Abstract
The changes of redox potential were measured in growing cultures of three strains of Streptococcus bovis, together with three strains of Staphylococcus aureus and one strain of each of Lactobacillus plantaram, Lactobacillus casei, and Eschericia coli. It was found that both S. aureus and E. coli could reduce the redox potential of the growth medium to very low values (between —400 mv and —600 mv), whereas the streptococci and lactobacilli were able to cause only slight or insignificant changes of the redox potential. Respirometric measurements confirmed that the capacity of oxygen consumption of S. bovis was very small compared to that of E. coli and S. aureus. On this basis the authors conclude that S. bovis in all probability is unable to contribute significantly to maintenance of the low redox potential of its natural habitat, the rumen. This function must be carried out by other bacteria, such as enterobacteria or staphylococci, which are capable of performing a true, aerobic respiration.
Keywords: redox potential, Streptococcus bovis, ruminants
Sammendrag
Ændringen af redox potentialet under væksten blev målt i kulturer af tre isolater af Streptococcus bovis, tre isolater af Staphylococcus aureus og et isolat af henholdsvis Lactobacillus casei, Lactobacillus plantarum og Escherichia coli. Målingerne viste, at S. aureus og E. coli kunne sænke redox potentialet i vækstmediet til meget lave værdier (mellem —400 mV og —600 mV), medens isolaterne af Streptococcus og Lactobacillus kun reducerede redox potentialet ganske ubetydeligt. Respirometriske målinger bekræftede, at S. bovis kun kunne forbruge ganske lidt ilt sammenlignet med E. coli og S. aureus. Det konkluderes ud fra disse målinger, at S. bovis ikke er i stand til at medvirke væsentligt til opretholdelsen af et lavt redox potentiale i vommen. Denne funktion varetages formentlig af andre bakterier, f. eks. enterobakterier og staphylokokker, som er i stand til at iværk-sætte en egentlig aerob respiration.
Full Text
The Full Text of this article is available as a PDF (1.3 MB).
References
- Broberg G. Oxygen’s significance for the ruminal flora as illustrated by measuring the redox potential in rumen contents. Nord. Vet- Med. 1957;9:57–60. [Google Scholar]
- Gregory E M, Fridovich I. Oxygen metabolism in Lactobacillus plantarum. J. Bact. 1974;117:166–169. doi: 10.1128/JB.117.1.166-169.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hobson P N. The Microflora of the Rumen. Durham: Meadowfield Press Ltd.; 1976. [Google Scholar]
- Hungate R E. Microorganisms in the rumen of cattle fed a constant ration. Canad. J. Microbiol. 1957;3:289–311. doi: 10.1139/m57-034. [DOI] [PubMed] [Google Scholar]
- Jacob H E, Ribbons D IV. Redox potential. Methods in Microbiology. 1970;2:91–123. doi: 10.1016/S0580-9517(08)70218-6. [DOI] [Google Scholar]
- Lysons, R. J. & T. J. L. Alexander: The gnotobiotic ruminant and in vivo studies of defined bacterial populations. In Digestion and Metabolism in the Ruminant. Proc. IV Int. Symp. Ruminant Physiology, p. 180–192. Ed. by I. TV. McDonald & A. C. I. Warner. Univ, of New England Publishing Unit, Armidale 1975.
- Lysons R J, Alexander T J L, Wellstead P D, Hobson P N, Mann S O, Stewart C S. Defined bacterial populations in the rumen of gnotobiotic lambs. J. gen. Microbiol. 1976;94:257–269. doi: 10.1099/00221287-94-2-257. [DOI] [PubMed] [Google Scholar]
- Mickelson M N. Phosphorylation and the reduced nicotinamide adenine dinecleotide oxidase reaction in Streptococcus agalac- tiae. J. Bact. 1969;100:895–901. doi: 10.1128/JB.100.2.895-901.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Orla-Jensen S. The Lactic Acid Bacteria. 1919. [Google Scholar]
- Perry K D, Wilson M K, Newland L G M, Briggs C A E. The normal flora of the bovine rumen. III. Quantitative and qualitative studies of rumen streptococci. J. appl. Bact. 1955;18:436–442. doi: 10.1111/j.1365-2672.1955.tb02100.x. [DOI] [Google Scholar]
- Smalley A J, Jahrling P, VanDemark P J. Molar growth yields as evidence for oxidative phosphorylation in Streptococcus faeca- lis strain 10 Cl. J. Bact. 1968;96:1595–1600. doi: 10.1128/JB.96.5.1595-1600.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith P H, Hungate R E. Isolation and characterization of Metha- nobacterium ruminantium n. sp. J. Bact. 1958;75:713–718. doi: 10.1128/JB.75.6.713-718.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whittenbury R. Hydrogen peroxide formation and catalase activity in the lactic acid bacteria. J. gen. Microbiol. 1964;35:13–26. doi: 10.1099/00221287-35-1-13. [DOI] [PubMed] [Google Scholar]
- Wolstrup J, Jensen V, Jensen K. The microflora and concentrations of volatile fatty acids in the rumen of cattle fed on single component rations. Acta vet. scand. 1974;15:244–255. doi: 10.1186/BF03547485. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yousten A A, Johnson J L, Salin M. Oxygen metabolism of catalase-negative and catalase-positive strains of Lactobacillus plantarum. J. Bact. 1975;123:242–247. doi: 10.1128/JB.123.1.242-247.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
