-enolide (II) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0566 (14) 0.0798 (18) 0.0761 (19) −0.0157 (13) −0.0101 (13) 0.0506 (16)
O2 0.0575 (13) 0.0457 (12) 0.0372 (11) 0.0172 (10) 0.0157 (9) 0.0214 (10)
O5 0.0675 (15) 0.0570 (15) 0.0387 (12) 0.0261 (12) 0.0205 (10) 0.0197 (11)
O14 0.0572 (14) 0.0504 (13) 0.0346 (12) 0.0207 (11) 0.0123 (10) 0.0153 (10)
O20 0.0445 (12) 0.0573 (14) 0.0371 (12) 0.0169 (10) 0.0125 (9) 0.0218 (11)
O26 0.0718 (17) 0.0731 (17) 0.0456 (14) 0.0210 (13) 0.0187 (12) 0.0335 (13)
O67 0.0801 (17) 0.0401 (12) 0.0352 (12) 0.0108 (11) −0.0037 (11) 0.0057 (9)
C1 0.0428 (16) 0.0457 (17) 0.0456 (17) 0.0093 (13) 0.0078 (13) 0.0222 (14)
C2 0.059 (2) 0.058 (2) 0.063 (2) 0.0067 (16) 0.0102 (17) 0.0395 (19)
C3 0.070 (2) 0.071 (2) 0.059 (2) 0.0197 (19) 0.0074 (18) 0.044 (2)
C4 0.065 (2) 0.059 (2) 0.0408 (17) 0.0164 (17) −0.0008 (15) 0.0253 (16)
C5 0.0501 (17) 0.0462 (17) 0.0301 (14) 0.0166 (14) 0.0064 (12) 0.0148 (13)
C6 0.0545 (18) 0.0424 (17) 0.0366 (15) 0.0054 (13) −0.0093 (13) 0.0112 (13)
C7 0.0449 (16) 0.0414 (17) 0.0397 (16) 0.0014 (13) −0.0063 (13) 0.0121 (13)
C8 0.0354 (14) 0.0361 (14) 0.0293 (14) 0.0030 (11) 0.0002 (11) 0.0110 (11)
C9 0.0377 (14) 0.0393 (15) 0.0300 (13) 0.0042 (11) 0.0031 (10) 0.0142 (12)
C10 0.0387 (14) 0.0382 (14) 0.0315 (13) 0.0074 (11) 0.0057 (10) 0.0145 (11)
C11 0.070 (2) 0.0465 (18) 0.0395 (17) −0.0196 (16) −0.0160 (16) 0.0223 (15)
C12 0.0541 (19) 0.0528 (19) 0.0384 (16) −0.0158 (15) −0.0106 (13) 0.0238 (15)
C13 0.0405 (15) 0.0327 (13) 0.0299 (13) 0.0017 (11) 0.0014 (11) 0.0141 (11)
C14 0.0381 (14) 0.0351 (14) 0.0305 (14) 0.0032 (11) 0.0030 (11) 0.0090 (11)
C15 0.0500 (18) 0.0387 (15) 0.0466 (17) −0.0078 (13) −0.0078 (13) 0.0161 (14)
C16 0.0537 (18) 0.0377 (16) 0.0410 (16) −0.0037 (13) 0.0007 (13) 0.0153 (13)
C17 0.0382 (14) 0.0354 (14) 0.0321 (14) 0.0030 (11) 0.0067 (11) 0.0128 (12)
C18 0.065 (2) 0.0458 (17) 0.0371 (16) 0.0202 (15) 0.0126 (14) 0.0179 (14)
C19 0.0497 (18) 0.0423 (16) 0.0476 (18) 0.0135 (14) 0.0146 (14) 0.0167 (14)
C20 0.0390 (14) 0.0392 (14) 0.0313 (14) 0.0046 (11) 0.0066 (11) 0.0130 (12)
C21 0.0556 (19) 0.0444 (16) 0.0356 (15) −0.0026 (14) −0.0020 (13) 0.0171 (13)
C22 0.0416 (15) 0.0408 (15) 0.0311 (14) 0.0043 (12) 0.0054 (11) 0.0145 (12)
C23 0.0491 (17) 0.0510 (18) 0.0441 (17) 0.0133 (14) 0.0138 (13) 0.0223 (15)
C24 0.0429 (15) 0.0365 (14) 0.0404 (15) 0.0057 (12) 0.0044 (12) 0.0141 (12)
C25 0.0443 (15) 0.0414 (16) 0.0460 (17) 0.0057 (12) 0.0047 (13) 0.0207 (14)
C26 0.0421 (15) 0.0464 (17) 0.0419 (16) 0.0052 (13) 0.0091 (12) 0.0235 (14)
C27 0.075 (2) 0.055 (2) 0.068 (2) 0.0181 (19) 0.0158 (19) 0.0374 (19)
C28 0.0481 (17) 0.0475 (18) 0.063 (2) 0.0124 (14) 0.0125 (15) 0.0211 (16)

