Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Jun 30;77(Pt 7):749–754. doi: 10.1107/S2056989021006381

Crystal structure and magnetic study of the complex salt [RuCp(PTA)2–μ-CN-1κC:2κN–RuCp(PTA)2][Re(NO)Br4(EtOH)0.5(MeOH)0.5]

Mario Pacheco a,*, Natalia Alvarez a, Alicia Cuevas a, Antonio Romerosa b, Francesc Lloret c, Carlos Kremer a
PMCID: PMC8382050  PMID: 34513024

In this work, we present the complex salt [RuCp(PTA)2–μ-CN–1κC:2κ2 N-RuCp(PTA)2][Re(NO)Br4(EtOH)0.5(MeOH)0.5]. The synthesis, single-crystal X-ray crystal structure, and magnetic properties are discussed.

Keywords: X-ray structure, ruthenium(II), rhenium(II), PTA, magnetism, crystal structure

Abstract

A new RuII–ReII complex salt, μ-cyanido-κ2 C:N-bis­[(η5-cyclo­penta­dien­yl)bis(3,5,7-tri­aza­phosphaadamantane-κP)ruthenium(II)] tetra­bromido­(ethanol/methanol-κO)nitrosylrhenate(II), [Ru(CN)(C5H5)2(C6H12N3P)4][ReBr4(NO)(CH4O)0.5(C2H6O)0.5] or [RuCp(PTA)2–μ-CN–1κC:2κ2 N-RuCp(PTA)2][Re(NO)Br4(EtOH)0.5(MeOH)0.5] (PTA = 3,5,7-tri­aza­phosphaadaman­tane) was obtained and characterized by single-crystal X-ray diffraction, elemental analysis and infrared spectroscopy. The title salt was obtained by liquid–liquid diffusion of methanol/DMSO solutions of (NBu4)[Re(NO)Br4(EtOH)] and [(PTA)2CpRu–μ-CN–1κC:2κ2 N-RuCp(PTA)2](CF3SO3). The RuII and ReII independent moieties correspond to a binuclear and mononuclear complex ion, respectively. A deep geometrical parameter analysis was performed, and no significant differences were found with earlier reports containing similar mol­ecules. The magnetic properties were investigated in the temperature range 2.0–300 K, and the complex behaves as a quasi-magnetically isolated spin doublet with weak anti­ferromagnetic inter­actions.

Chemical context  

Ruthenium-arene-PTA (PTA = 3,5,7-tri­aza-phosphaadamantane) or RAPTA complexes are known in inorganic medicinal chemistry for their potent anti­tumor activity in vitro and in vivo, constituting a potential alternative to platinum-based drugs (Antonarakis & Emadi, 2010; Gasser et al., 2011; Liang et al., 2017; Hey-Hawkins & Hissler, 2019). Furthermore, PTA presents variable denticity allowing it to act as a versatile building block towards the synthesis of coordination polymers with applications in other areas such as chemical catalysis (Darensbourg et al., 1995; Scalambra et al., 2017; Scalambra, Lopez-Sanchez et al., 2020) and material science (Phillips et al., 2004). Professor Romerosa’s group and coworkers have developed a family of water-soluble and air-stable organometallic polymers containing an ‘RuCp(PTA)2’ (Cp = Cyclo­penta­dien­yl) fragment. Most of them fit the general formula [{RuCp(PTA)2–μ-CN–1κC:2κ2 N-RuCp(PTA)2}-μ-MXm ]n (M = Cd, Ag, Ni, Au, Co; X = halide or pseudohalide) (Serrano Ruiz et al., 2008; Lidrissi et al., 2005; Scalambra et al., 2015, 2018; Scalambra, Sierra-Martin et al., 2020). These polymers show exciting properties such as the formation of structured microparticles, amorphization under low pressures (Scalambra et al., 2015, 2016), the formation of layered structures that can be exfoliated in ultra-thin 3D layers (Scalambra, Sierra-Martin et al., 2020), the formation of gels in the presence of water (Sierra-Martin et al., 2018, 2019; Serrano Ruiz et al., 2008) or the capacity to capture water mol­ecules in nanochannels (Scalambra et al., 2017). The described polymers include a wide variety of arrangements from one to three dimensions, and they may be classified as a new class of materials lying between metal–organic frameworks (MOFs) and infinite coordination polymers (ICPs) (Spokoyny et al., 2009). The preparation mostly involves the use of the bimet­allic precursor RuCp(PTA)2–μ-CN–1κC:2κ2 N-RuCp(PTA)2](CF3SO3) in the reaction with other transition-metal cation salts or complexes, in an easy, robust and reproducible method (Serrano-Ruiz et al., 2014).

On top of that, rhenium nitrosyl complexes applications are widely recognized: catalysis, production of organo­nitro­gen compounds, pollutant control, nitric oxide release drugs, assembly of devices with novel optical and magnetic properties, among other uses (Machura, 2005; Jiang et al., 2011; Probst et al., 2009; Ghosh et al., 2014; Dilworth, 2021). Kremer’s group has performed a thorough magnetic study of a series of complexes (NBu4)[ReII(NO)Br4(L)] (L is an N,O or P-donor neutral ligand) (Pacheco et al., 2013; Pacheco, Cuevas, González-Platas, Lloret et al., 2015). The low-spin outer 5d 5 shell results in strong spin-orbit inter­actions giving rise to a significant magnetic anisotropy, an essential feature for the potential construction of mol­ecule-based magnets (Wang et al., 2011). In this work, we present the complex salt [RuCp(PTA)2–μ-CN–1κC:2κ2 N-RuCp(PTA)2][Re(NO)Br4(EtOH)0.5(MeOH)0.5]. The synthesis, single crystal X-ray crystal structure, and magnetic properties are discussed.graphic file with name e-77-00749-scheme1.jpg

Structural commentary  

The mol­ecular structure of [RuCp(PTA)2–μ-CN–1κC:2κ2 N-RuCp(PTA)2][Re(NO)Br4(EtOH)0.5(MeOH)0.5] consists of discrete [RuCp(PTA)2–μ-CN–1κC:2κ2 N-RuCp(PTA)2]+ cations and [Re(NO)Br4(EtOH)0.5(MeOH)0.5] anions (Fig. 1), which coform the asymmetric unit.

Figure 1.

Figure 1

The asymmetric unit of the title compound, including atom labelling. Displacement ellipsoids are drawn at the 50% probability level. For clarity, H atoms have been omitted.

The cation is an homobinuclear RuII complex with two piano-stool fashion {RuCp(PTA)2} moieties that are linked by a –CN– bridging ligand. The {CpRu(PTA)2}+ moieties in each Ru2 unit exhibit a transoid arrangement related to the Ru—C≡N—Ru axis. The Ru1—C25 and Ru2—N13 distances are 2.008 (7) and 2.030 (8) Å, respectively. The Ru—CN—Ru arrangement is practically linear: <(Ru1—C25—N13) = 175.5 (7)° and <(C25—N13—Ru2) = 176.3 (7)°. The C≡N bond length of the cyano group is 1.14 (1) Å. The distances from the centroid of each Cp ligand to the respective ruthenium atom are 1.886 Å (Cp—Ru1) and 1.878 (Cp—Ru2). The Ru—PPTA distances are in the range 2.243 (2)–2.281 (2) Å, which is in agreement with those found in similar compounds.

The complex anion is constituted by an ReII atom and displays a distorted octa­hedral geometry formed by four bromide ions in the equatorial plane, one nitro­gen atom from the nitrosyl ligand, and one oxygen atom from an –OH group in apical positions. The –OH group comes from a methanol or an ethanol mol­ecule, both with an s.o.f. of 0.5. The O1M and C1E atomic positions are the same for both the MeOH and the EtOH ligand. The Re1—O1m—C1e angle is 128.3 (6)°. The NO group is practically linear with an O101—N101—Re1 angle of 178.6 (10)°. The three atoms are also aligned with the O1M atom of the alcohol ligand, exhibiting a N101—Re1—O1M angle of 178.9 (3)°. The rhenium atom is shifted from the main plane of Br ligands towards the apical NO group by 0.157 Å.

Supra­molecular features  

The complex crystallizes in the monoclinic P21/c space group. The cations inter­connect adjacent anions via O—H⋯N hydrogen bonds and C—H⋯Br inter­actions, forming an infinite three-dimensional framework (Table 1). The O—H⋯N inter­actions are given along the bc plane and are defined by O1m as the donor atom from the MeOH/EtOH ligand and N8i atom from a PTA ligand at (x − 1, y, z) (Fig. 2). The H1M⋯N8i and O1M⋯N8i distances are 1.88 and 2.709 (9) Å, respectively. The angle defined by O1M—H1M⋯N8i is 165.5°.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯Br3i 0.97 3.12 3.944 (12) 143
C10—H10B⋯Br2 0.97 2.83 3.709 (10) 150
C1—H1B⋯Br4ii 0.97 3.03 3.967 (9) 163
C7—H7B⋯N9iii 0.97 2.59 3.309 (11) 131
C8—H8A⋯Br3i 0.97 2.89 3.772 (12) 151
C4—H4B⋯Br3i 0.97 3.10 4.062 (10) 169
C5—H5A⋯Br1ii 0.97 3.10 3.918 (10) 143
C18—H18A⋯N4iv 0.97 2.53 3.208 (11) 127
C18—H18B⋯Br2v 0.97 2.92 3.858 (9) 163
C19—H19B⋯Br1vi 0.97 3.09 3.938 (11) 147
C22—H22B⋯Br1vi 0.97 3.00 3.861 (10) 148
C23—H23A⋯Br4vii 0.97 3.10 4.007 (12) 156
C24—H24A⋯Br3vii 0.97 2.98 3.799 (11) 143
O1M—H1M⋯N8iii 0.85 1.88 2.709 (9) 166
C1EB—H101⋯Br3 0.97 2.80 3.527 (13) 132
C2E—H2E3⋯N6i 0.96 2.36 3.15 (3) 140

Symmetry codes: (i) -x, -y, -z; (ii) -x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}; (iii) x-1, y, z; (iv) x+1, y, z; (v) -x+1, -y, -z; (vi) -x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}; (vii) x+1, y+1, z.

Figure 2.

Figure 2

View along the a axis of the title compound, with the O1M—H⋯N8 contacts (see Table 1 for details) represented by blue dashed lines. For clarity, H atoms have been omitted.

The remaining hydrogen bonds are found between the PTA ligands from one cationic unit [RuCp(PTA)2–μ-CN–1κC:2κ2 N-RuCp(PTA)2]+ and bromides from [Re(NO)Br4(EtOH)0.5(MeOH)0.5] units. The multiplicity and lack of defined directionality in the hydrogen-bond network are related to the fact that the major forces that stabilize the crystal are of electrostatic origin. The C—H⋯Br and the C⋯Br distances range from 2.53–3.12 Å and 3.208 (11)–3.944 (12) Å, respectively. The hydrogen-bond angle involving the C—H⋯Br atoms vary between 127 and 169°. These geometrical values are in concordance with weak hydrogen-bonding inter­actions (Desiraju, 1995; Metrangolo et al., 2006; Steed & Atwood, 2009). The effect of the combined weak C—H⋯Br bonds and their effect on the crystal assembly can be as significant as that of the strong inter­actions (Desiraju & Steiner, 2001). The C2E—H⋯N6 bond is probably negligible because of the low energy expected for all C—H bonds (Steed & Atwood, 2009) and particularly considering the C2E 50% atomic site occupation.

Hirshfeld analysis  

To further understand the inter­molecular inter­actions between the ionic complexes within the crystal structure, a Hirshfeld surface (Spackman & Jayatilaka, 2009) was constructed around each ion. In addition, a 2D fingerprint plot analysis (Spackman & McKinnon, 2002) was performed for each case. Crystal Explorer17 (Turner et al., 2017) was used to determine the surface and construct the plots. The Hirshfeld surfaces of both the anion and cation are illustrated in Fig. 3 (left) and 3 (right), respectively, showing surfaces that have been mapped over a d norm range of −0.6854 to 1.6426 a.u. (McKinnon et al., 2007). The color code employed for d norm is red for the shortest d norm and blue for the longest d norm. Red spots in the surface correspond to the shortest contacts within the surface, indicating the formation of inter­molecular bonds as those detailed in the previous section (supra­molecular features).

Figure 3.

Figure 3

Projections of d norm mapped on Hirshfeld surfaces, showing the inter­actions between mol­ecules and the two-dimensional (d i,d e) fingerprint plot for the anionic unit [Re(NO)Br4(EtOH)0.5(MeOH)0.5] (left) and the cationic unit [RuCp(PTA)2–μ-CN–1κC:2κ2 N-RuCp(PTA)2]+ (right).

The anion Hirshfeld surface shows how the most significant inter­action is due to the O1m—H⋯N8 bond, which is illustrated by bright-red spots in Fig. 3 (left), while the weaker spot corresponds to the C2E—H⋯N6 bond. What is more, the other minor red spots can be identified as Br⋯H inter­actions. These red spots (and thus the inter­ionic inter­actions) can be correlated with the spikes observed in the two-dimensional fingerprint plots. In fact, the anion fingerprint for all inter­actions exhibits characteristic spikes in the region 1.8 Å < d i + d e < 2.8 Å resulting from H⋯N and Br⋯H inter­actions. There is a high-density area close to the Br⋯H spike, indicating a significant number of Br⋯H contacts in the crystal structure. In addition, the broad central spike extending up to the (d i,d e) region of (0.65 Å, 0.78 Å) reflects the significant amount of H⋯H contacts in the structure. Nevertheless, it is important to point out that the H⋯H contacts are usually difficult to localize in the Hirshfeld surface as they are spread all over the crystal packing. The Hirshfeld surface analysis for the cationic unit and its fingerprint also shows how H⋯N, N⋯H, H⋯Br, and H⋯H contacts surround the [RuCp(PTA)2–μ-CN–1κC:2κ2 N-RuCp(PTA)2] unit. The relative contributions of the different inter­molecular contacts to the Hirshfeld area for both ions are shown in Fig. 4. In the anion, the major contributors (∼93%) are from Br⋯H, O⋯H and H⋯H contacts while in the cation, the Hirshfeld area is accounted mostly by the Br⋯H, N⋯H and H⋯H contacts (over 90%).

Figure 4.

Figure 4

Relative contributions to Hirshfeld surface area for the close mol­ecular contacts.

Database survey  

A search in the Cambridge Structural Database (CSD) version 5.42 in the last update of February 2021 (Groom et al., 2016) for similar structures containing the anion and cation was performed. The {(PTA)2CpRu-μ-CN-RuCp(PTA)2} moiety has been reported previously, once as an independent cationic unit in VOHCUS (Serrano-Ruiz et al., 2014) as well as a fragment within polynuclear polymeric structures CEQPEW (Scalambra et al., 2018), EDONET (Scalambra et al., 2016), GUVZUV (Scalambra, Sierra-Martin et al., 2020) and XADHES (Scalambra et al., 2015).

Regarding the anionic unit, examples of crystal structures containing tetra­bromo­nitro­sylrhenium(II) complexes are scarce. The CSD search yielded 19 hits. In all of them, the rhenium coordination sphere exhibits an octa­hedral geometry, with a practically lineal {Re—NO} unit and a π-acceptor ligand such as phosphine or aromatic amines, usually coordinating trans- to the –NO group. The found π-acceptor ligands include: MeCN (Ciani et al., 1975), EtOH (Ciani et al., 1975), pyrazine (Pacheco et al., 2013, 2014; Pacheco, Cuevas, González-Platas, & Kremer, 2015), nitrosyl (Mronga et al., 1982), tri­cyclo­hexyl­phosphine and triiso­propyl­phosphine (Jiang et al., 2010), nicotinic acid and nicotinate anion (Pacheco, Cuevas, González-Platas, Lloret et al., 2015), pyridine, pyrimidine and pyridazine (Pacheco et al., 2013). All Re—Br distances observed in the complex reported herein, as well as the Re—N and N—O distances found, agree with those found for previously reported structures (see Figs. 1–3 in the supporting information).

A search in the CSD for complexes containing a metal ion coordinating a MeOH mol­ecule yielded 13705 structures with the M—O—C angle lying in the range 123.333–130.865° (without considering possible outlier values). The same angle for metals coordinating an EtOH is in the range 124.464–132.412° (without considering possible outliers), in a total of 3503 reported structures. There are only five structures reported in the database containing ethanol coordinating to a rhenium atom, ABENRE (Ciani et al., 1975), PIXTOF (Masood & Hodgson, 1994), GEMVUR (Ikeda et al., 2012), EGAVEP (Hołyńska & Lis, 2014) and PIMRAH (Pino-Cuevas et al., 2018). In those, the Re—O—C angles vary between 115.8 (4) and 135 (1)°. The same search but for Re-OHMe complexes yielded 15 structures, with the Re—O—C angles in the 121.232–133.389° range. The only reported crystal structure in the CSD containing the [Re(NO)Br4(EtOH)] unit dates back to 1975 (ABENRE; Ciani et al., 1975). On the other hand, this is the first report of a crystal structure evidencing the coordination of a methanol mol­ecule substituting ethanol.

Given that C—H⋯Br bonds account for a significant fraction of inter­molecular contacts, as seen in section 4, a search was conducted involving this bonding scheme to check if the values presented in this article are within the bin frequently encountered in transition-metal compounds. The search restrained metal–Br⋯H distances to be lower than the sum of the vdW radius (∼3.5 Å). Compounds containing a C—Br⋯H angle of less than 90° were discarded, as the hydrogen atom in the hydrogen bond must not point away from the acceptor atom (Aakeröy et al., 1999). The search resulted in 36099 hits from 12143 structures. The histograms of C⋯Br distances and C—H⋯Br angles (Figs. 4 and 5 in the supporting information) confirm that these H⋯Br contacts, considering the distance/angle criteria, can be identified as hydrogen bonds (Aakeröy et al., 1999; Metrangolo et al., 2006; Shimpi et al., 2007; Zhang et al., 2008).

Magnetic measurements  

Magnetic susceptibility measurements on polycrystalline samples were carried out with a Superconducting Quantum Inter­ference Design (SQUID) magnetometer in the temperature range 2.0–300 K. In order to avoid saturation phenomena, we used external dc magnetic fields of 500 G (T < 20 K) and 5000 G (T ≥ 50 K). Experimental susceptibilities were carefully corrected for the diamagnetism of the holder (gelatine capsule) and constituent atoms by applying Pascal’s constants.

The magnetic behaviour of [RuCp(PTA)2–μ-CN–1κC:2κ2 N-RuCp(PTA)2][Re(NO)Br4(EtOH)0.5(MeOH)0.5] is shown in Fig. 5 in the form of a χMT versus T plot where χM is the molar magnetic susceptibility per one ReII ion and T the absolute temperature. As expected, a straight line is observed for this compound (Pacheco et al., 2013). The thermal dependence of χMT is in line with one unpaired electron (S = ½) and a temperature independent paramagnetic contribution (TIP). The χMT value at room temperature is higher than that expected for an S = ½ with g = 2.0 (0.375 cm3 K mol−1) due to the temperature-independent paramagnetism (TIP). The slight decrease below 10 K must be attributed to very weak inter­molecular anti­ferromagnetic (AF) inter­actions between the [Re(NO)Br4(EtOH)0.5(MeOH)0.5] anions.

Figure 5.

Figure 5

χMT versus T plot for the title compound.

In this sense, we use equation (1), with S = ½, to fit the experimental data.

Inline graphic (1)

Best-fit parameters were g = 2.01 (1), TIP = 155 (3) 10−6 cm3 mol−1 and θ = – 0.100 (1) K. The calculated g and TIP values are very close to those observed for similar complexes previously reported (Pacheco et al., 2013; Pacheco, Cuevas, González-Platas, Lloret et al., 2015). However, the Weiss parameter (inter­molecular anti­ferromagnetic inter­action), θ, is lower, indicating that the paramagnetic anion is much more isolated, probably due to the vast diamagnetic counter-ion.

Synthesis and crystallization  

Experimental details  

(NBu4)[Re(NO)Br4(EtOH)] and [RuCp(PTA)2–μ-CN–1κC:2κ2 N-RuCp(PTA)2](CF3SO3) were prepared as previously reported (Pacheco et al., 2013; Serrano-Ruiz et al., 2014). Solvents employed in the synthesis were purchased from commercial sources and used without further purification. Elemental analyses (C, H, N, S) were performed using a Flash 2000 (Thermo Scientific) elemental analyser. The IR spectra were recorded as 1% KBr pellets on FTIR Shimadzu Prestige-21 spectrophotometer in the range 4000-400 cm−1.

Synthesis  

A solution of (NBu4)[Re(NO)Br4(EtOH)] (0.012 mmol, 10 mg) dissolved in 5 mL of a methanol–DMSO (400:1, v/v) mixture was layered in an test tube with a solution of [RuCp(PTA)2–μ-CN–1κC:2κ2 N-RuCp(PTA)2](CF3SO3) (0.012 mmol, 13 mg) in 5 mL of the same methanol–DMSO mixture; ca 5 mL of the solvent mixture should be added between the two reactant layers to decrease diffusion time. Deep reddish-brown plate-like crystals, suitable for single crystal X-ray diffraction were obtained after one week. The product was filtered and washed by deca­ntation with methanol. Yield: 24%. Analysis calculated for Ru2C36.5N14Re1O2Br4H63P4: C, 28.07; H, 4.07; N, 12.56; S. 0,00%. Found: C, 27.18; H, 4.39; N, 12.53; S. 0,00%. Selected IR absorption bands (KBr, νmax/cm−1): 3413[s, br, νs(–OH)], 2922(w), 2114[m, νs(μ–N≡C)], 1759[s, νs (–NO)], 1280(m), 1242(s), 1097(m), 1016(s), 970(s), 948(s), 833(w), 744(w), 574(m), 480(m).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The C-bound H atoms were included in calculated positions and treated as riding: C—H distance between 0.94 and 0.98 Å with U iso(H) = 1.2U eq(C). Methanol/ethanol coordinating mol­ecules were treated as positionally disordered utilizing the PART instruction with occupancy fixed to 0.5 applied to C1E, C1M, and C2E. C1M and C1E were constrained to occupy equivalent positions. Meanwhile, C2E was located in the Fourier difference map and refined freely.

Table 2. Experimental details.

Crystal data
Chemical formula [Ru(CN)(C5H5)2(C6H12N3P)4]2[ReBr4(NO)(CH4O)0.5(C2H6O)0.5]2
M r 3123.73
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 12.6027 (4), 17.7075 (6), 23.0252 (9)
β (°) 101.914 (1)
V3) 5027.7 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 6.35
Crystal size (mm) 0.48 × 0.10 × 0.03
 
Data collection
Diffractometer Bruker D8 venture diffractometer
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
Tmin, Tmax 0.485, 0.751
No. of measured, independent and observed [I > 2σ(I)] reflections 56882, 8565, 6494
R int 0.079
(sin θ/λ)max−1) 0.589
 
Refinement
R[F2 > 2σ(F 2)], wR(F 2), S 0.044, 0.118, 0.99
No. of reflections 8565
No. of parameters 572
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.45, −1.34

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2013), SHELXT2014/4 (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2020).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021006381/ex2046sup1.cif

e-77-00749-sup1.cif (1.7MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021006381/ex2046Isup2.hkl

e-77-00749-Isup2.hkl (680KB, hkl)

Histogram showing the number of Re-Br distances hexacoordinated nitrosylrhenium complexes found in the database survey (section 5). DOI: 10.1107/S2056989021006381/ex2046sup3.png

Histogram showing the number of Re-N(NO) distances in hexacoordinated nitrosylrhenium complexes found in the database survey (section 5). DOI: 10.1107/S2056989021006381/ex2046sup4.png

Histogram showing the number of N-O nitrosyl distances in hexacoordinated nitrosylrhenium complexes found in the database survey (section 5). DOI: 10.1107/S2056989021006381/ex2046sup5.png

Histogram showing the number of C...Br distances in hexacoordinated nitrosylrhenium complexes found in the database survey (section 5). DOI: 10.1107/S2056989021006381/ex2046sup6.png

Histogram showing the number of C...H-Br angles in hexacoordinated nitrosylrhenium complexes found in the database survey (section 5). DOI: 10.1107/S2056989021006381/ex2046sup7.png

CCDC reference: 2075886

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

[Ru(CN)(C5H5)2(C6H12N3P)4]2[ReBr4(NO)(CH4O)0.5(C2H6O)0.5]2 F(000) = 3036
Mr = 3123.73 Dx = 2.063 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 12.6027 (4) Å Cell parameters from 125 reflections
b = 17.7075 (6) Å θ = 3.1–16.9°
c = 23.0252 (9) Å µ = 6.35 mm1
β = 101.914 (1)° T = 296 K
V = 5027.7 (3) Å3 Prism, orange
Z = 2 0.48 × 0.10 × 0.03 mm

Data collection

Bruker D8 venture diffractometer 8565 independent reflections
Radiation source: sealed tube, SIEMENS KFFMO2K-90C model 10190380 6494 reflections with I > 2σ(I)
Curved graphite monochromator Rint = 0.079
Detector resolution: 10.4167 pixels mm-1 θmax = 24.7°, θmin = 2.8°
φ and ω scans h = −14→14
Absorption correction: multi-scan (SADABS; Krause et al., 2015) k = −20→20
Tmin = 0.485, Tmax = 0.751 l = −27→27
56882 measured reflections

