Skip to main content
Microbiology Resource Announcements logoLink to Microbiology Resource Announcements
. 2021 Aug 12;10(32):e00404-21. doi: 10.1128/MRA.00404-21

Draft Genome Sequences of 10 Bacteria from the Marine Pseudoalteromonas Group

Amanda T Alker a,b, Bhumika S Gode a,b, Alpher E Aspiras a,b, Jeffrey E Jones a,b, Sama R Michael a,b, David Aguilar a, Audrea D Cain a, Alec M Candib a, Julian M Cizmic a, Elise A Clark a, Alyssa C Cozzo a, Laura E Figueroa a, Peter A Garcia a, Casey M Heaney a, Alexandra T Levy a, Luke Macknight a, Anna S McCarthy a, John P McNamara a, Kelvin A Nguyen a, Kendall N Rollin a, Gabriella Y Salcedo a, Julia A Showalter a, Andrew D Sue a, Tony R Zamro a, Tiffany L Dunbar a,b, Kyle E Malter a,b, Nicholas J Shikuma a,b,
Editor: Catherine Putontic
PMCID: PMC8359785  PMID: 34382833

ABSTRACT

Here, we report the draft genome sequences of 10 marine Pseudoalteromonas bacteria that were isolated, assembled, and annotated by undergraduate students participating in a marine microbial genomics course. Genomic comparisons suggest that 7 of the 10 strains are novel isolates, providing a resource for future marine microbiology investigations.

ANNOUNCEMENT

The genus Pseudoalteromonas comprises numerous marine species that are found in association with marine plants and animals (1). Some Pseudoalteromonas species produce compounds that inhibit the fouling of marine surfaces by invertebrates and algae (2), while others stimulate the metamorphosis of tubeworms, urchins, and corals (3). Many pseudoalteromonads possess the ability to produce diverse specialized metabolites (46), providing an understudied resource for biotechnology.

To engage undergraduates in discovery-based research, 10 purified isolates were cultured, and their genomes were sequenced, assembled, annotated, and analyzed by students participating in a marine microbial genomics (MMG) course at San Diego State University. The strains were collected from various marine organisms or objects using sterile cotton swabs (Table 1). A single colony of each strain was obtained on marine agar 2216 (BD Difco, Franklin Lakes, NJ, USA) and incubated at 25°C for 24 to 48 h. Colonies were transferred to marine broth 2216 and incubated for 24 to 48 h at 25°C before storage and DNA isolation. Genomic DNA was extracted using a Quick-DNA fungal/bacterial miniprep kit (Zymo Research, Irvine, CA, USA). 16S rRNA gene (27F-1492R) Sanger sequencing (Eton Biosciences, San Diego, CA, USA) classified all strains as being within the Pseudoalteromonas genus (>98% identity, >97% coverage). DNA was submitted to the Microbial Genome Sequencing Center (Pittsburgh, PA, USA) for library preparation (Illumina DNA prep kit; San Diego, CA, USA) and whole-genome sequencing (NextSeq 550; Illumina), producing 2 × 150-bp paired-end reads. Reads were trimmed using Trim Galore v0.6.1 (7), assembled using Unicycler v0.4.8 (8), integrated in PATRIC v3.6.9 (9), and annotated using the NCBI Prokaryotic Genome Annotation Pipeline (PGAP) v5.1 (10) with default parameters. General features of each genome are listed in Table 1.

TABLE 1.

Genome features and metadata of 10 Pseudoalteromonas strainsa,b

Strain Closest strain, assembly accession no. ANI (%) Genome size (Mb) N50 (bp) GC (%) No. of raw reads No. of contigs Coverage (×) Colony pigment No. of specialized metabolite gene clusters macB E value macS E value macT E value Isolation origin Isolation location SRA accession no. Genome accession no.
MMG001 Pseudoalteromonas luteoviolacea H33-S, GCF_001625695.1 99.4 6.19 166,341 42.0 4,233,854 155 164 Purple 25 0 0 2E-109 Tubeworm Quivera Basin, San Diego SRR14127474 JAGJEM000000000
MMG002 Pseudoalteromonas luteoviolacea H33-S, GCF_001625695.1 99.4 6.19 166,863 41.9 3,534,634 151 136 Purple 25 0 0 2E-109 Tubeworm Quivera Basin, San Diego SRR14127473 JAGJEL000000000
MMG005 Pseudoalteromonas aurantia S3895, GCA_005887285.1 78.6 5.66 173,183 40.7 2,304,625 96 98 Orange 21 0 0 2E-59 Tubeworm Quivera Basin, San Diego SRR14127467 JAGJEK000000000
MMG006 Pseudoalteromonas sp. S3178, GCA_005886985.1 92.7 4.27 184,297 39.4 2,153,867 61 123 Brown 6 NS NS NS Sediment Silver Strand, San Diego SRR14127466 JAGJEJ000000000
MMG007 Pseudoalteromonas sp. S3178, GCA_005886985.1 92.6 4.08 210,295 39.5 1,278,590 64 81 Brown 5 NS NS NS Intertidal boulder Bird Rock, San Diego SRR14127465 JAGJEI000000000
MMG009 Pseudoalteromonas luteoviolacea NCIMB1944, GCF_001625565.1 91.9 6.51 469,158 42.2 4,505,820 75 173 Purple 16 0 0 7E-105 Aquarium filter Aquarium, San Diego SRR14127464 JAGJEH000000000
MMG010 Pseudoalteromonas sp. H103, GCF_001469205.1 77.2 3.57 204,150 38.2 1,477,062 39 107 Pink 2 NS NS NS Sea snail Sunset Cliffs, San Diego SRR14127463 JAGJEG000000000
MMG012 Pseudoalteromonas sp. MSK9-3, GCA_003590335.1 79.1 5.44 56,381 40.7 1,307,359 261 62 Orange 20 0 4E-134 2E-59 Yellow sponge Sunset Cliffs, San Diego SRR14127462 JAGJEF000000000
MMG013 Pseudoalteromonas citrea S2233, GCA_005887445.1 78.6 5.84 153,003 40.8 1,538,911 145 68 Green 17 0 8E-135 2E-59 Yellow sponge Sunset Cliffs, San Diego SRR14127461 JAGJEE000000000
MMG019 Pseudoalteromonas luteoviolacea IPB1, GCF_001696455.1 98.9 5.94 309,281 42.7 3,759,179 75 170 Purple 17 0 0 3E-96 Coral Water Factory, Curacao SRR14127460 JAGJED000000000
a

ANI values are calculated with respect to the closest strain. The MAC protein sequences MacB (WP_039609830.1), MacS (WP_039609824.1), and MacT (WP_039609826.1) were searched against the genomes using tBLASTn (20).

b

NS, not significant.

To identify and compare the genomes of the newly sequenced strains with their nearest publicly available genomes, we used the Mash/MinHash search (9, 11) and calculated the average nucleotide identity (ANI) using EZBioCloud (12). Of the 10 genomes, 7 possessed ANI values that are below the 95% threshold that delineates species (13), suggesting that they are novel isolates (Table 1). When grown on marine agar 2216, all strains possessed pigmentation (Table 1) (14). When analyzed using antiSMASH v5.0 (15), the genomes were found to possess from 2 to 25 specialized metabolite biosynthesis gene clusters (Table 1). Strains MMG009 and MMG019 possess the brominated marine pyrroles/phenols (bmp) gene cluster (16, 17), which can produce a compound capable of stimulating the metamorphosis of coral larvae (18). Of the 10 genomes, 7 were found to possess macB, macS, and macT genes that compose phage tail-like contractile injection systems (Table 1), which promote tubeworm metamorphosis and other host-microbe interactions (19). These genome sequences provide a valuable resource for studying the ecology of Pseudoalteromonas bacteria and advancing natural product biotechnology.

Data availability.

The genome sequencing and assembly projects have been deposited in DDBJ/EMBL/GenBank under BioProject number PRJNA716944. See Table 1 for the SRA and GenBank accession numbers.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation (2017232404 to A.T.A.; 1942251 to N.J.S.) and the Alfred P. Sloan Foundation, Sloan Research Fellowship (N.J.S.).

Contributor Information

Nicholas J. Shikuma, Email: nshikuma@sdsu.edu.

Catherine Putonti, Loyola University Chicago.

REFERENCES

  • 1.Holmström C, Kjelleberg S. 1999. Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents. FEMS Microbiol Ecol 30:285–293. doi: 10.1111/j.1574-6941.1999.tb00656.x. [DOI] [PubMed] [Google Scholar]
  • 2.Holmström C, Egan S, Franks A, McCloy S, Kjelleberg S. 2002. Antifouling activities expressed by marine surface associated Pseudoalteromonas species. FEMS Microbiol Ecol 41:47–58. doi: 10.1111/j.1574-6941.2002.tb00965.x. [DOI] [PubMed] [Google Scholar]
  • 3.Cavalcanti GS, Alker AT, Delherbe N, Malter KE, Shikuma NJ. 2020. The influence of bacteria on animal metamorphosis. Annu Rev Microbiol 74:137–158. doi: 10.1146/annurev-micro-011320-012753. [DOI] [PubMed] [Google Scholar]
  • 4.Gobet A, Barbeyron T, Matard-Mann M, Magdelenat G, Vallenet D, Duchaud E, Michel G. 2018. Evolutionary evidence of algal polysaccharide degradation acquisition by Pseudoalteromonas carrageenovora 9T to adapt to macroalgal niches. Front Microbiol 9:2740. doi: 10.3389/fmicb.2018.02740. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Chau R, Pearson LA, Cain J, Kalaitzis JA, Neilan BA. 2021. A Pseudoalteromonas clade with remarkable biosynthetic potential. Appl Environ Microbiol 87:1–16. doi: 10.1128/AEM.02604-20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Bowman JP. 2007. Bioactive compound synthetic capacity and ecological significance of marine bacterial genus Pseudoalteromonas. Mar Drugs 5:220–241. doi: 10.3390/md504220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Krueger F. 2015. Trim Galore: a wrapper tool around Cutadapt and FastQC to consistently apply quality and adapter trimming to FastQ files. https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/.
  • 8.Wick RR, Judd LM, Gorrie CL, Holt KE. 2017. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 13:e1005595. doi: 10.1371/journal.pcbi.1005595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Davis JJ, Wattam AR, Aziz RK, Brettin T, Butler R, Butler RM, Chlenski P, Conrad N, Dickerman A, Dietrich EM, Gabbard JL, Gerdes S, Guard A, Kenyon RW, MacHi D, Mao C, Murphy-Olson D, Nguyen M, Nordberg EK, Olsen GJ, Olson RD, Overbeek JC, Overbeek R, Parrello B, Pusch GD, Shukla M, Thomas C, Vanoeffelen M, Vonstein V, Warren AS, Xia F, Xie D, Yoo H, Stevens R. 2020. The PATRIC Bioinformatics Resource Center: expanding data and analysis capabilities. Nucleic Acids Res 48:D606–D612. doi: 10.1093/nar/gkz943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Tatusova T, Dicuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, Ostell J. 2016. NCBI Prokaryotic Genome Annotation Pipeline. Nucleic Acids Res 44:6614–6624. doi: 10.1093/nar/gkw569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, Phillippy AM. 2016. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol 17:132. doi: 10.1186/s13059-016-0997-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617. doi: 10.1099/ijsem.0.001755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Thompson CC, Chimetto L, Edwards RA, Swings J, Stackebrandt E, Thompson FL. 2013. Microbial genomic taxonomy. BMC Genomics 14:913. doi: 10.1186/1471-2164-14-913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Paulsen SS, Strube ML, Bech PK, Gram L, Sonnenschein EC. 2019. Marine chitinolytic Pseudoalteromonas represents an untapped reservoir of bioactive potential. mSystems 4:e00060-19. doi: 10.1128/mSystems.00060-19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, Medema MH, Weber T. 2019. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 47:W81–W87. doi: 10.1093/nar/gkz310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Agarwal V, El Gamal AA, Yamanaka K, Poth D, Kersten RD, Schorn M, Allen EE, Moore BS. 2014. Biosynthesis of polybrominated aromatic organic compounds by marine bacteria. Nat Chem Biol 10:640–647. doi: 10.1038/nchembio.1564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.El Gamal A, Agarwal V, Diethelm S, Rahman I, Schorn MA, Sneed JM, Louie GV, Whalen KE, Mincer TJ, Noel JP, Paul VJ, Moore BS. 2016. Biosynthesis of coral settlement cue tetrabromopyrrole in marine bacteria by a uniquely adapted brominase-thioesterase enzyme pair. Proc Natl Acad Sci USA 113:3797–3802. doi: 10.1073/pnas.1519695113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Tebben J, Tapiolas DM, Motti CA, Abrego D, Negri AP, Blackall LL, Steinberg PD, Harder T. 2011. Induction of larval metamorphosis of the coral Acropora millepora by tetrabromopyrrole isolated from a Pseudoalteromonas bacterium. PLoS One 6:e19082. doi: 10.1371/journal.pone.0019082. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Shikuma NJ, Pilhofer M, Weiss GL, Hadfield MG, Jensen GJ, Newman DK. 2014. Marine tubeworm metamorphosis induced by arrays of bacterial phage tail-like structures. Science 343:529–533. doi: 10.1126/science.1246794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. 2009. BLAST+: architecture and applications. BMC Bioinformatics 10:421–429. doi: 10.1186/1471-2105-10-421. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

The genome sequencing and assembly projects have been deposited in DDBJ/EMBL/GenBank under BioProject number PRJNA716944. See Table 1 for the SRA and GenBank accession numbers.


Articles from Microbiology Resource Announcements are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES