Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Jul 23;77(Pt 8):824–828. doi: 10.1107/S2056989021007416

Crystal structure, Hirshfeld surface analysis and density functional theory study of benzyl 2-oxo-1-(prop-2-yn-1-yl)-1,2-di­hydro­quinoline-4-carboxyl­ate

Younos Bouzian a, Karim Chkirate a, Joel T Mague b, Fares Hezam Al-Ostoot c,*, Noureddine Hammou Ahabchane a, El Mokhtar Essassi a
PMCID: PMC8340981  PMID: 34422309

The mol­ecule adopts a Z-shaped conformation with the carboxyl group nearly coplanar with the di­hydro­quinoline unit. In the crystal, two sets of C—H⋯O hydrogen bonds form chains along the b-axis direction, which are connected into corrugated layers parallel to (103) by additional C—H⋯O hydrogen bonds. The layers are connected by C—H⋯π(ring) inter­actions.

Keywords: crystal structure, alkyne, di­hydro­quinoline, hydrogen bond, Hirshfeld surface analysis

Abstract

The title mol­ecule, C20H15NO3, adopts a Z-shaped conformation with the carboxyl group nearly coplanar with the di­hydro­quinoline unit. In the crystal, corrugated layers are formed by C—H⋯O hydrogen bonds and are stacked by C—H⋯π(ring) inter­actions. Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (43.3%), H⋯C/C⋯H (26.6%) and H⋯O/O⋯H (16.3%) inter­actions. The optimized structure calculated using density functional theory at the B3LYP/ 6–311 G(d,p) level is compared with the experimentally determined structure in the solid state. The calculated HOMO–LUMO energy gap is 4.0319 eV.

Chemical context  

Nitro­gen-based structures have attracted increased attention in recent years because of their inter­esting properties in structural and inorganic chemistry (Chkirate et al., 2019, 2020a ,b , 2021). The family of quinolines, particularly those containing the 2-oxo­quinoline moiety, is important in medicinal chemistry because of their wide range of pharmacological applications including as potential anti­cancer agents (Fang et al., 2021), anti-proliferative agents (Banu et al., 2017) and as potent modulators of ABCB1-related drug resistance of mouse T-lymphoma cells (Filali Baba et al., 2020). In particular, 2-oxo­quinoline-4-carboxyl­ate derivatives are active anti­oxidants (Filali Baba et al., 2019). Given the wide range of therapeutic applications for such compounds, and in a continuation of the work already carried out on the synthesis of compounds resulting from quinolin-2-one (Bouzian et al., 2020), a similar approach gave the title compound, benzyl 2-oxo-1-(prop-2-yn-1-yl)-1,2-di­hydro­quinoline-4-carboxyl­ate, (I). Besides the synthesis, we also report the mol­ecular and crystalline structures along with a Hirshfeld surface analysis and a density functional theory computational calculation carried out at the B3LYP/6– 311 G(d,p) level. graphic file with name e-77-00824-scheme1.jpg

Structural commentary  

The mol­ecule adopts a Z-shaped conformation with the propynyl and benzyl substituents projecting from opposite sides of the mean plane of the di­hydro­quinoline moiety. This moiety is planar to within 0.0340 (6) Å (r.m.s. deviation = 0.0164) with N1 and C9 being, respectively, 0.0340 (6) and −0.0279 (7) Å from the mean plane, resulting in a slight twist at this location. The carboxyl group is nearly coplanar with the di­hydro­quinoline as seen from the 1.04 (5)° dihedral angle between the plane defined by C7/C13/O2/O3 and that of the di­hydro­quinoline (C1–C9/N1/O1). This is likely due, in part, to the intra­molecular C5—H5⋯O2 inter­action (Table 1 and Fig. 1). The propynyl substituent is rotated out of the mean plane of the di­hydro­quinoline moiety by 80.88 (3)°. The plane of the C15–C20 ring is inclined to that of the di­hydro­quinoline by 68.47 (2)°.

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 and Cg3 are the centroids of the C1–C6 and C15–C20 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Cg3i 0.95 2.94 3.8206 (10) 154
C4—H4⋯O2ii 0.95 2.57 3.4846 (11) 162
C5—H5⋯O2 0.95 2.23 2.8917 (11) 126
C12—H12⋯O1iii 0.95 2.25 3.1463 (14) 157
C14—H14ACg2iv 0.99 2.65 3.4652 (9) 140
C16—H16⋯O1v 0.95 2.50 3.3443 (12) 148

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z+1; (iii) -x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}; (iv) -x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}; (v) -x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}.

Figure 1.

Figure 1

The title mol­ecule with labeling scheme and 50% probability ellipsoids. The intra­molecular hydrogen bond is depicted by a dashed line.

Supra­molecular features  

In the crystal, C12—H12⋯O1 and C16—H16⋯O1 hydrogen bonds (Table 1) link the mol­ecules into zigzag chains extending along the b-axis direction, which are connected by inversion-related pairs of C4—H4⋯O2 hydrogen bonds (Table 1) into corrugated layers parallel to the (103) plane (Fig. 2). The layers are stacked along the normal to (103) with C2—H2⋯Cg3 and C14—H14ACg2 inter­actions (Table 1 and Fig. 3).

Figure 2.

Figure 2

A portion of one layer viewed along the c axis with C—H⋯O hydrogen bonds depicted by dashed lines.

Figure 3.

Figure 3

Packing viewed parallel to (103) with the b axis horizontal and running from left to right. C—H⋯O hydrogen bonds and C—H⋯π(ring) inter­actions are depicted, respectively, by black and green dashed lines.

Hirshfeld surface analysis  

The CrystalExplorer program (Turner et al., 2017) was used to investigate and visualize further the inter­molecular inter­actions of (I). The Hirshfeld surface plotted over d norm in the range −0.3677 to 1.3896 a.u. is shown in Fig. 4 a. The electrostatic potential using the STO-3G basis set at the Hartree–Fock level of theory and mapped on the Hirshfeld surface over the range of ±0.05 a.u. clearly shows the positions of close inter­molecular contacts in the compound (Fig. 4 b). The positive electrostatic potential (blue region) over the surface indicates hydrogen-donor potential, whereas the hydrogen-bond acceptors are represented by negative electrostatic potential (red region).

Figure 4.

Figure 4

(a) View of the three-dimensional Hirshfeld surface of the title compound, plotted over d norm in the range of −0.3677 to 1.3896 a.u. (b) View of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory.

The overall two-dimensional fingerprint plot (McKinnon et al., 2007) is shown in Fig. 5 a, while those delineated into H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, C⋯C, O⋯C/C⋯O, H⋯N/N⋯H, N⋯C/C⋯N and N⋯O/O⋯N contacts are illustrated in Fig. 5 bi, respectively, together with their relative contributions to the Hirshfeld surface (HS). The most important inter­action is H⋯H, contributing 43.3% to the overall crystal packing, which is reflected in Fig. 5 b as widely scattered points of high density due to the large hydrogen content of the mol­ecule, with its tip at d e = d i = 1.19 Å. In the presence of C—H inter­actions, the pair of characteristic wings in the fingerprint plot delineated into H⋯C/C⋯H contacts (26.6% contribution to the HS, Fig. 5 c) has tips at d e + d i = 3.07 Å. The pair of scattered points of spikes in the fingerprint plot delineated into H⋯O/O⋯H contacts (Fig. 5 d, 16.3%) have tips at d e + d i = 2.08 Å. The C⋯C contacts (Fig. 5 e, 10.4%) have tips at d e + d i = 3.34 Å. The O⋯C/C⋯O contacts, Fig. 5 f, contribute 1.5% to the HS and appear as a pair of scattered points of spikes with tips at d e + d i = 3.55 Å. The H⋯N/N⋯H contacts (Fig. 5 g, 1.3%) have tips at d e + d i = 3.28 Å. Finally, the C⋯N/N⋯C and O⋯N/N⋯ O contacts, Fig. 5 hi, contribute only 0.5% and 0.1% respectively to the HS and have a low-density distribution of points.

Figure 5.

Figure 5

The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯O/O⋯H, (e) C⋯C, (f) O⋯C/C⋯O, (g) H⋯N/N⋯H, (h) N⋯C/C⋯N and (i) N⋯O/O⋯N inter­actions. di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

Density Functional Theory calculations  

The structure in the gas phase of the title compound was optimized by means of density functional theory. The density functional theory calculation was performed by the hybrid B3LYP method and the 6–311 G(d,p) basis-set, which is based on Becke’s model (Becke, 1993) and considers a mixture of the exact (Hartree–Fock) and density functional theory exchange utilizing the B3 functional, together with the LYP correlation functional (Lee et al., 1988). After obtaining the converged geometry, the harmonic vibrational frequencies were calculated at the same theoretical level to confirm that the number of imaginary frequencies is zero for the stationary point. Both the geometry optimization and harmonic vibrational frequency analysis of the title compound were performed with the Gaussian 09 program (Frisch et al., 2009). Theoretical and experimental results related to bond lengths and angles are in good agreement, and are summarized in Table 2. Calculated numerical values for the title compound including electronegativity (χ), hardness (η), ionization potential (I), dipole moment (μ), electron affinity (A), electrophilicity (ω) and softness (σ) are collated in Table 3. The electron transition from the highest occupied mol­ecular orbital (HOMO) to the lowest unoccupied mol­ecular orbital (LUMO) energy level is shown in Fig. 6. The HOMO and LUMO are localized in the plane extending over the whole benzyl 2-oxo-1-(prop-2-yn-1-yl)-1,2-di­hydro­quinoline-4-carb­oxyl­ate system. The energy band gap (ΔE = E LUMO − E HOMO) of the mol­ecule is 4.0319 eV, and the frontier mol­ecular orbital energies, E HOMO and E LUMO, are −6.3166 and −2.2847 eV, respectively.

Table 2. Comparison (X-ray and DFT) of selected bond lengths and angles (Å, °).

  X-ray B3LYP/6–311G(d,p)
O1—C9 1.2355 (10) 1.223
O3—C13 1.3375 (10) 1.3447
N1—C9 1.3788 (10) 1.4042
N1—C10 1.4730 (10) 1.4725
O2—C13 1.2058 (10) 1.2092
O3—C14 1.4588 (10) 1.4611
N1—C1 1.3999 (10) 1.3953
     
C13—O3—C14 116.87 (7) 117.1258
C9—N1—C10 115.85 (6) 115.6313
N1—C1—C2 119.87 (7) 120.5532
O1—C9—N1 121.42 (7) 121.7499
N1—C9—C8 116.04 (7) 115.2168
O2—C13—C7 125.74 (7) 125.0357
O3—C14—C15 112.63 (7) 111.678
C9—N1—C1 123.16 (6) 123.4431
C1—N1—C10 120.93 (6) 120.911
N1—C1—C6 120.08 (6) 120.1155
O1—C9—C8 122.54 (7) 123.0317
C11—C10—N1 111.46 (7) 113.9875
O2—C13—O3 123.21 (7) 123.6586
O3—C13—C7 111.05 (6) 111.3015

Table 3. Calculated energies.

Mol­ecular energy Compound (I)
Total energy TE (eV) −28621.0571
E HOMO (eV) −6.3166
E LUMO (eV) −2.2847
Gap, ΔE (eV) 4.0319
Dipole moment, μ (Debye) 1.9469
Ionization potential, I (eV) 6.3166
Electron affinity, A 2.2847
Electronegativity, χ 4.3007
Hardness, η 2.0160
Electrophilicity index, ω 4.5873
Softness, σ 0.4960
Fraction of electron transferred, ΔN 0.6695

Figure 6.

Figure 6

The energy band gap of benzyl 2-oxo-1-(prop-2-yn-1-yl)-1,2-di­hydro­quinoline-4-carboxyl­ate.

Database survey  

A search of the Cambridge Structural Database (CSD version 5.42, updated May 2021; Groom et al., 2016) with the 2-oxo-1-(prop-2-yn-1-yl)-1,2-di­hydro­quinoline-4-carboxyl­ate fragment yielded multiple matches. Of these, two had an alkyl substituent on O3 comparable to (I). The first compound (refcode OKIGAT; Hayani et al., 2021) carries an ethyl group on O3, while the second one (refcode OKIGOH; Hayani et al., 2021) carries a cyclo­hexyl group. The ethyl carboxyl­ate in OKIGAT forms a dihedral angle of −8.3 (7)° with the di­hydro­quinoline unit. In OKIGOH, the dihedral angle between the mean planes of the cyclo­hexyl carboxyl­ate and di­hydro­quinoline rings is 37.3 (8)°. As previously mentioned, the carboxyl group in (I) is nearly coplanar with the di­hydro­quinoline [dihedral angle of 1.04 (5)°], which is approximately the same as in OKIGAT, but less tilted than in OKIGOH.

Synthesis and crystallization  

A mixture of 2-oxo-1-(prop-2-yn-1-yl)-1,2-di­hydro­quinoline-4-carb­oxy­lic acid (0.7 g, 3 mmol), K2CO3 (0.51 g, 3.6 mmol), benzyl chloride (0.76 ml, 6 mmol) and tetra n-butyl­ammonium bromide as a catalyst in DMF (30 mL) was stirred at room temperature for 48 h. After removal of the salts by filtration, the solvent was evaporated under reduced pressure and the residue obtained was dissolved in di­chloro­methane. The organic phase was dried over Na2SO4 and concentrated under vacuum. The crude product obtained was purified by chromatography on a column of silica gel (eluent: hexa­ne/ ethyl acetate: 9/1). 1H NMR (300 MHz, DMSO-d 6) δ ppm: 3.08 (t, 1H, CH≡); 4.37 (d, 2H, CH2—N); 5.12 (s, 2H, CH2—O); 7.08–8.74 (m, 10H, CHarom); 13C NMR (75 MHz, DMSO-d 6) δ ppm: 34.3 (CH3—N); 66.2 (CH2—O); 72.1 (–C≡); 73.2 (CH≡); 115.6-148.7 (CHarom and Cquat arom); 162. 5 (C=Oquinol); 168.2 (C=Ocarbox­yl). MS (ESI): m/z = 318 (M + H)+.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 4. H atoms attached to carbon were placed in calculated positions (C—H = 0.95–1.00 Å), and were included as riding contributions with isotropic displacement parameters 1.2 or 1.5 times those of the attached atoms. Two reflections affected by the beamstop were omitted from the final refinement.

Table 4. Experimental details.

Crystal data
Chemical formula C20H15NO3
M r 317.33
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 8.2284 (3), 13.7693 (4), 13.9230 (4)
β (°) 96.155 (1)
V3) 1568.37 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.44 × 0.35 × 0.32
 
Data collection
Diffractometer Bruker D8 QUEST PHOTON 3 diffractometer
Absorption correction Numerical (SADABS; Krause et al., 2015)
T min, T max 0.93, 0.97
No. of measured, independent and observed [I > 2σ(I)] reflections 80207, 6020, 5304
R int 0.025
(sin θ/λ)max−1) 0.774
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.046, 0.133, 1.03
No. of reflections 6020
No. of parameters 217
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.46, −0.21

Computer programs: APEX3 and SAINT (Bruker, 2020), SHELXT (Sheldrick, 2015a ), SHELXL2018/1 (Sheldrick, 2015b ), DIAMOND (Brandenburg & Putz, 2012) and SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989021007416/tx2040sup1.cif

e-77-00824-sup1.cif (2.3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021007416/tx2040Isup3.hkl

e-77-00824-Isup3.hkl (478.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021007416/tx2040Isup3.cml

CCDC reference: 2097267

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory. Authors’ contributions are as follows. Conceptualization, YB; methodology, YB and NHA; investigation, KC; theoretical calculations, KC; writing (original draft), KC; writing (review and editing of the manuscript), FHAO; supervision, EME; crystal-structure determination and validation, JTM.

supplementary crystallographic information

Crystal data

C20H15NO3 F(000) = 664
Mr = 317.33 Dx = 1.344 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 8.2284 (3) Å Cell parameters from 9939 reflections
b = 13.7693 (4) Å θ = 2.5–33.3°
c = 13.9230 (4) Å µ = 0.09 mm1
β = 96.155 (1)° T = 150 K
V = 1568.37 (9) Å3 Block, colourless
Z = 4 0.44 × 0.35 × 0.32 mm

Data collection

Bruker D8 QUEST PHOTON 3 diffractometer 6020 independent reflections
Radiation source: fine-focus sealed tube 5304 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.025
Detector resolution: 7.3910 pixels mm-1 θmax = 33.4°, θmin = 2.9°
φ and ω scans h = −12→12
Absorption correction: numerical (SADABS; Krause et al., 2015) k = −21→21
Tmin = 0.93, Tmax = 0.97 l = −21→21
80207 measured reflections

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0739P)2 + 0.3685P] where P = (Fo2 + 2Fc2)/3
6020 reflections (Δ/σ)max = 0.001
217 parameters Δρmax = 0.46 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Experimental. The diffraction data were obtained from 9 sets of frames, each of width 0.5° in ω or φ, collected with scan parameters determined by the "strategy" routine in APEX3. The scan time was 7 sec/frame.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 1.00 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. Two reflections affected by the beamstop were omitted from the final refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.79130 (8) 0.56932 (5) 0.29079 (6) 0.03386 (17)
O2 0.15346 (8) 0.39853 (5) 0.36012 (6) 0.03159 (16)
O3 0.34027 (8) 0.35057 (5) 0.26450 (5) 0.02547 (14)
N1 0.63622 (8) 0.63640 (5) 0.39987 (5) 0.01811 (12)
C1 0.49088 (9) 0.64053 (5) 0.44357 (5) 0.01656 (13)
C2 0.46483 (10) 0.71713 (6) 0.50694 (6) 0.02098 (14)
H2 0.544815 0.766658 0.518906 0.025*
C3 0.32280 (11) 0.72050 (6) 0.55192 (6) 0.02469 (16)
H3 0.306866 0.771800 0.595567 0.030*
C4 0.20287 (10) 0.64925 (7) 0.53375 (6) 0.02508 (16)
H4 0.106080 0.651845 0.565229 0.030*
C5 0.22538 (10) 0.57466 (6) 0.46961 (6) 0.02108 (14)
H5 0.142234 0.527154 0.456509 0.025*
C6 0.36952 (9) 0.56798 (5) 0.42340 (5) 0.01629 (13)
C7 0.40167 (8) 0.49162 (5) 0.35579 (5) 0.01659 (13)
C8 0.54184 (9) 0.49270 (6) 0.31341 (6) 0.02043 (14)
H8 0.560136 0.442273 0.269253 0.025*
C9 0.66584 (10) 0.56733 (6) 0.33219 (6) 0.02148 (15)
C10 0.76472 (10) 0.71018 (6) 0.42091 (6) 0.02241 (15)
H10A 0.775440 0.725750 0.490720 0.027*
H10B 0.870536 0.683646 0.405222 0.027*
C11 0.72727 (11) 0.79935 (6) 0.36498 (7) 0.02598 (17)
C12 0.69298 (13) 0.87027 (8) 0.31880 (9) 0.0356 (2)
H12 0.665529 0.927061 0.281827 0.043*
C13 0.28317 (9) 0.41024 (5) 0.32886 (6) 0.01886 (14)
C14 0.23208 (11) 0.27253 (7) 0.22635 (6) 0.02652 (17)
H14A 0.266692 0.250123 0.164117 0.032*
H14B 0.119369 0.298095 0.213628 0.032*
C15 0.23223 (10) 0.18782 (6) 0.29404 (6) 0.02316 (15)
C16 0.36596 (12) 0.12502 (8) 0.30625 (7) 0.0318 (2)
H16 0.457268 0.135594 0.271197 0.038*
C17 0.36579 (17) 0.04679 (9) 0.36979 (9) 0.0430 (3)
H17 0.457907 0.004905 0.378888 0.052*
C18 0.2320 (2) 0.02998 (9) 0.41959 (9) 0.0502 (3)
H18 0.232480 −0.023368 0.462895 0.060*
C19 0.09713 (18) 0.09064 (9) 0.40660 (9) 0.0442 (3)
H19 0.004674 0.078535 0.440243 0.053*
C20 0.09774 (12) 0.16940 (7) 0.34402 (7) 0.02989 (19)
H20 0.005332 0.211073 0.335298 0.036*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0257 (3) 0.0298 (3) 0.0496 (4) −0.0088 (3) 0.0203 (3) −0.0130 (3)
O2 0.0222 (3) 0.0270 (3) 0.0474 (4) −0.0083 (2) 0.0127 (3) −0.0108 (3)
O3 0.0263 (3) 0.0234 (3) 0.0276 (3) −0.0089 (2) 0.0067 (2) −0.0090 (2)
N1 0.0171 (3) 0.0150 (3) 0.0224 (3) −0.0026 (2) 0.0026 (2) −0.0004 (2)
C1 0.0176 (3) 0.0148 (3) 0.0171 (3) 0.0000 (2) 0.0009 (2) 0.0012 (2)
C2 0.0242 (3) 0.0177 (3) 0.0208 (3) −0.0006 (3) 0.0015 (3) −0.0023 (2)
C3 0.0270 (4) 0.0233 (4) 0.0240 (3) 0.0028 (3) 0.0041 (3) −0.0051 (3)
C4 0.0219 (3) 0.0277 (4) 0.0265 (4) 0.0025 (3) 0.0070 (3) −0.0035 (3)
C5 0.0182 (3) 0.0223 (3) 0.0232 (3) 0.0000 (2) 0.0040 (2) −0.0010 (3)
C6 0.0160 (3) 0.0154 (3) 0.0174 (3) 0.0005 (2) 0.0011 (2) 0.0012 (2)
C7 0.0165 (3) 0.0145 (3) 0.0186 (3) −0.0011 (2) 0.0013 (2) 0.0007 (2)
C8 0.0196 (3) 0.0164 (3) 0.0260 (3) −0.0028 (2) 0.0059 (3) −0.0032 (2)
C9 0.0191 (3) 0.0178 (3) 0.0284 (4) −0.0025 (2) 0.0068 (3) −0.0027 (3)
C10 0.0197 (3) 0.0192 (3) 0.0281 (4) −0.0051 (3) 0.0013 (3) −0.0009 (3)
C11 0.0237 (3) 0.0219 (4) 0.0332 (4) −0.0062 (3) 0.0072 (3) 0.0002 (3)
C12 0.0313 (4) 0.0291 (4) 0.0484 (6) −0.0021 (4) 0.0138 (4) 0.0106 (4)
C13 0.0183 (3) 0.0167 (3) 0.0213 (3) −0.0018 (2) 0.0008 (2) −0.0001 (2)
C14 0.0295 (4) 0.0249 (4) 0.0247 (4) −0.0092 (3) 0.0008 (3) −0.0067 (3)
C15 0.0230 (3) 0.0217 (3) 0.0250 (3) −0.0049 (3) 0.0034 (3) −0.0082 (3)
C16 0.0268 (4) 0.0337 (5) 0.0345 (4) 0.0020 (3) 0.0016 (3) −0.0126 (4)
C17 0.0522 (7) 0.0316 (5) 0.0426 (6) 0.0117 (5) −0.0067 (5) −0.0085 (4)
C18 0.0824 (10) 0.0299 (5) 0.0385 (6) −0.0013 (6) 0.0066 (6) 0.0026 (4)
C19 0.0619 (7) 0.0333 (5) 0.0409 (6) −0.0112 (5) 0.0214 (5) −0.0035 (4)
C20 0.0309 (4) 0.0253 (4) 0.0355 (4) −0.0054 (3) 0.0123 (3) −0.0084 (3)

Geometric parameters (Å, º)

O1—C9 1.2355 (10) C8—H8 0.9500
O2—C13 1.2058 (10) C10—C11 1.4687 (12)
O3—C13 1.3375 (10) C10—H10A 0.9900
O3—C14 1.4588 (10) C10—H10B 0.9900
N1—C9 1.3788 (10) C11—C12 1.1865 (14)
N1—C1 1.3999 (10) C12—H12 0.9500
N1—C10 1.4730 (10) C14—C15 1.4995 (13)
C1—C2 1.4062 (10) C14—H14A 0.9900
C1—C6 1.4192 (10) C14—H14B 0.9900
C2—C3 1.3846 (11) C15—C20 1.3922 (12)
C2—H2 0.9500 C15—C16 1.3955 (13)
C3—C4 1.3953 (12) C16—C17 1.3940 (17)
C3—H3 0.9500 C16—H16 0.9500
C4—C5 1.3864 (11) C17—C18 1.382 (2)
C4—H4 0.9500 C17—H17 0.9500
C5—C6 1.4116 (10) C18—C19 1.385 (2)
C5—H5 0.9500 C18—H18 0.9500
C6—C7 1.4543 (10) C19—C20 1.3914 (16)
C7—C8 1.3507 (10) C19—H19 0.9500
C7—C13 1.5062 (10) C20—H20 0.9500
C8—C9 1.4520 (11)
C13—O3—C14 116.87 (7) N1—C10—H10A 109.3
C9—N1—C1 123.16 (6) C11—C10—H10B 109.3
C9—N1—C10 115.85 (6) N1—C10—H10B 109.3
C1—N1—C10 120.93 (6) H10A—C10—H10B 108.0
N1—C1—C2 119.87 (7) C12—C11—C10 178.18 (10)
N1—C1—C6 120.08 (6) C11—C12—H12 180.0
C2—C1—C6 120.05 (7) O2—C13—O3 123.21 (7)
C3—C2—C1 120.12 (7) O2—C13—C7 125.74 (7)
C3—C2—H2 119.9 O3—C13—C7 111.05 (6)
C1—C2—H2 119.9 O3—C14—C15 112.63 (7)
C2—C3—C4 120.62 (7) O3—C14—H14A 109.1
C2—C3—H3 119.7 C15—C14—H14A 109.1
C4—C3—H3 119.7 O3—C14—H14B 109.1
C5—C4—C3 119.80 (8) C15—C14—H14B 109.1
C5—C4—H4 120.1 H14A—C14—H14B 107.8
C3—C4—H4 120.1 C20—C15—C16 119.00 (9)
C4—C5—C6 121.24 (7) C20—C15—C14 120.58 (8)
C4—C5—H5 119.4 C16—C15—C14 120.41 (8)
C6—C5—H5 119.4 C17—C16—C15 120.11 (10)
C5—C6—C1 118.15 (7) C17—C16—H16 119.9
C5—C6—C7 124.21 (7) C15—C16—H16 119.9
C1—C6—C7 117.65 (6) C18—C17—C16 120.18 (11)
C8—C7—C6 119.87 (6) C18—C17—H17 119.9
C8—C7—C13 117.37 (7) C16—C17—H17 119.9
C6—C7—C13 122.76 (6) C17—C18—C19 120.23 (11)
C7—C8—C9 123.06 (7) C17—C18—H18 119.9
C7—C8—H8 118.5 C19—C18—H18 119.9
C9—C8—H8 118.5 C18—C19—C20 119.68 (11)
O1—C9—N1 121.42 (7) C18—C19—H19 120.2
O1—C9—C8 122.54 (7) C20—C19—H19 120.2
N1—C9—C8 116.04 (7) C19—C20—C15 120.76 (10)
C11—C10—N1 111.46 (7) C19—C20—H20 119.6
C11—C10—H10A 109.3 C15—C20—H20 119.6
C9—N1—C1—C2 −175.56 (7) C1—N1—C9—C8 −4.77 (11)
C10—N1—C1—C2 1.37 (10) C10—N1—C9—C8 178.16 (7)
C9—N1—C1—C6 3.97 (11) C7—C8—C9—O1 −177.70 (9)
C10—N1—C1—C6 −179.10 (7) C7—C8—C9—N1 2.64 (12)
N1—C1—C2—C3 −178.65 (7) C9—N1—C10—C11 96.66 (8)
C6—C1—C2—C3 1.82 (11) C1—N1—C10—C11 −80.48 (9)
C1—C2—C3—C4 −1.16 (13) C14—O3—C13—O2 4.71 (12)
C2—C3—C4—C5 −0.41 (13) C14—O3—C13—C7 −175.41 (7)
C3—C4—C5—C6 1.33 (13) C8—C7—C13—O2 179.78 (8)
C4—C5—C6—C1 −0.66 (11) C6—C7—C13—O2 −1.07 (12)
C4—C5—C6—C7 179.70 (7) C8—C7—C13—O3 −0.10 (10)
N1—C1—C6—C5 179.56 (7) C6—C7—C13—O3 179.05 (7)
C2—C1—C6—C5 −0.91 (11) C13—O3—C14—C15 −80.18 (10)
N1—C1—C6—C7 −0.77 (10) O3—C14—C15—C20 107.82 (9)
C2—C1—C6—C7 178.76 (7) O3—C14—C15—C16 −73.57 (10)
C5—C6—C7—C8 178.41 (7) C20—C15—C16—C17 −1.82 (13)
C1—C6—C7—C8 −1.23 (11) C14—C15—C16—C17 179.56 (8)
C5—C6—C7—C13 −0.72 (11) C15—C16—C17—C18 1.23 (16)
C1—C6—C7—C13 179.64 (6) C16—C17—C18—C19 0.10 (18)
C6—C7—C8—C9 0.28 (12) C17—C18—C19—C20 −0.80 (19)
C13—C7—C8—C9 179.45 (7) C18—C19—C20—C15 0.19 (17)
C1—N1—C9—O1 175.57 (8) C16—C15—C20—C19 1.12 (14)
C10—N1—C9—O1 −1.50 (12) C14—C15—C20—C19 179.74 (9)

Hydrogen-bond geometry (Å, º)

Cg2 and Cg3 are the centroids of the C1–C6 and C15–C20 benzene rings, respectively.

D—H···A D—H H···A D···A D—H···A
C2—H2···Cg3i 0.95 2.94 3.8206 (10) 154
C4—H4···O2ii 0.95 2.57 3.4846 (11) 162
C5—H5···O2 0.95 2.23 2.8917 (11) 126
C12—H12···O1iii 0.95 2.25 3.1463 (14) 157
C14—H14A···Cg2iv 0.99 2.65 3.4652 (9) 140
C16—H16···O1v 0.95 2.50 3.3443 (12) 148

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z+1; (iii) −x+3/2, y+1/2, −z+1/2; (iv) −x+1/2, y−1/2, −z+1/2; (v) −x+3/2, y−1/2, −z+1/2.

References

  1. Banu, S., Bollu, R., Bantu, R., Nagarapu, L., Polepalli, S., Jain, N., Vangala, R. & Manga, V. (2017). Eur. J. Med. Chem. 125, 400–410. [DOI] [PubMed]
  2. Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.
  3. Bouzian, Y., Karrouchi, K., Sert, Y., Lai, C.-H., Mahi, L., Ahabchane, N. H., Talbaoui, A., Mague, J. T. & Essassi, E. M. (2020). J. Mol. Struct. 1209, 127940.
  4. Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.
  5. Bruker (2020). APEX3 and SAINT. Bruker AXS LLC, Madison, Wisconsin, USA.
  6. Chkirate, K., Azgaou, K., Elmsellem, H., El Ibrahimi, B., Sebbar, N. K., Anouar, E. H., Benmessaoud, M., El Hajjaji, S. & Essassi, E. M. (2021). J. Mol. Liq. 321, 114750.
  7. Chkirate, K., Fettach, S., El Hafi, M., Karrouchi, K., Elotmani, B., Mague, J. T., Radi, S., Faouzi, M. E. A., Adarsh, N. N., Essassi, E. M. & Garcia, Y. (2020a). J. Inorg. Biochem. 208, 21–28. [DOI] [PubMed]
  8. Chkirate, K., Fettach, S., Karrouchi, K., Sebbar, N. K., Essassi, E. M., Mague, J. T., Radi, S., Faouzi, M. E. A., Adarsh, N. N. & Garcia, Y. (2019). J. Inorg. Biochem. 191, 21–28. [DOI] [PubMed]
  9. Chkirate, K., Karrouchi, K., Dege, N., Sebbar, N. K., Ejjoummany, A., Radi, S., Adarsh, N. N., Talbaoui, A., Ferbinteanu, M., Essassi, E. M. & Garcia, Y. (2020b). New J. Chem. 44, 2210–2221.
  10. Fang, Y., Wu, Z., Xiao, M., Wei, L., Li, K., Tang, Y., Ye, J., Xiang, J. & Hu, A. (2021). Bioorg. Chem. 106, 104469. [DOI] [PubMed]
  11. Filali Baba, Y., Misbahi, H., Kandri Rodi, Y., Ouzidan, Y., Essassi, E. M., Vincze, K., Nové, M., Gajdács, M., Molnár, J., Spengler, G. & Mazzah, A. (2020). Chem. Data Collect. 29, 100501.
  12. Filali Baba, Y., Sert, Y., Kandri Rodi, Y., Hayani, S., Mague, J. T., Prim, D., Marrot, J., Ouazzani Chahdi, F., Sebbar, N. K. & Essassi, E. M. (2019). J. Mol. Struct. 1188, 255–268.
  13. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). Gaussian 09. Revision A. 02. Gaussian Inc, Wallingford, CT, US.
  14. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  15. Hayani, S., Sert, Y., Filali Baba, Y., Benhiba, F., Ouazzani Chahdi, F., Laraqui, F.-Z., Mague, J. T., El Ibrahimi, B., Sebbar, N. K., Kandri Rodi, Y. & Essassi, E. M. (2021). J. Mol. Struct. 1227, 129520.
  16. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  17. Lee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B, 37, 785–789. [DOI] [PubMed]
  18. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  19. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  20. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  21. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  22. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989021007416/tx2040sup1.cif

e-77-00824-sup1.cif (2.3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021007416/tx2040Isup3.hkl

e-77-00824-Isup3.hkl (478.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021007416/tx2040Isup3.cml

CCDC reference: 2097267

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES