Skip to main content
Microbiology Resource Announcements logoLink to Microbiology Resource Announcements
. 2021 Aug 19;10(33):e00539-21. doi: 10.1128/MRA.00539-21

Complete Genome Sequence of High Current-Producing Geobacter sulfurreducens Strain YM35, Isolated from River Sediment in Japan

Takashi Fujikawa a, Yoshitoshi Ogura b, Tetsuya Hayashi c, Kengo Inoue d,
Editor: J Cameron Thrashe
PMCID: PMC8375489  PMID: 34410151

ABSTRACT

Here, we report the complete genome sequence of Geobacter sulfurreducens strain YM35, which was isolated from biofilms formed on an anode in a bioelectrochemical system where river sediment was used as an inoculum. The chromosome is 3,745,223 bp with a G+C content of 60.9%. The chromosome contains 3,324 protein-coding genes.

ANNOUNCEMENT

Geobacter sulfurreducens is one of the high current-producing bacteria, which transfer electrons to extracellular electrodes in their respiration processes (1, 2). The mechanism of the extracellular electron transfer to electrodes in G. sulfurreducens has been extensively studied in the strain PCA, which is the type strain of G. sulfurreducens (3). G. sulfurreducens strains KN400 and YM18, which produce a higher current density than strain PCA, were also isolated, and their complete genome sequences have been determined (46). Here, we determined the complete genome sequence of G. sulfurreducens strain YM35, which is another high current-producing strain, isolated from biofilms formed on an anode poised at −0.2 V (versus standard electrode system [SHE]) in a bioelectrochemical system where river sediment was used as an inoculum (T. Fujikawa, Y. Ogura, K. Ishigami, Y. Kawano, M. Nagamine, T. Hayashi, and K. Inoue, submitted for publication).

A frozen stock of strain YM35 (Fujikawa et al., submitted) was inoculated into NBAF medium with acetate (10 mM) and fumarate (40 mM) as the sole electron donor and acceptor, respectively, and cultivated at 30°C, as described previously (7). The medium was bubbled with N2-CO2 mixed gas (80:20, vol/vol) and autoclaved at 121°C for 30 min. The sterilized anaerobic l-cysteine solution was added to the medium before use (final concentration, 1 mM). Genomic DNA was purified with the genomic-tip 100/G column and genomic DNA buffer set (Qiagen) according to the manufacturer’s instructions. A paired-end library was constructed using the Nextera XT DNA library preparation kit (Illumina). The library was sequenced using an Illumina MiSeq instrument with the MiSeq reagent kit version 2 (Illumina) to obtain 251-bp paired-end reads. An 8-kb mate-pair library was also prepared using the Nextera mate-pair sample preparation kit (Illumina) and sequenced using the MiSeq platform. Low-quality sequences and adapters were removed using Platanus_trim version 1.0.7 (http://platanus.bio.titech.ac.jp/pltanus_trim). Default parameters were used for all software unless otherwise specified. A total of 3,206,380 paired-end and 1,057,520 mate-pair reads were assembled by Platanus version 1.2.1 (8), yielding 1 scaffold containing 33 gaps. The gap-spanning regions were amplified by PCR using the genomic DNA extracted from strain YM35 cells cultured in NBAF medium at 30°C as the template and the amplification primers listed in Table 1. Amplicons were sequenced by Sanger sequencing using the sequencing primers listed in Table 1, and gap sequences (69,183 bp in total) were determined. The coverage of the whole-genome sequence was 137×. The complete genome of strain YM35 consists of a 3,745,223-bp circular chromosome with a G+C content of 60.9%. The genome was smaller than that of strain PCA (3,814,128 bp) and larger than those of strains KN400 (3,726,411 bp) and YM18 (3,714,272 bp). No plasmid was found. Annotation by NCBI Prokaryotic Genome Annotation Pipeline (PGAP) version 5.2 (https://www.ncbi.nlm.nih.gov/genome/annotation_prok) (9) identified 2 rRNA operons, 48 tRNA genes, and 3,324 protein-coding sequences (CDSs). The 3,324 CDSs included 102 genes for c-type cytochromes, which was comparable to those of strains PCA, KN400, and YM18.

TABLE 1.

Primers used for PCR and sequencing of the gaps in the assembled draft genome sequence of strain YM35

Gap no. Forward primer (5′ to 3′)a Reverse primer (5′ to 3′)a For use in: Annealing temp (°C)b Extension time (s)b In the final closed chromosome
No. of Ns Start position End position
1 GGACGAACTACCGGTTTCTTTC CATCCAGGCTGATGTAGACCAT PCR amplification, sequencing 60 30 287 225930 226216
2 CCGGTATACGAGACAACTCCAT CTGGCAGAGAATGATCAAGATG PCR amplification, sequencing 60 30 5,772 489062 494833
CATGTCCGTTGCCGGATCGAAG AGCAGTGCGGCCGTAGTGAAAC Sequencing
TGTGGTCACAACGTGATCGC TCGAGACGGTGACGAACTTC Sequencing
TCGAAGATGTGCGGCAGATC ACAAGGGGTCGTCGGATATC Sequencing
CAACTCCGAATACCACAAAC GCTGGACCTTTTCAAGGGTC Sequencing
TTCCGCATGAAGTACTCGAG Sequencing
3 CTGAAACGGTACACGGAGGT GATGTCGCTCATGTGGATGC PCR amplification, sequencing 60 30 211 606728 606938
4 TGGGGAATGATTTGGTAGTTTC GATGCTATCCTTCCGACCATAC PCR amplification, sequencing 60 30 4,872 690253 695124
AAGCACCGGCTAACTCCGTGCC AGCTGCCCGTGCAGTATCATCG Sequencing
AGCGCAACCCTTATCATCAG ATGAGCCGACATCGAGGTGC Sequencing
AGGAGGTCATCGGTTCGAAC AGTCGCTACCGCCATTTCTC Sequencing
CATCGTTTTCCACTTAGCATGG Sequencing
AGGGTGAATCAAGGTTTCGC Sequencing
5 CCACGATCCCCTTGATATAGTT CGGTAACCGTAACTGACAATCC PCR amplification, sequencing 60 30 1,846 776037 777882
TGTCGCGGATGAAGGCATTGAG ACGTCCTCATTGCCCGGTTCAC Sequencing
6 TTCCCCAGAACTTGATCTGATT CAGATTGTATTGGCAGGAACAA PCR amplification, sequencing 60 30 6,166 812018 818183
GATCACCTTCACGAGCCTTGAG ACCCACCTGGAGGATATGTACG Sequencing
TGGCGATCGTCTACATGCTG ACAACTGGCAGCGGATTATC Sequencing
GAACAAATGGCCACGGCCTC TGATTCCGCCCTGGTAGAG Sequencing
ACGTCACCAACCAAATCAGC CCATAACTAAACCGGCCATG Sequencing
7 CATATAGTCGAGCGTCTGTTCG GGTTCTGCTCCAGGACTTTACC PCR amplification, sequencing 60 1 302 913748 914049
8 ATACCGTGGTGCTCGTAGAAAT GAATACTCCAGCAGCAGATCCT PCR amplification, sequencing 57 25 44 985548 985591
9 GAAGCTACACCATCAGCGAGTA GTAATATCAACGGTCGACACCA PCR amplification, sequencing 60 1 234 1007442 1007675
10 ACGGCATCTGTTTTCAAATCTT GGAACCTGTTTCGTACCTTTTG PCR amplification, sequencing 60 30 3,292 1045471 1048762
GCCATAGATGACCTGTTCTTTG TCCAGCTCGACTGCAAGCCTTG Sequencing
TACACGGCTATAGAACGACG ACGTTCTGACAGTGCGTTCG Sequencing
TATCCTGTTCCGCTGGTTCC GTGACTTGAAGCTCTTGATG Sequencing
11 CAAGATAGGGATTCATTCTCACG AAAGAGATCCATGGTCAGGGTA PCR amplification, sequencing 60 1 305 1070868 1071172
12 TTGGTAGTTTCGGTGTTCCTTT CACATATCTCATCGACTGAGAC PCR amplification, sequencing 58 30 4,872 1235830 1240701
GAGAGGATGATCAGCCACAC CTGCCCGTGCAGTATCATCG Sequencing
AGCGCAACCCTTATCATCAG AGTCGCTACCGCCATTTCTC Sequencing
AGGAGGTCATCGGTTCGAAC CATCGTTTTCCACTTAGCATGG Sequencing
AGGGTGAATCAAGGTTTCGC Sequencing
13 TTTCCTGGAGGACTATGCATTT GGGCTATCTGCTTCTTTTCAGA PCR amplification, sequencing 60 1 157 1288215 1288371
14 CTGGCGAATGTTTTCCATCTAT TGAAAGATATTGAGCGGGAGAT PCR amplification, sequencing 60 1 279 1305843 1306121
15 TTTCTGGCTCATCCTCAATCAT ATCAAGGTCAAGATCCTGGAAA PCR amplification, sequencing 60 1 369 1386224 1386592
16 CCGTAGTGAAGGGAGAGTATGC GGGATATAGGTCCAGATGGTCA PCR amplification, sequencing 60 1 285 1606542 1606826
17 GCTGATGAGACCTGTAGCACTG AAAGGAAGCGCAAGTTTTACCT PCR amplification, sequencing 65 40 1,078 2268239 2269316
AGGCTGCTGAGGCGCCATAG AAAGGCCGTTGCCGCCAGCACGAT Sequencing
TTGATGCCGAGGCCAGGCGGGG Sequencing
18 CCGGAGTCGATAGTACATGAGA GCAACGAGTGGTGGTACTTCAC PCR amplification, sequencing 60 1 315 2312066 2312380
19 CTTGACGAAGAACGACATGAAC CTTACGTTCGCCGTCTGGTACT PCR amplification, sequencing 60 30 5,412 2590955 2596366
AATACCGATTCACCCACCGATG GATAATCACCTGCATGATCACC Sequencing
CAGCTCGTAGTAGATCTTGC CAGTACGAGATCACCCGCTG Sequencing
AACTCGGAGAGCATGCTGTC CGGAGCCATCAAGGTCTGTC Sequencing
ATCTTCGCCGTGGACGTGGAAC CTCTCTCATCTATCGCTACC Sequencing
TCGGCGAGGAAACGCTTCTCTC Sequencing
20 GGACCACTTAACACAACCCTGT CAACTATCCTGCGTGAATTGAG PCR amplification, sequencing 60 30 5,723 2663241 2668963
CACAGGTGTTAAGGAACAGATG GATCACGCTGGTGAACAGGCTG Sequencing
ATCTCGTCCAGGAAGATCGTG ACAGGGACGATCACCATGAG Sequencing
TGAGGATGGCATCGTCCACG GCCGACTGGCATGGATATTG Sequencing
CCTTGATATCCAGGCGCTTG ATAACCTCCTGGGCGATCTC Sequencing
21 CCCAAATATACCGCACTATTCC TTCAATGGTGAAATCGATGTGT PCR amplification, sequencing 60 30 1,895 2686577 2688471
CTCGACTCTGGCGGAGATGAAC ATACTCACCGAGGACACCAATG Sequencing
22 CTTGATTCCCACTCTCAGGTTC AACGTGTTTCCCTTGGTCATTC PCR amplification, sequencing 60 1 248 2742900 2743147
23 AAATACTCCTGACTGGCCAAAA TTATGAAACGTCGTGAAAATGC PCR amplification, sequencing 60 30 7,459 2756485 2763943
AAGCGGATGCGCTCATTAAC GTGCCATCAACACTGAAGTG Sequencing
CAGATCGACATCTGTTGACG GAAATCGAAAGACGAGCCGC Sequencing
AACATCACCTGTCCGCTTTC GACAAACACACCACACAAGG Sequencing
CTTCTTCCAGGGTGAAGATC AGGTTGTCCTGCGGTTGATG Sequencing
CTTTCGAGTTGCAGCATCAG AAGAGCATCCGGGAGATCTC Sequencing
GTGCTGGATGTCGCTCATAG GGGACACGGCAAAGCATTTC Sequencing
24 CGGTAAATCCTGAATTCCATCC ATTCCCTCGACTTCAATCAATC PCR amplification, sequencing 60 1 210 2777910 2778119
25 CTCCATCATGTGTTCAGGGTTA GGTTTCTGGTAGTGTTGGAAGC PCR amplification, sequencing 60 1 843 1874360 1875202
26 ATCCACCTCGTAGTCATGAAAG CCAGATTCTCTACTCGGTGGTG PCR amplification, sequencing 60 30 3,285 2898646 2901930
TCTTCTGGCCGATCTGACGGAG ATAACGTGGAGACCCTTGCGAC Sequencing
TGTAGCCGTCCACCGGAATC GCTACTTCCGGAATGAATACG Sequencing
27 TCGTAAATATCGATTCGTGGTG GTGACGGAGATAACGCTAAACC PCR amplification, sequencing 60 30 1,024 2949114 2950137
GGCTTTGACGACAAGATCATC Sequencing
GTCAGTCATGGCGGAACAAC Sequencing
28 TCGTAAATATCGATTCGTGGTG GTGACGGAGATAACGCTAAACC PCR amplification, sequencing 60 30 17 2954455 2954471
29 GAACCGAAGACCTTCATCCATC GAAATCGTCGCAAAGGTTAAAG PCR amplification, sequencing 60 1 893 3026979 3027871
30 CCCGAACTATTCGATAATGGAG GTCACTACTCACCGTGGTTGCT PCR amplification, sequencing 60 30 3,188 3043295 3046482
GCTCGTCCTTGTCGCCATTGAG GAACATGTACGGCGTGCACTGC Sequencing
TTACCAAGGAAGTGCTCTAC ATCGGGAGAAGAGGTTGCAG Sequencing
CCAATGGAGGCAGAATCAAG CGAGGGCATCGACATGGATG Sequencing
31 CCCCAGAAACATAGGGTGAATA GTGGTGCCGTTGTAGACATAGA PCR amplification, sequencing 60 30 3,554 3427838 3431391
AGCTCGGTGCCAATGAAATTCG TGATCTTCAGGGCGTCGTTCAC Sequencing
GCCACTTTGAAGGTTATGAC GATAGGTGCCGTTATAGAACC Sequencing
32 CCTGAAGATCAATGAGGGAAAG ATTGTACTCGGTCATCCACCTC PCR amplification, sequencing 60 1 173 3511982 3512154
33 AACCACCAGCACATCAGAAG GCGCCAACCACCAGCACATC PCR amplification, sequencing 57 25 4,408 3627984 3632391
GTTGTCCATTGAACAGCTGG CCAGCTGTTCAATGGACAAC Sequencing
CAAGTAATTCCAAATGGAGCG GATGATTACCTGCTGCATTGC Sequencing
GCAATGCAGCAGGTAATCATC GAAAGCTCCTTCCCATCCTTCG Sequencing
CCGTGTTCCTAAATTCTTGAGG AAGCCGCTACCTGAAGGCTTC Sequencing
CGAAGGATGGGAAGGAGCTTTC Sequencing
CTTCAACTTCAGCCGTTCAC Sequencing
34 CACGTCCTTGGGATATTTGTAA GAAGATTACGACCTCTGGCTGA PCR amplification, sequencing 60 1 165 3736120 3736284
a

The primer sets in bold were used for both PCR amplification and the sequence in each gap.

b

PCR conditions used were as follows: 25 cycles of 98°C for 10 s, annealing temperature indicated in the list for each reaction for 5 s, 68°C for extension time indicated in the list for each reaction, and 68°C for 5 min. For all reactions, KOD One PCR master mix (Toyobo) was used. The amplicons were gel purified by Monarch DNA gel extraction kit (New England BioLabs).

Data availability.

The complete genome sequence of strain YM35 was deposited under GenBank accession number CP074693. The raw reads were deposited in the Sequence Read Archive under BioProject accession number PRJNA742140.

ACKNOWLEDGMENTS

This work was financially supported by the Program to Disseminate Tenure Tracking System from the Japanese Ministry of Education, Culture, Sports, Science and Technology, a grant for Scientific Research on Priority Areas from the University of Miyazaki, and the Institute for Fermentation, Osaka (IFO).

Contributor Information

Kengo Inoue, Email: kinoue@cc.miyazaki-u.ac.jp.

J. Cameron Thrash, University of Southern California

REFERENCES

  • 1.Lovley DR, Ueki T, Zhang T, Malvankar NS, Shrestha PM, Flanagan KA, Aklujkar M, Butler JE, Giloteaux L, Rotaru AE, Holmes DE, Franks AE, Orellana R, Risso C, Nevin KP. 2011. Geobacter: the microbe electric’s physiology, ecology, and practical applications. Adv Microb Physiol 59:1–100. doi: 10.1016/B978-0-12-387661-4.00004-5. [DOI] [PubMed] [Google Scholar]
  • 2.Logan BE, Rossi R, Ragab A, Saikaly PE. 2019. Electroactive microorganisms in bioelectrochemical systems. Nat Rev Microbiol 17:307–319. doi: 10.1038/s41579-019-0173-x. [DOI] [PubMed] [Google Scholar]
  • 3.Methé BA, Nelson KE, Eisen JA, Paulsen IT, Nelson W, Heidelberg JF, Wu D, Wu M, Ward N, Beanan MJ, Dodson RJ, Madupu R, Brinkac LM, Daugherty SC, DeBoy RT, Durkin AS, Gwinn M, Kolonay JF, Sullivan SA, Haft DH, Selengut J, Davidsen TM, Zafar N, White O, Tran B, Romero C, Forberger HA, Weidman J, Khouri H, Feldblyum TV, Utterback TR, Van Aken SE, Lovley DR, Fraser CM. 2003. Genome of Geobacter sulfurreducens: metal reduction in subsurface environments. Science 302:1967–1969. doi: 10.1126/science.1088727. [DOI] [PubMed] [Google Scholar]
  • 4.Yi H, Nevin KP, Kim BC, Franks AE, Klimes A, Tender LM, Lovley DR. 2009. Selection of a variant of Geobacter sulfurreducens with enhanced capacity for current production in microbial fuel cells. Biosens Bioelectron 24:3498–3503. doi: 10.1016/j.bios.2009.05.004. [DOI] [PubMed] [Google Scholar]
  • 5.Butler JE, Young ND, Aklujkar M, Lovley DR. 2012. Comparative genomic analysis of Geobacter sulfurreducens KN400, a strain with enhanced capacity for extracellular electron transfer and electricity production. BMC Genomics 13:471. doi: 10.1186/1471-2164-13-471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Inoue K, Ogura Y, Kawano Y, Hayashi T. 2018. Complete genome sequence of Geobacter sulfurreducens strain YM18, isolated from river sediment in Japan. Genome Announc 6:e00352-18. doi: 10.1128/genomeA.00352-18. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Coppi MV, Leang C, Sandler SJ, Lovley DR. 2001. Development of a genetic system for Geobacter sulfurreducens. Appl Environ Microbiol 67:3180–3187. doi: 10.1128/AEM.67.7.3180-3187.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Kajitani R, Toshimoto K, Noguchi H, Toyoda A, Ogura Y, Okuno M, Yabana M, Harada M, Nagayasu E, Maruyama H, Kohara Y, Fujiyama A, Hayashi T, Itoh T. 2014. Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads. Genome Res 24:1384–1395. doi: 10.1101/gr.170720.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, Ostell J. 2016. NCBI Prokaryotic Genome Annotation Pipeline. Nucleic Acids Res 44:6614–6624. doi: 10.1093/nar/gkw569. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

The complete genome sequence of strain YM35 was deposited under GenBank accession number CP074693. The raw reads were deposited in the Sequence Read Archive under BioProject accession number PRJNA742140.


Articles from Microbiology Resource Announcements are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES