Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Jun 25;77(Pt 7):739–743. doi: 10.1107/S2056989021006459

Crystal structure and Hirshfeld surface analysis of ethyl 6′-amino-2′-(chloro­meth­yl)-5′-cyano-2-oxo-1,2-di­hydro­spiro­[indoline-3,4′-pyran]-3′-carboxyl­ate

Farid N Naghiyev a, Maria M Grishina b, Victor N Khrustalev b,c, Mehmet Akkurt d, Afet T Huseynova a, Anzurat A Akobirshoeva e,*, İbrahim G Mamedov a
PMCID: PMC8382051  PMID: 34513022

The mol­ecules are connected in the crystal by N—H⋯O hydrogen-bond pairs along the b-axis direction as dimers with Inline graphic(8) and Inline graphic(14) ring motifs and as ribbons by inter­molecular C—H⋯N hydrogen bonds. Between the ribbons, there are weak van der Waals contacts.

Keywords: crystal structure, spiro­oxindole, dimers, hydrogen bond, Hirshfeld surface analysis

Abstract

The mol­ecular conformation of the title compound, C17H14ClN3O4, is stabilized by an intra­molecular C—H⋯O contact, forming an S(6) ring motif. In the crystal, the mol­ecules are connected by N—H⋯O hydrogen-bond pairs along the b-axis direction as dimers with R 2 2(8) and R 2 2(14) ring motifs and as ribbons formed by inter­molecular C—H⋯N hydrogen bonds. There are weak van der Waals inter­actions between the ribbons. The most important contributions to the surface contacts are from H⋯H (34.9%), O⋯H/H⋯O (19.2%), C⋯H/H⋯C (11.9%), Cl⋯H/H⋯Cl (10.7%) and N⋯H/H⋯N (10.4%) inter­actions, as concluded from a Hirshfeld surface analysis.

Chemical context  

Being the most significant tools in organic synthesis, carbon–carbon and carbon–heteroatom coupling reactions are important for the construction of fine chemicals such as pharmaceuticals, fragrances, anti­oxidants, etc. (Yadigarov et al., 2009; Khalilov et al., 2018a,b ; Zubkov et al., 2018). These methods have found widespread application in the design of diverse heterocyclic ring systems, as well as spiro-heterocyclic compounds (Gurbanov et al., 2018; Maharramov et al., 2019; Mahmoudi et al., 2019; Mamedov et al., 2019; Yin et al., 2020). The spiro­oxindole moiety is a key bioactive fragment of various natural products (Fig. 1), series of derivatives already being used in medicinal practice (Zhou et al., 2020).graphic file with name e-77-00739-scheme1.jpg

Figure 1.

Figure 1

Natural products containing the spiro­oxindole motif.

In this work, in the framework of our ongoing structural studies (Akkurt et al., 2018; Naghiyev et al., 2020, 2021), we report the crystal structure and Hirshfeld surface analysis of the title compound, ethyl 6′-amino-2′-(chloro­meth­yl)-5′-cyano-2-oxo-1,2-di­hydro­spiro­[indoline-3,4′-pyran]-3′-carb­oxy­l­ate.

Structural commentary  

In the title compound (Fig. 2), the 2,3-di­hydro-1H-indole ring system (N1/C1/C4/C12–C17) is nearly planar [maximum deviation = 0.039 (1) Å for C1], while the 4H-pyran ring (O1/C2–C6) adopts a flattened-boat conformation [puckering parameters (Cremer & Pople, 1975): Q T = 0.1091 (13) Å, θ = 77.0 (6) ° and φ = 139.6 (7) °]. The planes of the 2,3-di­hydro-1H-indole ring system and the 4H-pyran ring are approximately perpendicular to each other, subtending a dihedral angle of 84.52 (5)°. The C5—C6—C11—Cl1, C6—C5—C8—O2, C6—C5—C8—O3, C5—C8—O3—C9 and C8—O3—C9—C10 torsion angles are −103.28 (13), −29.78 (18), 150.69 (11), 178.03 (10) and −169.29 (12)°, respectively. An intra­molecular C11—H11B⋯O2 contact stabilizes the mol­ecular conformation of the title compound (Fig. 2, Table 1), generating an S(6) ring motif (Bernstein et al., 1995).

Figure 2.

Figure 2

The mol­ecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids at the 50% probability level.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4i 0.853 (17) 1.981 (17) 2.8292 (14) 173.0 (17)
N2—H2B⋯O4ii 0.887 (18) 2.095 (18) 2.9636 (15) 166.0 (17)
C11—H11B⋯O2 0.99 2.15 2.9039 (17) 131
C13—H13⋯N7iii 0.95 2.56 3.333 (2) 138

Symmetry codes: (i) -x, -y, -z+1; (ii) -x, -y+1, -z+1; (iii) -x+1, -y, -z+1.

Supra­molecular features  

In the crystal, the mol­ecules are joined by N—H⋯O hydrogen-bond pairs along the b-axis direction as dimers with Inline graphic(8) and Inline graphic(14) ring motifs and by inter­molecular C—H⋯N hydrogen bonds as ribbons (Table 1; Figs. 3 and 4). Between the ribbons are only weak van der Waals contacts (Table 2). There are no C—H⋯π or π–π inter­actions in the crystal structure.

Figure 3.

Figure 3

A view of the inter­molecular N—H⋯O and C—H⋯N hydrogen bonds in the crystal packing of the title compound down the a axis.

Figure 4.

Figure 4

A view of the inter­molecular N—H⋯O and C—H⋯N hydrogen bonds in the crystal packing of the title compound down the b axis.

Table 2. Summary of short inter­atomic contacts (Å) in the title compound.

Contact Distance Symmetry operation
O3⋯H15 2.88 −1 + x, y, z
H9A⋯Cl1 3.06 x, 1 − y, 2 − z
H2B⋯O4 2.095 x, 1 − y, 1 − z
H16⋯H11B 2.37 1 − x, 1 − y, 2 − z
H1⋯O4 1.981 x, −y, 1 − z
H16⋯H2A 2.49 1 − x, 1 − y, 1 − z
H13⋯N7 2.56 1 − x, −y, 1 − z
H10A⋯H11A 2.49 x, − 1 + y, z
H10A⋯C14 2.93 1 − x, −y, 2 − z

Hirshfeld surface analysis  

A Hirshfeld surface analysis was performed to investigate the inter­molecular inter­actions (Tables 1 and 2) qu­anti­tatively and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) were generated with CrystalExplorer17 (Turner et al., 2017). The Hirshfeld surface plotted over d norm in the range −0.6053 to 1.4079 a.u. is shown in Fig. 5. The red spots on the Hirshfeld surface represent N—H⋯O contacts. The Hirshfeld surface mapped over electrostatic potential (Spackman et al., 2008) is shown in Fig. 6. The positive electrostatic potential (blue region) over the surface indicates hydrogen-donor potential, whereas the hydrogen-bond acceptors are represented by negative electrostatic potential (red region).

Figure 5.

Figure 5

Hirshfeld surface of the title compound mapped with d norm in the range −0.6053 to 1.4079 a.u.

Figure 6.

Figure 6

View of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory. Hydrogen-bond donors and acceptors are shown as blue and red regions around the atoms, corresponding to positive and negative potentials, respectively.

Fig. 7 shows the full two-dimensional fingerprint plot and those delineated into the major contacts: the H⋯H (34.9%; Fig. 7 b) inter­actions are the major factor in the crystal packing with O⋯H/H⋯O (19.2%; Fig. 7 c), C⋯H/H⋯C (11.9%; Fig. 7 d), Cl⋯H/H⋯Cl (10.7%; Fig. 7 e) and N⋯H/H⋯N (10.4%; Fig. 7 f) inter­actions representing the next highest contributions. Other weak inter­actions (contribution percent­ages) are O⋯N/N⋯O (2.3%), O⋯C/C⋯O (2.1%), N⋯C/C⋯N (2.1%), Cl⋯N/N⋯Cl (1.7%), Cl⋯O/O⋯Cl (1.4%), C⋯C (1.0%), N⋯N (0.7%), O⋯O (0.6%), Cl⋯C/C⋯Cl (0.6%) and Cl⋯Cl (0.3%).

Figure 7.

Figure 7

The two-dimensional fingerprint plots of the title compound, showing (a) all inter­actions, and those delineated into (b) H⋯H, (c) O⋯H/H⋯O, (d) C⋯H/H⋯C, (e) Cl⋯H/H⋯Cl and (f) N⋯H/H⋯N inter­actions [d e and d i represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].

Database survey  

A survey of the Cambridge Structural Database (CSD version 5.41, update of March 2020; Groom et al., 2016) using 2-amino-6-(chloro­meth­yl)-4H-pyran-3-carbo­nitrile as the main skeleton revealed the presence of three structures, ethyl 6-amino-2-(chloro­meth­yl)-5-cyano-4-(o-tol­yl)-4H-pyran-3-carb­oxyl­ate (CSD refcode HIRNUS; Athimoolam et al., 2007), 2-amino-6-chloro­methyl-3-cyano-5-eth­oxy­carbonyl-4-(2-fur­yl)-4H-pyran (JEGWEX; Lokaj et al., 1990) and ethyl 6′-amino-2′-(chloro­meth­yl)-5′-cyano-2-oxo-1,2-di­hydro­spiro­[indole-3,4′-pyran]-3′-carboxyl­ate (WIMBEC; Magerramov et al., 2018).

In the crystal of HIRNUS, the six-membered pyran ring adopts a near-boat conformation. The crystal structure features two intra­molecular C—H⋯O inter­actions and the crystal packing is stabilized by inter­molecular N—H⋯O hydrogen bonds. These lead to two primary motifs, viz. R 2 2(12) and C(8). Combination of these primary motifs leads to a secondary Inline graphic(20) ring motif.

In the crystal of JEGWEX, a potential precursor for fluoro­quinoline synthesis, the pyran ring is nearly planar, with the most outlying atoms displaced from the best-plane fit through all non-H atoms by 0.163 (2) and 0.118 (2) Å. The mol­ecules are arranged in layers oriented parallel to the (011) plane. In addition, the mol­ecules are linked by a weak C—H⋯O hydrogen bond, which gives rise to chains with base vector [111].

In WIMBEC, the pyran ring exhibits a near-boat conformation with puckering parameters Q T = 0.085 (7) Å, θ = 84 (5)° and φ = 154 (5)°. In the crystal, mol­ecules are linked as dimers by pairs of N—H⋯O hydrogen bonds, forming ribbons along the b-axis direction. These ribbons are connected by weak van der Waals inter­actions, stabilizing the mol­ecular packing.

Synthesis and crystallization  

The title compound was synthesized using previously reported procedures (Luo et al., 2015; Magerramov et al., 2018), and colourless needles were obtained upon recrystallization from methanol solution.

Refinement details  

Crystal data, data collection and structure refinement details are summarized in Table 3. The H atoms of the NH and NH2 groups were located in a difference map, and their positional parameters were allowed to freely refine [N1—H1 = 0.853 (17), N2—H2A = 0.843 (19) and N2—H2B = 0.889 (18) Å], but their isotropic displacement parameters were constrained to take a value of 1.2U eq(N). All H atoms bound to C atoms were positioned geometrically and refined as riding with C—H = 0.95 (aromatic), 0.99 (methyl­ene) and 0.98 Å (meth­yl), with U iso(H) = 1.5U eq(C) for methyl H atoms and 1.2U eq(C) for the others. Four reflections, 0 0 1, 0 1 0, 1 0 0 and 1 2 0, affected by the incident beam-stop and owing to poor agreement between observed and calculated intensities, and five outliers, Inline graphic Inline graphic 3, 3 1 1, Inline graphic 1 4, Inline graphic Inline graphic 9 and 4 Inline graphic 2, were omitted in the final cycles of refinement.

Table 3. Experimental details.

Crystal data
Chemical formula C17H14ClN3O4
M r 359.76
Crystal system, space group Triclinic, P\overline{1}
Temperature (K) 100
a, b, c (Å) 8.0218 (2), 10.2278 (3), 10.6714 (3)
α, β, γ (°) 98.8503 (7), 108.0048 (7), 96.3852 (6)
V3) 810.92 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.26
Crystal size (mm) 0.25 × 0.20 × 0.15
 
Data collection
Diffractometer Bruker D8 QUEST PHOTON-III CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
Tmin, Tmax 0.903, 0.949
No. of measured, independent and observed [I > 2σ(I)] reflections 18865, 5899, 4685
R int 0.039
(sin θ/λ)max−1) 0.758
 
Refinement
R[F2 > 2σ(F 2)], wR(F 2), S 0.044, 0.106, 1.03
No. of reflections 5899
No. of parameters 236
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.44, −0.63

Computer programs: APEX3 (Bruker, 2018), SAINT (Bruker, 2013), SHELXT2014/5 (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2020).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021006459/vm2250sup1.cif

e-77-00739-sup1.cif (562KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021006459/vm2250Isup2.hkl

e-77-00739-Isup2.hkl (469KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021006459/vm2250Isup3.cml

CCDC reference: 2091350

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors’ contributions are as follows. Conceptualization, FNN and IGM; methodology, FNN and IGM; investigation, VNK, FNN, MMG and AAA; writing (original draft), MA and IGM; writing (review and editing of the manuscript), MA and IGM; visualization, MA, FNN and IGM; funding acquisition, VNK and FNN; resources, ATH, AAA and FNN; supervision, IGM and MA.;

supplementary crystallographic information

Crystal data

C17H14ClN3O4 Z = 2
Mr = 359.76 F(000) = 372
Triclinic, P1 Dx = 1.473 Mg m3
a = 8.0218 (2) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.2278 (3) Å Cell parameters from 6340 reflections
c = 10.6714 (3) Å θ = 2.6–32.5°
α = 98.8503 (7)° µ = 0.26 mm1
β = 108.0048 (7)° T = 100 K
γ = 96.3852 (6)° Prism, colourless
V = 810.92 (4) Å3 0.25 × 0.20 × 0.15 mm

Data collection

Bruker D8 QUEST PHOTON-III CCD diffractometer 4685 reflections with I > 2σ(I)
φ and ω scans Rint = 0.039
Absorption correction: multi-scan (SADABS; Krause et al., 2015) θmax = 32.6°, θmin = 2.6°
Tmin = 0.903, Tmax = 0.949 h = −12→12
18865 measured reflections k = −15→15
5899 independent reflections l = −16→16

Refinement

Refinement on F2 Primary atom site location: difference Fourier map
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: mixed
wR(F2) = 0.106 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0366P)2 + 0.4187P] where P = (Fo2 + 2Fc2)/3
5899 reflections (Δ/σ)max = 0.001
236 parameters Δρmax = 0.44 e Å3
0 restraints Δρmin = −0.63 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 −0.00786 (5) 0.62296 (4) 0.86942 (4) 0.03426 (11)
O1 0.20564 (12) 0.57639 (8) 0.66693 (9) 0.01580 (17)
O2 0.34827 (14) 0.39501 (10) 1.01602 (9) 0.0221 (2)
O3 0.24269 (13) 0.20082 (9) 0.86649 (9) 0.01705 (17)
O4 −0.01410 (11) 0.18103 (8) 0.54781 (9) 0.01560 (17)
N1 0.22730 (14) 0.07160 (10) 0.58525 (11) 0.01426 (19)
H1 0.171 (2) −0.0075 (17) 0.5472 (17) 0.017*
N2 0.20156 (16) 0.58493 (11) 0.45919 (12) 0.0189 (2)
H2A 0.198 (2) 0.5484 (18) 0.3819 (19) 0.023*
H2B 0.158 (2) 0.6601 (18) 0.4714 (18) 0.023*
C1 0.14677 (15) 0.18025 (11) 0.59191 (11) 0.0124 (2)
C2 0.23180 (15) 0.51172 (11) 0.55510 (12) 0.0137 (2)
C3 0.28549 (15) 0.38996 (11) 0.54920 (12) 0.0131 (2)
C4 0.29313 (15) 0.30748 (11) 0.65670 (11) 0.01141 (19)
C5 0.27019 (15) 0.39250 (11) 0.77759 (11) 0.01218 (19)
C6 0.23527 (15) 0.51749 (12) 0.77729 (12) 0.0138 (2)
C7 0.32238 (18) 0.33266 (13) 0.43295 (13) 0.0182 (2)
N7 0.3547 (2) 0.28501 (14) 0.33968 (13) 0.0300 (3)
C8 0.29278 (15) 0.33459 (12) 0.90096 (12) 0.0139 (2)
C9 0.2632 (2) 0.12998 (14) 0.97758 (14) 0.0231 (3)
H9A 0.1751 0.1491 1.0225 0.028*
H9B 0.3840 0.1588 1.0446 0.028*
C10 0.2340 (3) −0.01675 (15) 0.91875 (16) 0.0317 (3)
H10A 0.2419 −0.0684 0.9899 0.048*
H10B 0.3251 −0.0348 0.8779 0.048*
H10C 0.1160 −0.0431 0.8500 0.048*
C11 0.21988 (17) 0.61386 (13) 0.89102 (13) 0.0187 (2)
H11A 0.2843 0.7039 0.8960 0.022*
H11B 0.2752 0.5848 0.9765 0.022*
C12 0.41277 (15) 0.10561 (12) 0.64735 (12) 0.0137 (2)
C13 0.53735 (17) 0.02074 (13) 0.66518 (13) 0.0181 (2)
H13 0.5037 −0.0737 0.6349 0.022*
C14 0.71502 (17) 0.08061 (14) 0.72987 (13) 0.0201 (2)
H14 0.8044 0.0255 0.7431 0.024*
C15 0.76464 (16) 0.21894 (14) 0.77546 (13) 0.0188 (2)
H15 0.8866 0.2568 0.8189 0.023*
C16 0.63576 (16) 0.30242 (12) 0.75758 (12) 0.0150 (2)
H16 0.6684 0.3968 0.7893 0.018*
C17 0.45955 (15) 0.24390 (12) 0.69254 (11) 0.0126 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.01877 (16) 0.0398 (2) 0.0354 (2) 0.00475 (13) 0.00875 (14) −0.01772 (16)
O1 0.0210 (4) 0.0116 (4) 0.0157 (4) 0.0066 (3) 0.0060 (3) 0.0028 (3)
O2 0.0293 (5) 0.0206 (4) 0.0140 (4) −0.0004 (4) 0.0064 (4) 0.0013 (3)
O3 0.0244 (4) 0.0127 (4) 0.0150 (4) 0.0044 (3) 0.0067 (3) 0.0042 (3)
O4 0.0128 (4) 0.0121 (4) 0.0196 (4) 0.0027 (3) 0.0029 (3) 0.0014 (3)
N1 0.0146 (4) 0.0092 (4) 0.0171 (5) 0.0030 (3) 0.0032 (4) 0.0006 (3)
N2 0.0264 (6) 0.0154 (5) 0.0196 (5) 0.0099 (4) 0.0099 (4) 0.0080 (4)
C1 0.0139 (5) 0.0103 (5) 0.0128 (5) 0.0022 (4) 0.0041 (4) 0.0020 (4)
C2 0.0137 (5) 0.0124 (5) 0.0157 (5) 0.0032 (4) 0.0052 (4) 0.0033 (4)
C3 0.0152 (5) 0.0114 (5) 0.0137 (5) 0.0037 (4) 0.0055 (4) 0.0030 (4)
C4 0.0125 (5) 0.0091 (4) 0.0129 (5) 0.0029 (4) 0.0044 (4) 0.0021 (4)
C5 0.0114 (5) 0.0124 (5) 0.0121 (5) 0.0021 (4) 0.0037 (4) 0.0009 (4)
C6 0.0136 (5) 0.0130 (5) 0.0135 (5) 0.0029 (4) 0.0032 (4) 0.0010 (4)
C7 0.0233 (6) 0.0174 (5) 0.0178 (6) 0.0101 (5) 0.0079 (5) 0.0079 (4)
N7 0.0461 (8) 0.0317 (6) 0.0223 (6) 0.0239 (6) 0.0170 (6) 0.0113 (5)
C8 0.0127 (5) 0.0144 (5) 0.0156 (5) 0.0028 (4) 0.0059 (4) 0.0029 (4)
C9 0.0362 (7) 0.0196 (6) 0.0195 (6) 0.0091 (5) 0.0134 (5) 0.0097 (5)
C10 0.0528 (10) 0.0182 (6) 0.0293 (7) 0.0106 (6) 0.0163 (7) 0.0111 (6)
C11 0.0182 (5) 0.0175 (5) 0.0169 (5) 0.0065 (4) 0.0029 (4) −0.0032 (4)
C12 0.0142 (5) 0.0137 (5) 0.0136 (5) 0.0047 (4) 0.0045 (4) 0.0027 (4)
C13 0.0220 (6) 0.0171 (5) 0.0173 (6) 0.0106 (4) 0.0071 (5) 0.0035 (4)
C14 0.0194 (6) 0.0270 (6) 0.0171 (6) 0.0131 (5) 0.0066 (5) 0.0056 (5)
C15 0.0130 (5) 0.0288 (6) 0.0157 (5) 0.0065 (4) 0.0049 (4) 0.0049 (5)
C16 0.0145 (5) 0.0185 (5) 0.0128 (5) 0.0030 (4) 0.0056 (4) 0.0033 (4)
C17 0.0136 (5) 0.0144 (5) 0.0111 (5) 0.0041 (4) 0.0050 (4) 0.0027 (4)

Geometric parameters (Å, º)

Cl1—C11 1.7842 (13) C6—C11 1.4871 (17)
O1—C2 1.3595 (15) C7—N7 1.1550 (18)
O1—C6 1.3725 (14) C9—C10 1.497 (2)
O2—C8 1.2063 (15) C9—H9A 0.9900
O3—C8 1.3417 (14) C9—H9B 0.9900
O3—C9 1.4586 (15) C10—H10A 0.9800
O4—C1 1.2308 (14) C10—H10B 0.9800
N1—C1 1.3495 (14) C10—H10C 0.9800
N1—C12 1.4064 (15) C11—H11A 0.9900
N1—H1 0.853 (17) C11—H11B 0.9900
N2—C2 1.3379 (15) C12—C13 1.3837 (16)
N2—H2A 0.843 (19) C12—C17 1.3907 (16)
N2—H2B 0.889 (18) C13—C14 1.3966 (19)
C1—C4 1.5592 (16) C13—H13 0.9500
C2—C3 1.3610 (15) C14—C15 1.393 (2)
C3—C7 1.4183 (17) C14—H14 0.9500
C3—C4 1.5156 (16) C15—C16 1.3995 (17)
C4—C5 1.5138 (16) C15—H15 0.9500
C4—C17 1.5183 (16) C16—C17 1.3840 (16)
C5—C6 1.3390 (16) C16—H16 0.9500
C5—C8 1.4944 (16)
C2—O1—C6 119.01 (9) C10—C9—H9A 110.3
C8—O3—C9 115.95 (10) O3—C9—H9B 110.3
C1—N1—C12 111.77 (10) C10—C9—H9B 110.3
C1—N1—H1 123.4 (11) H9A—C9—H9B 108.6
C12—N1—H1 124.8 (11) C9—C10—H10A 109.5
C2—N2—H2A 118.0 (12) C9—C10—H10B 109.5
C2—N2—H2B 119.3 (11) H10A—C10—H10B 109.5
H2A—N2—H2B 120.6 (16) C9—C10—H10C 109.5
O4—C1—N1 126.32 (11) H10A—C10—H10C 109.5
O4—C1—C4 125.13 (10) H10B—C10—H10C 109.5
N1—C1—C4 108.42 (9) C6—C11—Cl1 110.59 (9)
N2—C2—O1 110.94 (10) C6—C11—H11A 109.5
N2—C2—C3 127.13 (11) Cl1—C11—H11A 109.5
O1—C2—C3 121.91 (10) C6—C11—H11B 109.5
C2—C3—C7 118.87 (11) Cl1—C11—H11B 109.5
C2—C3—C4 122.67 (10) H11A—C11—H11B 108.1
C7—C3—C4 118.26 (10) C13—C12—C17 122.36 (11)
C5—C4—C3 109.52 (9) C13—C12—N1 128.15 (11)
C5—C4—C17 112.86 (9) C17—C12—N1 109.49 (10)
C3—C4—C17 112.55 (9) C12—C13—C14 116.79 (12)
C5—C4—C1 113.49 (9) C12—C13—H13 121.6
C3—C4—C1 107.25 (9) C14—C13—H13 121.6
C17—C4—C1 100.85 (9) C15—C14—C13 121.72 (11)
C6—C5—C8 120.03 (10) C15—C14—H14 119.1
C6—C5—C4 121.88 (10) C13—C14—H14 119.1
C8—C5—C4 118.07 (9) C14—C15—C16 120.36 (12)
C5—C6—O1 123.81 (11) C14—C15—H15 119.8
C5—C6—C11 127.27 (11) C16—C15—H15 119.8
O1—C6—C11 108.91 (10) C17—C16—C15 118.24 (11)
N7—C7—C3 178.80 (14) C17—C16—H16 120.9
O2—C8—O3 123.11 (11) C15—C16—H16 120.9
O2—C8—C5 127.00 (11) C16—C17—C12 120.53 (11)
O3—C8—C5 109.89 (10) C16—C17—C4 130.24 (11)
O3—C9—C10 106.89 (11) C12—C17—C4 109.23 (10)
O3—C9—H9A 110.3
C12—N1—C1—O4 −179.07 (12) C2—O1—C6—C5 −7.59 (17)
C12—N1—C1—C4 4.71 (13) C2—O1—C6—C11 173.03 (10)
C6—O1—C2—N2 −178.30 (10) C9—O3—C8—O2 −1.51 (17)
C6—O1—C2—C3 0.39 (17) C9—O3—C8—C5 178.03 (10)
N2—C2—C3—C7 2.90 (19) C6—C5—C8—O2 −29.78 (18)
O1—C2—C3—C7 −175.56 (11) C4—C5—C8—O2 148.52 (12)
N2—C2—C3—C4 −171.94 (12) C6—C5—C8—O3 150.69 (11)
O1—C2—C3—C4 9.61 (18) C4—C5—C8—O3 −31.00 (14)
C2—C3—C4—C5 −11.44 (15) C8—O3—C9—C10 −169.29 (12)
C7—C3—C4—C5 173.69 (10) C5—C6—C11—Cl1 −103.28 (13)
C2—C3—C4—C17 −137.85 (12) O1—C6—C11—Cl1 76.07 (11)
C7—C3—C4—C17 47.28 (14) C1—N1—C12—C13 176.98 (12)
C2—C3—C4—C1 112.13 (12) C1—N1—C12—C17 −2.67 (14)
C7—C3—C4—C1 −62.74 (13) C17—C12—C13—C14 −0.81 (18)
O4—C1—C4—C5 58.07 (15) N1—C12—C13—C14 179.59 (12)
N1—C1—C4—C5 −125.66 (10) C12—C13—C14—C15 0.58 (19)
O4—C1—C4—C3 −63.02 (15) C13—C14—C15—C16 0.2 (2)
N1—C1—C4—C3 113.24 (10) C14—C15—C16—C17 −0.69 (18)
O4—C1—C4—C17 179.05 (11) C15—C16—C17—C12 0.48 (17)
N1—C1—C4—C17 −4.69 (12) C15—C16—C17—C4 −178.77 (11)
C3—C4—C5—C6 4.62 (15) C13—C12—C17—C16 0.29 (18)
C17—C4—C5—C6 130.85 (11) N1—C12—C17—C16 179.96 (10)
C1—C4—C5—C6 −115.19 (12) C13—C12—C17—C4 179.68 (11)
C3—C4—C5—C8 −173.65 (9) N1—C12—C17—C4 −0.65 (13)
C17—C4—C5—C8 −47.42 (13) C5—C4—C17—C16 −56.14 (16)
C1—C4—C5—C8 66.54 (13) C3—C4—C17—C16 68.46 (15)
C8—C5—C6—O1 −177.31 (10) C1—C4—C17—C16 −177.56 (12)
C4—C5—C6—O1 4.46 (18) C5—C4—C17—C12 124.55 (10)
C8—C5—C6—C11 1.96 (18) C3—C4—C17—C12 −110.86 (11)
C4—C5—C6—C11 −176.28 (11) C1—C4—C17—C12 3.13 (12)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O4i 0.853 (17) 1.981 (17) 2.8292 (14) 173.0 (17)
N2—H2B···O4ii 0.887 (18) 2.095 (18) 2.9636 (15) 166.0 (17)
C11—H11B···O2 0.99 2.15 2.9039 (17) 131
C13—H13···N7iii 0.95 2.56 3.333 (2) 138

Symmetry codes: (i) −x, −y, −z+1; (ii) −x, −y+1, −z+1; (iii) −x+1, −y, −z+1.

Funding Statement

This work was funded by Baki Dövlet Universiteti; RUDN University Strategic Academic Leadership Program.

References

  1. Akkurt, M., Duruskari, G. S., Toze, F. A. A., Khalilov, A. N. & Huseynova, A. T. (2018). Acta Cryst. E74, 1168–1172. [DOI] [PMC free article] [PubMed]
  2. Athimoolam, S., Devi, N. S., Bahadur, S. A., Kannan, R. S. & Perumal, S. (2007). Acta Cryst. E63, o4680–o4681.
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  4. Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Bruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  7. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  8. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  9. Gurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Inorg. Chim. Acta, 471, 130–136.
  10. Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Maharramov, A. M., Nagiyev, F. N. & Brito, I. (2018a). Z. Kristallogr. New Cryst. Struct. 233, 1019–1020.
  11. Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Nagiyev, F. N. & Brito, I. (2018b). Z. Kristallogr. New Cryst. Struct. 233, 947–948.
  12. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  13. Lokaj, J., Kettmann, V., Pavelčík, F., Ilavský, D. & Marchalín, Š. (1990). Acta Cryst. C46, 788–791.
  14. Luo, N.-H., Zheng, D.-G., Xie, G.-H., Yang, Y.-C. & Yang, L.-S. (2015). Huaxue Shiji, 37, 742–746.
  15. Magerramov, A. M., Naghiyev, F. N., Mamedova, G. Z., Asadov, Kh. A. & Mamedov, I. G. (2018). Russ. J. Org. Chem. 54, 1731–1734.
  16. Maharramov, A. M., Duruskari, G. S., Mammadova, G. Z., Khalilov, A. N., Aslanova, J. M., Cisterna, J., Cárdenas, A. & Brito, I. (2019). J. Chil. Chem. Soc. 64, 4441–4447.
  17. Mahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108–117.
  18. Mamedov, I. G., Khrustalev, V. N., Dorovatovskii, P. V., Naghiev, F. N. & Maharramov, A. M. (2019). Mendeleev Commun. 29, 232–233.
  19. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  20. Naghiyev, F. N., Cisterna, J., Khalilov, A. N., Maharramov, A. M., Askerov, R. K., Asadov, K. A., Mamedov, I. G., Salmanli, K. S., Cárdenas, A. & Brito, I. (2020). Molecules, 25, 2235–2248. [DOI] [PMC free article] [PubMed]
  21. Naghiyev, F. N., Grishina, M. M., Khrustalev, V. N., Khalilov, A. N., Akkurt, M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 195–199. [DOI] [PMC free article] [PubMed]
  22. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  23. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  24. Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.
  25. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  26. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net
  27. Yadigarov, R. R., Khalilov, A. N., Mamedov, I. G., Nagiev, F. N., Magerramov, A. M. & Allakhverdiev, M. A. (2009). Russ. J. Org. Chem. 45, 1856–1858.
  28. Yin, J., Khalilov, A. N., Muthupandi, P., Ladd, R. & Birman, V. B. (2020). J. Am. Chem. Soc. 142, 60–63. [DOI] [PubMed]
  29. Zhou, L.-M., Qu, R.-Y. & Yang, G.-F. (2020). Exp. Opin. Drug. Discov. 15, 603–625. [DOI] [PubMed]
  30. Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021006459/vm2250sup1.cif

e-77-00739-sup1.cif (562KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021006459/vm2250Isup2.hkl

e-77-00739-Isup2.hkl (469KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021006459/vm2250Isup3.cml

CCDC reference: 2091350

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES