Abstract
The effect of variations in pH and salt concentration on the absorption by rainbow trout of sulphonamides from water was investigated. Two trials were carried out: 1) Absorption from fresh water of sulphanilamide (pKa 10.4) and sulphadimidine (pKa 7.4) at pH 4, 6, 8 and 10 over a period of 96 hrs., and 2) Absorption from fresh water and sea water (salinity approx. 31 ‰) of the same two sulphonamides at pH 6 and 8 over a period of 24 hrs. The degree of acetylation of the two sulphonamides in rainbow trout was investigated.
Keywords: sulphanilamide; sulphadimidine; rainbow trout, Salmo gairdneri; absorption; pH; salt water; fresh water; acetylation
Sammendrag
Effekten av varierende pH og saltkonsentrasjon på regnbueørretens absorpsjon av sulfonamider fra vann ble undersøkt. Det ble foretatt to forsøk: 1) Absorpsjon fra ferskvann av sulfanilamid (pKa 10,4) og sulfadimidin (pKa 7,4) ved pH 4, 6, 8 og 10 over 96 timer, og 2) Absorpsjon fra ferskvann og sjøvann (salinitet ca 31 %) av de samme to sulfonamider ved pH 6 og 8 over 24 timer. Acetyleringsgraden av de to sulfonamidene hos regnbueørret ble undersøkt.
Full Text
The Full Text of this article is available as a PDF (969.4 KB).
Acknowledgements
The experiments were carried out at the Fishery Research Station, Sunndalsøra. We thank the staff there for assistance during the investigation. We are especially grateful to laboratory technician Thorbjørn Myrvold, of the Department of Pharmacology and Toxicology, Veterinary College of Norway. Mr. Myrvold participated in the practical work involved and carried out all the analyses.
References
- Bergsjø T. The absorption of sulphadimidine in cod fish. Acta vet. scand. 1974;15:442–444. doi: 10.1186/BF03547471. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bratton A C, Marshall E K. New coupling component for sulfanilamide determination. J. biol. Chem. 1939;128:537–550. [Google Scholar]
- Evans D H. Ionic exchange mechanisms in fish gills. Comp. Biochem. Physiol. 1975;51A:491–495. doi: 10.1016/0300-9629(75)90331-X. [DOI] [PubMed] [Google Scholar]
- Hunn J B, Allen J L. Movement of drugs across the gills of fishes. Ann. Rev. Pharmacol. 1974;14:47–55. doi: 10.1146/annurev.pa.14.040174.000403. [DOI] [Google Scholar]
- King E H, Haslewood G A D, Delory G E, Beali D. Micro-chemical methods of blood analysis. Lancet. 1942;242:207–209. doi: 10.1016/S0140-6736(00)79478-5. [DOI] [Google Scholar]
- Motáis R, Garcia-Romeu F. Transport mechanisms in the teleostean gill and amphibian skin. Ann. Rev. Physiol. 1972;34:141–176. doi: 10.1146/annurev.ph.34.030172.001041. [DOI] [PubMed] [Google Scholar]
- Packer R K, Dunson W A. Effects of low environmental pH on blood pH and sodium balance of brook trout. J. exp. Zool. 1970;174:65–72. doi: 10.1002/jez.1401740107. [DOI] [Google Scholar]
- Parry G. Osmotic adaptation in fishes. Biol. Rev. 1966;41:392–441. doi: 10.1111/j.1469-185X.1966.tb01499.x. [DOI] [PubMed] [Google Scholar]
- Potts W T W, Foster M A, Stather J W. Salt and water balance in salmon smolts. J. exp. Biol. 1970;52:553–564. doi: 10.1242/jeb.52.3.553. [DOI] [PubMed] [Google Scholar]
- Shore P A, Brodie B B, Hogben C A M. The gastric secretion of drugs: A pH partition hypothesis. J. Pharmacol, exp. Ther. 1957;119:361–369. [PubMed] [Google Scholar]
- Sills J B, Allen J L. The influence of pH on the efficacy and residues of Quinaldine. Trans. Amer. Fish. Soc. 1971;100:544–545. doi: 10.1577/1548-8659(1971)100<544:TIOPOT>2.0.CO;2. [DOI] [Google Scholar]