Refinement

Refinement on F2 Primary atom site location: iterative
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: mixed
wR(F2) = 0.118 H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0568P)2 + 32.4246P] where P = (Fo2 + 2Fc2)/3
8565 reflections (Δ/σ)max < 0.001
572 parameters Δρmax = 1.45 e Å3
0 restraints Δρmin = −1.34 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Re1 −0.05570 (3) −0.18588 (2) 0.11322 (2) 0.03581 (11)
Ru1 0.48233 (5) 0.25106 (4) 0.22334 (3) 0.02682 (15)
Ru2 0.66214 (5) 0.27893 (4) 0.04193 (3) 0.02792 (16)
Br1 0.04222 (9) −0.12082 (7) 0.20632 (4) 0.0584 (3)
Br2 0.04855 (10) −0.10735 (7) 0.05355 (5) 0.0667 (3)
Br3 −0.16673 (10) −0.23895 (6) 0.01809 (4) 0.0595 (3)
Br4 −0.17972 (8) −0.24939 (6) 0.17119 (4) 0.0518 (3)
P1 0.35033 (15) 0.33600 (12) 0.18506 (8) 0.0268 (4)
P2 0.40014 (16) 0.15060 (12) 0.17422 (9) 0.0318 (5)
P3 0.79305 (16) 0.20690 (12) 0.09819 (8) 0.0279 (4)
P4 0.72619 (16) 0.39303 (12) 0.07922 (9) 0.0294 (4)
O101 0.0961 (8) −0.3111 (6) 0.1265 (5) 0.110 (4)
N1 0.1390 (6) 0.3853 (4) 0.1485 (3) 0.0434 (18)
N2 0.2668 (7) 0.4759 (5) 0.2046 (4) 0.054 (2)
N3 0.2747 (6) 0.4471 (5) 0.1013 (4) 0.050 (2)
N4 0.2311 (6) 0.0505 (4) 0.1466 (4) 0.055 (2)
N6 0.3384 (9) 0.0693 (5) 0.0709 (4) 0.072 (3)
N7 0.8856 (6) 0.1427 (4) 0.2069 (3) 0.048 (2)
N8 0.8650 (5) 0.0578 (4) 0.1213 (3) 0.0384 (17)
N9 1.0030 (5) 0.1578 (4) 0.1354 (3) 0.0389 (17)
N10 0.7525 (8) 0.5001 (5) 0.1692 (4) 0.063 (2)
N11 0.6862 (10) 0.5468 (5) 0.0695 (5) 0.079 (3)
N12 0.8770 (8) 0.5093 (5) 0.1015 (5) 0.068 (3)
C10 0.2299 (9) 0.0593 (6) 0.0845 (6) 0.075 (4)
H10A 0.185518 0.102699 0.069690 0.090*
H10B 0.196148 0.015088 0.063481 0.090*
C11 0.4070 (11) 0.0061 (7) 0.0987 (7) 0.088 (4)
H11A 0.379585 −0.040178 0.078516 0.106*
H11B 0.479829 0.013789 0.092099 0.106*
N13 0.5859 (5) 0.2744 (4) 0.1114 (3) 0.0363 (16)
N101 0.0350 (7) −0.2596 (5) 0.1217 (4) 0.057 (2)
C1 0.2033 (6) 0.3182 (5) 0.1677 (4) 0.043 (2)
H1A 0.187494 0.280371 0.136628 0.052*
H1B 0.181946 0.297768 0.202646 0.052*
C2 0.3562 (7) 0.3865 (5) 0.1154 (4) 0.044 (2)
H2A 0.427904 0.408071 0.118761 0.053*
H2B 0.344982 0.350473 0.082962 0.053*
C3 0.3459 (8) 0.4201 (5) 0.2319 (4) 0.053 (3)
H3A 0.329067 0.404229 0.269273 0.063*
H3B 0.417142 0.443326 0.240483 0.063*
C7 0.2643 (7) 0.1199 (6) 0.1800 (5) 0.053 (3)
H7A 0.262715 0.111570 0.221448 0.064*
H7B 0.212869 0.159678 0.165259 0.064*
C8 0.3864 (9) 0.1426 (6) 0.0934 (4) 0.057 (3)
H8A 0.340877 0.183277 0.074070 0.069*
H8B 0.457243 0.147751 0.083554 0.069*
C9 0.4687 (8) 0.0597 (5) 0.1959 (6) 0.064 (3)
H9A 0.542754 0.062672 0.190220 0.077*
H9B 0.471397 0.050991 0.237786 0.077*
N5 0.4139 (8) −0.0044 (5) 0.1616 (5) 0.071 (3)
C4 0.1629 (7) 0.4158 (6) 0.0938 (4) 0.048 (2)
H4A 0.111021 0.455341 0.079097 0.057*
H4B 0.153739 0.376066 0.064165 0.057*
C5 0.1567 (8) 0.4440 (6) 0.1932 (4) 0.055 (3)
H5A 0.142735 0.423527 0.229964 0.066*
H5B 0.105007 0.484405 0.180683 0.066*
C6 0.2891 (9) 0.5031 (5) 0.1497 (5) 0.061 (3)
H6A 0.363300 0.521225 0.156964 0.074*
H6B 0.242057 0.545789 0.136630 0.074*
C12 0.3026 (9) −0.0125 (5) 0.1703 (5) 0.064 (3)
H12A 0.304399 −0.016960 0.212516 0.077*
H12B 0.272252 −0.058858 0.151518 0.077*
C13 0.8036 (8) 0.1997 (5) 0.1790 (4) 0.043 (2)
H13A 0.823328 0.248627 0.196916 0.051*
H13B 0.733433 0.186003 0.186840 0.051*
C14 0.7814 (7) 0.1043 (5) 0.0826 (4) 0.038 (2)
H14A 0.710386 0.087306 0.087148 0.046*
H14B 0.786260 0.095862 0.041597 0.046*
C15 0.9390 (6) 0.2153 (5) 0.0987 (4) 0.0356 (19)
H15A 0.950021 0.210954 0.058339 0.043*
H15B 0.964059 0.264882 0.113423 0.043*
C16 0.8588 (8) 0.0680 (5) 0.1841 (4) 0.049 (2)
H16A 0.785748 0.056039 0.188513 0.058*
H16B 0.907554 0.032285 0.207982 0.058*
C17 0.9918 (7) 0.1643 (6) 0.1968 (4) 0.049 (2)
H17A 1.006169 0.216183 0.209553 0.059*
H17B 1.046353 0.132840 0.221310 0.059*
C18 0.9748 (7) 0.0812 (5) 0.1149 (4) 0.041 (2)
H18A 1.027553 0.046580 0.137183 0.049*
H18B 0.979171 0.077487 0.073475 0.049*
C19 0.7220 (10) 0.4204 (6) 0.1561 (4) 0.061 (3)
H19A 0.649346 0.412212 0.162738 0.073*
H19B 0.771012 0.388218 0.183392 0.073*
C20 0.6489 (11) 0.4732 (6) 0.0421 (5) 0.077 (4)
H20A 0.655078 0.473891 0.000761 0.092*
H20B 0.572964 0.466475 0.043119 0.092*
C21 0.8624 (9) 0.4296 (6) 0.0794 (6) 0.069 (3)
H21A 0.915554 0.397600 0.104395 0.083*
H21B 0.875592 0.427327 0.039412 0.083*
C22 0.8613 (9) 0.5136 (6) 0.1613 (5) 0.065 (3)
H22A 0.883435 0.563405 0.176712 0.078*
H22B 0.909056 0.477218 0.185063 0.078*
C23 0.6783 (10) 0.5495 (7) 0.1312 (6) 0.075 (4)
H23A 0.691530 0.600858 0.145481 0.090*
H23B 0.604921 0.536233 0.134178 0.090*
C24 0.7978 (14) 0.5580 (7) 0.0637 (5) 0.087 (5)
H24A 0.817520 0.610183 0.073033 0.104*
H24B 0.802066 0.549376 0.022668 0.104*
C25 0.5470 (5) 0.2690 (4) 0.1518 (3) 0.0225 (15)
C26 0.5553 (8) 0.3156 (5) 0.3068 (4) 0.046 (2)
H26 0.555150 0.370530 0.312146 0.055*
C27 0.4748 (8) 0.2631 (7) 0.3181 (4) 0.053 (3)
H27 0.409889 0.276314 0.333130 0.063*
C28 0.5087 (9) 0.1890 (6) 0.3085 (4) 0.054 (3)
H28 0.473025 0.142054 0.316367 0.065*
C29 0.6103 (7) 0.1955 (6) 0.2917 (4) 0.045 (2)
H29 0.656417 0.153412 0.284591 0.053*
C30 0.6369 (7) 0.2727 (6) 0.2907 (4) 0.050 (3)
H30 0.704052 0.292920 0.281675 0.060*
C31 0.5113 (8) 0.2551 (7) −0.0273 (4) 0.061 (3)
H31 0.438182 0.249096 −0.019477 0.074*
C32 0.5831 (10) 0.1982 (7) −0.0281 (4) 0.062 (3)
H32 0.568991 0.144879 −0.021077 0.075*
C33 0.6779 (10) 0.2255 (8) −0.0420 (4) 0.068 (4)
H33 0.739328 0.195217 −0.048791 0.081*
C34 0.6636 (10) 0.3038 (8) −0.0516 (4) 0.074 (4)
H34 0.713939 0.337921 −0.065857 0.089*
C35 0.5567 (9) 0.3237 (7) −0.0416 (4) 0.064 (3)
H35 0.521157 0.373131 −0.047466 0.077*
O1M −0.1667 (5) −0.0925 (4) 0.1036 (3) 0.0546 (17)
H1m −0.145698 −0.046869 0.108187 0.082*
C1EB −0.2859 (10) −0.0942 (7) 0.0884 (6) 0.076 (3) 0.5
H101 −0.296961 −0.144748 0.071928 0.091* 0.5
H102 −0.301292 −0.099033 0.127783 0.091* 0.5
C2E −0.3839 (19) −0.0593 (14) 0.0584 (12) 0.076 (3) 0.5
H2e1 −0.405709 −0.021893 0.083727 0.114* 0.5
H2e2 −0.439669 −0.096818 0.048511 0.114* 0.5
H2e3 −0.372188 −0.035670 0.022699 0.114* 0.5
C1EA −0.2859 (10) −0.0942 (7) 0.0884 (6) 0.076 (3) 0.5
H1eA −0.319631 −0.056188 0.058329 0.114* 0.5
H1eB −0.320451 −0.093614 0.121497 0.114* 0.5
H1eC −0.314444 −0.146063 0.065667 0.114* 0.5

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Re1 0.0446 (2) 0.0355 (2) 0.02719 (18) −0.00580 (16) 0.00707 (14) −0.00453 (14)
Ru1 0.0259 (3) 0.0327 (3) 0.0212 (3) −0.0019 (3) 0.0033 (2) 0.0023 (3)
Ru2 0.0300 (3) 0.0349 (4) 0.0180 (3) 0.0006 (3) 0.0031 (2) −0.0007 (3)
Br1 0.0624 (6) 0.0696 (7) 0.0382 (5) −0.0096 (5) −0.0010 (4) −0.0183 (5)
Br2 0.0934 (8) 0.0612 (7) 0.0558 (6) −0.0312 (6) 0.0394 (6) −0.0125 (5)
Br3 0.0914 (8) 0.0437 (6) 0.0345 (5) −0.0140 (5) −0.0078 (5) −0.0047 (4)
Br4 0.0577 (6) 0.0529 (6) 0.0480 (6) −0.0077 (5) 0.0184 (4) 0.0064 (4)
P1 0.0280 (10) 0.0299 (11) 0.0227 (10) −0.0032 (9) 0.0056 (8) −0.0018 (8)
P2 0.0303 (10) 0.0297 (11) 0.0330 (11) −0.0023 (9) 0.0010 (8) 0.0038 (9)
P3 0.0303 (10) 0.0310 (11) 0.0222 (10) 0.0000 (9) 0.0054 (8) 0.0006 (8)
P4 0.0339 (11) 0.0292 (11) 0.0242 (10) 0.0016 (9) 0.0038 (8) 0.0049 (8)
O101 0.093 (7) 0.097 (8) 0.141 (10) 0.045 (6) 0.028 (6) 0.009 (7)
N1 0.037 (4) 0.046 (5) 0.044 (4) 0.003 (4) 0.002 (3) 0.003 (4)
N2 0.063 (5) 0.046 (5) 0.045 (5) 0.015 (4) −0.005 (4) −0.015 (4)
N3 0.056 (5) 0.047 (5) 0.051 (5) 0.014 (4) 0.018 (4) 0.022 (4)
N4 0.043 (4) 0.033 (4) 0.082 (7) −0.010 (4) −0.007 (4) 0.010 (4)
N6 0.102 (8) 0.053 (6) 0.056 (6) −0.038 (6) 0.007 (5) −0.019 (5)
N7 0.064 (5) 0.047 (5) 0.030 (4) 0.024 (4) 0.006 (3) 0.006 (3)
N8 0.037 (4) 0.030 (4) 0.048 (4) 0.009 (3) 0.007 (3) 0.003 (3)
N9 0.030 (4) 0.049 (4) 0.037 (4) 0.004 (3) 0.005 (3) 0.005 (3)
N10 0.091 (7) 0.053 (6) 0.047 (5) −0.018 (5) 0.018 (5) −0.010 (4)
N11 0.104 (8) 0.040 (5) 0.078 (7) 0.010 (5) −0.013 (6) 0.008 (5)
N12 0.067 (6) 0.050 (6) 0.093 (8) −0.018 (5) 0.032 (5) −0.013 (5)
C10 0.072 (8) 0.048 (7) 0.087 (9) −0.025 (6) −0.029 (7) −0.001 (6)
C11 0.083 (9) 0.055 (8) 0.127 (13) −0.015 (7) 0.023 (8) −0.051 (8)
N13 0.031 (4) 0.034 (4) 0.039 (4) 0.001 (3) −0.005 (3) −0.003 (3)
N101 0.053 (5) 0.062 (6) 0.054 (5) −0.006 (5) 0.011 (4) −0.003 (4)
C1 0.032 (4) 0.050 (6) 0.046 (5) 0.000 (4) 0.002 (4) 0.018 (4)
C2 0.051 (5) 0.038 (5) 0.048 (5) 0.009 (4) 0.022 (4) 0.012 (4)
C3 0.060 (6) 0.041 (5) 0.047 (6) 0.009 (5) −0.011 (5) −0.020 (4)
C7 0.038 (5) 0.045 (6) 0.075 (7) −0.010 (4) 0.009 (5) 0.010 (5)
C8 0.082 (7) 0.051 (6) 0.037 (5) −0.030 (6) 0.008 (5) −0.015 (5)
C9 0.052 (6) 0.030 (5) 0.097 (9) −0.002 (5) −0.014 (6) 0.000 (5)
N5 0.062 (6) 0.027 (5) 0.111 (9) 0.005 (4) −0.012 (5) −0.007 (5)
C4 0.051 (5) 0.051 (6) 0.036 (5) 0.013 (5) −0.004 (4) −0.003 (4)
C5 0.055 (6) 0.062 (7) 0.050 (6) 0.026 (5) 0.018 (5) −0.003 (5)
C6 0.058 (6) 0.033 (5) 0.089 (9) 0.001 (5) 0.005 (6) 0.001 (5)
C12 0.081 (8) 0.021 (5) 0.083 (8) −0.016 (5) −0.001 (6) 0.007 (5)
C13 0.060 (6) 0.040 (5) 0.030 (5) 0.019 (4) 0.013 (4) −0.001 (4)
C14 0.040 (5) 0.037 (5) 0.037 (5) 0.001 (4) 0.008 (4) −0.001 (4)
C15 0.031 (4) 0.039 (5) 0.034 (5) 0.001 (4) 0.002 (3) −0.005 (4)
C16 0.055 (6) 0.046 (6) 0.048 (6) 0.016 (5) 0.019 (4) 0.022 (5)
C17 0.038 (5) 0.053 (6) 0.047 (6) 0.007 (4) −0.014 (4) 0.001 (5)
C18 0.042 (5) 0.031 (5) 0.052 (6) 0.009 (4) 0.013 (4) 0.006 (4)
C19 0.091 (8) 0.057 (7) 0.036 (5) −0.030 (6) 0.016 (5) −0.008 (5)
C20 0.102 (9) 0.043 (6) 0.064 (8) 0.016 (6) −0.030 (7) 0.003 (5)
C21 0.056 (6) 0.041 (6) 0.122 (11) −0.014 (5) 0.044 (7) −0.008 (6)
C22 0.076 (8) 0.043 (6) 0.062 (7) −0.011 (6) −0.018 (6) 0.008 (5)
C23 0.072 (8) 0.067 (8) 0.091 (10) −0.012 (7) 0.029 (7) −0.038 (7)
C24 0.171 (15) 0.040 (7) 0.054 (7) −0.015 (8) 0.032 (8) 0.019 (5)
C25 0.018 (3) 0.029 (4) 0.022 (4) −0.005 (3) 0.007 (3) 0.005 (3)
C26 0.057 (6) 0.044 (5) 0.031 (5) −0.013 (5) −0.003 (4) −0.005 (4)
C27 0.048 (5) 0.083 (8) 0.027 (5) 0.001 (5) 0.007 (4) −0.006 (5)
C28 0.075 (7) 0.054 (6) 0.029 (5) −0.016 (6) 0.002 (5) 0.014 (4)
C29 0.044 (5) 0.052 (6) 0.033 (5) 0.010 (5) −0.004 (4) 0.003 (4)
C30 0.035 (5) 0.083 (8) 0.027 (5) −0.009 (5) −0.006 (4) 0.002 (5)
C31 0.049 (6) 0.093 (9) 0.038 (6) −0.004 (6) −0.001 (4) −0.023 (6)
C32 0.084 (8) 0.061 (7) 0.040 (6) −0.020 (7) 0.008 (5) −0.023 (5)
C33 0.080 (8) 0.090 (9) 0.027 (5) 0.048 (7) −0.005 (5) −0.018 (5)
C34 0.078 (8) 0.128 (12) 0.014 (5) −0.028 (8) 0.002 (5) 0.008 (6)
C35 0.076 (8) 0.069 (8) 0.033 (5) 0.011 (6) −0.022 (5) −0.010 (5)
O1M 0.056 (4) 0.038 (4) 0.066 (5) −0.001 (3) 0.004 (3) −0.006 (3)
C1EB 0.067 (7) 0.067 (7) 0.093 (9) −0.012 (6) 0.017 (6) −0.002 (6)
C2E 0.067 (7) 0.067 (7) 0.093 (9) −0.012 (6) 0.017 (6) −0.002 (6)
C1EA 0.067 (7) 0.067 (7) 0.093 (9) −0.012 (6) 0.017 (6) −0.002 (6)

Geometric parameters (Å, º)

Re1—N101 1.720 (10) N3—C2 1.476 (11)
Re1—O1M 2.147 (6) N3—C4 1.491 (12)
Re1—Br2 2.5085 (10) N4—C10 1.435 (15)
Re1—Br4 2.5200 (10) N4—C7 1.465 (13)
Re1—Br1 2.5206 (10) N4—C12 1.466 (12)
Re1—Br3 2.5245 (10) N6—C10 1.475 (16)
Ru1—C25 2.008 (7) N6—C11 1.478 (17)
Ru1—C28 2.212 (9) N6—C8 1.479 (12)
Ru1—C27 2.214 (9) N7—C16 1.437 (12)
Ru1—C29 2.235 (8) N7—C17 1.457 (12)
Ru1—P2 2.243 (2) N7—C13 1.491 (11)
Ru1—C30 2.258 (8) N8—C16 1.475 (11)
Ru1—C26 2.261 (8) N8—C18 1.480 (11)
Ru1—P1 2.281 (2) N8—C14 1.482 (10)
Ru2—N13 2.030 (8) N9—C17 1.454 (12)
Ru2—C33 2.198 (9) N9—C18 1.454 (11)
Ru2—C34 2.202 (9) N9—C15 1.458 (11)
Ru2—C32 2.229 (9) N10—C23 1.437 (16)
Ru2—C35 2.245 (9) N10—C22 1.440 (14)
Ru2—C31 2.255 (9) N10—C19 1.476 (13)
Ru2—P3 2.268 (2) N11—C23 1.446 (16)
Ru2—P4 2.277 (2) N11—C24 1.453 (17)
P1—C1 1.840 (8) N11—C20 1.482 (14)
P1—C3 1.846 (9) N12—C22 1.433 (14)
P1—C2 1.850 (8) N12—C24 1.462 (16)
P2—C7 1.827 (9) N12—C21 1.498 (13)
P2—C8 1.838 (9) C11—N5 1.444 (17)
P2—C9 1.846 (10) N13—C25 1.142 (10)
P3—C13 1.841 (8) C9—N5 1.473 (13)
P3—C15 1.843 (8) N5—C12 1.464 (14)
P3—C14 1.853 (9) C26—C30 1.388 (14)
P4—C20 1.831 (10) C26—C27 1.441 (14)
P4—C21 1.834 (10) C27—C28 1.410 (15)
P4—C19 1.847 (9) C28—C29 1.417 (14)
O101—N101 1.183 (11) C29—C30 1.409 (14)
N1—C5 1.447 (12) C31—C32 1.357 (16)
N1—C1 1.456 (11) C31—C35 1.411 (16)
N1—C4 1.458 (12) C32—C33 1.387 (16)
N2—C6 1.434 (14) C33—C34 1.410 (17)
N2—C3 1.451 (12) C34—C35 1.456 (16)
N2—C5 1.470 (13) O1M—C1EB 1.471 (13)
N3—C6 1.473 (13) C1EB—C2E 1.43 (3)
N101—Re1—O1M 178.9 (3) C5—N1—C1 112.1 (7)
N101—Re1—Br2 94.1 (3) C5—N1—C4 108.7 (8)
O1M—Re1—Br2 85.44 (19) C1—N1—C4 111.3 (7)
N101—Re1—Br4 94.1 (3) C6—N2—C3 111.5 (8)
O1M—Re1—Br4 86.33 (19) C6—N2—C5 108.7 (8)
Br2—Re1—Br4 171.77 (4) C3—N2—C5 110.8 (8)
N101—Re1—Br1 93.0 (3) C6—N3—C2 110.6 (8)
O1M—Re1—Br1 85.96 (18) C6—N3—C4 107.7 (8)
Br2—Re1—Br1 89.58 (4) C2—N3—C4 110.6 (7)
Br4—Re1—Br1 90.10 (4) C10—N4—C7 112.1 (8)
N101—Re1—Br3 93.0 (3) C10—N4—C12 109.5 (10)
O1M—Re1—Br3 87.99 (18) C7—N4—C12 110.8 (8)
Br2—Re1—Br3 89.45 (4) C10—N6—C11 107.6 (9)
Br4—Re1—Br3 90.01 (4) C10—N6—C8 111.2 (9)
Br1—Re1—Br3 173.93 (4) C11—N6—C8 110.6 (9)
C25—Ru1—C28 142.5 (4) C16—N7—C17 109.7 (7)
C25—Ru1—C27 154.2 (3) C16—N7—C13 112.1 (7)
C28—Ru1—C27 37.2 (4) C17—N7—C13 109.3 (7)
C25—Ru1—C29 106.9 (3) C16—N8—C18 107.6 (7)
C28—Ru1—C29 37.1 (4) C16—N8—C14 110.3 (6)
C27—Ru1—C29 61.3 (4) C18—N8—C14 110.3 (7)
C25—Ru1—P2 86.3 (2) C17—N9—C18 108.8 (7)
C28—Ru1—P2 91.3 (3) C17—N9—C15 110.8 (7)
C27—Ru1—P2 117.6 (3) C18—N9—C15 113.2 (7)
C29—Ru1—P2 101.4 (3) C23—N10—C22 109.8 (9)
C25—Ru1—C30 95.6 (3) C23—N10—C19 110.3 (9)
C28—Ru1—C30 61.6 (4) C22—N10—C19 110.3 (9)
C27—Ru1—C30 60.9 (3) C23—N11—C24 110.5 (10)
C29—Ru1—C30 36.5 (4) C23—N11—C20 111.6 (10)
P2—Ru1—C30 136.4 (3) C24—N11—C20 107.9 (11)
C25—Ru1—C26 117.0 (3) C22—N12—C24 109.1 (9)
C28—Ru1—C26 62.5 (4) C22—N12—C21 110.1 (9)
C27—Ru1—C26 37.5 (4) C24—N12—C21 109.4 (10)
C29—Ru1—C26 61.1 (4) N4—C10—N6 113.8 (8)
P2—Ru1—C26 153.3 (2) N5—C11—N6 116.1 (10)
C30—Ru1—C26 35.8 (3) C25—N13—Ru2 176.3 (7)
C25—Ru1—P1 88.1 (2) O101—N101—Re1 178.6 (10)
C28—Ru1—P1 129.4 (3) N1—C1—P1 113.5 (6)
C27—Ru1—P1 98.1 (3) N3—C2—P1 113.1 (6)
C29—Ru1—P1 157.7 (3) N2—C3—P1 113.4 (6)
P2—Ru1—P1 95.97 (8) N4—C7—P2 112.5 (7)
C30—Ru1—P1 127.6 (3) N6—C8—P2 111.6 (7)
C26—Ru1—P1 97.5 (3) N5—C9—P2 112.7 (7)
N13—Ru2—C33 145.0 (4) C11—N5—C12 106.9 (9)
N13—Ru2—C34 151.6 (4) C11—N5—C9 111.3 (10)
C33—Ru2—C34 37.4 (5) C12—N5—C9 110.9 (9)
N13—Ru2—C32 109.3 (4) N1—C4—N3 113.3 (7)
C33—Ru2—C32 36.5 (4) N1—C5—N2 113.8 (7)
C34—Ru2—C32 60.9 (4) N2—C6—N3 115.1 (8)
N13—Ru2—C35 113.3 (4) N5—C12—N4 114.0 (8)
C33—Ru2—C35 62.8 (4) N7—C13—P3 112.5 (5)
C34—Ru2—C35 38.2 (4) N8—C14—P3 114.2 (6)
C32—Ru2—C35 60.6 (4) N9—C15—P3 112.3 (6)
N13—Ru2—C31 94.7 (3) N7—C16—N8 114.5 (7)
C33—Ru2—C31 60.9 (4) N9—C17—N7 114.3 (7)
C34—Ru2—C31 61.5 (4) N9—C18—N8 113.6 (7)
C32—Ru2—C31 35.2 (4) N10—C19—P4 112.9 (7)
C35—Ru2—C31 36.6 (4) N11—C20—P4 113.0 (7)
N13—Ru2—P3 86.25 (19) N12—C21—P4 112.5 (7)
C33—Ru2—P3 94.2 (3) N12—C22—N10 115.9 (9)
C34—Ru2—P3 121.3 (4) N10—C23—N11 114.2 (9)
C32—Ru2—P3 102.5 (3) N11—C24—N12 114.9 (9)
C35—Ru2—P3 156.9 (3) N13—C25—Ru1 175.5 (7)
C31—Ru2—P3 134.9 (3) C30—C26—C27 106.4 (9)
N13—Ru2—P4 85.8 (2) C30—C26—Ru1 72.0 (5)
C33—Ru2—P4 128.6 (4) C27—C26—Ru1 69.4 (5)
C34—Ru2—P4 96.7 (4) C28—C27—C26 108.9 (9)
C32—Ru2—P4 155.8 (3) C28—C27—Ru1 71.4 (5)
C35—Ru2—P4 96.4 (3) C26—C27—Ru1 73.0 (5)
C31—Ru2—P4 127.9 (3) C27—C28—C29 106.7 (9)
P3—Ru2—P4 97.13 (7) C27—C28—Ru1 71.5 (5)
C1—P1—C3 96.6 (5) C29—C28—Ru1 72.3 (5)
C1—P1—C2 96.5 (4) C30—C29—C28 108.3 (9)
C3—P1—C2 97.4 (5) C30—C29—Ru1 72.6 (5)
C1—P1—Ru1 126.3 (3) C28—C29—Ru1 70.6 (5)
C3—P1—Ru1 114.4 (3) C26—C30—C29 109.6 (8)
C2—P1—Ru1 119.8 (3) C26—C30—Ru1 72.2 (5)
C7—P2—C8 99.0 (5) C29—C30—Ru1 70.8 (5)
C7—P2—C9 96.6 (5) C32—C31—C35 109.4 (10)
C8—P2—C9 98.5 (6) C32—C31—Ru2 71.4 (6)
C7—P2—Ru1 122.8 (4) C35—C31—Ru2 71.4 (5)
C8—P2—Ru1 120.6 (3) C31—C32—C33 110.7 (11)
C9—P2—Ru1 114.4 (3) C31—C32—Ru2 73.4 (6)
C13—P3—C15 97.8 (4) C33—C32—Ru2 70.5 (6)
C13—P3—C14 96.6 (4) C32—C33—C34 106.9 (10)
C15—P3—C14 96.9 (4) C32—C33—Ru2 73.0 (6)
C13—P3—Ru2 120.6 (3) C34—C33—Ru2 71.4 (6)
C15—P3—Ru2 124.4 (3) C33—C34—C35 107.8 (11)
C14—P3—Ru2 115.0 (3) C33—C34—Ru2 71.2 (6)
C20—P4—C21 97.7 (6) C35—C34—Ru2 72.5 (6)
C20—P4—C19 97.3 (6) C31—C35—C34 105.2 (10)
C21—P4—C19 96.7 (5) C31—C35—Ru2 72.1 (6)
C20—P4—Ru2 113.5 (4) C34—C35—Ru2 69.3 (5)
C21—P4—Ru2 125.0 (4) C1EB—O1M—Re1 128.3 (6)
C19—P4—Ru2 121.1 (3) C2E—C1EB—O1M 147.8 (14)
C7—N4—C10—N6 67.9 (11) C13—N7—C16—N8 67.5 (10)
C12—N4—C10—N6 −55.4 (11) C18—N8—C16—N7 54.6 (9)
C11—N6—C10—N4 53.3 (12) C14—N8—C16—N7 −65.7 (10)
C8—N6—C10—N4 −68.0 (12) C18—N9—C17—N7 −54.8 (10)
C10—N6—C11—N5 −54.7 (12) C15—N9—C17—N7 70.3 (10)
C8—N6—C11—N5 67.0 (13) C16—N7—C17—N9 53.9 (10)
C5—N1—C1—P1 −59.7 (9) C13—N7—C17—N9 −69.3 (10)
C4—N1—C1—P1 62.2 (9) C17—N9—C18—N8 56.1 (9)
C3—P1—C1—N1 48.0 (7) C15—N9—C18—N8 −67.6 (9)
C2—P1—C1—N1 −50.2 (7) C16—N8—C18—N9 −55.5 (9)
Ru1—P1—C1—N1 175.0 (5) C14—N8—C18—N9 64.8 (9)
C6—N3—C2—P1 58.7 (9) C23—N10—C19—P4 61.3 (11)
C4—N3—C2—P1 −60.6 (9) C22—N10—C19—P4 −60.2 (11)
C1—P1—C2—N3 49.7 (8) C20—P4—C19—N10 −48.6 (10)
C3—P1—C2—N3 −47.8 (8) C21—P4—C19—N10 50.1 (10)
Ru1—P1—C2—N3 −171.5 (5) Ru2—P4—C19—N10 −171.8 (7)
C6—N2—C3—P1 −60.1 (10) C23—N11—C20—P4 −59.0 (14)
C5—N2—C3—P1 61.1 (10) C24—N11—C20—P4 62.6 (12)
C1—P1—C3—N2 −49.3 (8) C21—P4—C20—N11 −50.6 (11)
C2—P1—C3—N2 48.1 (8) C19—P4—C20—N11 47.2 (11)
Ru1—P1—C3—N2 175.7 (6) Ru2—P4—C20—N11 175.8 (9)
C10—N4—C7—P2 −59.8 (10) C22—N12—C21—P4 60.6 (12)
C12—N4—C7—P2 62.8 (10) C24—N12—C21—P4 −59.3 (12)
C8—P2—C7—N4 47.8 (8) C20—P4—C21—N12 48.4 (10)
C9—P2—C7—N4 −52.0 (8) C19—P4—C21—N12 −49.9 (10)
Ru1—P2—C7—N4 −176.6 (5) Ru2—P4—C21—N12 174.3 (7)
C10—N6—C8—P2 59.5 (11) C24—N12—C22—N10 52.2 (12)
C11—N6—C8—P2 −60.0 (12) C21—N12—C22—N10 −67.9 (12)
C7—P2—C8—N6 −48.0 (9) C23—N10—C22—N12 −53.9 (12)
C9—P2—C8—N6 50.1 (9) C19—N10—C22—N12 67.9 (12)
Ru1—P2—C8—N6 175.1 (7) C22—N10—C23—N11 52.8 (12)
C7—P2—C9—N5 50.9 (10) C19—N10—C23—N11 −69.0 (12)
C8—P2—C9—N5 −49.2 (10) C24—N11—C23—N10 −52.0 (13)
Ru1—P2—C9—N5 −178.5 (8) C20—N11—C23—N10 68.0 (13)
N6—C11—N5—C12 55.5 (12) C23—N11—C24—N12 50.9 (14)
N6—C11—N5—C9 −65.7 (13) C20—N11—C24—N12 −71.3 (13)
P2—C9—N5—C11 58.3 (12) C22—N12—C24—N11 −50.4 (13)
P2—C9—N5—C12 −60.5 (12) C21—N12—C24—N11 70.2 (13)
C5—N1—C4—N3 56.5 (10) C30—C26—C27—C28 −0.2 (10)
C1—N1—C4—N3 −67.4 (10) Ru1—C26—C27—C28 62.7 (6)
C6—N3—C4—N1 −54.3 (10) C30—C26—C27—Ru1 −63.0 (6)
C2—N3—C4—N1 66.7 (10) C26—C27—C28—C29 0.4 (10)
C1—N1—C5—N2 66.4 (10) Ru1—C27—C28—C29 64.2 (6)
C4—N1—C5—N2 −57.0 (10) C26—C27—C28—Ru1 −63.8 (6)
C6—N2—C5—N1 55.9 (11) C27—C28—C29—C30 −0.4 (10)
C3—N2—C5—N1 −67.0 (10) Ru1—C28—C29—C30 63.2 (6)
C3—N2—C6—N3 67.6 (11) C27—C28—C29—Ru1 −63.6 (6)
C5—N2—C6—N3 −54.8 (11) C27—C26—C30—C29 0.0 (10)
C2—N3—C6—N2 −66.8 (11) Ru1—C26—C30—C29 −61.3 (6)
C4—N3—C6—N2 54.2 (11) C27—C26—C30—Ru1 61.3 (6)
C11—N5—C12—N4 −55.5 (12) C28—C29—C30—C26 0.3 (10)
C9—N5—C12—N4 66.0 (13) Ru1—C29—C30—C26 62.2 (6)
C10—N4—C12—N5 56.9 (11) C28—C29—C30—Ru1 −61.9 (6)
C7—N4—C12—N5 −67.2 (12) C35—C31—C32—C33 0.5 (12)
C16—N7—C13—P3 −61.3 (9) Ru2—C31—C32—C33 −61.0 (7)
C17—N7—C13—P3 60.6 (9) C35—C31—C32—Ru2 61.6 (7)
C15—P3—C13—N7 −49.0 (7) C31—C32—C33—C34 −1.1 (11)
C14—P3—C13—N7 48.9 (7) Ru2—C32—C33—C34 −63.8 (7)
Ru2—P3—C13—N7 173.0 (5) C31—C32—C33—Ru2 62.8 (7)
C16—N8—C14—P3 59.5 (8) C32—C33—C34—C35 1.2 (11)
C18—N8—C14—P3 −59.3 (8) Ru2—C33—C34—C35 −63.7 (6)
C13—P3—C14—N8 −49.6 (7) C32—C33—C34—Ru2 64.9 (7)
C15—P3—C14—N8 49.1 (6) C32—C31—C35—C34 0.2 (11)
Ru2—P3—C14—N8 −177.7 (5) Ru2—C31—C35—C34 61.8 (6)
C17—N9—C15—P3 −61.0 (8) C32—C31—C35—Ru2 −61.6 (7)
C18—N9—C15—P3 61.6 (8) C33—C34—C35—C31 −0.8 (10)
C13—P3—C15—N9 49.0 (7) Ru2—C34—C35—C31 −63.7 (7)
C14—P3—C15—N9 −48.7 (6) C33—C34—C35—Ru2 62.8 (6)
Ru2—P3—C15—N9 −175.4 (4) Re1—O1M—C1EB—C2E −144 (3)
C17—N7—C16—N8 −54.2 (10)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C10—H10A···Br3i 0.97 3.12 3.944 (12) 143
C10—H10B···Br2 0.97 2.83 3.709 (10) 150
C1—H1B···Br4ii 0.97 3.03 3.967 (9) 163
C7—H7B···N9iii 0.97 2.59 3.309 (11) 131
C8—H8A···Br3i 0.97 2.89 3.772 (12) 151
C4—H4B···Br3i 0.97 3.10 4.062 (10) 169
C5—H5A···Br1ii 0.97 3.10 3.918 (10) 143
C18—H18A···N4iv 0.97 2.53 3.208 (11) 127
C18—H18B···Br2v 0.97 2.92 3.858 (9) 163
C19—H19B···Br1vi 0.97 3.09 3.938 (11) 147
C22—H22B···Br1vi 0.97 3.00 3.861 (10) 148
C23—H23A···Br4vii 0.97 3.10 4.007 (12) 156
C24—H24A···Br3vii 0.97 2.98 3.799 (11) 143
O1M—H1m···N8iii 0.85 1.88 2.709 (9) 166
C1EB—H101···Br3 0.97 2.80 3.527 (13) 132
C2E—H2e3···N6i 0.96 2.36 3.15 (3) 140

Symmetry codes: (i) −x, −y, −z; (ii) −x, y+1/2, −z+1/2; (iii) x−1, y, z; (iv) x+1, y, z; (v) −x+1, −y, −z; (vi) −x+1, y+1/2, −z+1/2; (vii) x+1, y+1, z.

Funding Statement

This work was funded by Programa de Desarrollo de las Ciencias Básicas (PEDECIBA); Comisión Sectorial de Investigación Científica grant Apoyo a Grupos de Investigación No. 2003 to Mario Pacheco, Alicia Cuevas, and Carlos Kremer; Comisión Académica de Posgrado (CAP); University of Almeria grants PPUENTE2020/011 and PAI team FQM-317 to Antonio Romerosa and Antonio Romerosa; Agencia Nacional de Investigación e Innovación; Spanish MINECO grants PID2019-109735GB-I00 and Unidad de Excelencia María de Maeztu CEX2019-000919-M; Generalitat Valenciana grant AICO/2020/183.

References

  1. Aakeröy, C. B., Evans, T. A., Seddon, K. R. & Pálinkó, I. (1999). New J. Chem. 23, 145–152.
  2. Antonarakis, E. S. & Emadi, A. (2010). Cancer Chemother. Pharmacol. 66, 1–9. [DOI] [PMC free article] [PubMed]
  3. Bruker (2007). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2013). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Ciani, G., Giusto, D., Manassero, M. & Sansoni, M. (1975). J. Chem. Soc. Dalton Trans. pp. 2156–2161.
  6. Darensbourg, D. J., Decuir, T. J. & Reibenspies, J. H. (1995). Aqueous Organometallic Chemistry and Catalysis, Vol. edited by I. T. Horváth & F. Joó, pp. 61–80. Dordrecht: Springer Netherlands.
  7. Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311–2327.
  8. Desiraju, G. R. & Steiner, T. (2001). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.
  9. Dilworth, J. R. (2021). Coord. Chem. Rev. 436, 213822.
  10. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  11. Gasser, G., Ott, I. & Metzler-Nolte, N. (2011). J. Med. Chem. 54, 3–25. [DOI] [PMC free article] [PubMed]
  12. Ghosh, S., Paul, S. S., Mitra, J. & Mukherjea, K. K. (2014). J. Coord. Chem. 67, 1809–1834.
  13. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  14. Hey-Hawkins, E. & Hissler, M. (2019). Smart Inorganic Polymers: Synthesis, Properties, and emerging applications in Materials and Life Sciences. Weinheim: Wiley-VCH.
  15. Hołyńska, M. & Lis, T. (2014). Inorg. Chim. Acta, 419, 96–104.
  16. Ikeda, H., Yoshimura, T., Ito, A., Sakuda, E., Kitamura, N., Takayama, T., Sekine, T. & Shinohara, A. (2012). Inorg. Chem. 51, 12065–12074. [DOI] [PubMed]
  17. Jiang, Y., Blacque, O. & Berke, H. (2011). Dalton Trans. 40, 2578–2587. [DOI] [PubMed]
  18. Jiang, Y., Blacque, O., Fox, T., Frech, C. M. & Berke, H. (2010). Chem. Eur. J. 16, 2240–2249. [DOI] [PubMed]
  19. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  20. Liang, J.-X., Zhong, H.-J., Yang, G., Vellaisamy, K., Ma, D.-L. & Leung, C.-H. (2017). J. Inorg. Biochem. 177, 276–286. [DOI] [PubMed]
  21. Lidrissi, C., Romerosa, A., Saoud, M., Serrano-Ruiz, M., Gonsalvi, L. & Peruzzini, M. (2005). Angew. Chem. Int. Ed. 44, 2568–2572. [DOI] [PubMed]
  22. Machura, B. (2005). Coord. Chem. Rev. 249, 2277–2307.
  23. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  24. Masood, Md. A. & Hodgson, D. J. (1994). Inorg. Chem. 33, 2488–2490.
  25. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816. [DOI] [PubMed]
  26. Metrangolo, P., Pilati, T. & Resnati, G. (2006). CrystEngComm, 8, 946–947.
  27. Mronga, N., Dehnicke, K. & Fenske, D. (1982). Z. Anorg. Allg. Chem. 491, 237–244.
  28. Pacheco, M., Cuevas, A., González-Platas, J., Faccio, R., Lloret, F., Julve, M. & Kremer, C. (2013). Dalton Trans. 42, 15361–15371. [DOI] [PubMed]
  29. Pacheco, M., Cuevas, A., González-Platas, J., Gancheff, J. S. & Kremer, C. (2014). J. Coord. Chem. 67, 4028–4038.
  30. Pacheco, M., Cuevas, A., González-Platas, J. & Kremer, C. (2015). Commun. Inorg. Synth. 2, 20–24.
  31. Pacheco, M., Cuevas, A., González-Platas, J., Lloret, F., Julve, M. & Kremer, C. (2015). Dalton Trans. 44, 11636–11648. [DOI] [PubMed]
  32. Phillips, A. D., Gonsalvi, L., Romerosa, A., Vizza, F. & Peruzzini, M. (2004). Coord. Chem. Rev. 248, 955–993.
  33. Pino-Cuevas, A., Graña, A., Abram, U., Carballo, R. & Vázquez-López, E. M. (2018). CrystEngComm, 20, 4781–4792.
  34. Probst, B., Kolano, C., Hamm, P. & Alberto, R. (2009). Inorg. Chem. 48, 1836–1843. [DOI] [PubMed]
  35. Scalambra, F., López-Sánchez, B., Holzmann, N., Bernasconi, L. & Romerosa, A. (2020). Organometallics, 39, 4491–4499.
  36. Scalambra, F., Serrano-Ruiz, M., Gudat, D. & Romerosa, A. (2016). ChemistrySelect, 1, 901–905.
  37. Scalambra, F., Serrano-Ruiz, M. & Romerosa, A. (2015). Macromol. Rapid Commun. 36, 689–693. [DOI] [PubMed]
  38. Scalambra, F., Serrano-Ruiz, M. & Romerosa, A. (2017). Dalton Trans. 46, 5864–5871. [DOI] [PubMed]
  39. Scalambra, F., Serrano-Ruiz, M. & Romerosa, A. (2018). Dalton Trans. 47, 3588–3595. [DOI] [PubMed]
  40. Scalambra, F., Sierra-Martin, B., Serrano-Ruiz, M., Fernandez-Barbero, A. & Romerosa, A. (2020). Chem. Commun. 56, 9441–9444. [DOI] [PubMed]
  41. Serrano-Ruiz, M., Imberti, S., Bernasconi, L., Jadagayeva, N., Scalambra, F. & Romerosa, A. (2014). Chem. Commun. 50, 11587–11590. [DOI] [PubMed]
  42. Serrano Ruiz, M., Romerosa, A., Sierra-Martin, B. & Fernandez-Barbero, A. (2008). Angew. Chem. Int. Ed. 47, 8665–8669. [DOI] [PubMed]
  43. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  44. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  45. Shimpi, M. R., SeethaLekshmi, N. & Pedireddi, V. R. (2007). Cryst. Growth Des. 7, 1958–1963.
  46. Sierra-Martin, B., Serrano-Ruiz, M., García-Sakai, V., Scalambra, F., Romerosa, A. & Fernandez-Barbero, A. (2018). Polymers, 10, 528. [DOI] [PMC free article] [PubMed]
  47. Sierra-Martin, B., Serrano-Ruiz, M., Scalambra, F., Fernandez-Barbero, A. & Romerosa, A. (2019). Polymers, 11, 1249. [DOI] [PMC free article] [PubMed]
  48. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  49. Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.
  50. Spokoyny, A. M., Kim, D., Sumrein, A. & Mirkin, C. A. (2009). Chem. Soc. Rev. 38, 1218–1227. [DOI] [PubMed]
  51. Steed, J. W. & Atwood, J. L. (2009). Supramolecular Chemistry. Chichester: Wiley.
  52. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.
  53. Wang, X.-Y., Avendaño, C. & Dunbar, K. R. (2011). Chem. Soc. Rev. 40, 3213–3238. [DOI] [PubMed]
  54. Zhang, W., Tang, X., Ma, H., Sun, W.-H. & Janiak, C. (2008). Eur. J. Inorg. Chem. pp. 2830–2836.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021006381/ex2046sup1.cif

e-77-00749-sup1.cif (1.7MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021006381/ex2046Isup2.hkl

e-77-00749-Isup2.hkl (680KB, hkl)

Histogram showing the number of Re-Br distances hexacoordinated nitrosylrhenium complexes found in the database survey (section 5). DOI: 10.1107/S2056989021006381/ex2046sup3.png

Histogram showing the number of Re-N(NO) distances in hexacoordinated nitrosylrhenium complexes found in the database survey (section 5). DOI: 10.1107/S2056989021006381/ex2046sup4.png

Histogram showing the number of N-O nitrosyl distances in hexacoordinated nitrosylrhenium complexes found in the database survey (section 5). DOI: 10.1107/S2056989021006381/ex2046sup5.png

Histogram showing the number of C...Br distances in hexacoordinated nitrosylrhenium complexes found in the database survey (section 5). DOI: 10.1107/S2056989021006381/ex2046sup6.png

Histogram showing the number of C...H-Br angles in hexacoordinated nitrosylrhenium complexes found in the database survey (section 5). DOI: 10.1107/S2056989021006381/ex2046sup7.png

CCDC reference: 2075886

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES