Skip to main content
Acta Veterinaria Scandinavica logoLink to Acta Veterinaria Scandinavica
. 1978 Dec 1;19(4):535–542. doi: 10.1186/BF03547592

The Redox Potential of Growing Cultures of Streptococcus Rovis Orla-Jensen Compared with Other Facultative Anaerobes

Redox potentialet i υoksende kulturer af Streptococcus bovis Orla-Jensen sammenlignet med andre fakultativt anaerobe

J Wolstriip 16, S A Chaudry 16,, V Jensen 16
PMCID: PMC8366353  PMID: 33547

Abstract

The changes of redox potential were measured in growing cultures of three strains of Streptococcus bovis, together with three strains of Staphylococcus aureus and one strain of each of Lactobacillus plantaram, Lactobacillus casei, and Eschericia coli. It was found that both S. aureus and E. coli could reduce the redox potential of the growth medium to very low values (between —400 mv and —600 mv), whereas the streptococci and lactobacilli were able to cause only slight or insignificant changes of the redox potential. Respirometric measurements confirmed that the capacity of oxygen consumption of S. bovis was very small compared to that of E. coli and S. aureus. On this basis the authors conclude that S. bovis in all probability is unable to contribute significantly to maintenance of the low redox potential of its natural habitat, the rumen. This function must be carried out by other bacteria, such as enterobacteria or staphylococci, which are capable of performing a true, aerobic respiration.

Keywords: redox potential, Streptococcus bovis, ruminants

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

References

  1. Broberg G. Oxygen’s significance for the ruminal flora as illustrated by measuring the redox potential in rumen contents. Nord. Vet- Med. 1957;9:57–60. [Google Scholar]
  2. Gregory E M, Fridovich I. Oxygen metabolism in Lactobacillus plantarum. J. Bact. 1974;117:166–169. doi: 10.1128/JB.117.1.166-169.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hobson P N. The Microflora of the Rumen. Durham: Meadowfield Press Ltd.; 1976. [Google Scholar]
  4. Hungate R E. Microorganisms in the rumen of cattle fed a constant ration. Canad. J. Microbiol. 1957;3:289–311. doi: 10.1139/m57-034. [DOI] [PubMed] [Google Scholar]
  5. Jacob H E, Ribbons D IV. Redox potential. Methods in Microbiology. 1970;2:91–123. doi: 10.1016/S0580-9517(08)70218-6. [DOI] [Google Scholar]
  6. Lysons, R. J. & T. J. L. Alexander: The gnotobiotic ruminant and in vivo studies of defined bacterial populations. In Digestion and Metabolism in the Ruminant. Proc. IV Int. Symp. Ruminant Physiology, p. 180–192. Ed. by I. TV. McDonald & A. C. I. Warner. Univ, of New England Publishing Unit, Armidale 1975.
  7. Lysons R J, Alexander T J L, Wellstead P D, Hobson P N, Mann S O, Stewart C S. Defined bacterial populations in the rumen of gnotobiotic lambs. J. gen. Microbiol. 1976;94:257–269. doi: 10.1099/00221287-94-2-257. [DOI] [PubMed] [Google Scholar]
  8. Mickelson M N. Phosphorylation and the reduced nicotinamide adenine dinecleotide oxidase reaction in Streptococcus agalac- tiae. J. Bact. 1969;100:895–901. doi: 10.1128/JB.100.2.895-901.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Orla-Jensen S. The Lactic Acid Bacteria. 1919. [Google Scholar]
  10. Perry K D, Wilson M K, Newland L G M, Briggs C A E. The normal flora of the bovine rumen. III. Quantitative and qualitative studies of rumen streptococci. J. appl. Bact. 1955;18:436–442. doi: 10.1111/j.1365-2672.1955.tb02100.x. [DOI] [Google Scholar]
  11. Smalley A J, Jahrling P, VanDemark P J. Molar growth yields as evidence for oxidative phosphorylation in Streptococcus faeca- lis strain 10 Cl. J. Bact. 1968;96:1595–1600. doi: 10.1128/JB.96.5.1595-1600.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Smith P H, Hungate R E. Isolation and characterization of Metha- nobacterium ruminantium n. sp. J. Bact. 1958;75:713–718. doi: 10.1128/JB.75.6.713-718.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Whittenbury R. Hydrogen peroxide formation and catalase activity in the lactic acid bacteria. J. gen. Microbiol. 1964;35:13–26. doi: 10.1099/00221287-35-1-13. [DOI] [PubMed] [Google Scholar]
  14. Wolstrup J, Jensen V, Jensen K. The microflora and concentrations of volatile fatty acids in the rumen of cattle fed on single component rations. Acta vet. scand. 1974;15:244–255. doi: 10.1186/BF03547485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Yousten A A, Johnson J L, Salin M. Oxygen metabolism of catalase-negative and catalase-positive strains of Lactobacillus plantarum. J. Bact. 1975;123:242–247. doi: 10.1128/JB.123.1.242-247.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Acta Veterinaria Scandinavica are provided here courtesy of BMC

RESOURCES