Skip to main content
PLOS Computational Biology logoLink to PLOS Computational Biology
. 2021 Jul 26;17(7):e1009098. doi: 10.1371/journal.pcbi.1009098

Projecting contact matrices in 177 geographical regions: An update and comparison with empirical data for the COVID-19 era

Kiesha Prem 1,2, Kevin van Zandvoort 1, Petra Klepac 1, Rosalind M Eggo 1, Nicholas G Davies 1; Centre for the Mathematical Modelling of Infectious Diseases COVID-19 Working Group, Alex R Cook 2, Mark Jit 1,*
Editor: Matthew (Matt) Ferrari3
PMCID: PMC8354454  PMID: 34310590

Abstract

Mathematical models have played a key role in understanding the spread of directly-transmissible infectious diseases such as Coronavirus Disease 2019 (COVID-19), as well as the effectiveness of public health responses. As the risk of contracting directly-transmitted infections depends on who interacts with whom, mathematical models often use contact matrices to characterise the spread of infectious pathogens. These contact matrices are usually generated from diary-based contact surveys. However, the majority of places in the world do not have representative empirical contact studies, so synthetic contact matrices have been constructed using more widely available setting-specific survey data on household, school, classroom, and workplace composition combined with empirical data on contact patterns in Europe. In 2017, the largest set of synthetic contact matrices to date were published for 152 geographical locations. In this study, we update these matrices for populations up to age 80 with the most recent data and extend our analysis to 177 geographical locations. Due to the observed geographic differences within countries, we also quantify contact patterns in rural and urban settings where data is available. Further, we compare both the 2017 and 2020 synthetic matrices to out-of-sample empirically-constructed contact matrices, and explore the effects of using both the empirical and synthetic contact matrices when modelling physical distancing interventions for the COVID-19 pandemic. We found that the synthetic contact matrices show qualitative similarities to the contact patterns in the empirically-constructed contact matrices. Models parameterised with the empirical and synthetic matrices generated similar findings with few differences observed in age groups where the empirical matrices have missing or aggregated age groups. This finding means that synthetic contact matrices may be used in modelling outbreaks in settings for which empirical studies have yet to be conducted.

Author summary

The risk of contracting a directly transmitted infectious disease such as the Coronavirus Disease 2019 (COVID-19) depends on who interacts with whom. Such person-to-person interactions vary by age and locations—e.g., at home, at work, at school, or in the community—due to the different social structures. These social structures, and thus contact patterns, vary across and within countries. Although social contact patterns can be measured using contact surveys, the majority of countries around the world, particularly low- and middle-income countries, lack nationally representative contact surveys. A simple way to present contact data is to use matrices where the elements represent the rate of contact between subgroups such as age groups represented by the columns and rows. In 2017, we generated age- and location-specific synthetic contact matrices for 152 geographical regions by adapting contact pattern data from eight European countries using country-specific data on household size, school and workplace composition. We have now updated these matrices with the most recent data (Demographic Household Surveys, World Bank, UN Population Division) extending the coverage to 177 geographical locations, covering 97.2% of the world’s population. We also quantified contact patterns in rural and urban settings. When compared to out-of-sample empirically-measured contact patterns, we found that the synthetic matrices reproduce the main features of these contact patterns.

Introduction

The emergence of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) responsible for causing Coronavirus Disease 2019 (COVID-19) has affected the lives of billions worldwide [1]. SARS-CoV-2 is predominantly transmitted between people via respiratory droplets and, as such, the transmission dynamics are strongly influenced by the number and type of close contacts between infectious and susceptible individuals [27].

Mathematical models have played a key role in understanding both the spread of directly-transmissible infectious diseases such as COVID-19 [810] and the effectiveness of public health responses [1116]. Since transmission events can rarely be directly observed and measured, most transmission models are based on the social contact hypothesis [17] which implies the risk of transmission between a susceptible and an infected individual be proportional to the rate of contact between them [18]. Rates of contact are known to differ according to characteristics such as the age, of both individuals, and the setting in which the contact takes place, such as the home, school or workplace; they are also commonly assortative, and infection may be concentrated in demographic segments as a result [17,19,20].

Age-structured models often define the rate of mixing between age groups through a mixing matrix where the elements represent the frequency of contact between two individuals from subgroups (such as age groups) represented by the columns and rows. Mixing matrices can be generated from surveys that record the number and type of contacts between people, such as the respondent-completed diaries used in the landmark POLYMOD contact pattern study, which measured social contact patterns in eight European countries [20]. However, the majority of countries around the world lack data from contact surveys that can be used to inform the mixing matrix. This problem is particularly acute in low- and lower-middle-income countries (LMICs), where only 4 studies are available, compared to 54 in high-income countries [21]. Our previous work [22] used country-specific data on household size, school, and workplace composition plus empirical contact data from the POLYMOD survey to generate age- and location-specific contact matrices (synthetic contact matrices) to use in settings where social contact patterns had not yet been directly measured.

These synthetic contact matrices have been widely used in models of SARS-CoV-2 spread and the impact of interventions such as physical distancing which alter the pattern of contacts (e.g. [13]). Following the publication of our previous work, new empirical contact surveys have been conducted in LMICs (reviewed in [21]), full demographic data are now available for more countries for older age groups, which is particularly salient given the age-gradient in the severity of COVID-19 [23,24], and more recent household composition data are now available for more countries than before. Updating the matrices is particularly important since public health interventions during the pandemic, such as shielding, are often age-structured [25].

Geographic differences within countries have also been observed, with large early outbreaks in urban population centres such as Wuhan, New York, London and Madrid [26,27] spreading into more rural areas, which in many countries may lack the healthcare infrastructure to handle surges in severe cases. Tailored public health response in rural and urban settings may thus be called for to minimise unnecessary economic and social impacts. Assessing such policies requires differences between contact patterns in rural and urban environments to be quantified, which has previously been done only for a few countries [2830]. In these studies, individuals in rural settings documented more contacts at home than their urban counterparts [28,29]. However, individuals in rural settings in Zimbabwe [30] reported a lower total number of contacts than those in peri-urban settings. The study in Southern China observed no qualitative difference in overall contact patterns between rural and urban populations [28].

In this paper, we update the synthetic contact matrices with the most recent data, comparing them to measured contact matrices, and develop customised contact matrices for rural and urban settings. We use these to explore the effects of physical distancing interventions for the COVID-19 pandemic in a transmission model.

Materials and methods

Updating country-specific demography and setting parameters

As in Prem et al. [22], we employed a Bayesian hierarchical modelling framework to estimate the age- and location-specific contact rates in each of the POLYMOD countries (Belgium, Germany, Finland, United Kingdom, Italy, Luxembourg, the Netherlands, Poland), accounting for repeat measurements of contacts made in different locations by the same individual. We model the number of contacts documented by individual i at a particular location L with an individual in age group α, as Xi,αLPo(μai,αL) where the mean parameter varies for each individual i, by i’s age, ai, and by location, i.e: μai,αL=σiλai,αL. The σi parameter characterises differences in social activity levels between individuals i.e., the random effect belonging to individual i. The λai,αL parameter denotes the frequency of contact between individuals (or contact rate per day) from two age groups, a and α, at location L and it is the key estimand. Because the number of contacts should be comparable for individuals of similar ages, we imposed smoothness between successive age groups for the λai,αL parameter as described in section A.8 in S1 Text. Noninformative prior distributions were assumed for all parameters in the model, as detailed in [22].

We updated the synthetic contact matrices [22] with more recent data on population age structure, household age structure of 43 countries with recent Demographic Household Surveys (DHS) [31] and socio-demographic factors for 177 geographical regions, including countries and some subnational regions such as the Hong Kong and Macau Special Administrative Regions (SARs) of the People’s Republic of China. We include 14 country characteristics from the World Bank and United Nations Educational, Scientific and Cultural Organization Institute for Statistics (UIS) databases: gross domestic product per capita, total fertility rate and adolescent fertility rate, population density, population growth rate, internet penetration rate, secondary school education attainment levels, as proxies of development, and under-five mortality rate, the life expectancy of males and females, mortality rates of males, risk of maternal death, mortality from road traffic injury, and the incidence of tuberculosis, as proxies for overall health in the country. The DHS provides nationally-representative household surveys with the largest dataset, from India, containing information on ~ 3 million individuals from about 600 000 households (see Table A in S1 Text). To project the household age structure for a geographical location with no available household data, we use a weighted mean of the population-adjusted household age structures of the POLYMOD and DHS countries as described in the S1 Text. Because the household age structures vary across countries in different stages of development and with different demographics, we use the updated 14 indicators, all standardized by z-scoring, to quantify the similarities between countries with and without household data to derive these weights. We internally validated the household age matrices using leave-one-out validation to verify these matrices describing household structure could be reverse-engineered for countries (POLYMOD and DHS) for which empirical household age matrices were available, as described in Prem et al. [22] and in S1 Text.

By accounting for the demographic structure, household structure (where known), and a variety of metrics including workforce participation and school enrolment, we then estimated contact patterns at home, work, school and other locations for non-POLYMOD countries. Specifically, the population age compositions for 177 geographical regions were obtained from the United Nations Population Division [32]. To derive the working population matrices for each geographical location c, we use the labour force participation rate by sex and 5-year age groups, wac, for the 177 geographical regions from the International Labour Organization (ILO) [33].

When constructing the school-going population matrices, we use the country-specific pupil-to-teacher ratio in schools at various level of education (i.e., pre-primary, primary, secondary and tertiary), enrolment rates of students at various level of education, starting ages and number of years of schooling at various level of education from UIS [34] and the distribution of teachers by age from the Organisation for Economic Co-operation and Development (OECD) [35]. Using the country-specific data, we first estimate the number of students in each age group by education level. Together with the country-specific pupil-to-teacher ratio at each education level, distribution of teachers and workforce by age, we then project the number of teachers in each age group. Both students and teachers form the school-going population. The steps to construct both the working and school-going populations are detailed in S1 Text.

After projecting populations at home, work and school for the 177 geographical regions, we infer the synthetic age- and location-specific contact matrices (S1 Text). For contacts in other locations (not home, work or school), we adjusted the POLYMOD contact matrices with the country-specific population. We also compare the proportion of contacts at other locations measured from the empirical contact studies.

Stratifying contacts by rural and urban areas

We stratified the age- and location-specific contact matrices according to rural and urban areas by the rural and urban population age compositions for all geographical regions of the world from the United Nations Population Division [36] (see [37] for urban and rural classification). The nationally-representative DHS household surveys additionally provide data for rural and urban areas [31], allowing us to derive rural-urban household age matrices. We compare the population age compositions and household age matrices in rural and urban settings of countries with stratified household data (S1 Text and S2 Text).

We assessed the age-specific labour force participation rates by rural and urban regions from ILO [38]. Using the differences in rural and urban schools’ pupil-to-teacher ratio from OECD [39], we construct rural and urban school population matrices. These differences were available for 36 countries, and we assumed the OECD average for the regions without data. We also compare the mean total number of contacts among children (0–9-year-olds) and older adults (60–69-year-olds), as well as the basic reproduction number in rural and urban settings.

Comparing synthetic matrices to empirical contact matrices

We extracted data from all contact surveys listed in the Zenodo social contact database [40] and directly from the published studies [41], and used them to construct empirical contact matrices using the socialmixr R package [42]. Data were available for 11 geographical locations: Shanghai and Hong Kong SAR, China [43,44], France [45], Kenya [46], Peru [47], the Russian Federation [48], South Africa [29,49], Vietnam [50], Zambia [29] and Zimbabwe [30]. We then compared each element of the empirical matrices with our synthetic matrices. We also compared the proportion of contacts in “Other” locations, since this was the only setting not directly informed by local data (other than population age structure) in the synthetic matrices. To understand potential sources of differences between the empirical and synthetic matrices as well as between empirical matrices between different regions, we extracted details of how each survey was conducted from the original publications.

Table 1 summarises the changes between the construction of the 2017 and 2020 synthetic matrices. Analyses were done in R version 3.6.2 [51], and the codes are deposited in https://doi.org/10.5281/zenodo.8383778.

Table 1. Summary of the changes between the 2017 and 2020 synthetic matrices.

2020 synthetic matrices 2017 synthetic matrices
Overall coverage 177 geographical locations covering 97.2% of the world’s population, including rural and urban settings 152 geographical locations covering 95.9% of the world’s population
Population age composition data 2020 UN Population Division population demographic data for 177 geographical regions 2015 UN Population Division population demographic data for 152 geographical regions
Urban and rural population age composition data Stratified population demographic data by urban and rural settings for 177 geographical regions Not considered
Country-specific household data 51 countries: 34 additional low- and lower-middle-income countries 17 countries
Country-specific urban and rural household data Stratified household data by urban and rural settings (for 43 DHS countries) Not considered
Country-specific labour force participation rate data by age 177 geographical locations and stratified by urban and rural settings 152 geographical locations
Country-specific school data School data were curated at various levels of education: pre-primary, primary, secondary and tertiary.
The updated school data included enrolment rates, average starting ages of schooling, number of years of schooling, pupil-to-teacher ratio at each education level from UNESCO Institute for Statistics for 177 geographical regions.
School data were curated at various levels of education: pre-primary, primary, secondary and tertiary.
The country-specific school data included enrolment rates, pupil-to-teacher ratio at each education level from UNESCO Institute for Statistics for 152 geographical regions.
Country-specific urban and rural school data Rural and urban differences in schools’ pupil-to-teacher ratio for 36 countries from OECD Not considered
Comparison between the synthetic matrices and out-of-sample empirically-constructed contact matrices Comparison of mean contacts by age, full contact matrices, the proportion of contacts at other locations, and reduction in cases and age-specific infection attack rate using an age-stratified compartmental model of COVID-19
Social contact data from contact surveys were extracted from the Zenodo social contact database and directly from the published studies for 10 geographical locations.
Comparison of mean contacts by age
Contact matrices were assessed directly from the published studies in 5 geographical locations: Kenya (digitised image), Peru (digitised image), Russia, South Africa, and Vietnam.

Impact on modelling of interventions

We compare the difference in reduction of COVID-19 cases between using the empirical and synthetic matrices in models of COVID-19 epidemics in ten geographical regions—China, France, Hong Kong SAR, Kenya, Peru, the Russian Federation, South Africa, Uganda, Vietnam and Zimbabwe—using an age-stratified compartmental model [13,25]. We model an unmitigated epidemic and three intervention scenarios: 20% physical distancing, 50% physical distancing, and national lockdown. In all intervention scenarios, we assume a 50% reduction in transmission from individuals with clinical symptoms through self-isolation. In addition, we assume the following: (i) 20% physical distancing: 20% reduction in transmission outside of the household, (ii) 50% physical distancing: 50% reduction in transmission outside of the household, (iii) national lockdown: where we applied the pooled mean reduction in setting-specific contacts (i.e. at home, school, work, and other places) as observed in lockdowns implemented in several countries during the COVID-19 pandemic [5357]. We considered six contact matrices when modelling the interventions to the COVID-19 pandemic: the empirically-constructed contact matrices at the study-year and adjusted for the 2020 population, the 2017 synthetic matrices, and the updated synthetic matrices at the national, rural, or urban settings. Synthetic matrices were implemented by assuming that the contacts made by the 75–80 years old age group were representative for those made by the 75+ years old age group in the model. More details of the model can be found in sections A.7 of S1 Text.

Results

Twenty-five geographical regions were added to this study compared to the 2017 study. We also updated the population demographic data used for all countries including Namibia, Syrian Arab Republic, Republic of South Sudan, Kuwait, and Vanuatu where the proportion of individuals aged > 70 years was previously not recorded.

There were varied methods adopted in 11 contact surveys conducted to generate the empirical contact matrices covering 11 geographical locations (Table 2). The surveys differed substantially from each other and the original POLYMOD survey in sampling frames and survey methodology. Dodd et al. [29] measured social contacts among adults in South Africa and Zambia. Three surveys were conducted in exclusively rural regions [41,47,49], (including one in a remote highlands region [47]), three other surveys were conducted only in urban regions [43,44,48], and the remaining five surveys were conducted in a variety of urban and rural settings [29,30,45,46,50]. Although most studies adopted random or stratified sampling to recruit their respondents, a handful included convenience [43,47,48] and quota [44,45] sampling methods in their recruitment. In most contact diary approaches, contacts are categorised as physical contacts (e.g., skin-to-skin contacts) and nonphysical contacts (e.g. two-way conversations with three or more words in the physical presence of another person) [20]. They were equally split between studies that asked respondents to fill in surveys retrospectively [29,41,44,47,50] and prospectively [30,43,45,46,48,49].

Table 2. Description of empirical contact survey studies used to construct contact matrices.

Region, Country Authors (year) Study design Study population Sampling methods Data collection method (mode) Rural / Urban Casual contacts (i.e., short-term)
Shanghai, China Zhang et al. (2019) [43] Prospective General population (n = 965) Convenience sample Paper-diary (self-report and interview-based) Urban Participants were allowed to include group contacts
France Béraud et al. (2015) [45] Prospective General population (n = 2033) Quota sampling Paper-diary (self-report) Rural and urban Participants were allowed to provide open-ended notes
Hong Kong SAR, China Leung et al. (2017) [44] Retrospective General population (n = 1149) Quota sampling Paper-diary and online survey (self-report) Urban Participants were allowed to include group contacts
Kilifi, Kenya Kiti et al. (2014) [46] Prospective General population (n = 568) Stratified random sample Paper-diary (self-report) Rural and semi-urban Undocumented
Highlands San Marcos, Cajamarca-Peru Grijalva et al. (2015) [47] Retrospective General population (n = 588) Convenience sample Paper-diary (interview-based) Rural Participants were allowed to report unregistered contacts
Tomsk, Russia Ajelli et al. (2017) [48] Prospective General population (n = 559) Random and convenience samples Paper-diary (self-report) Urban Participants were allowed to report unregistered contacts.
South Africa Johnstone et al. (2011) [49] Prospective General population (n = 571) Random sample Paper-diary (self-report) Rural Undocumented
Sheema North Sub-District, Uganda le Polain de Waroux et al. (2018) [41] Retrospective General population (n = 566) Random sample Paper-diary (interview-based) Rural Participants were allowed to report unregistered contacts
Red River Delta, North Vietnam Horby et al. (2011) [50] Retrospective General population (n = 865) Random sample Paper-diary (interview-based) Semi-rural Participants were allowed to report unregistered contacts.
Zambia and South Africa Dodd et al. (2016) [29] Retrospective Adults (>18 years) (n = 3582) Random sample Paper-diary (interview-based) Rural and urban Participants were asked by the interviewer
Manicaland, Zimbabwe Melegaro et al. (2017) [30] Prospective General population (n = 2490) Stratified random sample Paper-diary (self-report) Rural and peri-urban Participants were asked by the interviewer

The estimated proportions of contacts in other locations from POLYMOD contact survey largely match analogous figures in empirical contact studies from five geographical locations which report this—Shanghai and Hong Kong SAR, China; the Russian Federation; Peru; and Zimbabwe—but are higher than those from France for most ages (Fig 1). It is slightly higher in the synthetic matrices in adults (i.e., 20–40-year-olds) in Shanghai, Hong Kong and the Russian Federation, and slightly lower in older individuals (i.e., >60-year-olds) in Peru, but all other ages match closely.

Fig 1. Comparison of the estimated proportion of contacts at other locations for the empirical contact studies from six geographical regions and POLYMOD survey.

Fig 1

The estimated age-specific proportion of all contacts at other locations—transport, leisure, other locations—matrices from contact surveys at the country or geographical region (in black) are compared against that observed in the POLYMOD countries (in grey).

The pronounced diagonals observed in all contact matrices are matched in the synthetic matrices (Figs 2 and 3, S3 Text), as are the secondary diagonals indicating the occurrence of intergenerational mixing. The updated synthetic contact matrices show close similarities to empirical matrices (median correlation between normalised synthetic and empirical matrices 0.84, interquartile range 0.76–0.88). In most geographical regions, both matrices are similar in terms of symmetry. However, there are a few places such as Zimbabwe and China (Shanghai) where the synthetic matrix is more symmetrical than the empirical matrix, as the latter shows more weight above the diagonal (young people report more contacts with old people than vice versa). The degree of symmetry of both synthetic and empirical matrices in each region is compared in Table E in S4 Text.

Fig 2. Comparison of the normalised empirical and synthetic age-specific contact matrices in five geographical regions.

Fig 2

The empirical matrices collected from contact surveys, modelled synthetic contact matrices, and the scatter plots of the entries in the observed (x-axis) and modelled (y-axis) contact matrices are presented. The correlation between the empirical and synthetic matrices are shown. The matrices are normalised such that its dominant eigenvalue is 1. To match the population surveyed in the empirical studies, the contact matrices from rural settings of Kenya and Peru are presented; and the contact matrix from urban settings of China is presented. No data are available in the grey regions.

Fig 3. Comparison of the normalised empirical and synthetic age-specific contact matrices in five geographical regions.

Fig 3

The empirical matrices collected from contact surveys, modelled synthetic contact matrices, and the scatter plots of the entries in the observed (x-axis) and modelled (y-axis) contact matrices are presented. The correlation between the empirical and synthetic matrices are shown. The matrices are normalised such that its dominant eigenvalue is 1. To match the population surveyed in the empirical studies, the contact matrices from rural settings of South Africa, Uganda, Vietnam, and Zimbabwe are presented; and the contact matrices from urban settings of the Russian Federation are presented. No data are available in the grey regions.

We reconstructed the empirical household age structures for the POLYMOD and DHS countries with high fidelity (median correlation between the observed and modelled household age matrix (HAM) 0.96, with an interquartile range 0.94–0.97) (See S1 Text section A.2.2 and S2 Text section B.1 for details). The differences in the population and households age composition by rural and urban settings are presented in section B.2 in S2 Text.

In most countries, urban settings had a larger mean number of contacts among children (i.e., 0–9-years-old) (Fig 4). However, little difference was observed in the mean number of contacts among older adults (i.e. 60-69 years old) in rural and urban settings. The basic reproduction number in rural and urban settings are positively correlated (highest in high-income countries: r = 0.90, 95% confidence interval: 0.82–0.94) and higher in urban settings.

Fig 4. Mean number of contacts and basic reproduction number between rural and urban settings.

Fig 4

Panels a and b present the scatter plots of the mean number of contacts in younger and older individuals, respectively, in rural (x-axis) and urban (y-axis) settings of a country. Panels c and d present the scatter plots of the basic reproduction number in rural (x-axis) and urban (y-axis) settings of a country without and with age-dependent susceptibility and infectiousness. Geographical regions are grouped as low-income countries (LIC), lower-middle-income countries (LMIC), upper-middle-income countries (UMIC), and high-income countries (HIC), as designated by the World Bank in 2019. Within income group correlations of rural and urban values are presented in the accompanying parentheses.

The choice of using synthetic or empirical matrices did not make a large difference to the infection attack rate for an unmitigated epidemic (Fig D in S4 Text), or to the overall number of severe COVID-19 cases predicted in a mathematical model of SARS-CoV-2 transmission and disease across the three physical distancing interventions (Fig 5 and Fig E in S4 Text). Where there were discrepancies, the relative magnitude of this discrepancy differed between countries. Differences were more marked in specific age groups (e.g. older people in Hong Kong SAR, Peru, Uganda, Vietnam and Zimbabwe; 10–20 year olds in China; 20–24 year olds in Russia). The largest age-related differences could potentially be attributed to particular features of empirical survey design such as missing (Peru, Russia) or aggregated (South Africa, Uganda, Vietnam) age groups, mode of questionnaire chosen by participants (Hong Kong SAR) and survey administration during school holidays (Zimbabwe) (See Table D in S4 Text for details).

Fig 5. Reduction in cases due to interventions in models of COVID-19 epidemics under three intervention scenarios in ten geographical regions using the empirical and synthetic matrices.

Fig 5

The reduction in cases in each of the three intervention scenario—20% physical distancing, 50% physical distancing, and lockdown—against the unmitigated epidemic under different contact matrices is shown in the boxplots with boxes bounded by the interquartile range (25th and 75th percentiles), median in white and, whiskers spanning the 2.5–97.5th percentiles. Six contact matrices were considered in the COVID-19 modelling: the empirically-constructed contact matrices at the study-year and adjusted for the 2020 population, the 2017 synthetic matrices, and the updated synthetic matrices at the national, rural, or urban settings.

Discussion

Social mixing patterns have not been directly measured in most countries or regions within countries, particularly in low- and lower-middle-income settings. Synthetic contact matrices provide alternative age- and location-specific social mixing patterns for countries in different stages of sociodemographic and economic development [22]. The synthetic contact matrices presented here were derived by the amalgamation of several data sources and methods: (i) integration into a Bayesian hierarchical framework of age- and location-specific contact rates from eight European countries from the POLYMOD contact study; (ii) construction of age-structured populations at home, work, and school in many non-POLYMOD countries by combining household age-structure data from the POLYMOD study and DHS (which include mostly data from lower-income countries), socio-demographic factors from the UN Population Division and various international indicators; and (iii) projection of age-structured populations at home, work, and school and age- and location-specific contact matrices to other non-POLYMOD and non-DHS countries. Both empirical and synthetic contact matrices capture age-assortativity in mixing patterns; the pronounced primary diagonal highlights that individuals interact with others of similar age. Both also show secondary diagonals, approximately one generation apart, indicating parent-child interactions.

This paper provides a substantial update and improvement to previous synthetic matrices published in 2017 (Table 1). Improvements in the availability of demographic data globally have enabled us to provide validated approximations to age- and location-specific contact rates for 177 geographical regions covering 97.2% of the world’s population, compared to 152 geographical regions covering 95.9% previously. Household data from 34 additional LMICs were included in the revision. We have also used the most recent data to build the working and school-going populations. We have extended the method to project contact patterns in rural and urban settings using country-specific urban and rural data. We find a higher positive correlation in mean contact rates and basic reproduction number in rural and urban settings of high-income countries, owing to the smaller rural-urban differences in these countries. Moreover, when assessing the consistency of results under different mixing assumptions (empirical and synthetic), we observed small differences in the modelled reduction in number of cases across the three physical distancing interventions for the COVID-19 pandemic.

The synthetic matrices provide consistency for inter-country comparisons since they are based on common datasets. This is challenging to achieve through empirical data collection (see Table 2). For such studies, surveying across the whole population poses several challenges. Establishing a sampling frame and obtaining a sample representative of an entire country’s population is expensive and in some regions logistically challenging, so researchers often restrict studies to a particular subpopulation. For instance, many recent empirical contact studies only represent certain subregions of countries rather than entire countries. Sometimes surveys rely on nonprobability sampling techniques [4345,47,48], e.g., convenience and quota sampling, when probability sampling techniques are not feasible. Paper or online self-reported contact diaries are largely used in social contact surveys. Compared to less common face-to-face interviews, respondent-filled contact diaries have a less demanding data collection procedure but may report a lower response rate [21,58]. Zhang et al. [43] found significantly higher contacts documented by telephone interview than by self-reporting in Shanghai, China. In addition, contact diaries can be administered prospectively or retrospectively (Table 2). In Hong Kong, prospective surveys have been shown to be less prone to recall bias compared to their retrospective counterpart [44], but it is often more challenging to find willing participants for prospective surveys. However, a study in Belgium [59] found no appreciable effect between retrospective and prospective surveying. Other methods, e.g., proximity sensors and phone-based GPS trackers or Bluetooth scanners, have also been employed to measure mixing patterns between individuals [6063] and are forming part of many countries’ contact tracing efforts during the COVID-19 pandemic [64], though most have been implemented to protect users’ privacy by storing data with the user rather than centrally. When we compared our synthetic matrices with empirical contact matrices from 11 studies using contact diaries, we found broad consistencies between findings from the two approaches. However, there were also differences which might reflect the heterogeneity in methods used to collect empirical data.

Another consideration affecting both synthetic and empirical matrices is that they change over time. Estimating synthetic matrices relies on the POLYMOD contact survey administered more than a decade ago. Another larger contact survey, BBC Pandemic [60,65] conducted in the UK used mobile phone-based GPS tracking instead of diary-based surveys, reported a decrease in contacts among adolescents compared to POLYMOD, which may reflect substitution of face-to-face contacts with electronic communication in this age group. Moreover, in addition to the rural-urban environment, age- and location-specific contact patterns could vary by socioeconomic conditions within countries. More differences are expected as countries implement physical distancing measures to mitigate the COVID-19 pandemic. The COVID-19 pandemic has affected contact patterns, whether through non-pharmaceutical interventions or reactive behavioural changes, in particular, how we come into contact with one another. Baseline, expected contact rates, as those inferred here, are critical for determining the amount of change in contact rates in response to the pandemic. Understanding the impact of the COVID-19 pandemic on contact patterns requires a detailed analysis of contact surveys conducted during the pandemic, taking into account baseline contacts and non-pharmaceutical interventions intensity. Future studies are also needed to quantify the possible long-term behavioural changes.

Both synthetic and empirical matrices have complementary strengths and limitations. Empirical contact patterns are dependent on the study design and study population, and when the survey is administered. The synthetic contact matrices are constructed using proxies of contacts such as population and household age structures and country characteristics. However, the datasets used to develop these proxy measures (notably population age structure and DHS data) are generally much larger and more nationally representative than most empirical contact studies. To assess the robustness or consistency of the results under different mixing patterns, modellers should consider using multiple contact matrices constructed using different methods for sensitivity analyses.

Conclusion

In this study, we provide synthetic contact matrices for 177 geographical regions by updating our previous matrices with larger and more recent datasets on population age structure, household, school and workplace composition. The synthetic contact matrices reproduce the main features of the contact patterns in the out-of-sample empirically collected contact matrices.

Supporting information

S1 Text. Projecting contact matrices in 177 geographical regions: an update and comparison with empirical data for the COVID-19 era: Supplementary Material: Methods.

(DOCX)

pcbi.1009098.s001.docx (574.4KB, docx)
S2 Text. Projecting contact matrices in 177 geographical regions: an update and comparison with empirical data for the COVID-19 era: Supplementary Material: results of the household age matrices.

(DOCX)

pcbi.1009098.s002.docx (9.8MB, docx)
S3 Text. Projecting contact matrices in 177 geographical regions: an update and comparison with empirical data for the COVID-19 era: Supplementary Material: results of the country-specific age- and location-specific contact matrices.

(DOCX)

pcbi.1009098.s003.docx (19.6MB, docx)
S4 Text. Projecting contact matrices in 177 geographical regions: an update and comparison with empirical data for the COVID-19 era: Supplementary Material results of the comparisons with other contact matrices.

(DOCX)

pcbi.1009098.s004.docx (1.3MB, docx)

Acknowledgments

We thank Patrick Walker, Oliver Watson and Azra Ghani from Imperial College London, as well as other modellers from around the world, who provided feedback on the 2017 synthetic contact matrices.

The following authors were part of the Centre for Mathematical Modelling of Infectious Disease COVID-19 working group. Each contributed in processing, cleaning and interpretation of data, interpreted findings, contributed to the manuscript, and approved the work for publication: Christopher I Jarvis, Quentin J Leclerc, Jon C Emery, Gwenan M Knight, Amy Gimma, Simon R Procter, Kathleen O’Reilly, Sophie R Meakin, Charlie Diamond, Stefan Flasche, Billy J Quilty, Anna M Foss, Thibaut Jombart, Katherine E. Atkins, Georgia R Gore-Langton, Adam J Kucharski, James W Rudge, Matthew Quaife, Arminder K Deol, Carl A B Pearson, C Julian Villabona-Arenas, Graham Medley, Alicia Rosello, Hamish P Gibbs, Samuel Clifford, Rein M G J Houben, David Simons, James D Munday, Megan Auzenbergs, Rachel Lowe, Joel Hellewell, Sam Abbott, Damien C Tully, Stéphane Hué, W John Edmunds, Yang Liu, Fiona Yueqian Sun, Oliver Brady, Sebastian Funk, Nikos I Bosse, Akira Endo, Timothy W Russell, Emily S Nightingale.

Data Availability

All data used in this study can be downloaded from the cited references. The codes used to generate these analyses and the updated synthetic matrices are available at https://github.com/kieshaprem/synthetic-contact-matrices DOI: 10.5281/zenodo.4889500.

Funding Statement

The following funding sources are acknowledged as providing funding for the named authors. KP, PK and MJ were partly funded by the Bill & Melinda Gates Foundation (INV-003174). MJ and NGD were partly funded by the National Institute for Health Research (NIHR; NIHR200929) MJ was partly funded by NIHR using UK aid from the UK Government to support global health research (16/137/109). The views expressed in this publication are those of the author(s) and not necessarily those of the NIHR or the UK Department of Health and Social Care. KvZ was partly funded by DfID/Wellcome Trust (Epidemic Preparedness Coronavirus research programme 221303/Z/20/Z) and DfID/Wellcome Trust/NIHR (Elrha R2HC/UK DFID/Wellcome Trust/NIHR). KP, PK and MJ were partly funded by the European Union's Horizon 2020 research and innovation programme - project EpiPose (101003688). RME was partly funded by HDR UK (MR/S003975/1) and UK MRC (MC_PC 19065). PK was partly funded by the Royal Society (RP\EA\180004). ARC was partly funded by the Singapore’s National Medical Research Council (COVID19RF-004, NMRC/CG/C026/2017_NUHS). The following funding sources are acknowledged as providing funding for the working group authors. Alan Turing Institute (AE). BBSRC LIDP (BB/M009513/1: DS). This research was partly funded by the Bill & Melinda Gates Foundation (INV-001754: MQ; INV-003174: YL; NTD Modelling Consortium OPP1184344: CABP, GM; OPP1180644: SRP; OPP1183986: ESN; OPP1191821: KO'R, MA). DFID/Wellcome Trust (Epidemic Preparedness Coronavirus research programme 221303/Z/20/Z: CABP). DTRA (HDTRA1-18-1-0051: JWR). ERC Starting Grant (#757688: CJVA, KEA; #757699: JCE, RMGJH; 757699: MQ). This project has received funding from the European Union's Horizon 2020 research and innovation programme - project EpiPose (101003688: WJE, YL). This research was partly funded by the Global Challenges Research Fund (GCRF) project 'RECAP' managed through RCUK and ESRC (ES/P010873/1: AG, CIJ, TJ). Nakajima Foundation (AE). This research was partly funded by the National Institute for Health Research (NIHR) using UK aid from the UK Government to support global health research. The views expressed in this publication are those of the author(s) and not necessarily those of the NIHR or the UK Department of Health and Social Care (16/137/109: CD, FYS, YL; 16/137/109 & 16/136/46: BJQ; Health Protection Research Unit for Modelling Methodology HPRU-2012-10096: TJ; PR-OD-1017-20002: AR). Royal Society (Dorothy Hodgkin Fellowship: RL). UK DHSC/UK Aid/NIHR (ITCRZ 03010: HPG). UK MRC (LID DTP MR/N013638/1: GRGL, QJL; MR/P014658/1: GMK). Authors of this research receive funding from UK Public Health Rapid Support Team funded by the United Kingdom Department of Health and Social Care (TJ). Wellcome Trust (206250/Z/17/Z: AJK, TWR; 206471/Z/17/Z: OJB; 208812/Z/17/Z: SC, SFlasche; 210758/Z/18/Z: JDM, JH, NIB, SA, SFunk, SRM). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

  • 1.World Health Organization. Coronavirus Disease (COVID-19) Situation Reports. Available: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
  • 2.Riou J, Althaus CL. Pattern of early human-to-human transmission of Wuhan 2019 novel coronavirus (2019-nCoV), December 2019 to January 2020. Euro Surveill. 2020;25. doi: 10.2807/1560-7917.ES.2020.25.4.2000058 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Chan JFW, Yuan S, Kok KH, To KKW, Chu H, Yang J, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet. 2020;395: 514–523. doi: 10.1016/S0140-6736(20)30154-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.WHO. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). 2020. Available: https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf [Google Scholar]
  • 5.World Health Organization. Modes of transmission of virus causing COVID-19: implications for IPC precaution recommendations. Available: https://www.who.int/news-room/commentaries/detail/modes-of-transmission-of-virus-causing-covid-19-implications-for-ipc-precaution-recommendations
  • 6.Liu J, Liao X, Qian S, Yuan J, Wang F, Liu Y, et al. Community Transmission of Severe Acute Respiratory Syndrome Coronavirus 2, Shenzhen, China, 2020. Emerg Infect Dis. 2020;26. doi: 10.3201/eid2606.200239 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia. N Engl J Med. 2020. doi: 10.1056/NEJMoa2001316 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Kucharski AJ, Russell TW, Diamond C, Liu Y, Edmunds J, Funk S, et al. Early dynamics of transmission and control of COVID-19: a mathematical modelling study. Lancet Infect Dis. 2020;0. doi: 10.1016/S1473-3099(20)30144-4 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Abbott S, Hellewell J, Thompson R, al. et. Estimating the time-varying reproduction number of SARS-CoV-2 using national and subnational case counts. Wellcome Open Research. 2020. [Google Scholar]
  • 10.Wu JT, Leung K, Leung GM. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. Lancet. 2020;395: 689–697. doi: 10.1016/S0140-6736(20)30260-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Hellewell J, Abbott S, Gimma A, Bosse NI, Jarvis CI, Russell TW, et al. Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts. Lancet Glob Heal. 2020;8: e488–e496. doi: 10.1016/S2214-109X(20)30074-7 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Prem K, Liu Y, Russell TW, Kucharski AJ, Eggo RM, Davies N, et al. The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: a modelling study. Lancet Public Heal. 2020;0. doi: 10.1016/S2468-2667(20)30073-6 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Davies NG, Kucharski AJ, Eggo RM, Gimma A, Edmunds WJ, Jombart T, et al. Effects of non-pharmaceutical interventions on COVID-19 cases, deaths, and demand for hospital services in the UK: a modelling study. Lancet Public Heal. 2020;0. doi: 10.1016/s2468-2667(20)30133-x [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Clark A, Jit M, Warren-Gash C, Guthrie B, Wang HHX, Mercer SW, et al. Global, regional, and national estimates of the population at increased risk of severe COVID-19 due to underlying health conditions in 2020: a modelling study. Lancet Glob Heal. 2020;8: e1003–e1017. doi: 10.1016/S2214-109X(20)30264-3 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Peak CM, Kahn R, Grad YH, Childs LM, Li R, Lipsitch M, et al. Individual quarantine versus active monitoring of contacts for the mitigation of COVID-19: a modelling study. Lancet Infect Dis. 2020. doi: 10.1016/S1473-3099(20)30361-3 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Cowling BJ, Ali ST, Ng TWY, Tsang TK, Li JCM, Fong MW, et al. Impact assessment of non-pharmaceutical interventions against COVID-19 and influenza in Hong Kong: an observational study. medRxiv. 2020; 2020.03.12.20034660. doi: 10.1101/2020.03.12.20034660 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Wallinga J, Teunis P, Kretzschmar M. Using Data on Social Contacts to Estimate Age-specific Transmission Parameters for Respiratory-spread Infectious Agents. Am J Epidemiol. 2006;164: 936–944. doi: 10.1093/aje/kwj317 [DOI] [PubMed] [Google Scholar]
  • 18.Read JM, Edmunds WJ, Riley S, Lessler J, Cummings DAT. Close encounters of the infectious kind: Methods to measure social mixing behaviour. Epidemiology and Infection. 2012. pp. 2117–2130. doi: 10.1017/S0950268812000842 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Wallinga J, Edmunds WJJ, Kretzschmar M. Perspective: human contact patterns and the spread of airborne infectious diseases. Trends Microbiol. 1999;7: 372–377. doi: 10.1016/s0966-842x(99)01546-2 [DOI] [PubMed] [Google Scholar]
  • 20.Mossong J, Hens N, Jit M, Beutels P, Auranen K, Mikolajczyk R, et al. Social Contacts and Mixing Patterns Relevant to the Spread of Infectious Diseases. Riley S, editor. PLoS Med. 2008;5: e74. doi: 10.1371/journal.pmed.0050074 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Hoang T, Coletti P, Melegaro A, Wallinga J, Grijalva CG, Edmunds JW, et al. A Systematic Review of Social Contact Surveys to Inform Transmission Models of Close-contact Infections. Epidemiology. Lippincott Williams and Wilkins; 2019. pp. 723–736. doi: 10.1097/EDE.0000000000001047 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Prem K, Cook AR, Jit M. Projecting social contact matrices in 152 countries using contact surveys and demographic data. PLoS Comput Biol. 2017;13: e1005697. doi: 10.1371/journal.pcbi.1005697 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Davies NG, Klepac P, Liu Y, Prem K, Jit M, CMMID COVID-19 working group, et al. Age-dependent effects in the transmission and control of COVID-19 epidemics. Nat Med. 2020; 26(8):1205–1211. doi: 10.1038/s41591-020-0962-9 [DOI] [PubMed] [Google Scholar]
  • 24.Verity R, Okell LC, Dorigatti I, Winskill P, Whittaker C, Imai N, et al. Estimates of the severity of coronavirus disease 2019: a model-based analysis. Lancet Infect Dis. 2020;20: 669–677. doi: 10.1016/S1473-3099(20)30243-7 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.van Zandvoort K, Jarvis CI, Pearson CAB, Davies NG; CMMID COVID-19 working group, Ratnayake R, et al. Response strategies for COVID-19 epidemics in African settings: a mathematical modelling study. BMC Med. 2020; 18(1):324. doi: 10.1186/s12916-020-01789-2 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395: 497–506. doi: 10.1016/S0140-6736(20)30183-5 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA. 2020;323: 2052. doi: 10.1001/jama.2020.6775 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Read JM, Lessler J, Riley S, Wang S, Tan LJ, Kwok KO, et al. Social mixing patterns in rural and urban areas of southern China. Proc R Soc B Biol Sci. 2014;281: 20140268. doi: 10.1098/rspb.2014.0268 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Dodd PJ, Looker C, Plumb ID, Bond V, Schaap A, Shanaube K, et al. Age- and Sex-Specific Social Contact Patterns and Incidence of Mycobacterium tuberculosis Infection. Am J Epidemiol. 2016;183. doi: 10.1093/aje/kwv139 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Melegaro A, Fava E Del, Poletti P, Merler S, Nyamukapa C, Williams J, et al. Social Contact Structures and Time Use Patterns in the Manicaland Province of Zimbabwe. PLoS One. 2017;12: e0170459. doi: 10.1371/journal.pone.0170459 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Demographic and Health Surveys. The DHS Program—Demographic and Health Survey (DHS). Available: https://dhsprogram.com/What-We-Do/Survey-Types/DHS.cfm
  • 32.United Nations Department of Economic and Social Affairs Population Division. World Population Prospects. 2019. Available: https://population.un.org/wpp/
  • 33.International Labour Organization. Labour force by sex and age. Available: https://www.ilo.org/shinyapps/bulkexplorer45/?lang = en&segment = indicator&id = EAP_2EAP_SEX_AGE_NB_A
  • 34.UNESCO Institute for Statistics. UIS Statistics. Available: http://data.uis.unesco.org/
  • 35.OECD. Teachers by age (indicator). 2020. doi: 10.1787/93af1f9d-en [DOI]
  • 36.United Nations Department of Economic and Social Affairs Population Division. Urban and Rural Population by Age and Sex, 1980–2015. Available: https://www.un.org/en/development/desa/population/publications/dataset/urban/urbanAndRuralPopulationByAgeAndSex.asp
  • 37.United Nations Statistics Division. United Nations Statistics Division—Demographic and Social Statistics. [cited 21 Jul 2020]. Available: https://unstats.un.org/unsd/demographic/sconcerns/densurb/densurbmethods.htm#D
  • 38.International Labour Organization. Labour force participation rate by sex, age and rural / urban areas. Available: https://www.ilo.org/shinyapps/bulkexplorer11/?lang = en&segment = indicator&id = EAP_2WAP_SEX_AGE_GEO_RT_A
  • 39.OECD. Differences in rural and urban schools’; student-teacher ratio and class size, 2015. OECD Publishing; 2018. [Google Scholar]
  • 40.Social contact data | Zenodo. Available: https://zenodo.org/communities/social_contact_data/search?page = 1&size = 20
  • 41.le Polain de Waroux O, Cohuet S, Ndazima D, Kucharski AJ, Juan-Giner A, Flasche S, et al. Characteristics of human encounters and social mixing patterns relevant to infectious diseases spread by close contact: A survey in Southwest Uganda. BMC Infect Dis. 2018;18: 172. doi: 10.1186/s12879-018-3073-1 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Funk S. socialmixr: Social Mixing Matrices for Infectious Disease Modelling. The Comprehensive R Archive Network. Available: https://cran.r-project.org/web/packages/socialmixr/index.html [Google Scholar]
  • 43.Zhang J, Klepac P, Read JM, Rosello A, Wang X, Lai S, et al. Patterns of human social contact and contact with animals in Shanghai, China. Sci Rep. 2019;9: 1–11. doi: 10.1038/s41598-018-37186-2 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Leung K, Jit M, Lau EHY, Wu JT. Social contact patterns relevant to the spread of respiratory infectious diseases in Hong Kong. Sci Rep. 2017;7: 1–12. doi: 10.1038/s41598-016-0028-x [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Béraud G, Kazmercziak S, Beutels P, Levy-Bruhl D, Lenne X, Mielcarek N, et al. The French Connection: The First Large Population-Based Contact Survey in France Relevant for the Spread of Infectious Diseases. Chuang J-H, editor. PLoS One. 2015;10: e0133203. doi: 10.1371/journal.pone.0133203 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Kiti MC, Kinyanjui TM, Koech DC, Munywoki PK, Medley GF, Nokes DJ. Quantifying Age-Related Rates of Social Contact Using Diaries in a Rural Coastal Population of Kenya. Borrmann S, editor. PLoS One. 2014;9: e104786. doi: 10.1371/journal.pone.0104786 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Grijalva CG, Goeyvaerts N, Verastegui H, Edwards KM, Gil AI, Lanata CF, et al. A Household-Based Study of Contact Networks Relevant for the Spread of Infectious Diseases in the Highlands of Peru. Chowell G, editor. PLoS One. 2015;10: e0118457. doi: 10.1371/journal.pone.0118457 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Ajelli M, Litvinova M. Estimating contact patterns relevant to the spread of infectious diseases in Russia. J Theor Biol. 2017;419: 1–7. doi: 10.1016/j.jtbi.2017.01.041 [DOI] [PubMed] [Google Scholar]
  • 49.Johnstone-Robertson SP, Mark D, Morrow C, Middelkoop K, Chiswell M, Aquino LDH, et al. Social Mixing Patterns Within a South African Township Community: Implications for Respiratory Disease Transmission and Control. Am J Epidemiol. 2011;174: 1246–1255. doi: 10.1093/aje/kwr251 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Horby P, Thai PQ, Hens N, Yen NTT, Mai LQ, Thoang DD, et al. Social Contact Patterns in Vietnam and Implications for the Control of Infectious Diseases. Munayco C, editor. PLoS One. 2011;6: e16965. doi: 10.1371/journal.pone.0016965 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria; 2018. Available: https://www.r-project.org/
  • 52.Prem K, van Zandvoort K, Klepac P, Eggo RM, Davies NG, CMMID COVID-19 Working Group, et al. Analysis data and code for “Projecting contact matrices in 177 geographical regions: an update and comparison with empirical data for the COVID-19 era.” Zenodo; 2021. doi: 10.5281/zenodo.4889500 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Liu CY, Berlin J, Kiti MC, Fava E Del, Grow A, Zagheni E, et al. Rapid review of social contact patterns during the COVID-19 pandemic. medRxiv. 2021; 2021.03.12.21253410. doi: 10.1101/2021.03.12.21253410 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Jarvis CI, Van Zandvoort K, Gimma A, Prem K, Klepac P, Rubin GJ, et al. Quantifying the impact of physical distance measures on the transmission of COVID-19 in the UK. BMC Med. 2020;18: 124. doi: 10.1186/s12916-020-01597-8 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Latsuzbaia A, Herold M, Bertemes J-P, Mossong J. Evolving social contact patterns during the COVID-19 crisis in Luxembourg. Shaman J, editor. PLoS One. 2020;15: e0237128. doi: 10.1371/journal.pone.0237128 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Zhang J, Litvinova M, Liang Y, Wang Y, Wang W, Zhao S, et al. Changes in contact patterns shape the dynamics of the COVID-19 outbreak in China. Science (80-). 2020;368: 1481–1486. doi: 10.1126/science.abb8001 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Coletti P, Wambua J, Gimma A, Willem L, Vercruysse S, Vanhoutte B, et al. CoMix: comparing mixing patterns in the Belgian population during and after lockdown. Sci Rep. 2020;10: 21885. doi: 10.1038/s41598-020-78540-7 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Kelley K, Clark B, Brown V, Sitzia J. Good practice in the conduct and reporting of survey research. International Journal for Quality in Health Care. 2003. pp. 261–266. doi: 10.1093/intqhc/mzg031 [DOI] [PubMed] [Google Scholar]
  • 59.Beutels P, Shkedy Z, Aerts M, Van Damme P. Social mixing patterns for transmission models of close contact infections: Exploring self-evaluation and diary-based data collection through a web-based interface. Epidemiol Infect. 2006;134: 1158–1166. doi: 10.1017/S0950268806006418 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Klepac P, Kissler S, Gog J. Contagion! The BBC Four Pandemic–The model behind the documentary. Epidemics. 2018;24: 49–59. doi: 10.1016/j.epidem.2018.03.003 [DOI] [PubMed] [Google Scholar]
  • 61.Smieszek T, Castell S, Barrat A, Cattuto C, White PJ, Krause G. Contact diaries versus wearable proximity sensors in measuring contact patterns at a conference: method comparison and participants’ attitudes. BMC Infect Dis. 2016;16: 341. doi: 10.1186/s12879-016-1676-y [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Ozella L, Gesualdo F, Tizzoni M, Rizzo C, Pandolfi E, Campagna I, et al. Close encounters between infants and household members measured through wearable proximity sensors. PLoS One. 2018;13: e0198733. doi: 10.1371/journal.pone.0198733 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Cattuto C, den Broeck W, Barrat A, Colizza V, Pinton J-F, Vespignani A. Dynamics of Person-to-Person Interactions from Distributed RFID Sensor Networks. Neylon C, editor. PLoS One. 2010;5: e11596. doi: 10.1371/journal.pone.0011596 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Ferretti L, Wymant C, Kendall M, Zhao L, Nurtay A, Abeler-Dörner L, et al. Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing. Science (80-). 2020;368. doi: 10.1126/science.abb6936 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Klepac P, Kucharski AJ, Conlan AJ, Kissler S, Tang M, Fry H, et al. Contacts in context: large-scale setting-specific social mixing matrices from the BBC Pandemic project. medRxiv. 2020; 2020.02.16.20023754. doi: 10.1101/2020.02.16.20023754 [DOI] [Google Scholar]
PLoS Comput Biol. doi: 10.1371/journal.pcbi.1009098.r001

Decision Letter 0

Matthew (Matt) Ferrari, Virginia E Pitzer

3 Mar 2021

Dear Dr. Jit,

Thank you very much for submitting your manuscript "Projecting contact matrices in 177 geographical regions: an update and comparison with empirical data for the COVID-19 era" for consideration at PLOS Computational Biology. As with all papers reviewed by the journal, your manuscript was reviewed by members of the editorial board and by several independent reviewers. The reviewers appreciated the attention to an important topic. Based on the reviews, we are likely to accept this manuscript for publication, providing that you modify the manuscript according to the review recommendations.

With apologies to the authors for the long delay in this review. We have received three reviews that are complimentary of the work and I believe the concerns can be addressed with minor revisions. Specifically, both R3 and R4 make several minor comments that should be addressed in a revision.

R2 has suggested that some additional detail be provided on the out-of-sample fits. This could be done both quantitatively as the reviewer suggests, or qualitatively - e.g. describing the fit in more detail. For example, Figure 2A is carrying a lot of the weight for the claim the the out-of-sample comparison is good. It seems that there is some additional nuance that could be discussed here and additional information that could be conveyed in the right-hand column of 2A. For example -- consider using different plotting characters (solid circles, open triangles, open squares) to represent matrix cells that are on, above, and below the diagonal, respectively. This would help to visualize whether or not the correlation is dominated by fits to different components of the contact matrix (for example the Shanghai matrix looks like it is dominated by good fit along the diagonal for young ages, but the off diagonals are mismatched - empirical is stronger above the diagonal, synthetic stronger below -- and poorly correlated for older ages; while other matrices appear to be very well correlated). This is just an example of a change to the plot, but the reviewers have requested some more substantive discussion of the out-of-sample fit, which I think would strengthen the manuscript.

Please prepare and submit your revised manuscript within 30 days. If you anticipate any delay, please let us know the expected resubmission date by replying to this email.

When you are ready to resubmit, please upload the following:

[1] A letter containing a detailed list of your responses to all review comments, and a description of the changes you have made in the manuscript. Please note while forming your response, if your article is accepted, you may have the opportunity to make the peer review history publicly available. The record will include editor decision letters (with reviews) and your responses to reviewer comments. If eligible, we will contact you to opt in or out

[2] Two versions of the revised manuscript: one with either highlights or tracked changes denoting where the text has been changed; the other a clean version (uploaded as the manuscript file).

Important additional instructions are given below your reviewer comments.

Thank you again for your submission to our journal. We hope that our editorial process has been constructive so far, and we welcome your feedback at any time. Please don't hesitate to contact us if you have any questions or comments.

Sincerely,

Matthew (Matt) Ferrari

Associate Editor

PLOS Computational Biology

Virginia Pitzer

Deputy Editor-in-Chief

PLOS Computational Biology

***********************

A link appears below if there are any accompanying review attachments. If you believe any reviews to be missing, please contact ploscompbiol@plos.org immediately:

[LINK]

With apologies to the authors for the long delay in this review. We have received three reviews that are complimentary of the work and I believe the concerns can be addressed with minor revisions. Specifically, both R3 and R4 make several minor comments that should be addressed in a revision.

R2 has suggested that some additional detail be provided on the out-of-sample fits. This could be done both quantitatively as the reviewer suggests, or qualitatively - e.g. describing the fit in more detail. For example, Figure 2A is carrying a lot of the weight for the claim the the out-of-sample comparison is good. It seems that there is some additional nuance that could be discussed here and additional information that could be conveyed in the right-hand column of 2A. For example -- consider using different plotting characters (solid circles, open triangles, open squares) to represent matrix cells that are on, above, and below the diagonal, respectively. This would help to visualize whether or not the correlation is dominated by fits to different components of the contact matrix (for example the Shanghai matrix looks like it is dominated by good fit along the diagonal for young ages, but the off diagonals are mismatched - empirical is stronger above the diagonal, synthetic stronger below -- and poorly correlated for older ages; while other matrices appear to be very well correlated). This is just an example of a change to the plot, but the reviewers have requested some more substantive discussion of the out-of-sample fit, which I think would strengthen the manuscript.

Reviewer's Responses to Questions

Comments to the Authors:

Please note here if the review is uploaded as an attachment.

Reviewer #1: Reproducibility report has been uploaded as an attachment.

Reviewer #2: This study presents an update to the study by Prem et al., which is a useful tool for projecting contact matrices to countries that don’t have detailed data on contact structures. The original study was published in PLOS Comp Biol. This study makes some incremental but useful advances over the original, including providing breakdowns by urban/rural populations. Overall, this provides a great resource for the modeling community and is something that will continue to get a lot of use. The demonstration that the synthetic matrices yield similar predictions to the empirical matrices in most situations is also a useful validation of the approach, as is the discussion and table exploring possible reasons for discrepancies..

Comments:

1)There are a number of ways in which data could be stratified sub-nationally. Urban/rural makes some sense and lines up with certain available data sources. But even within ‘urban’ areas there could be drastic differences in contact patterns, thinking of more and less affluent areas of major cities like London or New York. I' not sure that much can be done about this, but the authors could discuss additional ways inwhich subnational projections could be generated.

2)The github site contains the synthetic contact matrices for each county and for contact locations in each country. I didn’t see the associated uncertainty estimates, which might be useful to provide for use in certain modeling applications.

Reviewer #3: This manuscript presents updated results from a 2017 work from the same first author. The main changes with respect to the 2017 work include updating the datasets used to 2020 data, the inclusion of additional countries that account for an additional 1.3% of the world population and some methodological improvements in the estimation of the location specific contact matrices.

The methodology is sound and an adequate level of details is provided in order to assess the results, without the need to resort to the original 2017 paper.

I have one major point that I think should be explored and discussed, more specifically:

- When simulating the impact of physical distancing on COVID-19 spread, the authors use percentages of physical distancing are assumed uniform across all locations. However this is usually not the case when intervention strategies are put into place, for example when school closure, teleworking and the closure of leisure activities are implemented. Since contacts at home, school, work and other location for the synthetic matrices are generated according to different methods and assumptions, it would be interesting to understand how reduction in contacts that are location specific affect the results of the simulations. This would help in assess the possible bias that the synthetic matrices induce, especially when are used to assess the impact of intervention strategies.

I also have some minor comments that could be addressed by the authors to improve the manuscript readability that I list below.

- “Assessing such policies requires differences between contact patterns in rural and urban environments to be quantified, which has previously been done only for a few countries (28,29)”. Also Melegaro et al. (already cited as citation 50 in the manuscript) records different contact patterns in rural and urban setting, and could be added to the sentence.

-”In these studies, individuals in rural settings documented more contacts at home than their

urban counterparts”. Why is the number of contacts at home discussed and not the results in terms of total number of contacts? In case there is no specific reason (e.g. relation to “stay at home” interventions), the overall result should be stressed here too.

- The authors link the contacts at work with the matrix of the working population. However, when a participant makes a contact “at work” it could be a contact with a “customer” , who would not report that contact as happening at work. My point is that imposing the structure of the working population both at the participant level and at the contact level may induce a bias in the contact matrix. Could the authors discuss this issue more in depth?

- “We compare the difference in relative reduction of COVID-19 cases between using

the empirical and synthetic matrices in models of COVID-19 epidemics […] using an age-stratified

compartmental model (13,25)”. The authors should specify here that the model is presented in more depth in the additional material.

- “We model an unmitigated epidemic and three intervention scenarios: 20% physical distancing, 50% physical distancing, and shielding.” Are these assumed reduction in physical distancing in line with the reduction measured from empirical contact data measured during and after lockdown? There are several examples in literature that could be used as a reference ( Zhang et al. 2020, Jarvis et al. 2020, Coletti et al. 2020, Latsuzbaia et al. 2020).

-”Prospective surveys have been shown to be less prone to recall bias compared to their retrospective counterpart (43), but it is often more challenging to find willing participants for

prospective surveys.” However, a study by Beutels et al. 2006 found no appreciable effect of retrospective vs prospective surveying, so this issue may be different, depending on the survey setting.

References

Beutels P.et al. Social mixing patterns for transmission models of close contact infections: exploring self-evaluation and diary-based data collection through a web-based interface. Epidemiology & Infection.

Zhang, J. et al. Changes in contact patterns shape the dynamics of the covid-19 outbreak in china. Science

Jarvis, C. I. et al. Quantifying the impact of physical distance measures on the transmission of COVID-19 in the UK. BMC Medicine

Coletti P. et al. CoMix: comparing mixing patterns in the Belgian population during and after lockdown. Scientific Reports.

Latsuzbaia, A., Herold, M., Bertemes, J.-P. & Mossong, J. Evolving social contact patterns during the covid-19 crisis in Luxembourg. PLOS ONE 15,

Reviewer #4: This is an impressive update to the earlier version of the matrices.

Detailed comments.

Abstract: “We found that the synthetic contact matrices reproduce the main traits of the contact patterns in the empirically-constructed contact matrices.” Needs to be more specific - what is the measure of similarity and how good is it.

No page numbers or line numbers! Using page numbers from the pdf.

Page 9, Line +3; These contact matrices have been useful and have been used to explore policy space. However, it is not clear that their shape is preserved in the presence of a severe pathogen. The coix study from the UK gets to this to some degree. The work presented here is still incredibly useful, but this section does need some caveats so prevent modelling studies making overly strong assumptions.

10,+10; use of “proclivity” not clear here

10,+13; How is the “spatial” smoothness. That doesn’t quite make sense to me.

13,+14; Suggest a zenodo archive of the github with a doi as a permanent record of the code that goes with the paper

13,-6; shielding: this needs a little more discussion. There isn’t really evidence for this as an effective policy. It represents a desirable outcome, but wasn’t really achieved by a deliberate policy anywhere. School closure as a reduction in children’s contacts would be a better generic example.

15,+10; is HAM defined? What was the range of correlations? This is the key bit of the paper. I suggest a supp in figure of actual versus predicted heat-map-grid charts of predicted versus observed for the polymod data

15,-11; please state the magnitude of the difference, perhaps in % peak of epidemics or % change in time to peak, or in % change in attack rate. As with the original paper, this is an important resource, but its also a resource we will want to improve on over time. It’s therefore important to identify numerical targets for those improvements.

17,-2; The discussion paragraph on time is important and should also reflect transient changes during, especially during the key initial phase of a pandemic.

**********

Have all data underlying the figures and results presented in the manuscript been provided?

Large-scale datasets should be made available via a public repository as described in the PLOS Computational Biology data availability policy, and numerical data that underlies graphs or summary statistics should be provided in spreadsheet form as supporting information.

Reviewer #1: Yes

Reviewer #2: Yes

Reviewer #3: Yes

Reviewer #4: Yes

**********

PLOS authors have the option to publish the peer review history of their article (what does this mean?). If published, this will include your full peer review and any attached files.

If you choose “no”, your identity will remain anonymous but your review may still be made public.

Do you want your identity to be public for this peer review? For information about this choice, including consent withdrawal, please see our Privacy Policy.

Reviewer #1: Yes: Anand K. Rampadarath

Reviewer #2: No

Reviewer #3: No

Reviewer #4: No

Figure Files:

While revising your submission, please upload your figure files to the Preflight Analysis and Conversion Engine (PACE) digital diagnostic tool, https://pacev2.apexcovantage.com. PACE helps ensure that figures meet PLOS requirements. To use PACE, you must first register as a user. Then, login and navigate to the UPLOAD tab, where you will find detailed instructions on how to use the tool. If you encounter any issues or have any questions when using PACE, please email us at figures@plos.org.

Data Requirements:

Please note that, as a condition of publication, PLOS' data policy requires that you make available all data used to draw the conclusions outlined in your manuscript. Data must be deposited in an appropriate repository, included within the body of the manuscript, or uploaded as supporting information. This includes all numerical values that were used to generate graphs, histograms etc.. For an example in PLOS Biology see here: http://www.plosbiology.org/article/info%3Adoi%2F10.1371%2Fjournal.pbio.1001908#s5.

Reproducibility:

To enhance the reproducibility of your results, PLOS recommends that you deposit laboratory protocols in protocols.io, where a protocol can be assigned its own identifier (DOI) such that it can be cited independently in the future. For instructions see http://journals.plos.org/ploscompbiol/s/submission-guidelines#loc-materials-and-methods

References:

Review your reference list to ensure that it is complete and correct. If you have cited papers that have been retracted, please include the rationale for doing so in the manuscript text, or remove these references and replace them with relevant current references. Any changes to the reference list should be mentioned in the rebuttal letter that accompanies your revised manuscript.

Attachment

Submitted filename: Reproducible_report_PCOMPBIOL_D_20_01307.pdf

pcbi.1009098.s005.pdf (976.3KB, pdf)
PLoS Comput Biol. doi: 10.1371/journal.pcbi.1009098.r003

Decision Letter 1

Matthew (Matt) Ferrari, Virginia E Pitzer

3 May 2021

Dear Dr. Jit,

Thank you very much for submitting your manuscript "Projecting contact matrices in 177 geographical regions: an update and comparison with empirical data for the COVID-19 era" for consideration at PLOS Computational Biology. As with all papers reviewed by the journal, your manuscript was reviewed by members of the editorial board and by several independent reviewers. The reviewers appreciated the attention to an important topic. Based on the reviews, we are likely to accept this manuscript for publication, providing that you modify the manuscript according to the review recommendations.

I thank the authors for their careful consideration of the reviewers' comments. I am satisfied with the work the authors have done to address these concerns, but I am concerned that a stronger case must be made in the main text about the qualitative and quantitative assessment of fit between the empirical and modeled matrices (presented in Supplementary Tables 4 and 5). These tables are quite helpful, but also put the magnitude of the fit into context (sometimes the fit is poor e.g. Zimbabwe in Table 5). At present there are only quite general references to the supplement, rather than explicit statements directing the reader to these specific results. I would encourage the authors to add specific text in the results to direct the reader to both Tables 4 and 5 (rather than just the corresponding sections) including a summary statement of what is to be found in the tables; e.g. a qualitative assessment of the fit and characteristics of each study (as in L348-354) and a quantitative comparison of the symmetry as a summary measure of fit.

Please prepare and submit your revised manuscript within 30 days. If you anticipate any delay, please let us know the expected resubmission date by replying to this email.

When you are ready to resubmit, please upload the following:

[1] A letter containing a detailed list of your responses to all review comments, and a description of the changes you have made in the manuscript. Please note while forming your response, if your article is accepted, you may have the opportunity to make the peer review history publicly available. The record will include editor decision letters (with reviews) and your responses to reviewer comments. If eligible, we will contact you to opt in or out

[2] Two versions of the revised manuscript: one with either highlights or tracked changes denoting where the text has been changed; the other a clean version (uploaded as the manuscript file).

Important additional instructions are given below your reviewer comments.

Thank you again for your submission to our journal. We hope that our editorial process has been constructive so far, and we welcome your feedback at any time. Please don't hesitate to contact us if you have any questions or comments.

Sincerely,

Matthew (Matt) Ferrari

Associate Editor

PLOS Computational Biology

Virginia Pitzer

Deputy Editor-in-Chief

PLOS Computational Biology

***********************

A link appears below if there are any accompanying review attachments. If you believe any reviews to be missing, please contact ploscompbiol@plos.org immediately:

[LINK]

I thank the authors for their careful consideration of the reviewers' comments. I am satisfied with the work the authors have done to address these concerns, but I am concerned that a stronger case must be made in the main text about the qualitative and quantitative assessment of fit between the empirical and modeled matrices (presented in Supplementary Tables 4 and 5). These tables are quite helpful, but also put the magnitude of the fit into context (sometimes the fit is poor e.g. Zimbabwe in Table 5). At present there are only quite general references to the supplement, rather than explicit statements directing the reader to these specific results. I would encourage the authors to add specific text in the results to direct the reader to both Tables 4 and 5 (rather than just the corresponding sections) including a summary statement of what is to be found in the tables; e.g. a qualitative assessment of the fit and characteristics of each study (as in L348-354) and a quantitative comparison of the symmetry as a summary measure of fit.

Figure Files:

While revising your submission, please upload your figure files to the Preflight Analysis and Conversion Engine (PACE) digital diagnostic tool, https://pacev2.apexcovantage.com. PACE helps ensure that figures meet PLOS requirements. To use PACE, you must first register as a user. Then, login and navigate to the UPLOAD tab, where you will find detailed instructions on how to use the tool. If you encounter any issues or have any questions when using PACE, please email us at figures@plos.org.

Data Requirements:

Please note that, as a condition of publication, PLOS' data policy requires that you make available all data used to draw the conclusions outlined in your manuscript. Data must be deposited in an appropriate repository, included within the body of the manuscript, or uploaded as supporting information. This includes all numerical values that were used to generate graphs, histograms etc.. For an example in PLOS Biology see here: http://www.plosbiology.org/article/info%3Adoi%2F10.1371%2Fjournal.pbio.1001908#s5.

Reproducibility:

To enhance the reproducibility of your results, we recommend that you deposit your laboratory protocols in protocols.io, where a protocol can be assigned its own identifier (DOI) such that it can be cited independently in the future. Additionally, PLOS ONE offers an option to publish peer-reviewed clinical study protocols. Read more information on sharing protocols at https://plos.org/protocols?utm_medium=editorial-email&utm_source=authorletters&utm_campaign=protocols

References:

Review your reference list to ensure that it is complete and correct. If you have cited papers that have been retracted, please include the rationale for doing so in the manuscript text, or remove these references and replace them with relevant current references. Any changes to the reference list should be mentioned in the rebuttal letter that accompanies your revised manuscript.

If you need to cite a retracted article, indicate the article’s retracted status in the References list and also include a citation and full reference for the retraction notice.

PLoS Comput Biol. doi: 10.1371/journal.pcbi.1009098.r005

Decision Letter 2

Matthew (Matt) Ferrari, Virginia E Pitzer

20 May 2021

Dear Dr. Jit,

We are pleased to inform you that your manuscript 'Projecting contact matrices in 177 geographical regions: an update and comparison with empirical data for the COVID-19 era' has been provisionally accepted for publication in PLOS Computational Biology.

Before your manuscript can be formally accepted you will need to complete some formatting changes, which you will receive in a follow up email. A member of our team will be in touch with a set of requests.

Please note that your manuscript will not be scheduled for publication until you have made the required changes, so a swift response is appreciated.

IMPORTANT: The editorial review process is now complete. PLOS will only permit corrections to spelling, formatting or significant scientific errors from this point onwards. Requests for major changes, or any which affect the scientific understanding of your work, will cause delays to the publication date of your manuscript.

Should you, your institution's press office or the journal office choose to press release your paper, you will automatically be opted out of early publication. We ask that you notify us now if you or your institution is planning to press release the article. All press must be co-ordinated with PLOS.

Thank you again for supporting Open Access publishing; we are looking forward to publishing your work in PLOS Computational Biology. 

Best regards,

Matthew (Matt) Ferrari

Associate Editor

PLOS Computational Biology

Virginia Pitzer

Deputy Editor-in-Chief

PLOS Computational Biology

***********************************************************

I thank the authors for their revisions and am happy to recommend this manuscript for acceptance.

PLoS Comput Biol. doi: 10.1371/journal.pcbi.1009098.r006

Acceptance letter

Matthew (Matt) Ferrari, Virginia E Pitzer

20 Jul 2021

PCOMPBIOL-D-20-01307R2

Projecting contact matrices in 177 geographical regions: an update and comparison with empirical data for the COVID-19 era

Dear Dr Jit,

I am pleased to inform you that your manuscript has been formally accepted for publication in PLOS Computational Biology. Your manuscript is now with our production department and you will be notified of the publication date in due course.

The corresponding author will soon be receiving a typeset proof for review, to ensure errors have not been introduced during production. Please review the PDF proof of your manuscript carefully, as this is the last chance to correct any errors. Please note that major changes, or those which affect the scientific understanding of the work, will likely cause delays to the publication date of your manuscript.

Soon after your final files are uploaded, unless you have opted out, the early version of your manuscript will be published online. The date of the early version will be your article's publication date. The final article will be published to the same URL, and all versions of the paper will be accessible to readers.

Thank you again for supporting PLOS Computational Biology and open-access publishing. We are looking forward to publishing your work!

With kind regards,

Olena Szabo

PLOS Computational Biology | Carlyle House, Carlyle Road, Cambridge CB4 3DN | United Kingdom ploscompbiol@plos.org | Phone +44 (0) 1223-442824 | ploscompbiol.org | @PLOSCompBiol

Associated Data

    This section collects any data citations, data availability statements, or supplementary materials included in this article.

    Supplementary Materials

    S1 Text. Projecting contact matrices in 177 geographical regions: an update and comparison with empirical data for the COVID-19 era: Supplementary Material: Methods.

    (DOCX)

    pcbi.1009098.s001.docx (574.4KB, docx)
    S2 Text. Projecting contact matrices in 177 geographical regions: an update and comparison with empirical data for the COVID-19 era: Supplementary Material: results of the household age matrices.

    (DOCX)

    pcbi.1009098.s002.docx (9.8MB, docx)
    S3 Text. Projecting contact matrices in 177 geographical regions: an update and comparison with empirical data for the COVID-19 era: Supplementary Material: results of the country-specific age- and location-specific contact matrices.

    (DOCX)

    pcbi.1009098.s003.docx (19.6MB, docx)
    S4 Text. Projecting contact matrices in 177 geographical regions: an update and comparison with empirical data for the COVID-19 era: Supplementary Material results of the comparisons with other contact matrices.

    (DOCX)

    pcbi.1009098.s004.docx (1.3MB, docx)
    Attachment

    Submitted filename: Reproducible_report_PCOMPBIOL_D_20_01307.pdf

    pcbi.1009098.s005.pdf (976.3KB, pdf)
    Attachment

    Submitted filename: responsetoreviewers.docx

    pcbi.1009098.s006.docx (3.1MB, docx)
    Attachment

    Submitted filename: responsetoreviewers2.pdf

    pcbi.1009098.s007.pdf (171.6KB, pdf)

    Data Availability Statement

    All data used in this study can be downloaded from the cited references. The codes used to generate these analyses and the updated synthetic matrices are available at https://github.com/kieshaprem/synthetic-contact-matrices DOI: 10.5281/zenodo.4889500.


    Articles from PLOS Computational Biology are provided here courtesy of PLOS

    RESOURCES