(20R,22R)-5α,14α,20-Trihydroxy-1-oxo-6α,7α-epoxywitha-2-enolide (II) . Geometric parameters (Å, º)

O1—C1 1.214 (4) C13—C18 1.534 (4)
O2—C26 1.341 (4) C13—C14 1.555 (4)
O2—C22 1.468 (3) C13—C17 1.562 (4)
O5—C5 1.433 (4) C14—C15 1.520 (4)
O5—H5 0.92 (5) C15—C16 1.538 (5)
O14—C14 1.442 (4) C15—H15A 0.9700
O14—H14 0.81 (5) C15—H15B 0.9700
O20—C20 1.434 (4) C16—C17 1.561 (4)
O20—H20 0.76 (6) C16—H16A 0.9700
O26—C26 1.204 (4) C16—H16B 0.9700
O67—C7 1.448 (4) C17—C20 1.546 (4)
O67—C6 1.454 (4) C17—H17A 0.9800
C1—C2 1.478 (5) C18—H18A 0.9600
C1—C10 1.542 (4) C18—H18B 0.9600
C2—C3 1.327 (6) C18—H18C 0.9600
C2—H2A 0.9300 C19—H19A 0.9600
C3—C4 1.480 (6) C19—H19B 0.9600
C3—H3A 0.9300 C19—H19C 0.9600
C4—C5 1.532 (4) C20—C21 1.530 (4)
C4—H4A 0.9700 C20—C22 1.552 (4)
C4—H4B 0.9700 C21—H21A 0.9600
C5—C6 1.523 (5) C21—H21B 0.9600
C5—C10 1.560 (4) C21—H21C 0.9600
C6—C7 1.458 (5) C22—C23 1.523 (4)
C6—H6A 0.9800 C22—H22A 0.9800
C7—C8 1.506 (4) C23—C24 1.527 (5)
C7—H7A 0.9800 C23—H23A 0.9700
C8—C14 1.530 (4) C23—H23B 0.9700
C8—C9 1.551 (4) C24—C28 1.526 (5)
C8—H8A 0.9800 C24—C25 1.539 (4)
C9—C10 1.542 (4) C24—H24A 0.9800
C9—C11 1.546 (4) C25—C26 1.507 (5)
C9—H9A 0.9800 C25—C27 1.518 (5)
C10—C19 1.534 (4) C25—H25A 0.9800
C11—C12 1.532 (5) C27—H27A 0.9600
C11—H11A 0.9700 C27—H27B 0.9600
C11—H11B 0.9700 C27—H27C 0.9600
C12—C13 1.542 (4) C28—H28A 0.9600
C12—H12A 0.9700 C28—H28B 0.9600
C12—H12B 0.9700 C28—H28C 0.9600
C26—O2—C22 119.2 (2) C14—C15—H15A 111.0
C5—O5—H5 100 (3) C16—C15—H15A 111.0
C14—O14—H14 114 (3) C14—C15—H15B 111.0
C20—O20—H20 103 (4) C16—C15—H15B 111.0
C7—O67—C6 60.3 (2) H15A—C15—H15B 109.0
O1—C1—C2 118.9 (3) C15—C16—C17 107.5 (2)
O1—C1—C10 123.8 (3) C15—C16—H16A 110.2
C2—C1—C10 117.1 (3) C17—C16—H16A 110.2
C3—C2—C1 122.0 (3) C15—C16—H16B 110.2
C3—C2—H2A 119.0 C17—C16—H16B 110.2
C1—C2—H2A 119.0 H16A—C16—H16B 108.5
C2—C3—C4 123.3 (3) C20—C17—C16 113.2 (2)
C2—C3—H3A 118.3 C20—C17—C13 119.4 (2)
C4—C3—H3A 118.3 C16—C17—C13 103.1 (2)
C3—C4—C5 112.1 (3) C20—C17—H17A 106.8
C3—C4—H4A 109.2 C16—C17—H17A 106.8
C5—C4—H4A 109.2 C13—C17—H17A 106.8
C3—C4—H4B 109.2 C13—C18—H18A 109.5
C5—C4—H4B 109.2 C13—C18—H18B 109.5
H4A—C4—H4B 107.9 H18A—C18—H18B 109.5
O5—C5—C6 108.7 (3) C13—C18—H18C 109.5
O5—C5—C4 105.4 (3) H18A—C18—H18C 109.5
C6—C5—C4 110.6 (3) H18B—C18—H18C 109.5
O5—C5—C10 109.5 (2) C10—C19—H19A 109.5
C6—C5—C10 111.4 (2) C10—C19—H19B 109.5
C4—C5—C10 111.0 (3) H19A—C19—H19B 109.5
O67—C6—C7 59.6 (2) C10—C19—H19C 109.5
O67—C6—C5 114.1 (3) H19A—C19—H19C 109.5
C7—C6—C5 121.6 (3) H19B—C19—H19C 109.5
O67—C6—H6A 116.3 O20—C20—C21 109.3 (3)
C7—C6—H6A 116.3 O20—C20—C17 108.7 (2)
C5—C6—H6A 116.3 C21—C20—C17 112.1 (2)
O67—C7—C6 60.0 (2) O20—C20—C22 105.9 (2)
O67—C7—C8 117.5 (3) C21—C20—C22 110.1 (2)
C6—C7—C8 120.6 (3) C17—C20—C22 110.5 (2)
O67—C7—H7A 115.7 C20—C21—H21A 109.5
C6—C7—H7A 115.7 C20—C21—H21B 109.5
C8—C7—H7A 115.7 H21A—C21—H21B 109.5
C7—C8—C14 113.8 (2) C20—C21—H21C 109.5
C7—C8—C9 114.2 (2) H21A—C21—H21C 109.5
C14—C8—C9 109.8 (2) H21B—C21—H21C 109.5
C7—C8—H8A 106.1 O2—C22—C23 110.7 (2)
C14—C8—H8A 106.1 O2—C22—C20 103.0 (2)
C9—C8—H8A 106.1 C23—C22—C20 118.2 (2)
C10—C9—C11 116.2 (2) O2—C22—H22A 108.2
C10—C9—C8 111.0 (2) C23—C22—H22A 108.2
C11—C9—C8 108.0 (2) C20—C22—H22A 108.2
C10—C9—H9A 107.1 C22—C23—C24 113.1 (3)
C11—C9—H9A 107.1 C22—C23—H23A 109.0
C8—C9—H9A 107.1 C24—C23—H23A 109.0
C19—C10—C9 111.9 (2) C22—C23—H23B 109.0
C19—C10—C1 105.6 (2) C24—C23—H23B 109.0
C9—C10—C1 114.3 (2) H23A—C23—H23B 107.8
C19—C10—C5 110.1 (2) C28—C24—C23 111.1 (3)
C9—C10—C5 108.3 (2) C28—C24—C25 112.6 (3)
C1—C10—C5 106.5 (2) C23—C24—C25 111.5 (3)
C12—C11—C9 113.7 (3) C28—C24—H24A 107.1
C12—C11—H11A 108.8 C23—C24—H24A 107.1
C9—C11—H11A 108.8 C25—C24—H24A 107.1
C12—C11—H11B 108.8 C26—C25—C27 110.4 (3)
C9—C11—H11B 108.8 C26—C25—C24 107.4 (2)
H11A—C11—H11B 107.7 C27—C25—C24 115.1 (3)
C11—C12—C13 112.1 (3) C26—C25—H25A 107.9
C11—C12—H12A 109.2 C27—C25—H25A 107.9
C13—C12—H12A 109.2 C24—C25—H25A 107.9
C11—C12—H12B 109.2 O26—C26—O2 118.0 (3)
C13—C12—H12B 109.2 O26—C26—C25 125.7 (3)
H12A—C12—H12B 107.9 O2—C26—C25 116.2 (3)
C18—C13—C12 109.4 (3) C25—C27—H27A 109.5
C18—C13—C14 111.2 (2) C25—C27—H27B 109.5
C12—C13—C14 106.9 (2) H27A—C27—H27B 109.5
C18—C13—C17 111.2 (2) C25—C27—H27C 109.5
C12—C13—C17 117.4 (2) H27A—C27—H27C 109.5
C14—C13—C17 100.3 (2) H27B—C27—H27C 109.5
O14—C14—C15 107.0 (2) C24—C28—H28A 109.5
O14—C14—C8 109.7 (2) C24—C28—H28B 109.5
C15—C14—C8 119.1 (2) H28A—C28—H28B 109.5
O14—C14—C13 105.9 (2) C24—C28—H28C 109.5
C15—C14—C13 103.5 (2) H28A—C28—H28C 109.5
C8—C14—C13 110.8 (2) H28B—C28—H28C 109.5
C14—C15—C16 103.8 (2)
O1—C1—C2—C3 171.0 (4) C9—C8—C14—O14 −52.5 (3)
C10—C1—C2—C3 −12.6 (5) C7—C8—C14—C15 −46.7 (4)
C1—C2—C3—C4 1.1 (6) C9—C8—C14—C15 −176.2 (3)
C2—C3—C4—C5 −20.5 (6) C7—C8—C14—C13 −166.4 (3)
C3—C4—C5—O5 −68.1 (4) C9—C8—C14—C13 64.1 (3)
C3—C4—C5—C6 174.6 (3) C18—C13—C14—O14 177.1 (2)
C3—C4—C5—C10 50.3 (4) C12—C13—C14—O14 57.8 (3)
C7—O67—C6—C5 113.8 (3) C17—C13—C14—O14 −65.2 (3)
O5—C5—C6—O67 27.8 (3) C18—C13—C14—C15 −70.5 (3)
C4—C5—C6—O67 143.1 (3) C12—C13—C14—C15 170.1 (3)
C10—C5—C6—O67 −92.9 (3) C17—C13—C14—C15 47.2 (3)
O5—C5—C6—C7 95.8 (4) C18—C13—C14—C8 58.2 (3)
C4—C5—C6—C7 −148.9 (3) C12—C13—C14—C8 −61.2 (3)
C10—C5—C6—C7 −25.0 (4) C17—C13—C14—C8 175.9 (2)
C6—O67—C7—C8 −111.3 (3) O14—C14—C15—C16 74.2 (3)
C5—C6—C7—O67 −101.2 (3) C8—C14—C15—C16 −160.8 (3)
O67—C6—C7—C8 106.1 (3) C13—C14—C15—C16 −37.3 (3)
C5—C6—C7—C8 4.9 (5) C14—C15—C16—C17 13.0 (3)
O67—C7—C8—C14 −71.8 (3) C15—C16—C17—C20 146.3 (3)
C6—C7—C8—C14 −141.6 (3) C15—C16—C17—C13 16.0 (3)
O67—C7—C8—C9 55.4 (4) C18—C13—C17—C20 −46.5 (3)
C6—C7—C8—C9 −14.4 (4) C12—C13—C17—C20 80.5 (3)
C7—C8—C9—C10 44.7 (3) C14—C13—C17—C20 −164.2 (2)
C14—C8—C9—C10 173.9 (2) C18—C13—C17—C16 79.9 (3)
C7—C8—C9—C11 173.1 (3) C12—C13—C17—C16 −153.1 (3)
C14—C8—C9—C11 −57.7 (3) C14—C13—C17—C16 −37.8 (3)
C11—C9—C10—C19 −67.2 (3) C16—C17—C20—O20 −53.7 (3)
C8—C9—C10—C19 56.7 (3) C13—C17—C20—O20 67.9 (3)
C11—C9—C10—C1 52.9 (4) C16—C17—C20—C21 −174.6 (3)
C8—C9—C10—C1 176.7 (2) C13—C17—C20—C21 −53.1 (3)
C11—C9—C10—C5 171.4 (3) C16—C17—C20—C22 62.1 (3)
C8—C9—C10—C5 −64.8 (3) C13—C17—C20—C22 −176.3 (2)
O1—C1—C10—C19 99.7 (4) C26—O2—C22—C23 −53.1 (3)
C2—C1—C10—C19 −76.5 (4) C26—O2—C22—C20 179.6 (2)
O1—C1—C10—C9 −23.8 (5) O20—C20—C22—O2 −54.7 (3)
C2—C1—C10—C9 160.0 (3) C21—C20—C22—O2 63.4 (3)
O1—C1—C10—C5 −143.3 (4) C17—C20—C22—O2 −172.2 (2)
C2—C1—C10—C5 40.5 (4) O20—C20—C22—C23 −177.1 (3)
O5—C5—C10—C19 170.9 (3) C21—C20—C22—C23 −59.1 (3)
C6—C5—C10—C19 −68.9 (3) C17—C20—C22—C23 65.4 (3)
C4—C5—C10—C19 54.9 (3) O2—C22—C23—C24 31.1 (4)
O5—C5—C10—C9 −66.6 (3) C20—C22—C23—C24 149.5 (3)
C6—C5—C10—C9 53.7 (3) C22—C23—C24—C28 148.4 (3)
C4—C5—C10—C9 177.5 (3) C22—C23—C24—C25 21.9 (4)
O5—C5—C10—C1 56.8 (3) C28—C24—C25—C26 175.2 (3)
C6—C5—C10—C1 177.1 (3) C23—C24—C25—C26 −59.1 (3)
C4—C5—C10—C1 −59.1 (3) C28—C24—C25—C27 51.8 (4)
C10—C9—C11—C12 179.3 (3) C23—C24—C25—C27 177.5 (3)
C8—C9—C11—C12 53.9 (4) C22—O2—C26—O26 −170.9 (3)
C9—C11—C12—C13 −55.1 (4) C22—O2—C26—C25 13.8 (4)
C11—C12—C13—C18 −64.7 (3) C27—C25—C26—O26 −6.5 (5)
C11—C12—C13—C14 55.8 (3) C24—C25—C26—O26 −132.7 (3)
C11—C12—C13—C17 167.4 (3) C27—C25—C26—O2 168.4 (3)
C7—C8—C14—O14 76.9 (3) C24—C25—C26—O2 42.2 (4)

(20R,22R)-5α,14α,20-Trihydroxy-1-oxo-6α,7α-epoxywitha-2-enolide (II) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O20—H20···O5i 0.76 (6) 2.22 (6) 2.973 (4) 173
C7—H7A···O26ii 0.98 2.59 3.367 (5) 136

Symmetry codes: (i) x, y, z+1; (ii) x−1, y, z−1.

References

  1. Alfonso, D., Bernardinelli, G. & Kapetanidis, I. (1993). Phytochemistry, 34, 517–521.
  2. Figueiredo, M. C. C., Passos, A. R., Hughes, F. M., Santos, K. S., Silva, A. L. & Soares, T. L. (2020). Sci. Hortic. (Amsterdam), 267, 109307.
  3. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  4. Huang, M., He, J. X., Hu, H. X., Zhang, K., Wang, X. N., Zhao, B. B., Lou, H. X., Ren, D. M. & Shen, T. (2020). J. Pharm. Pharmacol. 72, 649–669. [DOI] [PubMed]
  5. Maldonado, E., Hurtado, N. E., Pérez-Castorena, A. L. & Martínez, M. (2015). Steroids, 104, 72–78. [DOI] [PubMed]
  6. Maldonado, E., Pérez-Castorena, A. L., Garcés, C. & Martínez, M. (2011). Steroids, 76, 724–728. [DOI] [PubMed]
  7. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  8. Pinto, L. A., Meira, C. S., Villarreal, C. F., Vannier-Santos, M. A., de Souza, C. V. C., Ribeiro, I. M., Tomassini, T. C., Galvão-Castro, B., Soares, M. B. & Grassi, M. F. (2016). Biomed. Pharmacother. 79, 129–134. [DOI] [PubMed]
  9. Ray, A. B. & Gupta, M. (1994). Withasteroids, a Growing Group of Naturally Occurring Steroidal Lactones. In Progress in the Chemistry of Organic Natural Products, vol 63, edited by W. Herz, G. W, Kirby, R. E. Moore, W. Steglich & C. Tamm,. pp. 1–106. New York: Springer Verlag. [DOI] [PubMed]
  10. Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  11. Sá, M. S., de Menezes, M. N., Krettli, A. U., Ribeiro, I. M., Tomassini, T. C., Ribeiro dos Santos, R., de Azevedo, W. F. Jr & Soares, M. B. (2011). J. Nat. Prod. 74, 2269–2272. [DOI] [PubMed]
  12. Salgado, E. R. & Arana, G. V. (2013). Bol. Latinoam. Caribe Plant. Med. Aromat. 12, 431–445.
  13. Sheldrick, G. M. (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.
  14. Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  17. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  18. Su, B.-N., Misico, R., Park, E. J., Santarsiero, B. D., Mesecar, A. D., Fong, H. H. S., Pezzuto, J. M. & Kinghorn, A. D. (2002). Tetrahedron, 58, 3453–3466.
  19. Vasina, O. E., Abdullaev, N. D. & Abubakirov, N. K. (1990). Chem. Nat. Compd. 26, 304–307.
  20. Vasina, O. E., Maslennikova, V. A., Abdullaev, N. D. & Abubakirov, N. K. (1986). Chem. Nat. Compd. 22, 560–565.
  21. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, II, Global. DOI: 10.1107/S205698902100709X/dj2029sup1.cif

e-77-00804-sup1.cif (653.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698902100709X/dj2029Isup2.hkl

e-77-00804-Isup2.hkl (456.7KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S205698902100709X/dj2029IIsup3.hkl

e-77-00804-IIsup3.hkl (224.7KB, hkl)

CCDC references: 2095478, 2095477

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES