Skip to main content
Galen Medical Journal logoLink to Galen Medical Journal
. 2019 Aug 16;8:e1532. doi: 10.31661/gmj.v8i0.1532

Plant-Derived Essential Oils; Their Larvicidal Properties and Potential Application for Control of Mosquito-Borne Diseases

Mahmoud Osanloo 1,2, Mohammad Mehdi Sedaghat 3, Alireza Sanei-Dehkordi 4, Amir Amani 5,6,*
PMCID: PMC8344124  PMID: 34466524

Abstract

Mosquito-borne diseases are currently considered as important threats to human health in subtropical and tropical regions. Resistance to synthetic larvicides in different species of mosquitoes, as well as environmental pollution, are the most common adverse effects of excessive use of such agents. Plant-derived essential oils (EOs) with various chemical entities have a lower chance of developing resistance. So far, no proper classification based on lethal concentration at 50% (LC50) has been made for the larvicidal activity of EOs against different species of Aedes, Anopheles and Culex mosquitoes. To better understand the problem, a summary of the most common mosquito-borne diseases have been made. Related articles were gathered, and required information such as scientific name, used part(s) of plant, target species and LC50 values were extracted. 411 LC50 values were found about the larvicidal activity of EOs against different species of mosquitoes. Depending on the obtained results in each species, LC50 values were summarized as follows: 24 EOs with LC50 < 10 µg/mL, 149 EOs with LC50 in range of 10- 50 µg/mL, 143 EOs having LC50 within 50- 100 µg/mL and 95 EOs showing LC50 > 100 µg/mL. EOs of Callitris glaucophylla and Piper betle against Ae. aegypti, Tagetes minuta against An. gambiae, and Cananga odorata against Cx. quinquefasciatus and An. dirus having LC50 of ~ 1 µg/mL were potentially comparable to synthetic larvicides. It appears that these plants could be considered as candidates for botanical larvicides.

Keywords: Volatile Oil, Pesticides, Aedes, Anopheles, Culex

Introduction

Arthropod-borne diseases are the cause of more than 17% of all human infectious diseases around the world [1]. Mosquitoes (Diptera: Culicidae) are an important family of Arthropoda phylum which is grouped into 39 genera with a total of over 3000 species [2, 3]. More than half the world’s population lives in areas where mosquito-borne diseases are common. Mosquito-borne diseases represent a critical threat for billions of people worldwide, e.g., more than 3.9 billion people in over 128 countries are at risk of dengue, with 96 million cases estimated per year. Malaria causes more than 400,000 deaths every year globally; the majority of them are children under five years of age [1, 4]. Three genera of mosquito which are very important in the transmission of human diseases include Aedes (Chikungunya, Dengue fever, Lymphatic filariasis, Rift Valley fever, Yellow fever, Zika), Anopheles (Malaria, Lymphatic filariasis) and Culex (Japanese encephalitis, Lymphatic filariasis, West Nile fever) [1, 5]. All mosquitoes have immature aquatic stages. Thus, larviciding could be an efficient method to reduce the population of mosquitos and prevent the transmission of such diseases [6-8]. Larvicides reduce their population in breeding places, where they are concentrated, immobilized and accessible before they emerge into adults [9, 10]. Larviciding is usually performed by applying synthetic larvicides such as organophosphates (e.g., temephos, fenthion, and malathion) or using an insect growth regulator (IGRs) such as methoprene [11, 12]. However, indiscriminate use of these agents affects the population of their natural enemies (such as Gambosia fish) and causes resistance in different species of mosquitoes [10, 13]. Additionally, synthetic insecticides are usually based on a single active ingredient. Thus, resistance against them is more probable compared with botanical insecticides having multiple components [14-16]. Developing resistance against insecticides also has been linked to their tendency to remain in the environment for a long time. During this period, larva starts to produce detoxifying enzymes or change their enzymes’ structure. Thus, resistance against the larvicides may be expected [17, 18]. Moreover, synthetic insecticides leave toxic residues in the environment and make safety concerns [13, 19]. In this regards, identification of active and eco-friendly bio-pesticides is crucial for successful management of mosquito-borne diseases. Essential oils (EOs) have been suggested as alternative sources for control of insects as selective and biodegradable agents with minimal impacts on non-target organisms and environment [13, 20]. EOs are complex mixtures of volatile organic compounds which are produced as secondary metabolites in plants [21]. They are obtained from hydrodistillation or steam distillation of plant entities such as flowers, roots, barks, leaves, seeds, peels, fruits, and woods [22]. EO-based pesticides consist of a combination of molecules which can act concertedly on both behavioral and physiological processes. Thus, there is very little chance of resistance development among the treated mosquitoes [10, 21, 23]. Generally, EOs have different larvicidal activity (LA) against various species of mosquitoes. The most critical factor in developing EO-based larvicides is their potency in terms of their LAs. Currently, there is a single review paper, which has gathered LA of 122 plants against mosquitoes. However, the authors have not separated the LA-based on the mosquito species [24]. In this review we have given an update to the potential of herbal larvicides, gathering data for more than 400 LC50 values of EOs. EOs have been arranged based on their LC50, against each species to provide a better understanding and comprehensive knowledge about their larvicide potential.

Common Mosquito-Borne Diseases

In Table-1, profiles of the most common mosquito-borne diseases (including vectors, pathogenic agent, common hosts in vertebrate and distribution) have been summarized. Malaria, Yellow Fever, Dengue Fever, Zika, Chikungunya, West Nile, and Japanese encephalitis accounted for almost 0.7 million deaths around the world, annually [1].

Table 1. Profiles of the Most Common Mosquito-Borne Diseases.

Disease Vectors Caused by Vertebrate Hosts Distribution
Malaria [25] An. atroparvus,
An. labranchiae,
An. messeae, An. sacharovi, An. sergentii,
An. superpictus Grassi,
An. arabiensis ,
An. funestus, An. gambiae, An. melas, An. merus,
An. moucheti, An. nili,
An. barbirostris,
An. lesteri, An. sinensis,
An. aconitus, An. annularis, An. balabacensis,
An. culicifacies, An. dirus, An. farauti, An. flavirostris, An. fluviatilis, An. koliensis, An. leucosphyrus,
An. maculatus, An. minimus, An. punctulatus,
An. stephensi,
An. subpictus, An. sundaicus.
Protozoan parasite; Plasmodium Reptiles, birds, rodents, Primates and humans. Endemic throughout most of the tropics. Ninety-five countries and territories have ongoing transmission
Yellow Fever [26] Ae. aegypti, Ae. africanus, Ae. aromeliae,
Ae. albopictus,
Ae. furcifertaylori,
Ae. luteocephalus,
Ae. metallicus,
Ae. bromeliae, Ae. serratus.
Virus of the family Flaviviridae; genus Flavivirus. Primates Ghana, Guinea, Nigeria, Ethiopia, Liberia, Gambia, Mali, Senegal, Sudan, Togo, Uganda, Congo, Chad, Angola, Brazil, Colombia and Peru, Paraguay, Argentina,
Dengue Fever [27] Ae. aegypti, Ae. albopictus, Ae. polynesiensis,
Ae. scutellaris.
Virus of the family Flaviviridae; genus Flavivirus. Primates Philippines, Thailand, China, Malaysia, Japan, Pakistan, Taiwan, India, Sri Lanka, Burma, Malay Peninsula, Cambodia, Vietnam, Indonesia, India, Australia, Brazil, Venezuela, Mexico, Bolivia, Argentina, USA
Zika [28, 29] Ae. africanus,
Ae. luteocephalus,
Ae. aegypti, Ae. albopictus, Ae. furcifer, Ae. vittatus.
The virus of the family Flaviviridae; genus Flavivirus. Primates Brazil, Colombia, Venezuela, Puerto Rico, Martinique, Honduras, Guadeloupe, El Salvador, French Guiana, Guinea Bissau, Angola, Cabo Verde, Thailand, Vietnam, Singapore
Chikungunya [30, 31] Ae. albopictus, Ae. aegypti, Ae. henselli Virus of the family Togaviridae; genus Alphavirus Primates, birds, cattle, and rodents Benin, Burundi, Cameroon, Central African Republic, Comoros, Congo, Equatorial Guinea, Guinea, Kenya, Madagascar, Malawi, Mauritius, Mayotte, Nigeria, Senegal, South Africa, Sudan, Tanzania, Uganda, Zimbabwe, Cambodia, East Timor, India, Indonesia, Laos, Malaysia, Maldives, Myanmar, Pakistan, Philippines, Réunion, Seychelles, Singapore, Taiwan, Thailand and Vietnam.
West Nile [32] Ae. aegypti, Cx. pipiens,
Cx. quinquefasciatus,
Cx. australicus,
Cx. globcoxitus,
Cx. tarsalis, Cx. univittatus, Cx. annulirostris
Virus of the family Flaviviridae; genus Flavivirus. Birds, Horses, Other Mammals Commonly found in Africa, Europe, the Middle East, North America, and West Asia.
Japanese Encephalitis [33] Cx. tritaeniorhynchus,
Cx. annulirostris,
Cx. vishnui
Cx. pseudovishnui
Cx. gelidus,
Cx. sitiens, 
Cx. fuscocephela,
An. subpictus,
An. hyrcanus, Cxpipiens, Ae. albopictus,
Ae. japonicas
Virus of the family Flaviviridae; genus Flavivirus. Birds, Pigs Australia, Bangladesh, Burma, Cambodia, China, Guam, India, Indonesia, Japan, Laos, Malaysia, Nepal, North Korea, Pakistan, Papua New Guinea, Phillipines, Russia, Saipan, Singapore, South Korea, Sri Lanka, Taiwan, Thailand, Timor-Leste, Vietnam

Categorizing LA of EOs Against Different Species

Tables-2 to 9 brief 411 LC50 values on LA of different EOs against different species of mosquitoes. Table-2 classifies 152 reports according to LC50 of EOs against Ae. aegypti. The most potent EOs are Callitris glaucophylla and Piper betle with LC50 of 0.69 and 0.72 µg/mL, respectively. Mentioned EOs could be appropriate for preparing potent herbal larvicides, comparable with synthetic ones.From Table-2, LC50 values for 5 EOs are in the range of 1-10 µg/mL: Auxemma glazioviana, Mammea siamensis, Cinnamomum rhyncophyllum, C. microphyllum, and Anacardium occidentale. LC50 of other EOs locate in other 3 groups (i.e. > 10 µg/mL). Table-3 reports the LA of 60 EOs against Ae. albopictus. The most potent EOs (with LC50< 10 µg/mL) were EOs of Echinops grijsii (2.65 µg/mL), C. microphyllum (6.20 µg/mL), C. pubescen (7.90 µg/mL), Tetradium glabrifolium (8.20 µg/mL), C. mollissimum (8.80 µg/mL) and C. impressicostatum (9.30 µg/mL). Seventeen EOs have LC50 between 10-50 µg/mL and remaining have LC50 > 50 µg/mL. Table-4 lists LA of 58 EOs against An. stephensi. From the details, only LC50 of Kelussia odoratissima is under 10 µg/mL (~ 5 µg/mL). LC50 of Artemisia dracunculus (11.36 µg/mL), Platycladus orientalis(11.67 µg/mL), Tagetes patula (12.08 µg/mL), Ferulago carduchorum (12.78 µg/mL), Chloroxylon swietenia (14.90 µg/mL) and Ipomoea cairica (14.90 µg/mL) are between 10-15 µg/mL. LC50 of 19 EOs are in range of 10-50 µg/mL. Table-5 shows reported LA of 16 EOs according to their LC50 against An. subpictus. Among the plant species, EO of Ocimum basilicum with LC50 of 9.75 µg/mL is the first in Table-5. EOs of Eugenia uniflora and Heracleum sprengelianum have similar LC50 values (~ 32 µg/mL). LC50 of other EOs are > 50 µg/mL. Table-6 summarizes information about LA of some EOs against other species of Anopheles such as An. quadrimaculatus, An. gambiae, An. anthropophagus, An. dirus, An. sinensis, An. arabiensis, and An. marajoara. Two EOs show excellent LA (i.e., LC50 ~1µg/mL): T. minuta and Cananga odorata against An. gambiae and An. dirus, respectively. LC50 of two other EOs are also worthy to note: Salvia leucantha (6.20 µg/mL) against An. quadrimaculatus and Echinops grijsii (3.43 µg/mL) against An. sinensis. Among 66 reports on LA of EOs against Cx. quinquefasciatus (Table-7), EO of Cananga odorata demonstrates to be the best result with LC50 of below 1 µg/mL. After that, LC50 of 20 EOs are in the range of 10-50 µg/mL, and LC50 of 20 EOs are between 50- 100 µg/mL. LC50 of 44 EOs are higher than 50 µg/mL. From Table-8, which summarizes LA of some EOs against Cx. pipiens, EOs of K. odoratissima, Echinops grijsii and Pelargonium roseum show to have LC50 at 2.69, 3.43 and 5.49 µg/mL, respectively. They are the most potent EOs against Cx. pipiens. Among other EOs, 8 EOs have LC50 between 10-50 and others have LC50 higher than 50 µg/mL. From Table-9, which briefs the larvicidal activity of different EOs on Cx. tritaeniorhynchus. None of the EOs have LC50 below 10 µg/mL. However, EOs of Ocimum basilicum and Ipomoea cairica with LC50 ~ 14 can be considered as effective against Cx. tritaeniorhynchus. While LC50 of other EOs is in range of 36- 136 µg/mL.

Table 2. Larvicidal Activity of Essential Oils Against Aedes Aegypti.

No. Plant species Used part(s) LC 50
(µg/mL)
Ref No. Plant species Used part(s) LC 50
(µg/mL)
Ref
1 Callitris glaucophylla Unclear 0.69 [34] 80 Piper hostmanianum Leaf 54.00 [64]
2 Piper betle Leaf 0.72 [17] 81 Zanthoxylum armatum Seed 54.00 [74]
3 Auxemma glazioviana Heartwood 2.98 [35] 82 Croton sonderianus Aerial parts 54.50 [56]
4 Mammea siamensis Flower 5.90 [36] 83 Piper aduncum Aerial parts 54.50 [75]
5 Cinnamomum rhyncophyllum Leaf 6.00 [37] 84 Carum carvi Unclear 54.62 [53]
6 Cinnamomum microphyllum Leaf 6.70 [37] 85 Syzygium lanceolatum Leaf 55.11 [76]
7 Anacardium occidentale Seed 9.10 [36] 86 Lippia sidoides Leaf 56.00 [57]
8 Piper klotzschianum Root 10.00 [38] 87 Mentha spicata Leaf 56.08 [77]
9 Cinnamomum mollissimum Leaf 10.20 [37] 88 Vitex negundo L Unclear- 56.13 [22]
10 Cananga odorata Flower 10.40 [39] 89 Salvia officinalis Seed 56.90 [42]
12 Cinnamomum impressicostatum Leaf 10.70 [37] 90 Pinus kesiya Leaf 57.00 [78]
14 Feronia limonia Leaf 11.59 [40] 91 Lippia pedunculosa Unclear 58.00 [18]
15 Citrus sinensis Fruit 11.92 [14] 92 Apium graveolens Leaf 59.32 [79]
16 Cinnamomum pubescen Leaf 12.80 [37] 93 Dendropanax morbifera Flower 62.32 [80]
17 Piper klotzschianum Seed 13.27 [38] 94 Cordia leucomalloides Leaf 63.10 [81]
18 Tagetes patula Whole plant 13.57 [41] 95 Eugenia triquetra Aerial parts 64.80 [82]
19 Salvia elegans Aerial parts 14.40 [42] 96 Swinglea glutinosa Unclear 65.70 [46]
20 Citrus reticulata Fruit 15.42 [43] 97 Tagetes lucida Unclear 66.20 [46]
21 Apium graveolens Seed 16.10 [44] 98 Boswellia ovalifoliolata Leaf 66.24 [83]
22 Chloroxylon swietenia Leaf 16.50 [45] 99 Croton nepetaefolius Aerial parts 66.40 [56]
23 Cymbopogon flexuosus Unclear 17.10 [46] 100 Origanum scabrum Leaf 67.13 [84]
24 Hyptis martiusii Unclear 18.20 [47] 101 Acorus calamus Root 67.20 [36]
25 Allium monanthum Stem 19.38 [48] 102 Annona muricata Seed 69.25 [36]
26 Lippia sidoides Unclear 19.50 [47] 103 Syzygium aromaticum Whole plant 77.00 [85]
27 Piper marginatum Stem 19.90 [49] 104 Eucalyptus citriodora Unclear 71.20 [46]
28 Piper marginatum Inflorescence 19.90 [49] 105 Knema globularia Seed 72.10 [36]
29 Chloroxylon swietenia Stem 20.20 [50] 106 Capraria biflor Leaf 73.39 [86]
30 Citrus sinensis Unclear 20.60 [46] 107 Stemona tuberosa Root 75.20 [36]
31 Syzigium aromaticum Unclear 21.40 [47] 108 Samanea saman Stem bark 79.20 [36]
32 Cinnamomum scortechinii Leaf 21.50 [37] 109 Croton jacobinenesis Leaf 79.30 [87]
33 Ipomoea cairica Unclear 22.30 [51] 110 Tagetes erecta Leaf Stem 79.78 [88]
34 Piper marginatum Leaf 23.80 [49] 111 Croton nepetaefolius Leaf 84.00 [57]
35 Asarum heterotropoides Root 23.82 [52] 112 Ocimum sanctum Aerial parts 85.11 [89]
36 Zanthoxylum limonella Unclear 24.61 [53] 113 Cunninghamia konishii Wood 85.70 [90]
37 Psidium guajava Leaf 24.70 [54] 114 Strychnos nux-vomica Seed 90.00 [36]
37 Plectranthus mollis Whole plant 25.40 [55] 115 Cunninghamia konishii Leaf 91.70 [90]
39 Lippia sidoides Aerial parts 25.50 [56] 116 Syzygium aromaticum Bud 92.56 [91]
40 Phyllanthus pulcher Leaf & twig 25.80 [36] 117 Syzygium aromaticum Bud 93.56 [14]
41 Croton zehntneri Aerial parts 26.20 [56] 118 Abutilon indicum Root 94.20 [36]
42 Anethum graveolens Leaf 27.40 [36] 119 Croton argyrophylloides Aerial parts 94.60 [56]
43 Croton zenhtneri Leaf 28.00 [57] 120 Eucalyptus urophylla Leaf 95.50 [59]
44 Cryptomeria japonica Leaf 28.40 [58] 121 Cordia curassavica Leaf 97.70 [81]
45 Salvia leucantha Aerial parts 29.50 [42] 122 Costus speciosus Root 98.50 [36]
46 Citrus hystrix Fruit 30.07 [43] 123 Guarea scabra Leaf 98.60 [72]
47 Kaempferia galanga Root 30.70 [36] 124 Nigella sativa L Seed 99.90 [92]
48 Eucalyptus camaldulensis Leaf 31.00 [59] 125 Pinus sylvestris Needles 100.39 [91]
49 Curcuma zedoaria Unclear 31.87 [53] 126 Croton argyrophyloides Leaf 102.00 [57]
51 Eucalyptus grandis Leaf 32.40 [60] 127 Croton sonderianus Leaf 104.00 [57]
52 Youngia japonica Aerial parts 32.45 [61] 128 Kadsura heteroclita Leaf 111.79 [93]
53 Chenopodium ambrosioides Aerial parts 35.00 [62] 129 Lantana montevidensis Leaf 117.00 [68]
54 Murraya exotica Leaf 35.80 [63] 130 Guarea silvatica Leaf 117.80 [72]
55 Piper permucronatum Leaf 36.00 [64] 131 Piper gaudichaudianum Leaf 121.00 [64]
56 Curcuma aromatica Rhizome 36.30 [65] 132 Croton rhamnifolioides Leaf 122.35 [94]
57 Clausena excavata Leaf 37.10 [66] 133 Cymbopogon citratus Unclear 123.30 [46]
58 Chamaecyparis formosensis Heartwood 38.60 [67] 134 Syzygium aromaticum Flower 124.69 [43]
59 Spondias purpurea Leaf 39.70 [54] 135 Echinophora lamondiana Leaf 138.30 [95]
60 Clausena excavata Twig 40.10 [66] 136 Sphaeranthus indicus Linn Leaf 140.00 [6]
61 Cinnamomum sintoc Leaf 41.10 [37] 137 Guarea convergens Branch 145.10 [72]
62 Apium graveolens Unclear 42.07 [53] 138 Croton tetradenius Leaf 152.00 [96]
63 Lippia alba Unclear 42.20 [46] 139 Piper humaytanum Leaf 156.00 [64]
64 Lantana camara Leaf 42.30 [68] 140 Cinnamomum cordatum Leaf 183.60 [37]
65 Cinnamomum porrectum Wood 43.50 [36] 141 Myrcia ovata Leaf 192.10 [54]
66 Zingiber nimmonii Rhizome 44.46 [12] 142 Eugenia piauhiensis Leaf 230.00 [97]
67 Blumea eriantha Leaf 44.82 [69] 143 Siparuna camporum Leaf 251.00 [97]
68 Zingiber cernuum Rhizome 44.88 [21] 144 Guarea silvatica Branch 273.60 [72]
69 Mentha x villosa Leaf 45.00 [70] 145 Lippia gracilis Unclear 282.00 [97]
70 Artemisia absinthium Leaf 46.33 [71] 146 Piper aduncum Leaf 289.9 [98]
71 Lavandula gibsoni Whole plant 48.30 [55] 147 Psidium myrsinites Leaf 292.00 [97]
72 Guarea humaitensis Branch 48.60 [72] 148 Croton argyrophyllus Leaf 310.00 [99]
73 Zingiber zerumbet Rhizome 48.88 [43] 149 Mentha piperita L Leaf 367.60 [100]
74 Foeniculum vulgare Unclear 49.32 [53] 150 Echinophora lamondiana Flower >125 [95]
75 Plectranthus amboinicus Leaf 51.80 [54] 151 Echinophora lamondiana Stem >125 [95]
76 Eucalyptus nitens Leaf 52.83 [73] 152 Salvia apiana Seed >125 [42]
77 Cananga odorata Unclear 52.90 [46] 153 Myrcia erythroxylon Leaf >1000 [97]
78 Lippia origanoides Unclear 53.30 [46] 154 Xylopia frutescens Unclear >1000 [18]
79 Kaempferia galanga Rhizome 53.64 [43] 155 Xylopia laevigata Unclear >1000 [18]

Table 3. Larvicidal Activity of Essential Oils Against Aedes albopictus .

No. Plant species Used part(s) LC 50
(µg/mL)
Ref No. Plant species Used part(s) LC50
(µg/mL)
Ref
1 Echinops grijsii Root 2.65 [13] 32 Artemisia absinthium Leaf 57.57 [71]
2 Cinnamomum microphyllum Leaf 6.20 [37] 33 Cupressus arizonica Leaf 64.80 [107]
3 Cinnamomum pubescen Leaf 7.90 [37] 34 Syzygium lanceolatum Leaf 66.71 [76]
4 Tetradium glabrifolium Fruit 8.20 [101] 35 Pinus brutia Aerial parts 67.04 [110]
5 Cinnamomum mollissimum Leaf 8.80 [37] 36 Coleus aromaticu Leaf 67.98 [111]
6 Cinnamomum impressicostatum Leaf 9.30 [37] 37 Toddalia asiatica Root 69.09 [112]
7 Cinnamomum rhyncophyllum Leaf 11.80 [37] 38 Pinus halepensis Aerial parts 70.21 [110]
8 Ocimum basilicum Leaf 11.97 [102] 39 Tetraclinis articulata Leaf 70.60 [107]
9 Saussurea lappa Root 12.41 [103] 40 Allium macrostemon Bulb 72.86 [113]
10 Cinnamomum scortechinii Leaf 16.70 [37] 41 Pinus stankewiczii Aerial parts 81.66 [110]
11 Allium tuberosum Root 18.00 [104] 42 Plectranthus barbatus Leaf 87.25 [11]
12 Ocimum gratissimum Leaf 26.10 [10] 43 Boswellia ovalifoliolata Leaf 89.80 [83]
13 Eucalyptus nitens Leaf 28.19 [73] 44 Syzygium zeylanicum Leaf 90.45 [114]
14 Ruta chalepensis Leaf 33.18 [105] 45 Pinus strobus Aerial parts 127.98 [110]
15 Eugenia uniflora Leaf 33.50 [106] 46 Foeniculum vulgare Leaf 142.90 [115]
16 Chamaecyparis formosensis Heartwood 34.90 [67] 47 Pinus nigra Aerial parts 152.65 [110]
17 Cinnamomum sintoc Leaf 36.50 [37] 48 Cinnamomum cordatum Leaf 160.80 [37]
18 Cupressus benthamii Leaf 37.50 [107] 49 Helichrysum italicum Leaf 178.10 [115]
19 Heracleum sprengelianum Leaf 37.50 [108] 50 Cunninghamia konishii Wood 189.50 [90]
20 Cinnamomum osmophloeum Leaf 40.80 [109] 51 Cunninghamia konishii Leaf 194.40 [90]
21 Clausena excavata Twig 41.10 [66] 52 Achillea millefolium Leaf 211.30 [115]
22 Clausena excavata Leaf 41.20 [66] 53 Hyptis suaveolens Leaf 240.30 [116]
23 Chamaecyparis lawsoniana Leaf 47.90 [107] 54 Eucalyptus urophylla Leaf 285.80 [59]
24 Cryptomeria japonica Leaf 51.20 [58] 55 Coriandrum sativum Fruit 421.00 [117]
25 Cupressus macrocarpa Leaf 54.60 [107] 56 Pinus canariensis Aerial parts >>200 [110]
26 Cupressus sempervirens Leaf 54.70 [107] 57 Pinus pinaster Aerial parts >>200 [110]
27 Eucalyptus camaldulensis Leaf 55.30 [59] 58 Lavandula angustifolia Leaf >250 [115]
28 Juniperus phoenicea Leaf 55.50 [107] 59 Myrtus communis Leaf >250 [115]
29 Zingiber cernuum Rhizome 55.84 [21] 60 Rosmarinus officinalis Leaf >250 [115]
30 Blumea eriantha Leaf 56.33 [69] 61 Artemisia absinthium Leaf 57.57 [71]
31 Cupressus torulosa Leaf 57.10 [107] 62 Cupressus arizonica Leaf 64.80 [107]

Table 4. Larvicidal Activity of Essential Oils Against Anopheles stephensi.

No. Plant species Used part(s) LC 50
(µg/mL)
Ref No. Plant species Used part(s) LC 50
(µg/mL)
Ref
1 Kelussia odoratissima Aerial parts 4.77 [118] 30 Murraya exotica Leaf 56.30 [63]
2 Kelussia odoratissima Aerial parts 4.88 [119] 31 Syzigium aromaticum Unclear 57.49 [129]
3 Artemisia dracunculus Aerial parts 11.36 [8] 32 Zanthoxylum armatum Seed 58.00 [74]
4 Platycladus orientalis Leaf 11.67 [120] 33 Zhumeria majdae Leaf 61.34 [130]
5 Tagetes patula Foliage 12.08 [41] 34 Origanum scabrum Leaf 61.65 [84]
6 Ferulago carduchorum Aerial parts 12.78 [121] 35 Boswellia ovalifoliolata Leaf 61.84 [83]
7 Chloroxylon swietenia Leaf 14.90 [50] 36 Lavandula gibsoni Aerial parts 62.80 [55]
8 Ipomoea cairica Unclear 14.90 [51] 37 Origanum vulgare Leaf 67.00 [4]
9 Feronia limonia Leaf 15.03 [40] 38 Lawsonia inermis Leaf 69.40 [131]
10 Chloroxylon swietenia Stem 19.00 [50] 39 Cionura erecta Root 77.30 [132]
11 Foeniculum vulgare Seed 20.10 [122] 40 Cupressus arizonica Leaf 79.30 [133]
12 Satureja bachtiarica Aerial parts 24.27 [123] 41 Trachyspermum ammi Seed 80.77 [134]
13 Bunium persicum Seed 27.72 [2] 42 Eucalyptus camaldulensis Leaf 89.85 [135]
14 Plectranthus amboinicus Leaf 28.37 [124] 43 Coccinia indica Leaf 95.30 [136]
15 Citrus aurantium Fruit 31.20 [125] 44 Kadsura heteroclita Leaf 102.86 [93]
16 Plectranthus mollis Aerial parts 33.50 [55] 45 Stachys byzantina Leaf 103.29 [131]
17 Achillea kellalensis Flower 35.42 [126] 46 Heracleum persicum Seed 104.80 [122]
18 Citrus paradisi Fruit 35.71 [125] 47 Ajuga chamaecistus tomentella Aerial parts 117.72 [137]
19 Anethum graveolens Aerial parts 38.80 [127] 48 Coriandrum sativum Seed 120.95 [122]
20 Achillea wilhelmsii Leaf 39.04 [128] 49 Cedrus deodara Leaf 128.04 [131]
21 Zingiber nimmonii Rhizome 41.19 [12] 50 Stachys setifera Leaf 181.62 [131]
22 Zingiber cernuum Rhizome 41.34 [21] 51 Thymus vulgaris Leaf 191.33 [131]
23 Blumea eriantha Leaf 41.61 [69] 52 Stachys inflata Leaf 195.84 [131]

Table 5. Larvicidal Activity of Essential Oils Against Anopheles subpictus.

No Plant species Used part(s) LC 50
(µg/mL)
Ref
1 Ocimum basilicum Leaf 9.75 [102]
2 Eugenia uniflora Leaf 31.08 [106]
3 Heracleum sprengelianum Leaf 33.40 [108]
4 Blumea eriantha Leaf 51.21 [69]
5 Zingiber cernuum Rhizome 51.42 [21]
6 Artemisia absinthium Leaf 52.02 [71]
7 Zingiber officinale Rhizome 57.98 [140]
8 Coleus aromaticus Leaf 60.31 [111]
9 Zhumeria majdae Leaf 61.34 [130]
10 Rosmarinus officinalis Shoot 64.50 [140]
11 Cinnamomum zeylanicum Leaf 71.96 [140]
12 Origanum vulgare Leaf 74.14 [4]
13 Cymbopogan citrates Leaf 77.24 [140]
14 Boswellia ovalifoliolata Leaf 82.26 [83]
15 Syzygium zeylanicum Leaf 83.11 [114]
16 Plectranthus barbatus Leaf 84.20 [11]

Table 6. Larvicidal Activity of Essential Oils Against Other Species of Anopheles.

Plant species Used part(s) Target LC 50 (µg/mL) Ref
Salvia leucantha Aerial parts An. quadrimaculatus 6.20 [42]
Salvia elegans Aerial parts An. quadrimaculatus 10.90 [42]
Salvia officinalis Seed An. quadrimaculatus 14.10 [42]
Ruta chalepensis Aerial parts An. quadrimaculatus 14.90 [141]
Echinophora lamondiana Leaf An. quadrimaculatus 26.20 [95]
Echinophora lamondiana Flower An. quadrimaculatus 46.90 [95]
Echinophora lamondiana Stem An. quadrimaculatus 65.60 [95]
Salvia apiana Seed An. quadrimaculatus >125 [42]
Tagetes minuta Unclear An. gambiae <1.50 [142]
Piper capense Unclear An. gambiae 34.90 [143]
Cinnamomum osmophloeum Leaf An. gambiae 35.36 [144]
Plectranthus amboinicus Leaf An. gambiae 55.20 [145]
Blumea martiniana Aerial parts An. anthropophagus 46.86 [146]
Artemisia gilvescens Unclear An. anthropophagus 49.95 [147]
Cananga odorata Flower An. dirus <1 [39]
Echinops grijsii Root An. sinensis 3.43 [13]
Juniperus procera Unclear An. arabiensis 14.42 [148]
Piper aduncum Aerial parts An. marajoara 50.90 [75]

Table 7. Larvicidal Activity of Essential Oils Against Culex quinquefasciatus.

No. Plant species Used part(s) LC 50 (µg/mL) Ref No. Plant species Used part(s) LC 50 (µg/mL) Ref
1 Cananga odorata Flower <1 [39] 34 Boswellia ovalifoliolata Leaf 72.47 [83]
2 Mentha longifolia Unclear 17.00 [149] 35 Pimenta dioica Fruit & berry 77.20 [153]
3 Mentha suaveolens Unclear 17.00 [149] 36 Origanum vulgare Leaf 80.35 [4]
4 Achillea kellalensis Flower 21.79 [126] 37 Peumus boldus Leaf 82.14 [157]
5 Tagetes patula Foliage 22.33 [41] 38 Zhumeria majdae Leaf 88.51 [130]
6 Feronia limonia Leaf 22.49 [40] 39 Mentha spicata Unclear 92.00 [149]
7 Satureja montana Aerial parts 25.60 [150] 40 Pelargonium graveolens) Aerial parts 98.40 [150]
8 Pimpinella anisum Fruit 26.10 [151] 41 Hyssopus officinalis Aerial parts 99.50 [150]
9 Tanacetum persicum Aerial parts 28.53 [126] 42 Ravensara aromatica Leaf 101.40 [153]
10 Plectranthus mollis Whole plant 29.50 [55] 43 Anthemis nobilis Flower 108.70 [153]
11 Rosmarinus officinalis Stem & Leaf 30.60 [152] 44 Rosmarinus officinali Flowering herb 111.10 [153]
12 Thymus vulgare Flowering top 32.90 [153] 45 Nepeta cataria Flowering top 112.40 [153]
13 Satureja hortensis Flowering top 36.10 [153] 46 Mentha aquatica Unclear 118.00 [149]
14 Murraya exotica Leaf 43.20 [63] 47 Lavandula angustifolia Flower 121.60 [153]
15 Thymus satureoides Boiss Herb 43.60 [153] 48 Kadsura heteroclita Leaf 121.97 [93]
16 Satureja bachtiarica Aerial parts 44.96 [123] 49 Syzygium aromaticum Buds 124.42 [91]
17 Zingiber nimmonii Rhizome 48.26 [12] 50 Cannabis sativa Herb 127.30 [153]
18 Zingiber cernuum Rhizome 48.44 [21] 51 Salvia sclarea Flower 127.50 [153]
19 Blumea eriantha Leaf 48.92 [69] 52 Pinus sylvestris Needles 128.00 [91]
20 Zanthoxylum armatum Seed 49.00 [74] 53 Sphaeranthus indicus Leaf 130.00 [6]
21 Pinus nigra Twig 49.80 [150] 54 Pelargonium roseum Leaf 130.30 [153]
22 Artemisia absinthium Unclear 50.57 [71] 55 Nigella sativa Seed 141.70 [92]
23 Zingiber officinalis Rhizome 50.78 [154] 56 Erigeron canadensis Herb 141.90 [153]
24 Lavandula gibsoni Whole plant 54.70 [55] 57 Juniperus communis Berry & twig 164.30 [153]
25 Ipomoea cairica Unclear 58.90 [51] 58 Laurus nobilis Leaf 167.90 [153]
26 Syzygium lanceolatum Leaf 60.01 [76] 59 Amyris balsamifera Wood 170.70 [153]
27 Pinus kesiya Leaf 62.00 [78] 60 Ocimum basilicum Leaf 171.60 [153]
28 Mentha spicata Leaf 62.62 [77] 61 Citrus aurantium Flower 179.80 [153]
29 Psoralea corylifolia Seed 63.38 [155] 62 Tanacetum vulgare Flowering top 186.60 [153]
30 Pulegium vulgare Unclear 64.00 [149] 63 Zingiber cassumunar Roxb Root 202.30 [153]
31 Aloysia citrodora Leaf 65.60 [150] 64 Melaleuca alternifolia Leaf 204.10 [153]
32 Blumea mollis Leaf 71.71 [156] 65 Santalum album Heartwood 225.30 [153]
33 Origanum scabrum Leaf 72.45 [84] 66 Polygonum hydropiper Leaf 243.00 [139]

Table 8. Larvicidal Activity of Essential Oils Against Culex pipiens.

Plant species Used part(s) LC 50 (µg/mL) Ref
Kelussia odoratissima Aerial parts 2.69 [119]
Echinops grijsii Root 3.43 [13]
Pelargonium roseum Leaf 5.49 [158]
Platycladus orientalis Leaf 18.60 [2]
Bunium persicum Seed 20.61 [2]
Asarum heterotropoides Root 21.07 [52]
Thymus teucrioides Aerial parts 23.17 [159]
Citrus limon Lemon 30.14 [160]
Thymus leucospermus Aerial parts 34.26 [159]
Citrus aurantium Bitter orange 39.81 [160]
Oenanthe pimpinelloides Aerial parts 40.26 [161]
Citrus sinensis Sweet orange 51.50 [160]
Geranium maculatum Unclear 57.28 [162]
Bupleurum fruticosum Aerial parts 64.68 [161]
Conopodium capillifolium Aerial parts 68.50 [161]
Heracleum sphondylium Aerial parts 77.41 [161]
Citrus bergamia Unclear 81.45 [162]
Seseli montanum Aerial parts 86.60 [161]
Eleoselinum asclepium Aerial parts 96.96 [161]
Hypericum tomentosum from Tbarka Aerial parts 102.82 [163]
Hypericum tomentosum from Fernana Aerial parts 125.26 [163]
Hypericum humifusum Aerial parts 156.80 [163]
Hypericum perforatum Aerial parts 194.70 [163]

Table 9. Larvicidal Activity of Essential Oils Against Culex tritaeniorhynchus.

Plant species Used part (s) LC 50 (µg/mL) Ref
Ocimum basilicum Leaf 14.01 [102]
Ipomoea cairica Unclear 14.80 [51]
Eugenia uniflora Leaf 36.35 [106]
Heracleum sprengelianum Leaf 40.90 [108]
Zingiber cernuum Rhizome 60.20 [21]
Blumea eriantha Leaf 61.33 [69]
Artemisia absinthium Unclear 62.16 [71]
Syzygium lanceolatum Leaf 72.24 [76]
Coleus aromaticus Leaf 72.70 [111]
Origanum scabrum Leaf 78.87 [84]
Origanum vulgare Leaf 84.93 [4]
Plectranthus barbatus Unclear 94.34 [11]
Boswellia ovalifoliolata Leaf 97.95 [83]
Syzygium zeylanicum Leaf 97.96 [114]
Zingiber officinale Rhizome 98.83 [140]
Rosmarinus officinalis Shoot 115.38 [140]
Cinnamomum zeylanicum Bark 124.70 [140]
Cymbopogan citrates Leaf 136.58 [140]

Potent EOs in Terms of LA

Reviewing Tables-2 to 9, some EOs demonstrate proper LA against at least two species, thus, may be suggested as attractive candidates for preparing EO-based larvicides (Table-10). For instance, LC50 of Echinops grijsii is ~ 3 µg/mL against three species: Cx. pipiens, An. sinensis and Ae. albopictus. EO of Cananga odorata is another candidate with LC50 ~ 1 µg/mL against Cx. quinquefasciatus and An. dirus and LC50 of 10 µg/mL against Ae. aegypti. EO of K. odoratissima with LC50 of 2 and 4 µg/mL against Cx. pipiens and An. stephensi respectively, could also be considered as a potent larvicide.Besides mentioned EOs, the LA of 4 EOs is comparable with classic larvicide (i.e., ~ 1 µg/mL). LC50 of Callitris glaucophylla and Piper betle against Ae. aegypti are 0.69 and 0.72 µg/mL, respectively. Cananga odorata show LC50 < 1 µg/mL against both of Cx. quinquefasciatus and An. Dirus. EO of T. minuta has excellent LA against An. gambiae (LC50 < 1.5 µg/mL).

Table 10. Potent Essential Oils as Larvicide Against at Least 2 Species of Mosquitoes.

Plant species Target LC 50 (µg/mL) Ref
Ocimum basilicum Cx. tritaeniorhynchus 14.01 [102]
An. subpictus 9.75
Kelussia odoratissima Cx. pipiens 2.69 [118, 119]
An. stephensi 4.77
An. stephensi 4.88
Echinops grijsii Cx. pipiens 3.43 [13]
An. sinensis 3.43
Ae. albopictus 2.65
Cananga odorata Cx. quinquefasciatus <1 [39]
An. dirus <1
Ae. aegypti 10.40
Cinnamomum microphyllum Ae. albopictus 6.20 [37]
Ae. aegypti 10.70
Cinnamomum pubescen Ae. albopictus 7.90 [37]
Ae. aegypti 10.20
Cinnamomum impressicostatum Ae. albopictus 9.30 [37]
Ae. aegypti 10.70
Cinnamomum rhyncophyllum Ae. albopictus 11.80 [37]
Ae. aegypti 6.00

Advantages of EOs as Larvicides

To control mosquito-borne diseases such as malaria, world health organization (WHO) recommends using larvicides; nowadays using in 55 countries around the worlds [164]. Continuous use of synthetic larvicides such as malathion and temephos along with environmental pollution, lead to occurring resistance in a various population of mosquitos such as Ae. aegypti, Cx. pipiens and An. stephensi [165-168].Furthermore, many reports may be found about the impacts of the larvicides against non-target species. For instance, dichlorvos and tetraethyl pyrophosphate (belonging to organophosphates larvicides) and carbofuran (carbamates) have an effect on acetylcholinesterase in some species of fishes including Arapaima gigas, Rachycentron canadum, Oreochromis niloticus, and Electrophorus electricus [169]. In another study, sides effects of 2 other larvicides including Temephos and Novaluron against 10 species of aquatic insect families and copepods have been evaluated. It was revealed that their impact on Veliidae, Odonata, Dytiscidae are significantly higher than that of other [170]. Oudemans (Amblyseius cucumeris) is a crucial predator of mites of tetranychid while two other common pesticides, i.e., Bifenthrin and Malathion posed an extremely effect on this beneficial non-target arthropod [171].EOs are naturally extracted aroma compounds with broad applications such as flavoring additives, medicines, antioxidants, antifungal/bacterial and also larvicides [172-177]. In the past decade, EO based formulation have been suggested as alternative sources for control of mosquitoes to be used as larvicides [8, 127]. They offer advantages such as biodegradability, negligible effects on non-target specious and environment [101, 178]. Besides, resistance against larvicides is observed when a single active agent is used compared with those having multi-components, thus by using EOs, decreases the risk of occurring resistance in mosquito populations [14-16]. EOs are mixtures of many constituents such as flavonoids, alkaloids, and monoterpenes [179, 180]. Modes of action of mentioned constituents are different, for instance, main sites action of alkaloids and monoterpenes are Na-K-ATPase or Na+ and K+ channels [19, 181, 182], while flavonoids target acetylcholinesterase [183]. Synergistic effects of constituents of some EOs are nowadays well-known when they are used as anti-fungal or anti-bacterial agents [184, 185]. Types of synergism also reported in larvicidal studies, e.g., larvicidal activities (LC50) of EOs of Syzygium aromaticum and K. odoratissima (57.49 and 4.77 µg/mL, respectively) significantly better than their major constituents, i.e., Eugenol (86.96 µg/mL) and Z-ligustilide (8.73 µg/mL) against An. stephensi [118, 129].

Conclusion

In this paper, mosquito-borne diseases have been reviewed. Previous studies about LA of EOs against different species of mosquitoes including Aedes, Anopheles, and Culex were investigated. For the first time, 411 LC50 were ranked against each species, separately. LC50 of 4 EOs are ~ 1µg/mL, including Callitris glaucophylla and Piper betle against Ae. aegypti, T. minuta against An. gambiae, and Cananga odorata against Cx. quinquefasciatus and An. dirus. The potency of mentioned EOs is comparable with synthetic larvicides, while simultaneously having some advantages such as reducing the chance of resistance and minimum sides’ effects on non-target species. Thus, it could be considered as candidates for preparing botanical larvicides.

Acknowledgment

This study was supported by Tehran University of Medical Sciences & Health Services (grant No. 95-01-87-31860).

Conflict of Interest

There is no conflict of interest to the authors.

References

  • 1. World Health Organization W.(2017) Fact sheet for Vector-borne diseases. Available from: http://www.who.int/mediacentre/factsheets/fs387/en/.
  • 2.Sanei-Dehkordi A, Vatandoost H, Abaei MR, Davari B, Sedaghat MM. Chemical Composition and Larvicidal Activity of Bunium persicum Essential Oil Against Two Important Mosquitoes Vectors. J Essent Oil-Bear Plants. 2016;19(2):349–357. [Google Scholar]
  • 3.Reinert JF. Revised list of abbreviations for genera and subgenera of Culicidae (Diptera) and notes on generic and subgeneric changes. J Am Mosq Control Assoc. 2001;17(1):51–55. [PubMed] [Google Scholar]
  • 4.Govindarajan M, Rajeswary M, Hoti SL, Benelli G. Larvicidal potential of carvacrol and terpinen-4-ol from the essential oil of Origanum vulgare (Lamiaceae) against Anopheles stephensi, Anopheles subpictus, Culex quinquefasciatus and Culex tritaeniorhynchus (Diptera: Culicidae) Res Vet Sci. 2016;104:77–82. doi: 10.1016/j.rvsc.2015.11.011. [DOI] [PubMed] [Google Scholar]
  • 5. World Health Organization W.(2017) Mosquito-borne diseases. Available from: http://www.who.int/neglected_diseases/vector_ecology/mosquito-borne-diseases/en/.
  • 6.Chellappandian M, Thanigaivel A, Vasantha-Srinivasan P, Edwin ES, Ponsankar A, Selin-Rani S. et al. Toxicological effects of Sphaeranthus indicus Linn (Asteraceae) leaf essential oil against human disease vectors, Culex quinquefasciatus Say and Aedes aegypti Linn, and impacts on a beneficial mosquito predator. Environ Sci Pollut Res Int. 2017;25(11):10294–10306. doi: 10.1007/s11356-017-8952-2. [DOI] [PubMed] [Google Scholar]
  • 7.Gutierrez PM, Antepuesto AN, Eugenio BAL, Santos MFL. Larvicidal activity of selected plant extracts against the dengue vector Aedes aegypti mosquito. Int Res J Biol Sci. 2014;3(4):23–32. [Google Scholar]
  • 8.Osanloo M, Amani A, Sereshti H, Abai MR, Esmaeili F, Sedaghat MM. Preparation and optimization nanoemulsion of Tarragon (Artemisia dracunculus) essential oil as effective herbal larvicide against Anopheles stephensi. Ind Crops Prod. 2017;109:214–219. [Google Scholar]
  • 9.Soonwera M, Phasomkusolsil S. Effect of Cymbopogon citratus (lemongrass) and Syzygium aromaticum (clove) oils on the morphology and mortality of Aedes aegypti and Anopheles dirus larvae. Parasitol Res. 2016;115(4):1691–1703. doi: 10.1007/s00436-016-4910-z. [DOI] [PubMed] [Google Scholar]
  • 10.Sumitha KV, Thoppil JE. Larvicidal efficacy and chemical constituents of O gratissimum L (Lamiaceae) essential oil against Aedes albopictus Skuse (Diptera: Culicidae) Parasitol Res. 2016;115(2):673–680. doi: 10.1007/s00436-015-4786-3. [DOI] [PubMed] [Google Scholar]
  • 11.Govindarajan M, Rajeswary M, Hoti SL, Bhattacharyya A, Benelli G. Eugenol, alpha-pinene and beta-caryophyllene from Plectranthus barbatus essential oil as eco-friendly larvicides against malaria, dengue and Japanese encephalitis mosquito vectors. Parasitol Res. 2016;115(2):807–815. doi: 10.1007/s00436-015-4809-0. [DOI] [PubMed] [Google Scholar]
  • 12.Govindarajan M, Rajeswary M, Arivoli S, Tennyson S, Benelli G. Larvicidal and repellent potential of Zingiber nimmonii (J Graham) Dalzell (Zingiberaceae) essential oil: an eco-friendly tool against malaria, dengue, and lymphatic filariasis mosquito vectors? Parasitol Res. 2016;115(5):1807–1816. doi: 10.1007/s00436-016-4920-x. [DOI] [PubMed] [Google Scholar]
  • 13.Zhao MP, Liu QZ, Liu Q, Liu ZL. Identification of Larvicidal Constituents of the Essential Oil of Echinops grijsii Roots against the Three Species of Mosquitoes. Molecules. 2017;22(2):205. [Google Scholar]
  • 14.Araujo AF, Ribeiro-Paes JT, Deus JT, Cavalcanti SC, Nunes Rde S, Alves PB. et al. Larvicidal activity of Syzygium aromaticum (L) Merr and Citrus sinensis (L) Osbeck essential oils and their antagonistic effects with temephos in resistant populations of Aedes aegypti. Mem Inst Oswaldo Cruz. 2016;111(7):443–449. doi: 10.1590/0074-02760160075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15. Intirach J, Junkum A, Tuetun B, Choochote W, Chaithong U, Jitpakdi A, et al. (2012) Chemical constituents and combined larvicidal effects of selected essential oils against Anopheles cracens (Diptera: Culicidae). Psyche (Camb Mass). 2012: ID 591616.
  • 16. Okumu FO, Knols BG, Fillinger U (2007) Larvicidal effects of a neem (Azadirachta indica) oil formulation on the malaria vector Anopheles gambiae. Malar J. 6:63. [DOI] [PMC free article] [PubMed]
  • 17.Vasantha-Srinivasan P, Senthil-Nathan S, Ponsankar A, Thanigaivel A, Edwin ES, Selin-Rani S. et al. Comparative analysis of mosquito (Diptera: Culicidae: Aedes aegypti Liston) responses to the insecticide Temephos and plant derived essential oil derived from Piper betle L. Ecotoxicol Environ Saf. 2017;139:439–446. doi: 10.1016/j.ecoenv.2017.01.026. [DOI] [PubMed] [Google Scholar]
  • 18.Nascimento AM, Maia TD, Soares TE, Menezes LR, Scher R, Costa EV. et al. Repellency and Larvicidal Activity of Essential oils from Xylopia laevigata, Xylopia frutescens, Lippia pedunculosa, and Their Individual Compounds against Aedes aegypti Linnaeus. Neotrop Entomol. 2017;46(2):223–230. doi: 10.1007/s13744-016-0457-z. [DOI] [PubMed] [Google Scholar]
  • 19.Isman MB. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol. 2006;51:45–66. doi: 10.1146/annurev.ento.51.110104.151146. [DOI] [PubMed] [Google Scholar]
  • 20.Regnault-Roger C, Vincent C, Arnason JT. Essential oils in insect control: low-risk products in a high-stakes world. Annu Rev Entomol. 2012;57:405–424. doi: 10.1146/annurev-ento-120710-100554. [DOI] [PubMed] [Google Scholar]
  • 21.Rajeswary M, Govindarajan M, Alharbi NS, Kadaikunnan S, Khaled JM, Benelli G. Zingiber cernuum (Zingiberaceae) essential oil as effective larvicide and oviposition deterrent on six mosquito vectors, with little non-target toxicity on four aquatic mosquito predators. Environ Sci Pollut Res Int. 2017;25(11):10307–10316. doi: 10.1007/s11356-017-9093-3. [DOI] [PubMed] [Google Scholar]
  • 22.Balasubramani S, Rajendhiran T, Moola AK, Diana RKB. Development of nanoemulsion from Vitex negundo L essential oil and their efficacy of antioxidant, antimicrobial and larvicidal activities (Aedes aegypti L) Environ Sci Pollut Res Int. 2017;24(17):15125–15133. doi: 10.1007/s11356-017-9118-y. [DOI] [PubMed] [Google Scholar]
  • 23.Pavela R. Insecticidal properties of several essential oils on the house fly (Musca domestica L) Phytother Res. 2008;22(2):274–278. doi: 10.1002/ptr.2300. [DOI] [PubMed] [Google Scholar]
  • 24.Pavela R. Essential oils for the development of eco-friendly mosquito larvicides: a review. Ind Crops Prod. 2015;76:174–187. [Google Scholar]
  • 25.Sinka ME, Bangs MJ, Manguin S, Rubio-Palis Y, Chareonviriyaphap T, Coetzee M. et al. A global map of dominant malaria vectors. Parasit vectors. 2012;5(1):69. doi: 10.1186/1756-3305-5-69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Monath TP, Vasconcelos PF. Yellow fever. J Clin Virol. 2015;64:160–173. doi: 10.1016/j.jcv.2014.08.030. [DOI] [PubMed] [Google Scholar]
  • 27.Guzman A, Istúriz RE. Update on the global spread of dengue. Int J Antimicrob Agents. 2010;36(S1):S40–S42. doi: 10.1016/j.ijantimicag.2010.06.018. [DOI] [PubMed] [Google Scholar]
  • 28.Hills SL, Fischer M, Petersen LR. Epidemiology of Zika virus infection. J Infect Dis. 2017;216(S10):S868–S874. doi: 10.1093/infdis/jix434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Paixão ES, Barreto F, da Glória Teixeira M, da Conceição N, Costa M, Rodrigues LC. History, epidemiology, and clinical manifestations of Zika: a systematic review. Am J Public Health. 2016;106(4):606–612. doi: 10.2105/AJPH.2016.303112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Weaver SC, Lecuit M. Chikungunya virus and the global spread of a mosquito-borne disease. N Engl J Med. 2015;372(13):1231–1239. doi: 10.1056/NEJMra1406035. [DOI] [PubMed] [Google Scholar]
  • 31. Petersen LR, Powers AM (2016) Chikungunya: epidemiology. F1000Research: 5. [DOI] [PMC free article] [PubMed]
  • 32.Ciota AT. West Nile virus and its vectors. Curr Opin Insect Sci. 2017;22:28–36. doi: 10.1016/j.cois.2017.05.002. [DOI] [PubMed] [Google Scholar]
  • 33.Pearce JC, Learoyd TP, Langendorf BJ, Logan JG. Japanese encephalitis: the vectors, ecology and potential for expansion. J Travel Med. 2018;25(S1):S16–S26. doi: 10.1093/jtm/tay009. [DOI] [PubMed] [Google Scholar]
  • 34.Shaalan EA-S, Canyon DV, Bowden B, Younes MWF, Abdel-Wahab H, Mansour A-H. Efficacy of botanical extracts from Callitris glaucophylla against Aedes aegypti and Culex annulirostris mosquitoes. Trop Biomed. 2006;23(2):180–185. [PubMed] [Google Scholar]
  • 35.Costa JG, Pessoa OD, Menezes EA, Santiago GM, Lemos TL. Composition and larvicidal activity of essential oils from heartwood of Auxemma glazioviana Taub(Boraginaceae) Flavour Fragrance J. 2004;19(6):529–531. [Google Scholar]
  • 36.Promsiri S, Naksathit A, Kruatrachue M, Thavara U. Evaluations of larvicidal activity of medicinal plant extracts to Aedes aegypti (Diptera: Culicidae) and other effects on a non target fish. Insect Sci. 2006;13(3):179–188. [Google Scholar]
  • 37.Jantan Ib, Yalvema MF, Ahmad NW, Jamal JA. Insecticidal Activities of the Leaf Oils of Eight Cinnamomum species Against Aedes aegypti and Aedes albopictus. Pharm Biol. 2005;43(6):526–532. [Google Scholar]
  • 38.do Nascimento JC, David JM, Barbosa LC, de Paula VF, Demuner AJ, David JP. et al. Larvicidal activities and chemical composition of essential oils from Piper klotzschianum (Kunth) C DC(Piperaceae) Pest Manag Sci. 2013;69(11):1267–1271. doi: 10.1002/ps.3495. [DOI] [PubMed] [Google Scholar]
  • 39.Soonwera M. Efficacy of essential oil from Cananga odorata (Lamk) Hookf & Thomson (Annonaceae) against three mosquito species Aedes aegypti (L), Anopheles dirus (Peyton and Harrison), and Culex quinquefasciatus (Say) Parasitol Res. 2015;114(12):4531–4543. doi: 10.1007/s00436-015-4699-1. [DOI] [PubMed] [Google Scholar]
  • 40.Senthilkumar A, Jayaraman M, Venkatesalu V. Chemical constituents and larvicidal potential of Feronia limonia leaf essential oil against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. Parasitol Res. 2013;112(3):1337–1342. doi: 10.1007/s00436-012-3188-z. [DOI] [PubMed] [Google Scholar]
  • 41.Dharmagadda VS, Naik SN, Mittal PK, Vasudevan P. Larvicidal activity of Tagetes patula essential oil against three mosquito species. Bioresour Technol. 2005;96(11):1235–1240. doi: 10.1016/j.biortech.2004.10.020. [DOI] [PubMed] [Google Scholar]
  • 42.Ali A, Tabanca N, Demirci B, Blythe EK, Ali Z, Baser KH. et al. Chemical composition and biological activity of four salvia essential oils and individual compounds against two species of mosquitoes. J Agric Food Chem. 2015;63(2):447–456. doi: 10.1021/jf504976f. [DOI] [PubMed] [Google Scholar]
  • 43.Sutthanont N, Choochote W, Tuetun B, Junkum A, Jitpakdi A, Chaithong U. et al. Chemical composition and larvicidal activity of edible plant‐derived essential oils against the pyrethroid‐susceptible and‐resistant strains of Aedes aegypti (Diptera: Culicidae) J Vector Ecol. 2010;35(1):106–115. doi: 10.1111/j.1948-7134.2010.00036.x. [DOI] [PubMed] [Google Scholar]
  • 44.Kumar S, Mishra M, Wahab N, Warikoo R. Larvicidal, Repellent, and Irritant Potential of the Seed-Derived Essential oil of Apium graveolens Against Dengue Vector, Aedes aegypti L (Diptera: Culicidae) Front Public Health. 2014;2(2):147. doi: 10.3389/fpubh.2014.00147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Ravi Kiran S, Bhavani K, Sita Devi P, Rajeswara Rao BR, Janardhan Reddy K. Composition and larvicidal activity of leaves and stem essential oils of Chloroxylon swietenia DC against Aedes aegypti and Anopheles stephensi. Bioresour Technol. 2006;97(18):2481–2484. doi: 10.1016/j.biortech.2005.10.003. [DOI] [PubMed] [Google Scholar]
  • 46.Vera SS, Zambrano DF, Méndez-Sanchez SC, Rodríguez-Sanabria F, Stashenko EE, Luna JED. Essential oils with insecticidal activity against larvae of Aedes aegypti (Diptera: Culicidae) Parasitol Res. 2014;113(7):2647–2654. doi: 10.1007/s00436-014-3917-6. [DOI] [PubMed] [Google Scholar]
  • 47.Costa J, Rodrigues F, Angélico E, Silva M, Mota M, Santos N. et al. Chemical-biological study of the essential oils of Hyptis martiusii, Lippia sidóides and Syzigium aromaticum against larvae of Aedes aegypti and Culex quinquefasciatus. Rev Bras Farmacogn. 2005;15(4):304–309. [Google Scholar]
  • 48.Moon H-I. Larvicidal activity of major essential oils from stems of Allium monanthum Maxim against Aedes aegypti L. J Enzyme Inhib Med Chem. 2011;26(6):827–830. doi: 10.3109/14756366.2011.558842. [DOI] [PubMed] [Google Scholar]
  • 49.Autran E, Neves I, Da Silva C, Santos G, Da Câmara C, Navarro D. Chemical composition, oviposition deterrent and larvicidal activities against Aedes aegypti of essential oils from Piper marginatum Jacq(Piperaceae) Bioresour Technol. 2009;100(7):2284–2288. doi: 10.1016/j.biortech.2008.10.055. [DOI] [PubMed] [Google Scholar]
  • 50.Kiran SR, Bhavani K, Devi PS, Rao BR, Reddy KJ. Composition and larvicidal activity of leaves and stem essential oils of Chloroxylon swietenia DC against Aedes aegypti and Anopheles stephensi. Bioresour Technol. 2006;97(18):2481–2484. doi: 10.1016/j.biortech.2005.10.003. [DOI] [PubMed] [Google Scholar]
  • 51.Thomas TG, Rao S, Lal S. Mosquito larvicidal properties of essential oil of an indigenous plant, Ipomoea cairica Linn. Jpn J Infect Dis. 2004;57(4):176–177. [PubMed] [Google Scholar]
  • 52.Perumalsamy H, Kim N-J, Ahn Y-J. Larvicidal activity of compounds isolated from Asarum heterotropoides against Culex pipiens pallens, Aedes aegypti, and Ochlerotatus togoi (Diptera: Culicidae) J Med Entomol. 2009;46(6):1420–1423. doi: 10.1603/033.046.0624. [DOI] [PubMed] [Google Scholar]
  • 53.Pitasawat B, Champakaew D, Choochote W, Jitpakdi A, Chaithong U, Kanjanapothi D. et al. Aromatic plant-derived essential oil: an alternative larvicide for mosquito control. Fitoterapia. 2007;78(3):205–210. doi: 10.1016/j.fitote.2007.01.003. [DOI] [PubMed] [Google Scholar]
  • 54.Lima MA, de Oliveira FFM, Gomes GA, Lavor PL, Santiago GM, Nagao-Dias AT. et al. Evaluation of larvicidal activity of the essential oils of plants species from Brazil against Aedes aegypti (Diptera: Culicidae) Afr J Biotechnol. 2011;10(55):11716–11720. [Google Scholar]
  • 55.Kulkarni RR, Pawar PV, Joseph MP, Akulwad AK, Sen A, Joshi SP. Lavandula gibsoni and Plectranthus mollis essential oils: chemical analysis and insect control activities against Aedes aegypti, Anopheles sfttephensi and Culex quinquefasciatus. J Pest Sci. 2013;86(4):713–718. [Google Scholar]
  • 56.de Lima GPG, de Souza TM, de Paula Freire G, Farias DF, Cunha AP, Ricardo NMPS. et al. Further insecticidal activities of essential oils from Lippia sidoides and Croton species against Aedes aegypti L. Parasitol Res. 2013;112(5):1953–1958. doi: 10.1007/s00436-013-3351-1. [DOI] [PubMed] [Google Scholar]
  • 57.Morais SM, Cavalcanti ES, Bertini LM, Oliveira CLL, Rodrigues JRB, Cardoso JHL. Larvicidal activity of essential oils from Brazilian Croton species against Aedes aegypti L. J Am Mosq Control Assoc. 2006;22(1):161–164. doi: 10.2987/8756-971X(2006)22[161:LAOEOF]2.0.CO;2. [DOI] [PubMed] [Google Scholar]
  • 58.Cheng S-S, Chua M-T, Chang E-H, Huang C-G, Chen W-J, Chang S-T. Variations in insecticidal activity and chemical compositions of leaf essential oils from Cryptomeria japonica at different ages. Bioresour Technol. 2009;100(1):465–470. doi: 10.1016/j.biortech.2007.11.060. [DOI] [PubMed] [Google Scholar]
  • 59.Cheng S-S, Huang C-G, Chen Y-J, Yu J-J, Chen W-J, Chang S-T. Chemical compositions and larvicidal activities of leaf essential oils from two eucalyptus species. Bioresour Technol. 2009;100(1):452–456. doi: 10.1016/j.biortech.2008.02.038. [DOI] [PubMed] [Google Scholar]
  • 60.Lucia A, GONZALEZ AUDINO P, Seccacini E, Licastro S, Zerba E, Masuh H. Larvicidal effect of Eucalyptus grandis essential oil and turpentine and their major components on Aedes aegypti larvae. J Am Mosq Control Assoc. 2007;23(3):299–303. doi: 10.2987/8756-971X(2007)23[299:LEOEGE]2.0.CO;2. [DOI] [PubMed] [Google Scholar]
  • 61.Liu XC, Liu Q, Chen XB, Liu QZ, Liu ZL. Larvicidal activity of the essential oil of Youngia japonica aerial parts and its constituents against Aedes albopictus. Z Naturforsch C. 2015;70(1-2):1–6. doi: 10.1515/znc-2014-4074. [DOI] [PubMed] [Google Scholar]
  • 62.Leyva M, del Carmen Marquetti M, Tacoronte JE, Scull R, Tiomno O, Mesa A. et al. Actividad larvicida de aceites esenciales de plantas contra Aedes aegypti (L)(Diptera: Culicidae) Revista Biomed. 2009;20(1):5–13. [Google Scholar]
  • 63.Krishnamoorthy S, Chandrasekaran M, Raj GA, Jayaraman M, Venkatesalu V. Identification of chemical constituents and larvicidal activity of essential oil from Murraya exotica L (Rutaceae) against Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus (Diptera: Culicidae) Parasitol Res. 2015;114(5):1839–1845. doi: 10.1007/s00436-015-4370-x. [DOI] [PubMed] [Google Scholar]
  • 64.de Morais SM, Facundo VA, Bertini LM, Cavalcanti ESB, dos Anjos Júnior JF, Ferreira SA. et al. Chemical composition and larvicidal activity of essential oils from Piper species. Biochem Syst Ecol. 2007;35(10):670–675. [Google Scholar]
  • 65.Choochote W, Chaiyasit D, Kanjanapothi D, Rattanachanpichai E, Jitpakdi A, Tuetun B. et al. Chemical composition and anti-mosquito potential of rhizome extract and volatile oil derived from Curcuma aromatica against Aedes aegypti (Diptera: Culicidae) J Vector Ecol. 2005;30(2):302. [PubMed] [Google Scholar]
  • 66.Cheng SS, Chang HT, Lin CY, Chen PS, Huang CG, Chen WJ. et al. Insecticidal activities of leaf and twig essential oils from Clausena excavata against Aedes aegypti and Aedes albopictus larvae. Pest Manag Sci. 2009;65(3):339–343. doi: 10.1002/ps.1693. [DOI] [PubMed] [Google Scholar]
  • 67.Kuo P-M, Chu F-H, Chang S-T, Hsiao W-F, Wang S-Y. Insecticidal activity of essential oil from Chamaecyparis formosensis Matsum. Holzforschung. 2007;61(5):595–599. [Google Scholar]
  • 68.Costa J, Rodrigues F, Sousa E, Junior D, Campos A, Coutinho H. et al. Composition and larvicidal activity of the essential oils of Lantana camara and Lantana montevidensis. Chem Nat Compd. 2010;46(2):313–315. [Google Scholar]
  • 69.Benelli G, Govindarajan M, Rajeswary M, Senthilmurugan S, Vijayan P, Alharbi NS. et al. Larvicidal activity of Blumea eriantha essential oil and its components against six mosquito species, including Zika virus vectors: the promising potential of (4E,6Z)-allo-ocimene, carvotanacetone and dodecyl acetate. Parasitol Res. 2017;116(4):1175–1188. doi: 10.1007/s00436-017-5395-0. [DOI] [PubMed] [Google Scholar]
  • 70.Lima TC, da Silva TK, Silva FL, Barbosa-Filho JM, Marques MO, Santos RL. et al. Larvicidal activity of Mentha x villosa Hudson essential oil, rotundifolone and derivatives. Chemosphere. 2014;104:37–43. doi: 10.1016/j.chemosphere.2013.10.035. [DOI] [PubMed] [Google Scholar]
  • 71.Govindarajan M, Benelli G. Artemisia absinthium-borne compounds as novel larvicides: effectiveness against six mosquito vectors and acute toxicity on non-target aquatic organisms. Parasitol Res. 2016;115(12):4649–4661. doi: 10.1007/s00436-016-5257-1. [DOI] [PubMed] [Google Scholar]
  • 72.Amazonas Maciel Magalhães L, da Paz Lima M, Ortiz Mayo Marques M, Facanali R, Pinto ACdS, Pedro Tadei W. Chemical composition and larvicidal activity against Aedes aegypti larvae of essential oils from four Guarea species. Molecules. 2010;15(8):5734–5741. doi: 10.3390/molecules15085734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Alvarez Costa A, Naspi CV, Lucia A, Masuh HM. Repellent and Larvicidal Activity of the Essential Oil From Eucalyptus nitens Against Aedes aegypti and Aedes albopictus (Diptera: Culicidae) J Med Entomol. 2017;54(3):670–676. doi: 10.1093/jme/tjw222. [DOI] [PubMed] [Google Scholar]
  • 74.Tiwary M, Naik SN, Tewary DK, Mittal PK, Yadav S. Chemical composition and larvicidal activities of the essential oil of Zanthoxylum armatum DC (Rutaceae) against three mosquito vectors. J Vector Borne Dis. 2007;44(3):198–204. [PubMed] [Google Scholar]
  • 75.de Almeida RR, Souto RN, Bastos CN, da Silva MH, Maia JG. Chemical variation in Piper aduncum and biological properties of its dillapiole-rich essential oil. Chem Biodivers. 2009;6(9):1427–1434. doi: 10.1002/cbdv.200800212. [DOI] [PubMed] [Google Scholar]
  • 76.Benelli G, Rajeswary M, Govindarajan M. Towards green oviposition deterrents? Effectiveness of Syzygium lanceolatum (Myrtaceae) essential oil against six mosquito vectors and impact on four aquatic biological control agents. Environ Sci Pollut Res Int. 2016;25(11):10218–10227. doi: 10.1007/s11356-016-8146-3. [DOI] [PubMed] [Google Scholar]
  • 77.Govindarajan M, Sivakumar R, Rajeswari M, Yogalakshmi K. Chemical composition and larvicidal activity of essential oil from Mentha spicata (Linn) against three mosquito species. Parasitol Res. 2012;110(5):2023–2032. doi: 10.1007/s00436-011-2731-7. [DOI] [PubMed] [Google Scholar]
  • 78.Govindarajan M, Rajeswary M, Benelli G. Chemical composition, toxicity and non-target effects of Pinus kesiya essential oil: An eco-friendly and novel larvicide against malaria, dengue and lymphatic filariasis mosquito vectors. Ecotoxicol Environ Saf. 2016;129:85–90. doi: 10.1016/j.ecoenv.2016.03.007. [DOI] [PubMed] [Google Scholar]
  • 79.Nagella P, Ahmad A, Kim S-J, Chung I-M. Chemical composition, antioxidant activity and larvicidal effects of essential oil from leaves of Apium graveolens. Immunopharmacol Immunotoxicol. 2012;34(2):205–209. doi: 10.3109/08923973.2011.592534. [DOI] [PubMed] [Google Scholar]
  • 80.Chung I-M, Seo S-H, Kang E-Y, Park S-D, Park W-H, Moon H-I. Chemical composition and larvicidal effects of essential oil of Dendropanax morbifera against Aedes aegypti L. Biochem Syst Ecol. 2009;37(4):470–473. [Google Scholar]
  • 81.Santos RP, Nunes EP, Nascimento RF, Santiago GMP, Menezes GHA, Silveira ER. et al. Chemical composition and larvicidal activity of the essential oils of Cordia leucomalloides and Cordia curassavica from the Northeast of Brazil. J Braz Chem Soc. 2006;17(5):1027–1030. [Google Scholar]
  • 82.Mora FD, Avila JL, Rojas LB, Ramirez R, Usubillaga A, Segnini S. et al. Chemical composition and larvicidal activity of Eugenia triquetra essential oil from Venezuelan Andes. Nat Prod Commun. 2010;5(6):965–968. [PubMed] [Google Scholar]
  • 83.Benelli G, Rajeswary M, Vijayan P, Senthilmurugan S, Alharbi NS, Kadaikunnan S. et al. Boswellia ovalifoliolata (Burseraceae) essential oil as an eco-friendly larvicide? Toxicity against six mosquito vectors of public health importance, non-target mosquito fishes, backswimmers, and water bugs. Environ Sci Pollut Res Int. 2017;25(11):10264–10271. doi: 10.1007/s11356-017-8820-0. [DOI] [PubMed] [Google Scholar]
  • 84.Govindarajan M, Kadaikunnan S, Alharbi NS, Benelli G. Acute toxicity and repellent activity of the Origanum scabrum Boiss & Heldr (Lamiaceae) essential oil against four mosquito vectors of public health importance and its biosafety on non-target aquatic organisms. Environ Sci Pollut Res Int. 2016;23(22):23228–23238. doi: 10.1007/s11356-016-7568-2. [DOI] [PubMed] [Google Scholar]
  • 85.Barbosa JD, Silva VB, Alves PB, Gumina G, Santos RL, Sousa DP. et al. Structure-activity relationships of eugenol derivatives against Aedes aegypti (Diptera: Culicidae) larvae. Pest Manag Sci. 2012;68(11):1478–1483. doi: 10.1002/ps.3331. [DOI] [PubMed] [Google Scholar]
  • 86.Souza LGdS, Almeida MCS, Monte FJQ, Santiago GMP, Braz-Filho R, Lemos TLG. et al. Chemical constituents of Capraria biflora (Scrophulariaceae) and larvicidal activity of essential oil. Quim Nova. 2012;35(11):2258–2262. [Google Scholar]
  • 87.Santos HS, Santiago GM, de Oliveirac JP, Arriaga A, Marques DD, Lemos TL. Chemical composition and larvicidal activity against Aedes aegypti of essential oils from Croton zehntneri. Nat Prod Commun. 2007;2(12):1233–1236. [Google Scholar]
  • 88.Marques MM, Morais SM, Vieira ÍG, Vieira MG, Silva ARA, De Almeida RR. et al. Larvicidal activity of Tagetes erecta against Aedes aegypti. J Am Mosq Control Assoc. 2011;27(2):156–158. doi: 10.2987/10-6056.1. [DOI] [PubMed] [Google Scholar]
  • 89.Gbolade A, Lockwood G. Toxicity of Ocimum sanctum L essential oil to Aedes aegypti larvae and its chemical composition. J Essent Oil-Bear Plants. 2008;11(2):148–153. [Google Scholar]
  • 90.Cheng S, Lin C, Chung M, Liu Y, Huang C, Chang S. Larvicidal activities of wood and leaf essential oils and ethanolic extracts from Cunninghamia konishii Hayata against the dengue mosquitoes. Ind Crops Prod. 2013;47:310–315. [Google Scholar]
  • 91.Fayemiwo KA, Adeleke MA, Okoro OP, Awojide SH, Awoniyi IO. Larvicidal efficacies and chemical composition of essential oils of Pinus sylvestris and Syzygium aromaticum against mosquitoes. Asian Pac J Trop Biomed. 2014;4(1):30–34. doi: 10.1016/S2221-1691(14)60204-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92.Raj GA, Chandrasekaran M, Krishnamoorthy S, Jayaraman M, Venkatesalu V. Phytochemical profile and larvicidal properties of seed essential oil from Nigella sativa L (Ranunculaceae), against Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus (Diptera: Culicidae) Parasitol Res. 2015;114(9):3385–3391. doi: 10.1007/s00436-015-4563-3. [DOI] [PubMed] [Google Scholar]
  • 93.Govindarajan M, Rajeswary M, Benelli G. delta-Cadinene, Calarene and delta-4-Carene from Kadsura heteroclita Essential Oil as Novel Larvicides Against Malaria, Dengue and Filariasis Mosquitoes. Comb Chem High Throughput Screen. 2016;19(7):565–571. doi: 10.2174/1386207319666160506123520. [DOI] [PubMed] [Google Scholar]
  • 94.Santos GK, Dutra KA, Lira CS, Lima BN, Napoleao TH, Paiva PM. et al. Effects of Croton rhamnifolioides essential oil on Aedes aegypti oviposition, larval toxicity and trypsin activity. Molecules. 2014;19(10):16573–16587. doi: 10.3390/molecules191016573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95.Ali A, Tabanca N, Ozek G, Ozek T, Aytac Z, Bernier UR. et al. Essential Oils of Echinophora lamondiana (Apiales: Umbelliferae): A Relationship Between Chemical Profile and Biting Deterrence and Larvicidal Activity Against Mosquitoes (Diptera: Culicidae) J Med Entomol. 2015;52(1):93–100. doi: 10.1093/jme/tju014. [DOI] [PubMed] [Google Scholar]
  • 96.Carvalho Kda S, SL ES, de Souza IA, Gualberto SA, da Cruz RC, Dos Santos FR. et al. Toxicological evaluation of essential oil from the leaves of Croton tetradenius (Euphorbiaceae) on Aedes aegypti and Mus musculus. Parasitol Res. 2016;115(9):3441–3448. doi: 10.1007/s00436-016-5106-2. [DOI] [PubMed] [Google Scholar]
  • 97.Dias CN, Alves LP, Rodrigues KA, Brito MC, Rosa Cdos S, do Amaral FM. et al. Chemical Composition and Larvicidal Activity of Essential Oils Extracted from Brazilian Legal Amazon Plants against Aedes aegypti L (Diptera: Culicidae) Evid Based Complement Alternat Med. 2015:490765–490772. doi: 10.1155/2015/490765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 98.Oliveira GL, Cardoso SK, Lara CR, Vieira TM, Guimaraes EF, Figueiredo LS. et al. Chemical study and larvicidal activity against Aedes aegypti of essential oil of Piper aduncum L (Piperaceae) An Acad Bras Cienc. 2013;85(4):1227–1234. doi: 10.1590/0001-3765201391011. [DOI] [PubMed] [Google Scholar]
  • 99.Cruz RC, Silva SL, Souza IA, Gualberto SA, Carvalho KS, Santos FR. et al. Toxicological Evaluation of Essential Oil From the Leaves of Croton argyrophyllus (Euphorbiaceae) on Aedes aegypti (Diptera: Culicidae) and Mus musculus (Rodentia: Muridae) J Med Entomol. 2017;54(4):985–993. doi: 10.1093/jme/tjw239. [DOI] [PubMed] [Google Scholar]
  • 100.da Silva Ramos R, Rodrigues AB, Farias AL, Simoes RC, Pinheiro MT, Ferreira RM. et al. Chemical Composition and In Vitro Antioxidant, Cytotoxic, Antimicrobial, and Larvicidal Activities of the Essential Oil of Mentha piperita L (Lamiaceae) ScientificWorldJournal. 2017:4927214. doi: 10.1155/2017/4927214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101.Liu XC, Liu Q, Chen XB, Zhou L, Liu ZL. Larvicidal activity of the essential oil from Tetradium glabrifolium fruits and its constituents against Aedes albopictus. Pest Manag Sci. 2015;71(11):1582–1586. doi: 10.1002/ps.3964. [DOI] [PubMed] [Google Scholar]
  • 102.Govindarajan M, Sivakumar R, Rajeswary M, Yogalakshmi K. Chemical composition and larvicidal activity of essential oil from Ocimum basilicum (L) against Culex tritaeniorhynchus, Aedes albopictus and Anopheles subpictus (Diptera: Culicidae) Exp Parasitol. 2013;134(1):7–11. doi: 10.1016/j.exppara.2013.01.018. [DOI] [PubMed] [Google Scholar]
  • 103.Liu ZL, He Q, Chu SS, Wang CF, Du SS, Deng ZW. Essential oil composition and larvicidal activity of Saussurea lappa roots against the mosquito Aedes albopictus (Diptera: Culicidae) Parasitol Res. 2012;110(6):2125–2130. doi: 10.1007/s00436-011-2738-0. [DOI] [PubMed] [Google Scholar]
  • 104.Liu XC, Zhou L, Liu Q, Liu ZL. Laboratory Evaluation of Larvicidal Activity of the Essential oil of Allium tuberosum Roots and its Selected Major Constituent Compounds Against Aedes albopictus (Diptera: Culicidae) J Med Entomol. 2015;52(3):437–441. doi: 10.1093/jme/tjv016. [DOI] [PubMed] [Google Scholar]
  • 105.Conti B, Leonardi M, Pistelli L, Profeti R, Ouerghemmi I, Benelli G. Larvicidal and repellent activity of essential oils from wild and cultivated Ruta chalepensis L(Rutaceae) against Aedes albopictus Skuse (Diptera: Culicidae), an arbovirus vector. Parasitol Res. 2013;112(3):991–999. doi: 10.1007/s00436-012-3221-2. [DOI] [PubMed] [Google Scholar]
  • 106.Govindarajan M, Rajeswary M, Senthilmurugan S, Vijayan P, Alharbi NS, Kadaikunnan S. et al. Curzerene, trans-beta-elemenone, and gamma-elemene as effective larvicides against Anopheles subpictus, Aedes albopictus, and Culex tritaeniorhynchus: toxicity on non-target aquatic predators. Environ Sci Pollut Res Int. 2017;25(11):10272–10282. doi: 10.1007/s11356-017-8822-y. [DOI] [PubMed] [Google Scholar]
  • 107.Giatropoulos A, Pitarokili D, Papaioannou F, Papachristos DP, Koliopoulos G, Emmanouel N. et al. Essential oil composition, adult repellency and larvicidal activity of eight Cupressaceae species from Greece against Aedes albopictus (Diptera: Culicidae) Parasitol Res. 2013;112(3):1113–1123. doi: 10.1007/s00436-012-3239-5. [DOI] [PubMed] [Google Scholar]
  • 108.Govindarajan M, Benelli G. Eco-friendly larvicides from Indian plants: Effectiveness of lavandulyl acetate and bicyclogermacrene on malaria, dengue and Japanese encephalitis mosquito vectors. Ecotoxicol Environ Saf. 2016;133:395–402. doi: 10.1016/j.ecoenv.2016.07.035. [DOI] [PubMed] [Google Scholar]
  • 109.Cheng SS, Liu JY, Huang CG, Hsui YR, Chen WJ, Chang ST. Insecticidal activities of leaf essential oils from Cinnamomum osmophloeum against three mosquito species. Bioresour Technol. 2009;100(1):457–464. doi: 10.1016/j.biortech.2008.02.030. [DOI] [PubMed] [Google Scholar]
  • 110.Koutsaviti K, Giatropoulos A, Pitarokili D, Papachristos D, Michaelakis A, Tzakou O. Greek Pinus essential oils: larvicidal activity and repellency against Aedes albopictus (Diptera: Culicidae) Parasitol Res. 2015;114(2):583–592. doi: 10.1007/s00436-014-4220-2. [DOI] [PubMed] [Google Scholar]
  • 111.Govindarajan M, Sivakumar R, Rajeswary M, Veerakumar K. Mosquito larvicidal activity of thymol from essential oil of Coleus aromaticus Benth against Culex tritaeniorhynchus, Aedes albopictus, and Anopheles subpictus (Diptera: Culicidae) Parasitol Res. 2013;112(11):3713–3721. doi: 10.1007/s00436-013-3557-2. [DOI] [PubMed] [Google Scholar]
  • 112.Liu XC, Dong HW, Zhou L, Du SS, Liu ZL. Essential oil composition and larvicidal activity of Toddalia asiatica roots against the mosquito Aedes albopictus (Diptera: Culicidae) Parasitol Res. 2013;112(3):1197–1203. doi: 10.1007/s00436-012-3251-9. [DOI] [PubMed] [Google Scholar]
  • 113.Liu XC, Liu Q, Zhou L, Liu ZL. Evaluation of larvicidal activity of the essential oil of Allium macrostemon Bunge and its selected major constituent compounds against Aedes albopictus (Diptera: Culicidae) Parasit Vectors. 2014;7:184. doi: 10.1186/1756-3305-7-184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 114.Govindarajan M, Benelli G. alpha-Humulene and beta-elemene from Syzygium zeylanicum (Myrtaceae) essential oil: highly effective and eco-friendly larvicides against Anopheles subpictus, Aedes albopictus, and Culex tritaeniorhynchus (Diptera: Culicidae) Parasitol Res. 2016;115(7):2771–2778. doi: 10.1007/s00436-016-5025-2. [DOI] [PubMed] [Google Scholar]
  • 115.Conti B, Canale A, Bertoli A, Gozzini F, Pistelli L. Essential oil composition and larvicidal activity of six Mediterranean aromatic plants against the mosquito Aedes albopictus (Diptera: Culicidae) Parasitol Res. 2010;107(6):1455–1461. doi: 10.1007/s00436-010-2018-4. [DOI] [PubMed] [Google Scholar]
  • 116.Conti B, Benelli G, Flamini G, Cioni PL, Profeti R, Ceccarini L. et al. Larvicidal and repellent activity of Hyptis suaveolens (Lamiaceae) essential oil against the mosquito Aedes albopictus Skuse (Diptera: Culicidae) Parasitol Res. 2012;110(5):2013–2021. doi: 10.1007/s00436-011-2730-8. [DOI] [PubMed] [Google Scholar]
  • 117.Benelli G, Flamini G, Fiore G, Cioni PL, Conti B. Larvicidal and repellent activity of the essential oil of Coriandrum sativum L (Apiaceae) fruits against the filariasis vector Aedes albopictus Skuse (Diptera: Culicidae) Parasitol Res. 2013;112(3):1155–1161. doi: 10.1007/s00436-012-3246-6. [DOI] [PubMed] [Google Scholar]
  • 118.Osanloo M, Amani A, Sereshti H, Shayeghi M, Sedaghat MM. Extraction and chemical composition essential oil of Kelussia odoratissima and comparison its larvicidal activity with Z-ligustilide (major constituent) against Anopheles stephensi. J Entomol Zool Stud. 2017;5(4):611–616. [Google Scholar]
  • 119.Vatandoost H, Dehkordi AS, Sadeghi S, Davari B, Karimian F, Abai M. et al. Identification of chemical constituents and larvicidal activity of Kelussia odoratissima Mozaffarian essential oil against two mosquito vectors Anopheles stephensi and Culex pipiens (Diptera: Culicidae) Exp Parasitol. 2012;132(4):470–474. doi: 10.1016/j.exppara.2012.09.010. [DOI] [PubMed] [Google Scholar]
  • 120.Sanei-Dehkordi A, Gholami S, Abai MR, Sedaghat MM. Essential Oil Composition and Larvicidal Evaluation of Platycladus orientalis against Two Mosquito Vectors, Anopheles stephensi and Culex pipiens. J Arthropod Borne Dis. 2018;12(2):101–107. [PMC free article] [PubMed] [Google Scholar]
  • 121.Golfakhrabadi F, Khanavi M, Ostad SN, Saeidnia S, Vatandoost H, Abai MR. et al. Biological activities and composition of Ferulago carduchorum essential oil. J Arthropod Borne Dis. 2015;9(1):104–115. [PMC free article] [PubMed] [Google Scholar]
  • 122.Sedaghat M, Dehkordi AS, Abai M, Khanavi M, Mohtarami F, Abadi YS. et al. Larvicidal Activity of Essential Oils of Apiaceae Plants against Malaria Vector, Anopheles stephensi. Iran J Arthropod Borne Dis. 2011;5(2):51–59. [PMC free article] [PubMed] [Google Scholar]
  • 123.Soleimani-Ahmadi M, Abtahi SM, Madani A, Paksa A, Abadi YS, Gorouhi MA. et al. Phytochemical profile and mosquito larvicidal activity of the essential oil from aerial parts of Satureja bachtiarica Bunge against malaria and lymphatic filariasis vectors. J Essent Oil-Bear Plants. 2017;20(2):328–336. [Google Scholar]
  • 124.Senthilkumar A, Venkatesalu V. Chemical composition and larvicidal activity of the essential oil of Plectranthus amboinicus (Lour) Spreng against Anopheles stephensi: a malarial vector mosquito. Parasitol Res. 2010;107(5):1275–1278. doi: 10.1007/s00436-010-1996-6. [DOI] [PubMed] [Google Scholar]
  • 125.Sedaghat MM, Sanei-Dehkordi A, Vatandoost H, Abai MR. Chemical Compositions of the Peel Essential Oil of Citrus aurantium and its Natural Larvicidal Activity against the Malaria Vector Anopheles stephensi (Diptera: Culicidae) in Comparison with Citrus paradisi. J Arthropod Borne Dis. 2016;10(4):577–585. [PMC free article] [PubMed] [Google Scholar]
  • 126.Soleimani-Ahmadi M, Sanei-Dehkordi A, Turki H, Madani A, Abadi YS, Paksa A. et al. Phytochemical Properties and Insecticidal Potential of Volatile Oils from Tanacetum persicum and Achillea kellalensis Against Two Medically Important Mosquitoes. J Essent Oil-Bear Plants. 2017;20(5):1254–1265. [Google Scholar]
  • 127.Osanloo M, Sereshti H, Sedaghat MM, Amani A. Nanoemulsion of Dill essential oil as a green and potent larvicide against Anopheles stephensi. Environ Sci Pollut Res Int. 2017;25(7):6466–6473. doi: 10.1007/s11356-017-0822-4. [DOI] [PubMed] [Google Scholar]
  • 128.Soleimani-Ahmadi M, Gorouhi MA, Azani S, Abadi Y, Paksa A, Rashid G. et al. Larvicidial Effects of essential oil and methanol extract of Achillea wilhelmsii C Koch (Asteraceae) against Anopheles stephensi Liston (Diptera: Culicidae), a malaria vector. J Kerman Univ Med Sci. 2017;24(1):58–67. [Google Scholar]
  • 129. Osanloo M, Sedaghat MM, Esmaeili F, Amani A (2018) Larvicidal Activity of Essential Oil of Syzygium aromaticum (Clove) in Comparison with Its Major Constituent, Eugenol, against Anopheles stephensi. J Arthropod Borne Dis. 12(Accepted manuscripts). [PMC free article] [PubMed]
  • 130.Sanei-Dehkordi A, Soleimani-Ahmadi M, Akbarzadeh K, Salim Abadi Y, Paksa A, Gorouhi MA. et al. Chemical Composition and Mosquito Larvicidal Properties of Essential Oil from Leaves of an Iranian Indigenous Plant Zhumeria majdae. J Essent Oil-Bear Plants. 2016;19(6):1454–1461. [Google Scholar]
  • 131.Khanavi M, Vatandoost H, Khosravi Dehaghi N, Sanei Dehkordi A, Sedaghat MM, Hadjiakhoondi A. et al. Larvicidal activities of some Iranian native plants against the main malaria vector, Anopheles stephensi. Acta Med Iran. 2013;51(3):141–147. [PubMed] [Google Scholar]
  • 132.Mozaffari E, Abai MR, Khanavi M, Vatandoost H, Sedaghat MM, Moridnia A. et al. Chemical Composition, Larvicidal and Repellency Properties of Cionura erecta (L) Griseb Against Malaria Vector, Anopheles stephensi Liston (Diptera: Culicidae) J Arthropod Borne Dis. 2014;8(2):147–155. [PMC free article] [PubMed] [Google Scholar]
  • 133.Sedaghat MM, Dehkordi AS, Khanavi M, Abai MR, Mohtarami F, Vatandoost H. Chemical composition and larvicidal activity of essential oil of Cupressus arizonica EL Greene against malaria vector Anopheles stephensi Liston (Diptera: Culicidae) Pharmacognosy Res. 2011;3(2):135–139. doi: 10.4103/0974-8490.81962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 134.Pandey SK, Upadhyay S, Tripathi AK. Insecticidal and repellent activities of thymol from the essential oil of Trachyspermum ammi (Linn) Sprague seeds against Anopheles stephensi. Parasitol Res. 2009;105(2):507–512. doi: 10.1007/s00436-009-1429-6. [DOI] [PubMed] [Google Scholar]
  • 135.Medhi SM, Reza S, Mahnaz K, Reza AM, Abbas H, Fatemeh M. et al. Phytochemistry and larvicidal activity of Eucalyptus camaldulensis against malaria vector, Anopheles stephensi. Asian Pac J Trop Med. 2010;3(11):841–845. [Google Scholar]
  • 136.Rajkumar S, Jebanesan A, Nagarajan R. Effect of leaf essential oil of Coccinia indica on egg hatchability and different larval instars of malarial mosquito Anopheles stephensi. Asian Pac J Trop Med. 2011;4(12):948–951. doi: 10.1016/S1995-7645(11)60224-1. [DOI] [PubMed] [Google Scholar]
  • 137.Khanavi M, Najafi B, Sadati SN, Abai MR, Vatandoost H. Chemical Constitute and Larvicidal Activity of Fractions of Ajuga chamaecistus tomentella Plant against Malaria Vector Anopheles stephensi. J Arthropod Borne Dis. 2016;11(1):116–123. [PMC free article] [PubMed] [Google Scholar]
  • 138.Mahnaz K, Alireza F, Hassan V, Mahdi S, Reza AM, Abbas H. Larvicidal activity of essential oil and methanol extract of Nepeta menthoides against malaria vector Anopheles stephensi. Asian Pac J Trop Med. 2012;5(12):962–965. doi: 10.1016/S1995-7645(12)60182-5. [DOI] [PubMed] [Google Scholar]
  • 139.Maheswaran R, Ignacimuthu S. Bioefficacy of essential oil from Polygonum hydropiper L against mosquitoes, Anopheles stephensi and Culex quinquefasciatus. Ecotoxicol Environ Saf. 2013;97:26–31. doi: 10.1016/j.ecoenv.2013.06.028. [DOI] [PubMed] [Google Scholar]
  • 140.Govindarajan M. Larvicidal and repellent properties of some essential oils against Culex tritaeniorhynchus Giles and Anopheles subpictus Grassi (Diptera: Culicidae) Asian Pac J Trop Med. 2011;4(2):106–111. doi: 10.1016/S1995-7645(11)60047-3. [DOI] [PubMed] [Google Scholar]
  • 141.Ali A, Demirci B, Kiyan HT, Bernier UR, Tsikolia M, Wedge DE. et al. Biting deterrence, repellency, and larvicidal activity of Ruta chalepensis (Sapindales: Rutaceae) essential oil and its major individual constituents against mosquitoes. J Med Entomol. 2013;50(6):1267–1274. doi: 10.1603/me12177. [DOI] [PubMed] [Google Scholar]
  • 142.Kyarimpa CM, Böhmdorfer S, Wasswa J, Kiremire BT, Ndiege IO, Kabasa JD. Essential oil and composition of Tagetes minuta from Uganda Larvicidal activity on Anopheles gambiae. Ind Crops Prod. 2014;62:400–404. [Google Scholar]
  • 143.Matasyoh JC, Wathuta EM, Kariuki ST, Chepkorir R. Chemical composition and larvicidal activity of Piper capense essential oil against the malaria vector, Anopheles gambiae. J Asia-Pac Entomol. 2011;14(1):26–28. [Google Scholar]
  • 144.Mdoe FP, Cheng SS, Msangi S, Nkwengulila G, Chang ST, Kweka EJ. Activity of Cinnamomum osmophloeum leaf essential oil against Anopheles gambiae ss. Parasit Vectors. 2014;7:209. doi: 10.1186/1756-3305-7-209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 145.Kweka EJ, Senthilkumar A, Venkatesalu V. Toxicity of essential oil from Indian borage on the larvae of the African malaria vector mosquito, Anopheles gambiae. Parasit Vectors. 2012;5:277. doi: 10.1186/1756-3305-5-277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 146.Zhu L, Tian YJ. Chemical composition and larvicidal effects of essential oil of Blumea martiniana against Anopheles anthropophagus. Asian Pac J Trop Med. 2011;4(5):371–374. doi: 10.1016/S1995-7645(11)60106-5. [DOI] [PubMed] [Google Scholar]
  • 147.Zhu L, Tian Y. Chemical composition and larvicidal activity of essential oil of Artemisia gilvescens against Anopheles anthropophagus. Parasitol Res. 2013;112(3):1137–1142. doi: 10.1007/s00436-012-3243-9. [DOI] [PubMed] [Google Scholar]
  • 148.Karunamoorthi K, Girmay A, Fekadu S. Larvicidal efficacy of Ethiopian ethnomedicinal plant Juniperus procera essential oil against Afrotropical malaria vector Anopheles arabiensis (Diptera: Culicidae) Asian Pac J Trop Biomed. 2014;4(Suppl 1):S99–s106. doi: 10.12980/APJTB.4.2014C687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 149.Pavela R, Kaffkova K, KUMŠTA M. Chemical Composition and Larvicidal Activity of Essential Oils from Different Mentha L and Pulegium Species against Culex quinquefasciatus Say (Diptera: Culicidae) Plant Protect Sci. 2014;50(1):36–42. [Google Scholar]
  • 150.Benelli G, Pavela R, Canale A, Cianfaglione K, Ciaschetti G, Conti F. et al. Acute larvicidal toxicity of five essential oils (Pinus nigra, Hyssopus officinalis, Satureja montana, Aloysia citrodora and Pelargonium graveolens) against the filariasis vector Culex quinquefasciatus: Synergistic and antagonistic effects. Parasitol Int. 2017;66(2):166–171. doi: 10.1016/j.parint.2017.01.012. [DOI] [PubMed] [Google Scholar]
  • 151.Pavela R. Insecticidal properties of Pimpinella anisum essential oils against the Culex quinquefasciatus and the non-target organism Daphnia magna. J Asia-Pac Entomol. 2014;17(3):287–293. [Google Scholar]
  • 152.Yu J, Liu X-Y, Yang B, Wang J, Zhang F-Q, Feng Z-L. et al. Larvicidal activity of essential extract of Rosmarinus officinalis against Culex quinquefasciatus. J Am Mosq Control Assoc. 2013;29(1):44–48. doi: 10.2987/12-6265R.1. [DOI] [PubMed] [Google Scholar]
  • 153.Pavela R. Larvicidal property of essential oils against Culex quinquefasciatus Say (Diptera: Culicidae) Ind Crops Prod. 2009;30(2):311–315. [Google Scholar]
  • 154.Pushpanathan T, Jebanesan A, Govindarajan M. The essential oil of Zingiber officinalis Linn (Zingiberaceae) as a mosquito larvicidal and repellent agent against the filarial vector Culex quinquefasciatus Say (Diptera: Culicidae) Parasitol Res. 2008;102(6):1289–1291. doi: 10.1007/s00436-008-0907-6. [DOI] [PubMed] [Google Scholar]
  • 155.Dua VK, Kumar A, Pandey AC, Kumar S. Insecticidal and genotoxic activity of Psoralea corylifolia Linn(Fabaceae) against Culex quinquefasciatus Say, 1823. Parasit vectors. 2013;6(1):30. doi: 10.1186/1756-3305-6-30. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 156.Senthilkumar A, Kannathasan K, Venkatesalu V. Chemical constituents and larvicidal property of the essential oil of Blumea mollis (D Don) Merr against Culex quinquefasciatus. Parasitol Res. 2008;103(4):959–962. doi: 10.1007/s00436-008-1085-2. [DOI] [PubMed] [Google Scholar]
  • 157.de Castro DS, da Silva DB, Tiburcio JD, Sobral ME, Ferraz V, Taranto AG. et al. Larvicidal activity of essential oil of Peumus boldus Molina and its ascaridole-enriched fraction against Culex quinquefasciatus. Exp Parasitol. 2016;171:84–90. doi: 10.1016/j.exppara.2016.10.008. [DOI] [PubMed] [Google Scholar]
  • 158.Tabari MA, Youssefi MR, Esfandiari A, Benelli G. Toxicity of beta-citronellol, geraniol and linalool from Pelargonium roseum essential oil against the West Nile and filariasis vector Culex pipiens (Diptera: Culicidae) Res Vet Sci. 2017;114:36–40. doi: 10.1016/j.rvsc.2017.03.001. [DOI] [PubMed] [Google Scholar]
  • 159.Pitarokili D, Michaelakis A, Koliopoulos G, Giatropoulos A, Tzakou O. Chemical composition, larvicidal evaluation, and adult repellency of endemic Greek Thymus essential oils against the mosquito vector of West Nile virus. Parasitol Res. 2011;109(2):425–430. doi: 10.1007/s00436-011-2271-1. [DOI] [PubMed] [Google Scholar]
  • 160.Michaelakis A, Papachristos D, Kimbaris A, Koliopoulos G, Giatropoulos A, Polissiou MG. Citrus essential oils and four enantiomeric pinenes against Culex pipiens (Diptera: Culicidae) Parasitol Res. 2009;105(3):769–773. doi: 10.1007/s00436-009-1452-7. [DOI] [PubMed] [Google Scholar]
  • 161.Evergetis E, Michaelakis A, Kioulos E, Koliopoulos G, Haroutounian S. Chemical composition and larvicidal activity of essential oils from six Apiaceae family taxa against the West Nile virus vector Culex pipiens. Parasitol Res. 2009;105(1):117–124. doi: 10.1007/s00436-009-1370-8. [DOI] [PubMed] [Google Scholar]
  • 162.Zhao H, Ji G, Liu F, Werdin Gonzalez JO, Jesser EN, Yeguerman CA. et al. Polymer nanoparticles containing essential oils: new options for mosquito control. Environ Sci Pollut Res Int. 2017;24(20):17006–17015. doi: 10.1007/s11356-017-9327-4. [DOI] [PubMed] [Google Scholar]
  • 163.Rouis Z, Laamari A, Abid N, Elaissi A, Cioni PL, Flamini G. et al. Chemical composition and larvicidal activity of several essential oils from Hypericum species from Tunisia. Parasitol Res. 2013;112(2):699–705. doi: 10.1007/s00436-012-3189-y. [DOI] [PubMed] [Google Scholar]
  • 164.Soltani A, Vatandoost H, Oshaghi MA, Ravasan NM, Enayati AA, Asgarian F. Resistance Mechanisms of Anopheles stephensi (Diptera: Culicidae) to Temephos. J Arthropod Borne Dis. 2015;9(1):71–83. [PMC free article] [PubMed] [Google Scholar]
  • 165.Assis CR, Linhares AG, Oliveira VM, Franca RC, Carvalho EV, Bezerra RS. et al. Comparative effect of pesticides on brain acetylcholinesterase in tropical fish. Sci Total Environ. 2012;441:141–150. doi: 10.1016/j.scitotenv.2012.09.058. [DOI] [PubMed] [Google Scholar]
  • 166.Arredondo-Jimenez JI, Valdez-Delgado KM. Effect of Novaluron (Rimon 10 EC) on the mosquitoes Anopheles albimanus, Anopheles pseudopunctipennis, Aedes aegypti, Aedes albopictus and Culex quinquefasciatus from Chiapas, Mexico. Med Vet Entomol. 2006;20(4):377–387. doi: 10.1111/j.1365-2915.2006.00656.x. [DOI] [PubMed] [Google Scholar]
  • 167.Cheng S, Lin R, Zhang N, Yuan S, Zhou X, Huang J. et al. Toxicity of six insecticides to predatory mite Amblyseius cucumeris (Oudemans) (Acari: Phytoseiidae) in- and off-field. Ecotoxicol Environ Saf. 2018;161:715–720. doi: 10.1016/j.ecoenv.2018.06.018. [DOI] [PubMed] [Google Scholar]
  • 168. Word Health Organization W.(2016) World Malaria Report. Available from: http://apps.who.int/iris/bitstream/10665/252038/1/9789241511711-eng.pdf?ua=1.
  • 169.Ma K, Li X, Hu H, Zhou D, Sun Y, Ma L. et al. Pyrethroid-resistance is modulated by miR-92a by targeting CpCPR4 in Culex pipiens pallens. Comp Biochem Physiol B Biochem Mol Biol. 2017;203:20–24. doi: 10.1016/j.cbpb.2016.09.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 170.Goindin D, Delannay C, Gelasse A, Ramdini C, Gaude T, Faucon F. et al. Levels of insecticide resistance to deltamethrin, malathion, and temephos, and associated mechanisms in Aedes aegypti mosquitoes from the Guadeloupe and Saint Martin islands (French West Indies) Infect Dis Poverty. 2017;6(1):38. doi: 10.1186/s40249-017-0254-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 171.Safi NH, Ahmadi AA, Nahzat S, Ziapour SP, Nikookar SH, Fazeli-Dinan M. et al. Evidence of metabolic mechanisms playing a role in multiple insecticides resistance in Anopheles stephensi populations from Afghanistan. 2017;16(1):100. doi: 10.1186/s12936-017-1744-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 172.Keyal U, Huang X, Bhatta AK. Antifungal effect of plant extract and essential oil. Chin J Integr Med. 2016;23(3):233–239. doi: 10.1007/s11655-016-2524-z. [DOI] [PubMed] [Google Scholar]
  • 173.Donsì F, Ferrari G. Essential oil nanoemulsions as antimicrobial agents in food. J Biotechnol. 2016;233:106–120. doi: 10.1016/j.jbiotec.2016.07.005. [DOI] [PubMed] [Google Scholar]
  • 174.Oliveira Fde A, Andrade LN, de Sousa EB, de Sousa DP. Anti-ulcer activity of essential oil constituents. Molecules. 2014;19(5):5717–5747. doi: 10.3390/molecules19055717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 175.Langeveld WT, Veldhuizen EJ, Burt SA. Synergy between essential oil components and antibiotics: a review. Crit Rev Microbiol. 2014;40(1):76–94. doi: 10.3109/1040841X.2013.763219. [DOI] [PubMed] [Google Scholar]
  • 176.Osanloo M, Amani A, Sereshti H, Shayeghi M, Sedaghat MM. Extraction and chemical composition essential oil of Kelussia odoratissima and comparison its larvicidal activity with Z-ligustilide (Major Constituent) against Anopheles stephensi. Journal of Entomology and Zoology Studies. 2017;5(4):611–616. [Google Scholar]
  • 177.Govindarajan M, Rajeswary M, Senthilmurugan S, Vijayan P, Alharbi NS, Kadaikunnan S. et al. Curzerene, trans-β-elemenone, and γ-elemene as effective larvicides against Anopheles subpictus, Aedes albopictus, and Culex tritaeniorhynchus: toxicity on non-target aquatic predators. Environ Sci Pollut Res Int. 2017:1–11. doi: 10.1007/s11356-017-8822-y. [DOI] [PubMed] [Google Scholar]
  • 178.Vatandoost H, Sanei Dehkordi A, Sadeghi SM, Davari B, Karimian F, Abai MR. et al. Identification of chemical constituents and larvicidal activity of Kelussia odoratissima Mozaffarian essential oil against two mosquito vectors Anopheles stephensi and Culex pipiens (Diptera: Culicidae) Exp Parasitol. 2012;132(4):470–474. doi: 10.1016/j.exppara.2012.09.010. [DOI] [PubMed] [Google Scholar]
  • 179.Alçiçek A, Bozkurt M, Çabuk M. The effect of a mixture of herbal essential oils, an organic acid or a probiotic on broiler performance. S Afr J Anim Sci. 2004;34(4):217–222. [Google Scholar]
  • 180.Helander IM, Alakomi H-L, Latva-Kala K, Mattila-Sandholm T, Pol I, Smid EJ. et al. Characterization of the action of selected essential oil components on Gram-negative bacteria. J Agric Food Chem. 1998;46(9):3590–3595. [Google Scholar]
  • 181.Lucia A, Zerba E, Masuh H. Knockdown and larvicidal activity of six monoterpenes against Aedes aegypti (Diptera: Culicidae) and their structure-activity relationships. Parasitology research. 2013;112(12):4267–4272. doi: 10.1007/s00436-013-3618-6. [DOI] [PubMed] [Google Scholar]
  • 182.Rajashekar Y, Shivanandappa T. Mode of Action of the Natural Insecticide, Decaleside Involves Sodium Pump Inhibition. PLoS One. 2017;12(1):e0170836. doi: 10.1371/journal.pone.0170836. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 183.Perumalsamy H, Jang MJ, Kim J-R, Kadarkarai M, Ahn Y-J. Larvicidal activity and possible mode of action of four flavonoids and two fatty acids identified in Millettia pinnata seed toward three mosquito species. Parasit vectors. 2015;8(1):237. doi: 10.1186/s13071-015-0848-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 184.Samber N, Khan A, Varma A, Manzoor N. Synergistic anti-candidal activity and mode of action of Mentha piperita essential oil and its major components. Pharm Biol. 2015;53(10):1496–1504. doi: 10.3109/13880209.2014.989623. [DOI] [PubMed] [Google Scholar]
  • 185.Wongsariya K, Phanthong P, Bunyapraphatsara N, Srisukh V, Chomnawang MT. Synergistic interaction and mode of action of Citrus hystrix essential oil against bacteria causing periodontal diseases. Pharm Biol. 2014;52(3):273–280. doi: 10.3109/13880209.2013.833948. [DOI] [PubMed] [Google Scholar]

Articles from Galen Medical Journal are provided here courtesy of SalviaPub

RESOURCES