Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Jun 18;77(Pt 7):718–725. doi: 10.1107/S2056989021006113

Crystal structures of 9-[bis­(benzyl­sulfan­yl)meth­yl]anthracene and of cyclo-dodeca­kis­(μ2-phenyl­methane­thiol­ato-κ2 S:S)hexa­palladium(6 PdPd)–anthracene-9,10-dione (1/1)

Abhinav Raghuvanshi a,, Anna Krupp b, Lydie Viau a, Michael Knorr a,*, Carsten Strohmann b,*
PMCID: PMC8382052  PMID: 34513018

The di­thio­actal bis­[(benzyl­thio)­meth­yl]anthracene has been synthesized and reacted with [PdCl2(PhCN)2] to yield the cyclic cluster [Pd62-SCH2Ph)12].

Keywords: crystal structure, cluster, palladium, thio­ether, thiol­ate, thio­acetal, supra­molecular network

Abstract

The first title compound, C29H24S2, L1, represents an example of an anthracene-based functionalized di­thio­ether, which may be useful as a potential chelating or terminal ligand for coordination chemistry. This di­thio­acetal L1 crystallizes in the monoclinic space group P21/c. The phenyl rings of the benzyl groups and that of the anthracene unit form dihedral angles of 49.21 (4) and 58.79 (5)° and the crystal structure displays short C–H⋯π contacts. Surprisingly, when attempting to coordinate L1 to [PdCl2(PhCN)2], instead of the targeted chelate complex [PdCl22-L1)], a cleavage reaction leads to the formation of the centrosymmetric hexa­nuclear cyclic cluster of composition [Pd62-SCH2Ph)12] Pd6, or [Pd6(C7H7S)12]·C14H8O2. This tiara-shaped hexa­mer crystallizing in the triclinic space group P Inline graphic consists of six approximately square planar Pd(II)S4 centers, which are inter­connected through twelve μ2-bridging benzyl thiol­ate groups. The Pd⋯Pd contacts range from 3.0892 (2) to 3.1609 (2) Å and can be considered as weakly bonding. The unit cell of Pd6 contains also a co-crystallized anthracene-9,10-dione mol­ecule.

Chemical context  

Acyclic and cyclic thio­acetals with the –S–C(R)(H)–S (R = H, alkyl, ar­yl) unit can either be synthesized by nucleophilic substitution of geminal dihalides X–C(R)(H)–X by thiol­ates RS (Murray et al., 1981) or by reaction of aldehydes and ketones with thiols and di­thiols (Shaterian et al., 2011). Because of their soft nature, organosulfur compounds preferentially inter­act with late transition metals in lower oxidation states. A variety of complexes as well as coordination polymers (CPs) of varying dimensionality, ranging from zero-dimensional (mol­ecular) to three-dimensional, have been synthesized using these types of di­thio­ether ligands and structurally characterized (Knaust & Keller, 2003; Awaleh et al., 2005, 2008). However, many factors including the structural characteristics of the organic ligands, temperature, solvent, molar ratio, etc., greatly influence the formation of the resulting materials.

Over the last few years, we have been engaged in exploring the assembly of mol­ecular cluster compounds and coordination polymers using thio­ether ligands RSCH2SR (Peindy et al., 2007; Knorr et al., 2014; Schlachter et al., 2020). Recently, we have also reported the synthesis of CuI coordination complexes ligated with cyclic thio­acetal ligands bearing various substituents (Raghuvanshi et al., 2017, 2019; Schlachter et al., 2018; Knauer et al., 2020). Convenient synthetic protocols and inter­esting luminescent properties displayed by these complexes intrigued us to explore this field further.

Since the presence of an anthracene unit provides both rigidity as well as inter­esting luminescent properties to a given system, a large number of anthracene-based MOFs and CPs have been reported for various applications (for example: Hu et al., 2020; Mohanty et al., 2020; Quah et al., 2016; Wang et al., 2016). In most of these reports, either N- or O-donor substituents attached to the anthracene scaffold have been used as coordinating sites. In contrast, there are few reports where anthracene-based thio­ether ligands have been used for the construction of CPs. For example, a series of emissive mol­ecular compounds and CPs have been assembled by reaction of 9,10-bis­[(alkyl­thio)­meth­yl]anthracenes with AgI salts (Hu et al., 2006). The synthesis of anthracene-based thio­acetals with different –SR substituents including L1 has been briefly reported (Goswami et al., 2008 and Shaterian et al., 2011). However, no spectroscopic characterization data have been communicated. Furthermore, no examples of structurally characterized anthracene-based thio­acetals could be found within the Cambridge Structural Database. These disparities make this field inter­esting for further investigations.graphic file with name e-77-00718-scheme1.jpg

In this context, we synthesized the anthracene thio­acetal L1 with the objective of using it as an S-donor ligand for the assembly of potentially luminescent coordination compounds. L1 was prepared straightforwardly by the reaction of benzyl mercaptan and 9-anthracenecarboxaldehyde in the presence of an excess conc. HCl at room temperature (Fig. 1) and obtained in 80% yield as a yellow solid. Characteristic for its 1H NMR spectrum are two doublets at δ 3.55 and 3.79 ppm for the diastereotopic methyl­ene protons and a singlet at δ 5.94 ppm for the methine proton. The complete spectroscopic data are reported in the Synthesis and crystallization section.

Figure 1.

Figure 1

Synthesis scheme for L1 and the cluster Pd6·C14H8O2

With this starting material in hand, we attempted to ligate L1 to [PdCl2(PhCN)2], (Fig. 1). Although the coordination chemistry of [PdCl2(S∩S)] compounds is dominated by chelate complexes in which open-chain di­thio­ether or macrocyclic polythio­ether ligands form five- or six-membered rings such as [PdCl2(1,2-bis­(phenyl­thio)­ethane-S,S′] (Rao et al., 2015; Cambridge Structural Database refcode: CEYBUD01) or [PdCl2(1,4,7-tri­thia­cyclo­nonane-S,S′)] (GATLES; Blake et al., 1988), there is just one structurally characterized example of a chelate complex [PdCl2(1,3,5,7-tetra­methyl-2,4,6,8,9,10-hexa­thia-adamantane-S4,S6 )], in which the thia­macrocycle forms a strained four-membered chelate ring (DOCNOY; Pickardt & Rautenberg, 1986). It has also been reported that upon treatment of PhSCH2SPh with [M(MeCN)4][ClO4]2, the strained chelate complexes [M(PhSCH2SPh)4](ClO4)2 (M = Pd, Pt) are formed (Murray et al., 1981). However, to our surprise, the targeted compound [PdCl2(anthracen-9-yl­methyl­ene)bis­(benzyl­sulfane)-S,S′)] was not formed according to the NMR data. Instead, a crystallographic study of a yellow–orange crystal revealed the formation of a cyclic hexa­nuclear thiol­ate-bridged cluster [Pd62-SCH2Ph)12], Pd6. It is well known that thio­acetals can be cleaved by soft HgII ions yielding aldehydes or other oxygenated products. One example is the HgIII-promoted deprotection of 3,5-bis­(di­thio­acetal)BODIPYs, in which cleavage of a di­thio­acetal function to aldehyde groups occurs (Madhu et al., 2014). A mild qu­anti­tative AgNO3-promoted cleavage of fluorenenyl­ethanediyl-S,S-acetals with tri­chloro­isocyanuric acid yielding 9-fluorenone has also been reported (Olah et al., 1980). We suppose that in our case PdCl2 behaves similarly, acting as electrophilic agent. We have not examined the mechanistic aspects of this unexpected reaction in detail, but the fact that Pd6 co-crystallizes with one mol­ecule of anthracene-9,10-dione and smaller amounts of 9-anthraldehyde is in line with this hypothesis. It is noteworthy that this diketone has also been detected as one of the numerous oxidation products stemming from the oxidation of (anthracen-9-ylmeth­yl)(benz­yl)sulfane with ceric ammonium nitrate (Gopalakrishnan et al., 2015).

Looking for a more rational manner to synthesize this tiara-like cluster, we attempted to prepare Pd6 independently by reacting [PdCl2(PhCN)2] with 2.1 equivalents of benzyl mercaptan in CH2Cl2 solution. However, the isolation of Pd6 was hampered by the co-crystallization of important amounts of the eight-membered cluster Pd8 [Pd82-SCH2Ph)16], having a structure similar to that of [Pd82-SPr)16] (Higgins et al., 1988). Details of this reaction will be reported elsewhere.

Structural commentary  

Compound L1 crystallizes from the mixed solvents CH2Cl2/hexane in the monoclinic crystal system with P21/c space group. The mol­ecular structure of L1 is presented in Fig. 2 and selected bond lengths and bond angles are given in Table 1. The C15—S1 and C15—S2 bond lengths of 1.8309 (12) and 1.8220 (12) Å are comparable with those of [BzSC(H)(C6H4NO2-p)SBz] (SUNMAQ) [1.8262 (19) and 1.818 (2) Å; Binkowska et al., 2009], but are elongated compared with those of bis­(benzyl­sulfan­yl)methane (TUQPAX) [1.7988 (13) and 1.8013 (13) Å; Yang et al., 2010) and 2-[bis­(benzyl­sulfan­yl)meth­yl]-6-meth­oxy­phenol (IGOBOY) [1.8132 (12) and 1.8189 (12) Å; Raghuvanshi et al., 2020). The angle S1—C15—S2 of 110.93 (6)° in L1 is wider than those of 4-nitro­phenyl­bis­(benzyl­sulfan­yl)methane [107.26 (6)°] and 2-[bis­(benzyl­sulfan­yl)meth­yl]-6-meth­oxy­phenol [107.76 (10)°], but considerably less than in [BzSCH2SBz] [117.33 (7)°]. The phenyl rings of the benzyl groups and that of the anthracene unit form dihedral angles of 49.21 (4) and 58.79 (5)°.

Figure 2.

Figure 2

The mol­ecular structure of L1 with atom labelling and displacement ellipsoids drawn at the 50% probability level.

Table 1. Selected geometric parameters (Å, °) for L1 .

S1—C15 1.8309 (12) S2—C15 1.8220 (12)
       
S1—C15—S2 110.93 (6)    

The inorganic part of the crystal structure of the reaction product of L1 with [PdCl2(PhCN)2] shown in Fig. 3 is very similar overall to the structures of a series of other structurally characterized tiara-like hexa­nuclear clusters bridged by aliphatic thiol­ate groups such as [Pd62-SPr)12] (Kunchur, 1971; PDPRMC), [Pd62-SEt)12] (Stash et al., 2001; UCIXAF), [Pd62-SCH2CH2OH)12] (Mahmudov et al., 2013; XIPCUW), [Pd62-SBu)12] (Stash et al., 2009; LAFBUR) and [Pd62-SHex­yl)12] (Ananikov et al., 2012; FAVQEA). Furthermore, the structure of the thio­pheno­late-spanned compound [Pd62-SPh)12] has been reported (Stash et al., 2009). However, within this series of metallacycles, the most reminiscent structure to our benzylic derivative [Pd62-SCH2Ph)12] is that of the phenyl­ethane­thiol­ate-decorated nanocluster [Pd62-SCH2CH2Ph)12] (Chen et al., 2017; HEGPAN).

Figure 3.

Figure 3

The mol­ecular structure of Pd6·C14H8O2 with the atom labelling and displacement ellipsoids drawn at the 50% probability level [symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) −x + 1, −y + 1, −z + 2]. The H atoms are not shown for clarity.

The core of Pd6 consists of three crystallographically different PdII centers forming a centrosymmetric, almost planar, six-membered ring with Pd⋯Pd contacts ranging from 3.0892 (2) to 3.1609 (2) Å. The mean Pd⋯Pd separation of 3.1213 (2) Å is quite similar to that of the other derivatives and may be considered as weakly bonding (Stash et al., 2009), being significantly shorter than the sum of the van der Waals radii for Pd (3.26 Å; Bondi, 1964). The mean separation of two symmetry-related opposite Pd nuclei is about 6.22 Å, the longest being that of 6.453 Å between Pd3 and Pd3′, justifying describing these compounds as nano-sized clusters. Each palladium atom is coordinated covalently to four μ2-sulfur atoms with an approximately square-planar geometry, and the average Pd—S bond length of 2.327 (5) Å is close to those of the other [Pd62-SR)12] analogues. The S—Pd—S bridge angles vary within the range 81.033 (16)–99.246 (16)°. The twelve sulfur atoms form two S6 hexa­gons parallel to the central Pd6 ring from both sides, conferring finally a tiara-like shape to the Pd6S12 scaffold.

Note that the crystal structure of anthracene-9,10-dione (also named 9,10-anthra­quinone) has already been the object of several crystallographic studies and is therefore not commented herein (Fu & Brock, 1998; Slouf, 2002).

Supra­molecular features  

The crystal packing of di­thio­actal L1 is shown in Fig. 4. Three different types of C—H⋯π inter­actions are observed in the crystal structure (Fig. 5) where the H⋯π distances range from 2.51 to 2.84 Å. The C21—H21⋯Cg(C16/C17/C22/C23/C24/C29 centroid) distance of 2.519 (18) Å, the C14—H14⋯C24 distance of 2.741 (18) Å and the C1—H1B⋯C9 distance of 2.847 (16) Å are short enough to be considered as weak inter­molecular inter­actions (see Table 2). The closest C—H⋯S contact of 2.702 Å occurs between the aromatic H18 atom and S; however, the C18—H18⋯S1 angle of 123° suggests that this contribution has a neglectable impact on the conformation of L1.

Figure 4.

Figure 4

A view along the b-axis direction of the crystal packing of L1.

Figure 5.

Figure 5

Inter­molecular C—H⋯π inter­actions occurring in L1 generating a one-dimensional supra­molecular ribbon [symmetry codes: (i) x, y + 1, z; (ii) −x + 2, y + Inline graphic, −z + Inline graphic; (iii) −x + 2, y − Inline graphic, −z + Inline graphic]

Table 2. Close contacts (Å, °) for L1 .

Cg is the centroid of the C16/C17/C22–C24/C29 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C21—H21⋯C16i 0.951 (17) 2.775 (17) 3.7095 (17) 167.6 (13)
C21—H21⋯C17i 0.951 (17) 2.856 (17) 3.7737 (18) 162.6 (13)
C21—H21⋯C29i 0.951 (17) 2.816 (17) 3.6338 (17) 144.7 (12)
C21—H21⋯Cg i 0.951 (17) 2.519 (18) 3.4116 (14) 156.3 (13)
C14—H14⋯C24ii 0.976 (17) 2.741 (18) 3.5982 (19) 146.9 (13)
C1—H1B⋯C9iii 0.972 (16) 2.847 (16) 3.8023 (17) 168.0 (12)

Symmetry codes: (i) -x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}; (ii) x, y+1, z; (iii) x, y-1, z.

A Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) for the further investigation of close contacts and inter­molecular inter­actions was performed for L1 using CrystalExplorer17 (Turner et al., 2017). Figs. 6 a and 7 illustrate the three-dimensional Hirshfeld surface mapped over d norm in the range from −1.11 to 1.36 (arbitrary units). The red spots on the surface indicate the close contacts to adjacent mol­ecules. There are three areas of red spots which can be classified as C—H⋯π inter­actions. The first and most important inter­action is the C—H⋯π contact of one of the phenyl­methane­thiol­ate substituents to the anthracene scaffold of a neighboring mol­ecule (C14—H14⋯C24). Furthermore, there are significant inter­actions of the anthracene unit to an adjacent anthracene unit (C21—H21⋯C16/17/29). Then, there is also a weak C—H⋯π contact of two phenyl­methane­thiol­ate substituents (C1—H1B⋯C9). The contributions of the different types of inter­molecular inter­actions are shown in the two-dimensional fingerprint plots in Fig. 8. The weak van der Waals H⋯H contacts appear as the largest region with a 51.0% contribution. The C⋯H/H⋯C contacts exhibit a significant contribution at 40.4% and constitute a major contribution to the packing arrangement within the crystal structure. Fig. 6 b and 6c illustrate the Hirshfeld surface mapped over the shape-index and the curvedness. The shape-index shows large red regions of concave curvature for the anthracene motif, whereas the C—H-donors shows opposite curvature.

Figure 6.

Figure 6

Hirshfeld surface mapped with (a) d norm, (b) shape-index and (c) curvedness for L1.

Figure 7.

Figure 7

Hirshfeld surface analysis of L1 showing close contacts in the crystal.

Figure 8.

Figure 8

(a) Two-dimensional fingerprint plots of L1, showing all contributions, and delineated (b)–(d) showing the contributions of atoms within specific inter­acting pairs (blue areas).

Concerning the cluster Pd6, there are no particular directional inter­molecular inter­actions in the packing warranting any discussion. The packing is shown in Fig. 9.

Figure 9.

Figure 9

A view along the b-axis direction of the crystal packing of Pd6·C14H8O2 .

Database survey  

A search of the Cambridge Structural Database (Groom et al., 2016) for related anthracene-substituted di­thio­acetals did not reveal any structure hits. However, there are several examples of mono­thio­ethers attached on an anthracenyl scaffold and include {9-[(2-chloro­eth­yl)thio]­meth­yl}anthracene (CETMAN; Lewis et al., 1976), 1,6-bis­(9-anthr­yl)-2,5-di­thia­hexane (LEYHIH; Schwarze et al., 2007) and S-(9-anthr­yl)methyl-3,5-di­nitro­thio­benzoate (VEZLUI; Fowelin et al., 2007). A search for the bis­(benzyl­thio)­methane motif HC(SCH2Ph)2 revealed only three similar structures, namely 2,6,10,14,19,24-hexa-p-benz-4,8,12,16,17,21,22,26-octa­thia­tri­cyclo­(9.5.5.53,9)hexa­cosa­phane benzene clathrate (CUHLUM; Takemura et al., 1984), 4-nitro­phenyl-[bis­(benzyl­thio)]methane (SUNMAQ; Binkowska et al., 2009) and 2-[bis(benzyl­sulfan­yl)meth­yl]-6-meth­oxy­phenol (IGOBOY; Raghuvanshi et al., 2020).

In contrast to mononuclear palladium complexes bearing terminal phenyl­methane­thiol­ate groups such as trans-[Pd(SCH2Ph)2(PMe3)2] (Lee et al. 2015; NOQZOK), [Pd(SCH2Ph)2(1,2-bis­(di­phenyl­phosphino)ethane)] (Su et al. 1997a ,b ; TERREN) and [Pd(SCH2Ph)2(1,3-bis­(di­phenyl­phosphino)propane)] (Su et al. 1997 ; SUTMOJ), those of phenyl­methane­thiol­ate-bridged di- and polynuclear Pd complexes are scare. The only crystallographically characterized hit is the tetra­nuclear cluster [Pd4Se42-SCH2Ph)2(bis­(di­phenyl­phosphino)methane)Cl2] (Cao et al. 1998; JIXRAJ). The aforementioned [Pd62-SR)12] clusters have found applications as precursors for the preparation of monodisperse PdS nanoparticles (Yang et al., 2007), for the self-assembly of palladiumthiol­ate bilayers (Thomas et al., 2001), as fluorescence materials (Chen et al., 2017) and as electrocatalysts for H and O evolution reactions (Gao & Chen, 2017). Also noteworthy is the observation that individual [Pd62-SCH2CH2OH)12] mol­ecules are inter­connected in the solid state by hydrogen bonds through the hy­droxy groups of the thiol­ate ligands, thus generating an infinite three-dimensional supra­molecular network (Mahmudov et al., 2013). Concerning the influence of hydrogen-bonding interactions on nuclearity and structure for other tiara-like palladium complexes, see: Martin et al. (2018). Recently, a structurally related PtII thiol­ate complex [Pt62-SC12H23)12] has been prepared and probed as a macrocyclic host to include an AgI ion as guest (Shichibu et al., 2016).

Synthesis and crystallization  

9-Anthracenecarboxaldehyde (206 mg, 1 mmol) and benzyl mercaptan (348 mg, 3 mmol) were suspended in conc. HCl (2 ml) and allowed to stir at room temperature. After 2 h, the reaction mixture was neutralized with aqueous NaHCO3 solution and extracted with di­chloro­methane. The organic fraction was dried over Na2SO4, filtered and concentrated under reduced pressure. Purification by column chromatography using a hexa­ne/di­chloro­methane solvent mixture as eluent gives a pale-yellow solid product in 80% yield (350 mg). Crystals suitable for single-crystal X-ray crystallography were grown by slow diffusion of hexane into a di­chloro­methane solution of L1, m.p. 438–440 K. 1H NMR (400 MHz, δ in ppm, CD2Cl2): 9.03 (dd, J = 9.0 Hz, J = 1.1 Hz, 1H, H18), 8.39 (s, 1H, H23), 8.00 (dd, J = 8.5 Hz, J = 1.1 Hz, 1H, H21), 7.95 (dd, J = 8.5 Hz, J = 1.1 Hz, 1H, H25), 7.55–7.47 (m, 2H, H19, H27), ddd (J = 8.5 Hz, J = 6.5 Hz, J = 1.1 Hz, 1H, H3), 7.28–7.22 (m, 6H, HPh + H6), 7.14–7.09 (m, 5H, HPh), 6.91 (dd, J = 9.0 Hz, J = 1.1 Hz, 1H, H28), 5.94 (s, 1H, CHS2), 3.79 (d, J = 13.7 Hz, 2H, CH2), 3.55 (d, J = 13.7 Hz, 2H, CH2). 13C{1H} NMR (101 MHz, δ in ppm, CD2Cl2) 138.34 (C16), 132.50 (C17), 131.46 (Cq), 131.36 (Cq), 130.28 (Cq), 129.58 (CHAr), 129.56 (C21), 129.47 (C25), 129.13 (Cq), 128.96 (CHAr), 128.84 (C23), 127.75 (C18), 127.53 (CHAr), 126.63 (C26), 125.61 (C19), 125.12 (C20), 124.91 (C27), 122.99 (C28), 45.02 (S2CH), 37.89 (SCH2). IR (ATR) cm −1: 3050 and 3025 (C—H Ar), 2998, 2948 and 2906 (C—H aliphatic), 1589, 1519 (C=C), 696 (C—S).

Reaction of L1 with PdCl2(PhCN)2 : L1 (43 mg, 0.1 mmol) and PdCl2(PhCN)2 (38 mg, 0.1 mmol) were dissolved in 5 ml of di­chloro­methane and allowed to stir at room temperature for 30 minutes. During the reaction, a red solution was obtained, which was kept in refrigerator overnight yielding yellow crystals of 9-anthraldehyde along with yellow–orange co-crystals of the [Pd6(SCH2Ph)12·anthracene-9,10-dione] cluster, Pd6. 1H NMR (400 MHz, δ in ppm, CD2Cl2)): 8.92–6.86 (m, overlapping benzylic and anthracenyl H), 3.61 (s, SCH2), 3.58 (s, SCH2).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. For both compounds, the H atoms were positioned geometrically (C—H = 0.95–1.00 Å) and were refined using a riding model, with U iso(H) = 1.2U eq(C). Hydrogen atoms H1B, H14 and H21 for L1 were located in the difference-Fourier map and refined freely.

Table 3. Experimental details.

  L1 Pd6
Crystal data
Chemical formula C29H24S2 [Pd6(C7H7S)12]·C14H8O2
M r 436.60 2324.83
Crystal system, space group Monoclinic, P21/c Triclinic, P\overline{1}
Temperature (K) 123 100
a, b, c (Å) 18.0842 (13), 7.5279 (5), 17.4975 (13) 12.4037 (6), 13.2255 (6), 14.7347 (7)
α, β, γ (°) 90, 108.439 (3), 90 109.842 (2), 91.616 (2), 91.191 (2)
V3) 2259.7 (3) 2271.56 (19)
Z 4 1
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.25 1.49
Crystal size (mm) 0.95 × 0.44 × 0.30 0.33 × 0.24 × 0.18
 
Data collection
Diffractometer Bruker D8 Venture Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Bruker, 2016) Multi-scan (SADABS; Bruker, 2016)
Tmin, Tmax 0.522, 0.563 0.300, 0.333
No. of measured, independent and observed [I > 2σ(I)] reflections 25688, 4994, 4423 109169, 10078, 9452
R int 0.025 0.028
(sin θ/λ)max−1) 0.641 0.644
 
Refinement
R[F2 > 2σ(F 2)], wR(F 2), S 0.032, 0.086, 1.05 0.019, 0.048, 1.10
No. of reflections 4994 10078
No. of parameters 295 532
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.24, −0.30 1.20, −0.79

Computer programs: APEX2 (Bruker, 2018), SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ), OLEX2 (Dolomanov et al., 2009), CrystalExplorer17 (Turner et al., 2017), publCIF (Westrip, 2010) and Mercury (Macrae et al., 2020).

Supplementary Material

Crystal structure: contains datablock(s) mo_b0159_0m, mo_b0283_0m, New_Global_Publ_Block. DOI: 10.1107/S2056989021006113/hb7976sup1.cif

e-77-00718-sup1.cif (4.2MB, cif)

Structure factors: contains datablock(s) mo_b0159_0m. DOI: 10.1107/S2056989021006113/hb7976mo_b0159_0msup2.hkl

Structure factors: contains datablock(s) mo_b0283_0m. DOI: 10.1107/S2056989021006113/hb7976mo_b0283_0msup3.hkl

CCDC references: 2089413, 2089412

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Stéphanie Boullanger for recording the IR and NMR spectra.

supplementary crystallographic information

9-[Bis(benzylsulfanyl)methyl]anthracene (mo_b0159_0m). Crystal data

C29H24S2 F(000) = 920
Mr = 436.60 Dx = 1.283 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 18.0842 (13) Å Cell parameters from 9706 reflections
b = 7.5279 (5) Å θ = 2.8–27.1°
c = 17.4975 (13) Å µ = 0.25 mm1
β = 108.439 (3)° T = 123 K
V = 2259.7 (3) Å3 Block, yellow
Z = 4 0.95 × 0.44 × 0.30 mm

9-[Bis(benzylsulfanyl)methyl]anthracene (mo_b0159_0m). Data collection

Bruker D8 Venture diffractometer 4994 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs 4423 reflections with I > 2σ(I)
HELIOS mirror optics monochromator Rint = 0.025
Detector resolution: 10.4167 pixels mm-1 θmax = 27.1°, θmin = 2.8°
ω and φ scans h = −23→23
Absorption correction: multi-scan (SADABS; Bruker, 2016) k = −9→9
Tmin = 0.522, Tmax = 0.563 l = −22→22
25688 measured reflections

9-[Bis(benzylsulfanyl)methyl]anthracene (mo_b0159_0m). Refinement

Refinement on F2 Primary atom site location: iterative
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.032 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0436P)2 + 0.9034P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.001
4994 reflections Δρmax = 0.24 e Å3
295 parameters Δρmin = −0.30 e Å3
0 restraints

9-[Bis(benzylsulfanyl)methyl]anthracene (mo_b0159_0m). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

9-[Bis(benzylsulfanyl)methyl]anthracene (mo_b0159_0m). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.68666 (2) 0.64448 (5) 0.70893 (2) 0.02319 (9)
S2 0.80911 (2) 0.92465 (4) 0.72381 (2) 0.02454 (9)
C1 0.62676 (7) 0.52418 (17) 0.62051 (8) 0.0205 (2)
H1A 0.6175 (9) 0.602 (2) 0.5751 (9) 0.025*
C2 0.55092 (7) 0.47989 (16) 0.63477 (7) 0.0185 (2)
C3 0.54888 (7) 0.35800 (16) 0.69428 (8) 0.0221 (3)
H3 0.5950 0.2966 0.7235 0.027*
C4 0.47989 (8) 0.32580 (18) 0.71106 (8) 0.0269 (3)
H4 0.4793 0.2443 0.7523 0.032*
C5 0.41191 (8) 0.41281 (18) 0.66757 (8) 0.0270 (3)
H5 0.3648 0.3909 0.6790 0.032*
C6 0.41294 (7) 0.53190 (18) 0.60730 (8) 0.0250 (3)
H6 0.3663 0.5899 0.5768 0.030*
C7 0.48232 (7) 0.56614 (16) 0.59167 (7) 0.0213 (3)
H7 0.4829 0.6494 0.5511 0.026*
C8 0.73177 (9) 1.08485 (18) 0.67732 (9) 0.0324 (3)
H8A 0.6879 1.0657 0.6987 0.039*
H8B 0.7519 1.2066 0.6922 0.039*
C9 0.70229 (8) 1.06923 (16) 0.58667 (9) 0.0269 (3)
C10 0.62799 (8) 1.00169 (18) 0.54845 (9) 0.0298 (3)
H10 0.5945 0.9749 0.5792 0.036*
C11 0.60257 (9) 0.97328 (19) 0.46564 (9) 0.0350 (3)
H11 0.5521 0.9259 0.4402 0.042*
C12 0.65053 (10) 1.0137 (2) 0.42027 (9) 0.0368 (3)
H12 0.6332 0.9937 0.3638 0.044*
C13 0.72407 (10) 1.08361 (19) 0.45753 (10) 0.0378 (4)
H13 0.7568 1.1134 0.4264 0.045*
C14 0.74995 (9) 1.11021 (18) 0.54031 (10) 0.0330 (3)
C15 0.76483 (7) 0.72278 (16) 0.67172 (7) 0.0177 (2)
H15 0.7393 0.7570 0.6142 0.021*
C16 0.82754 (6) 0.59003 (15) 0.67177 (7) 0.0151 (2)
C17 0.87649 (7) 0.51631 (15) 0.74463 (7) 0.0160 (2)
C18 0.86799 (7) 0.55321 (17) 0.82190 (7) 0.0203 (2)
H18 0.8266 0.6274 0.8251 0.024*
C19 0.91823 (8) 0.48387 (18) 0.89085 (7) 0.0240 (3)
H19 0.9110 0.5098 0.9411 0.029*
C20 0.98118 (8) 0.37349 (18) 0.88869 (8) 0.0251 (3)
H20 1.0163 0.3281 0.9373 0.030*
C21 0.99092 (8) 0.33320 (17) 0.81703 (8) 0.0231 (3)
C22 0.93948 (7) 0.40166 (15) 0.74321 (7) 0.0178 (2)
C23 0.95162 (7) 0.36306 (16) 0.67019 (7) 0.0196 (2)
H23 0.9933 0.2866 0.6697 0.024*
C24 0.90401 (7) 0.43409 (15) 0.59806 (7) 0.0172 (2)
C25 0.91875 (7) 0.39569 (17) 0.52438 (8) 0.0228 (3)
H25 0.9608 0.3194 0.5251 0.027*
C26 0.87412 (8) 0.46550 (19) 0.45322 (8) 0.0257 (3)
H26 0.8849 0.4387 0.4048 0.031*
C27 0.81107 (8) 0.57903 (18) 0.45207 (7) 0.0239 (3)
H27 0.7797 0.6278 0.4023 0.029*
C28 0.79469 (7) 0.61934 (16) 0.52090 (7) 0.0203 (2)
H28 0.7520 0.6954 0.5180 0.024*
C29 0.84043 (6) 0.54966 (15) 0.59774 (7) 0.0154 (2)
H1B 0.6540 (9) 0.417 (2) 0.6137 (9) 0.025 (4)*
H21 1.0321 (9) 0.258 (2) 0.8136 (9) 0.033 (4)*
H14 0.8029 (10) 1.152 (2) 0.5669 (10) 0.038 (5)*

9-[Bis(benzylsulfanyl)methyl]anthracene (mo_b0159_0m). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.01573 (15) 0.03525 (18) 0.02062 (16) −0.00149 (12) 0.00864 (12) −0.00719 (12)
S2 0.02187 (17) 0.02029 (16) 0.02713 (17) 0.00168 (11) 0.00160 (13) −0.00742 (12)
C1 0.0191 (6) 0.0225 (6) 0.0207 (6) 0.0010 (5) 0.0076 (5) −0.0028 (5)
C2 0.0183 (6) 0.0188 (5) 0.0187 (6) −0.0005 (4) 0.0060 (5) −0.0038 (4)
C3 0.0209 (6) 0.0208 (6) 0.0228 (6) 0.0017 (5) 0.0043 (5) 0.0017 (5)
C4 0.0283 (7) 0.0261 (6) 0.0266 (6) −0.0042 (5) 0.0093 (5) 0.0040 (5)
C5 0.0208 (6) 0.0304 (7) 0.0311 (7) −0.0060 (5) 0.0102 (5) −0.0030 (6)
C6 0.0175 (6) 0.0260 (6) 0.0286 (7) 0.0018 (5) 0.0032 (5) −0.0016 (5)
C7 0.0221 (6) 0.0202 (6) 0.0202 (6) 0.0004 (5) 0.0047 (5) 0.0009 (5)
C8 0.0315 (7) 0.0227 (6) 0.0377 (8) 0.0088 (6) 0.0032 (6) −0.0093 (6)
C9 0.0253 (7) 0.0145 (6) 0.0364 (7) 0.0061 (5) 0.0032 (6) −0.0024 (5)
C10 0.0222 (6) 0.0246 (6) 0.0399 (8) 0.0062 (5) 0.0058 (6) 0.0022 (6)
C11 0.0276 (7) 0.0288 (7) 0.0388 (8) 0.0039 (6) −0.0033 (6) 0.0016 (6)
C12 0.0449 (9) 0.0272 (7) 0.0324 (8) 0.0068 (6) 0.0039 (7) 0.0053 (6)
C13 0.0439 (9) 0.0263 (7) 0.0453 (9) 0.0049 (6) 0.0171 (7) 0.0116 (6)
C14 0.0282 (7) 0.0192 (6) 0.0479 (9) −0.0019 (5) 0.0068 (7) 0.0025 (6)
C15 0.0156 (5) 0.0190 (5) 0.0188 (5) 0.0003 (4) 0.0058 (4) −0.0032 (4)
C16 0.0133 (5) 0.0154 (5) 0.0177 (5) −0.0017 (4) 0.0064 (4) −0.0015 (4)
C17 0.0147 (5) 0.0168 (5) 0.0177 (6) −0.0018 (4) 0.0066 (4) −0.0005 (4)
C18 0.0195 (6) 0.0244 (6) 0.0187 (6) −0.0010 (5) 0.0083 (5) −0.0018 (5)
C19 0.0256 (6) 0.0312 (7) 0.0172 (6) −0.0034 (5) 0.0095 (5) 0.0001 (5)
C20 0.0227 (6) 0.0310 (7) 0.0195 (6) −0.0001 (5) 0.0036 (5) 0.0082 (5)
C21 0.0203 (6) 0.0243 (6) 0.0243 (6) 0.0042 (5) 0.0064 (5) 0.0054 (5)
C22 0.0162 (6) 0.0174 (5) 0.0195 (6) 0.0004 (4) 0.0052 (5) 0.0022 (4)
C23 0.0163 (6) 0.0200 (6) 0.0235 (6) 0.0036 (4) 0.0077 (5) −0.0008 (5)
C24 0.0158 (5) 0.0178 (5) 0.0189 (6) −0.0011 (4) 0.0068 (4) −0.0024 (4)
C25 0.0201 (6) 0.0287 (6) 0.0220 (6) 0.0026 (5) 0.0101 (5) −0.0045 (5)
C26 0.0259 (7) 0.0357 (7) 0.0178 (6) −0.0006 (6) 0.0102 (5) −0.0041 (5)
C27 0.0224 (6) 0.0312 (7) 0.0171 (6) 0.0000 (5) 0.0047 (5) 0.0021 (5)
C28 0.0176 (6) 0.0228 (6) 0.0202 (6) 0.0014 (5) 0.0057 (5) 0.0010 (5)
C29 0.0137 (5) 0.0155 (5) 0.0175 (5) −0.0024 (4) 0.0056 (4) −0.0015 (4)

9-[Bis(benzylsulfanyl)methyl]anthracene (mo_b0159_0m). Geometric parameters (Å, º)

S1—C1 1.8240 (13) C13—C14 1.389 (2)
S1—C15 1.8309 (12) C14—H14 0.976 (17)
S2—C8 1.8309 (14) C15—H15 1.0000
S2—C15 1.8220 (12) C15—C16 1.5114 (15)
C1—H1A 0.958 (16) C16—C17 1.4153 (16)
C1—C2 1.5070 (17) C16—C29 1.4197 (16)
C1—H1B 0.971 (16) C17—C18 1.4355 (16)
C2—C3 1.3971 (18) C17—C22 1.4356 (16)
C2—C7 1.3920 (17) C18—H18 0.9500
C3—H3 0.9500 C18—C19 1.3639 (18)
C3—C4 1.3905 (19) C19—H19 0.9500
C4—H4 0.9500 C19—C20 1.4195 (19)
C4—C5 1.3884 (19) C20—H20 0.9500
C5—H5 0.9500 C20—C21 1.3545 (19)
C5—C6 1.3887 (19) C21—C22 1.4281 (17)
C6—H6 0.9500 C21—H21 0.951 (17)
C6—C7 1.3902 (18) C22—C23 1.3937 (17)
C7—H7 0.9500 C23—H23 0.9500
C8—H8A 0.9900 C23—C24 1.3902 (17)
C8—H8B 0.9900 C24—C25 1.4262 (16)
C8—C9 1.510 (2) C24—C29 1.4405 (16)
C9—C10 1.3938 (19) C25—H25 0.9500
C9—C14 1.392 (2) C25—C26 1.3573 (19)
C10—H10 0.9500 C26—H26 0.9500
C10—C11 1.391 (2) C26—C27 1.4200 (19)
C11—H11 0.9500 C27—H27 0.9500
C11—C12 1.382 (2) C27—C28 1.3623 (18)
C12—H12 0.9500 C28—H28 0.9500
C12—C13 1.386 (2) C28—C29 1.4365 (16)
C13—H13 0.9500
C1—S1—C15 100.16 (6) C13—C14—H14 120.0 (10)
C15—S2—C8 100.02 (6) S1—C15—H15 106.2
S1—C1—H1A 107.5 (9) S1—C15—S2 110.93 (6)
S1—C1—H1B 109.1 (9) S2—C15—H15 106.2
H1A—C1—H1B 111.7 (13) C16—C15—S1 116.78 (8)
C2—C1—S1 107.27 (8) C16—C15—S2 109.89 (8)
C2—C1—H1A 110.1 (9) C16—C15—H15 106.2
C2—C1—H1B 111.0 (9) C17—C16—C15 121.01 (10)
C3—C2—C1 120.58 (11) C17—C16—C29 120.10 (10)
C7—C2—C1 120.60 (11) C29—C16—C15 118.73 (10)
C7—C2—C3 118.75 (11) C16—C17—C18 123.35 (11)
C2—C3—H3 119.7 C16—C17—C22 119.59 (10)
C4—C3—C2 120.59 (12) C18—C17—C22 117.04 (11)
C4—C3—H3 119.7 C17—C18—H18 119.4
C3—C4—H4 120.0 C19—C18—C17 121.28 (12)
C5—C4—C3 120.01 (12) C19—C18—H18 119.4
C5—C4—H4 120.0 C18—C19—H19 119.5
C4—C5—H5 120.0 C18—C19—C20 121.06 (12)
C4—C5—C6 119.91 (12) C20—C19—H19 119.5
C6—C5—H5 120.0 C19—C20—H20 120.1
C5—C6—H6 120.0 C21—C20—C19 119.74 (12)
C5—C6—C7 119.92 (12) C21—C20—H20 120.1
C7—C6—H6 120.0 C20—C21—C22 121.21 (12)
C2—C7—H7 119.6 C20—C21—H21 121.7 (10)
C6—C7—C2 120.81 (12) C22—C21—H21 117.1 (10)
C6—C7—H7 119.6 C21—C22—C17 119.65 (11)
S2—C8—H8A 109.1 C23—C22—C17 119.81 (11)
S2—C8—H8B 109.1 C23—C22—C21 120.50 (11)
H8A—C8—H8B 107.8 C22—C23—H23 119.3
C9—C8—S2 112.44 (9) C24—C23—C22 121.35 (11)
C9—C8—H8A 109.1 C24—C23—H23 119.3
C9—C8—H8B 109.1 C23—C24—C25 120.23 (11)
C10—C9—C8 119.94 (14) C23—C24—C29 120.02 (11)
C14—C9—C8 121.12 (13) C25—C24—C29 119.74 (11)
C14—C9—C10 118.80 (14) C24—C25—H25 119.2
C9—C10—H10 119.8 C26—C25—C24 121.59 (12)
C11—C10—C9 120.45 (14) C26—C25—H25 119.2
C11—C10—H10 119.8 C25—C26—H26 120.4
C10—C11—H11 119.9 C25—C26—C27 119.19 (11)
C12—C11—C10 120.24 (14) C27—C26—H26 120.4
C12—C11—H11 119.9 C26—C27—H27 119.3
C11—C12—H12 120.1 C28—C27—C26 121.32 (12)
C11—C12—C13 119.75 (15) C28—C27—H27 119.3
C13—C12—H12 120.1 C27—C28—H28 119.2
C12—C13—H13 119.9 C27—C28—C29 121.61 (11)
C12—C13—C14 120.13 (15) C29—C28—H28 119.2
C14—C13—H13 119.9 C16—C29—C24 119.14 (10)
C9—C14—H14 119.3 (10) C16—C29—C28 124.31 (11)
C13—C14—C9 120.61 (14) C28—C29—C24 116.54 (10)
S1—C1—C2—C3 −67.96 (13) C15—C16—C29—C24 175.17 (10)
S1—C1—C2—C7 108.83 (11) C15—C16—C29—C28 −3.66 (17)
S1—C15—C16—C17 −63.16 (13) C16—C17—C18—C19 −177.73 (12)
S1—C15—C16—C29 121.33 (10) C16—C17—C22—C21 177.36 (11)
S2—C8—C9—C10 109.50 (13) C16—C17—C22—C23 −0.39 (17)
S2—C8—C9—C14 −66.21 (15) C17—C16—C29—C24 −0.38 (16)
S2—C15—C16—C17 64.29 (12) C17—C16—C29—C28 −179.21 (11)
S2—C15—C16—C29 −111.22 (10) C17—C18—C19—C20 0.44 (19)
C1—S1—C15—S2 153.75 (6) C17—C22—C23—C24 0.29 (18)
C1—S1—C15—C16 −79.31 (9) C18—C17—C22—C21 −1.20 (17)
C1—C2—C3—C4 175.75 (11) C18—C17—C22—C23 −178.95 (11)
C1—C2—C7—C6 −176.90 (11) C18—C19—C20—C21 −1.3 (2)
C2—C3—C4—C5 1.1 (2) C19—C20—C21—C22 0.8 (2)
C3—C2—C7—C6 −0.05 (18) C20—C21—C22—C17 0.42 (19)
C3—C4—C5—C6 0.0 (2) C20—C21—C22—C23 178.16 (12)
C4—C5—C6—C7 −1.2 (2) C21—C22—C23—C24 −177.45 (11)
C5—C6—C7—C2 1.19 (19) C22—C17—C18—C19 0.77 (17)
C7—C2—C3—C4 −1.10 (19) C22—C23—C24—C25 178.59 (11)
C8—S2—C15—S1 −73.63 (8) C22—C23—C24—C29 −0.23 (18)
C8—S2—C15—C16 155.73 (9) C23—C24—C25—C26 −178.85 (12)
C8—C9—C10—C11 −174.81 (12) C23—C24—C29—C16 0.27 (17)
C8—C9—C14—C13 175.49 (13) C23—C24—C29—C28 179.19 (11)
C9—C10—C11—C12 −0.7 (2) C24—C25—C26—C27 −0.2 (2)
C10—C9—C14—C13 −0.3 (2) C25—C24—C29—C16 −178.55 (11)
C10—C11—C12—C13 −0.3 (2) C25—C24—C29—C28 0.37 (16)
C11—C12—C13—C14 1.0 (2) C25—C26—C27—C28 0.1 (2)
C12—C13—C14—C9 −0.8 (2) C26—C27—C28—C29 0.2 (2)
C14—C9—C10—C11 1.00 (19) C27—C28—C29—C16 178.40 (12)
C15—S1—C1—C2 −169.19 (8) C27—C28—C29—C24 −0.46 (17)
C15—S2—C8—C9 −47.89 (12) C29—C16—C17—C18 178.91 (11)
C15—C16—C17—C18 3.46 (17) C29—C16—C17—C22 0.44 (16)
C15—C16—C17—C22 −175.01 (10) C29—C24—C25—C26 −0.04 (19)

9-[Bis(benzylsulfanyl)methyl]anthracene (mo_b0159_0m). Hydrogen-bond geometry (Å, º)

Cg is the centroid of the C16/C17/C22–C24/C29 ring.

D—H···A D—H H···A D···A D—H···A
C21—H21···C16i 0.951 (17) 2.775 (17) 3.7095 (17) 167.6 (13)
C21—H21···C17i 0.951 (17) 2.856 (17) 3.7737 (18) 162.6 (13)
C21—H21···C29i 0.951 (17) 2.816 (17) 3.6338 (17) 144.7 (12)
C21—H21···Cgi 0.951 (17) 2.519 (18) 3.4116 (14) 156.3 (13)
C14—H14···C24ii 0.976 (17) 2.741 (18) 3.5982 (19) 146.9 (13)
C1—H1B···C9iii 0.972 (16) 2.847 (16) 3.8023 (17) 168.0 (12)

Symmetry codes: (i) −x+2, y−1/2, −z+3/2; (ii) x, y+1, z; (iii) x, y−1, z.

cyclo-Dodecakis(µ2-phenylmethanethiolato-κ2S:S)hexapalladium(6 PdPd)–anthracene-9,10-dione (1/1) (mo_b0283_0m) . Crystal data

[Pd6(C7H7S)12]·C14H8O2 Z = 1
Mr = 2324.83 F(000) = 1164
Triclinic, P1 Dx = 1.699 Mg m3
a = 12.4037 (6) Å Mo Kα radiation, λ = 0.71073 Å
b = 13.2255 (6) Å Cell parameters from 9790 reflections
c = 14.7347 (7) Å θ = 2.4–27.2°
α = 109.842 (2)° µ = 1.49 mm1
β = 91.616 (2)° T = 100 K
γ = 91.191 (2)° Block, yellow
V = 2271.56 (19) Å3 0.33 × 0.24 × 0.18 mm

cyclo-Dodecakis(µ2-phenylmethanethiolato-κ2S:S)hexapalladium(6 PdPd)–anthracene-9,10-dione (1/1) (mo_b0283_0m) . Data collection

Bruker D8 Venture diffractometer 10078 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs 9452 reflections with I > 2σ(I)
HELIOS mirror optics monochromator Rint = 0.028
Detector resolution: 10.4167 pixels mm-1 θmax = 27.3°, θmin = 2.3°
φ and ω scans h = −15→15
Absorption correction: multi-scan (SADABS; Bruker, 2016) k = −16→16
Tmin = 0.300, Tmax = 0.333 l = −18→18
109169 measured reflections

cyclo-Dodecakis(µ2-phenylmethanethiolato-κ2S:S)hexapalladium(6 PdPd)–anthracene-9,10-dione (1/1) (mo_b0283_0m) . Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.019 H-atom parameters constrained
wR(F2) = 0.048 w = 1/[σ2(Fo2) + (0.0198P)2 + 2.3315P] where P = (Fo2 + 2Fc2)/3
S = 1.10 (Δ/σ)max = 0.003
10078 reflections Δρmax = 1.20 e Å3
532 parameters Δρmin = −0.79 e Å3
0 restraints

cyclo-Dodecakis(µ2-phenylmethanethiolato-κ2S:S)hexapalladium(6 PdPd)–anthracene-9,10-dione (1/1) (mo_b0283_0m) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

cyclo-Dodecakis(µ2-phenylmethanethiolato-κ2S:S)hexapalladium(6 PdPd)–anthracene-9,10-dione (1/1) (mo_b0283_0m) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Pd1 0.44100 (2) 0.57757 (2) 0.01264 (3)
Pd2 0.67651 (2) 0.61284 (2) 0.01273 (4)
Pd3 0.74009 (2) 0.53617 (2) 0.01294 (4)
S1 0.27073 (4) 0.62062 (3) 0.01475 (8)
S2 0.53960 (4) 0.71742 (3) 0.01514 (8)
S3 0.61070 (4) 0.53538 (3) 0.01522 (9)
S4 0.74917 (4) 0.69054 (3) 0.01469 (8)
S5 0.79906 (4) 0.49857 (3) 0.01519 (9)
S6 0.65044 (4) 0.56887 (3) 0.01522 (9)
C1 0.28536 (15) 0.71060 (13) 0.0183 (4)
H1A 0.2914 0.6773 0.022*
H1B 0.3521 0.7508 0.022*
C2 0.18968 (15) 0.77377 (13) 0.0183 (4)
C3 0.18149 (16) 0.84843 (14) 0.0232 (4)
H3 0.2364 0.8586 0.028*
C4 0.09401 (19) 0.90784 (15) 0.0306 (5)
H4 0.0897 0.9589 0.037*
C5 0.01266 (18) 0.89271 (17) 0.0344 (5)
H5 −0.0477 0.9330 0.041*
C6 0.01964 (17) 0.81929 (17) 0.0307 (5)
H6 −0.0359 0.8090 0.037*
C7 0.10780 (16) 0.75997 (15) 0.0229 (4)
H7 0.1121 0.7096 0.027*
C8 0.57745 (16) 0.77333 (14) 0.0200 (4)
H8A 0.6094 0.7244 0.024*
H8B 0.5121 0.7966 0.024*
C9 0.65716 (16) 0.85634 (14) 0.0204 (4)
C10 0.76764 (18) 0.84224 (17) 0.0292 (5)
H10 0.7929 0.7797 0.035*
C11 0.8405 (2) 0.9192 (2) 0.0423 (6)
H11 0.9157 0.9094 0.051*
C12 0.8046 (2) 1.0104 (2) 0.0457 (7)
H12 0.8550 1.0630 0.055*
C13 0.6952 (2) 1.02487 (17) 0.0410 (6)
H13 0.6705 1.0875 0.049*
C14 0.6216 (2) 0.94840 (15) 0.0286 (5)
H14 0.5465 0.9586 0.034*
C15 0.62522 (16) 0.40406 (13) 0.0186 (4)
H15A 0.6840 0.3891 0.022*
H15B 0.5575 0.3726 0.022*
C16 0.65046 (15) 0.36623 (13) 0.0173 (4)
C17 0.74129 (16) 0.31192 (14) 0.0217 (4)
H17 0.7869 0.2981 0.026*
C18 0.76570 (19) 0.27772 (15) 0.0297 (5)
H18 0.8279 0.2408 0.036*
C19 0.6997 (2) 0.29739 (15) 0.0346 (6)
H19 0.7169 0.2751 0.042*
C20 0.6084 (2) 0.34971 (15) 0.0317 (5)
H20 0.5623 0.3621 0.038*
C21 0.58351 (18) 0.38428 (14) 0.0236 (4)
H21 0.5207 0.4204 0.028*
C22 0.65300 (15) 0.77154 (13) 0.0173 (4)
H22A 0.5908 0.7803 0.021*
H22B 0.6257 0.7433 0.021*
C23 0.71036 (15) 0.86724 (13) 0.0170 (4)
C24 0.76401 (17) 0.88386 (15) 0.0238 (4)
H24 0.7644 0.8345 0.029*
C25 0.81688 (19) 0.97204 (17) 0.0337 (5)
H25 0.8541 0.9827 0.040*
C26 0.8154 (2) 1.04440 (16) 0.0379 (6)
H26 0.8503 1.1053 0.046*
C27 0.7634 (2) 1.02844 (16) 0.0351 (5)
H27 0.7632 1.0781 0.042*
C28 0.71125 (17) 0.93983 (15) 0.0250 (4)
H28 0.6760 0.9289 0.030*
C29 0.93066 (15) 0.55928 (15) 0.0193 (4)
H29A 0.9376 0.6184 0.023*
H29B 0.9887 0.5161 0.023*
C30 0.94446 (14) 0.58605 (13) 0.0161 (3)
C31 0.99352 (16) 0.67410 (14) 0.0219 (4)
H31 1.0152 0.7183 0.026*
C32 1.01116 (18) 0.69817 (15) 0.0271 (4)
H32 1.0455 0.7585 0.033*
C33 0.97909 (17) 0.63512 (16) 0.0249 (4)
H33 0.9920 0.6516 0.030*
C34 0.92801 (17) 0.54779 (15) 0.0237 (4)
H34 0.9045 0.5046 0.028*
C35 0.91107 (16) 0.52327 (14) 0.0206 (4)
H35 0.8763 0.4630 0.025*
C36 0.74754 (16) 0.55010 (14) 0.0204 (4)
H36A 0.7085 0.5319 0.025*
H36B 0.7954 0.4971 0.025*
C37 0.81360 (15) 0.64207 (14) 0.0185 (4)
C38 0.78166 (18) 0.70989 (15) 0.0257 (4)
H38 0.7179 0.6978 0.031*
C39 0.8426 (2) 0.79530 (16) 0.0317 (5)
H39 0.8201 0.8413 0.038*
C40 0.93562 (19) 0.81318 (16) 0.0319 (5)
H40 0.9777 0.8710 0.038*
C41 0.96730 (17) 0.74663 (16) 0.0287 (5)
H41 1.0310 0.7590 0.034*
C42 0.90628 (16) 0.66178 (15) 0.0225 (4)
H42 0.9281 0.6168 0.027*
O1 0.40792 (18) 0.82446 (14) 0.0565 (5)
C43 0.44804 (19) 0.90584 (17) 0.0368 (6)
C44 0.50130 (18) 0.92599 (16) 0.0339 (5)
C45 0.55287 (18) 1.01771 (17) 0.0345 (5)
C46 0.6016 (2) 1.03389 (19) 0.0461 (7)
H46 0.6360 1.0951 0.055*
C47 0.6028 (2) 0.9611 (2) 0.0513 (7)
H47 0.6372 0.9730 0.062*
C48 0.5518 (2) 0.8727 (2) 0.0460 (6)
H48 0.5495 0.8238 0.055*
C49 0.50413 (19) 0.85410 (16) 0.0323 (5)
H49 0.4733 0.7918 0.039*

cyclo-Dodecakis(µ2-phenylmethanethiolato-κ2S:S)hexapalladium(6 PdPd)–anthracene-9,10-dione (1/1) (mo_b0283_0m) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pd1 0.01360 (7) 0.01177 (6) 0.01328 (6) 0.00124 (5) 0.00019 (5) 0.00521 (5)
Pd2 0.01367 (7) 0.01141 (6) 0.01350 (6) 0.00108 (5) −0.00006 (5) 0.00477 (5)
Pd3 0.01424 (7) 0.01067 (6) 0.01404 (7) 0.00100 (5) 0.00019 (5) 0.00438 (5)
S1 0.0155 (2) 0.0137 (2) 0.0150 (2) 0.00133 (16) 0.00174 (16) 0.00482 (16)
S2 0.0157 (2) 0.0155 (2) 0.0145 (2) 0.00187 (16) 0.00014 (16) 0.00552 (16)
S3 0.0163 (2) 0.0148 (2) 0.0164 (2) 0.00159 (16) 0.00165 (16) 0.00749 (16)
S4 0.0163 (2) 0.0140 (2) 0.0142 (2) 0.00107 (16) −0.00068 (16) 0.00557 (16)
S5 0.0169 (2) 0.01204 (19) 0.0169 (2) 0.00067 (16) 0.00173 (16) 0.00513 (16)
S6 0.0175 (2) 0.0136 (2) 0.0157 (2) 0.00024 (16) −0.00150 (16) 0.00665 (16)
C1 0.0190 (9) 0.0196 (9) 0.0184 (9) 0.0021 (7) 0.0018 (7) 0.0092 (7)
C2 0.0168 (9) 0.0238 (9) 0.0170 (9) 0.0006 (7) −0.0003 (7) 0.0106 (7)
C3 0.0221 (10) 0.0253 (10) 0.0210 (10) 0.0006 (8) −0.0003 (8) 0.0064 (8)
C4 0.0321 (12) 0.0398 (13) 0.0195 (10) 0.0128 (10) 0.0042 (8) 0.0085 (9)
C5 0.0225 (11) 0.0615 (16) 0.0314 (12) 0.0134 (10) 0.0113 (9) 0.0301 (12)
C6 0.0178 (10) 0.0461 (14) 0.0401 (13) −0.0043 (9) −0.0012 (9) 0.0306 (11)
C7 0.0221 (10) 0.0254 (10) 0.0246 (10) −0.0031 (8) −0.0029 (8) 0.0135 (8)
C8 0.0243 (10) 0.0144 (9) 0.0191 (9) 0.0036 (7) −0.0010 (7) 0.0031 (7)
C9 0.0262 (10) 0.0123 (8) 0.0198 (9) 0.0027 (7) −0.0018 (8) 0.0017 (7)
C10 0.0268 (11) 0.0276 (11) 0.0319 (11) −0.0027 (9) −0.0033 (9) 0.0089 (9)
C11 0.0315 (13) 0.0372 (13) 0.0557 (16) −0.0077 (10) −0.0188 (12) 0.0148 (12)
C12 0.0607 (18) 0.0309 (13) 0.0402 (14) −0.0060 (12) −0.0312 (13) 0.0081 (11)
C13 0.0710 (19) 0.0274 (12) 0.0195 (11) 0.0039 (12) −0.0085 (11) 0.0020 (9)
C14 0.0393 (12) 0.0232 (10) 0.0203 (10) 0.0076 (9) 0.0028 (9) 0.0029 (8)
C15 0.0225 (9) 0.0179 (9) 0.0170 (9) 0.0036 (7) 0.0036 (7) 0.0076 (7)
C16 0.0202 (9) 0.0180 (9) 0.0146 (8) 0.0011 (7) −0.0029 (7) 0.0067 (7)
C17 0.0230 (10) 0.0251 (10) 0.0180 (9) 0.0002 (8) −0.0010 (7) 0.0090 (8)
C18 0.0390 (12) 0.0334 (12) 0.0173 (9) −0.0142 (10) −0.0016 (9) 0.0104 (9)
C19 0.0666 (17) 0.0205 (10) 0.0180 (10) −0.0128 (10) −0.0086 (10) 0.0099 (8)
C20 0.0575 (15) 0.0172 (10) 0.0192 (10) 0.0096 (10) −0.0094 (10) 0.0051 (8)
C21 0.0314 (11) 0.0207 (10) 0.0183 (9) 0.0063 (8) −0.0022 (8) 0.0062 (8)
C22 0.0169 (9) 0.0187 (9) 0.0179 (9) 0.0002 (7) 0.0000 (7) 0.0082 (7)
C23 0.0165 (9) 0.0203 (9) 0.0156 (8) −0.0013 (7) 0.0032 (7) 0.0077 (7)
C24 0.0254 (10) 0.0256 (10) 0.0224 (10) 0.0019 (8) 0.0007 (8) 0.0108 (8)
C25 0.0325 (12) 0.0444 (14) 0.0322 (12) −0.0009 (10) −0.0055 (9) 0.0243 (11)
C26 0.0393 (13) 0.0556 (16) 0.0218 (11) −0.0131 (12) −0.0089 (9) 0.0186 (11)
C27 0.0419 (13) 0.0369 (13) 0.0187 (10) −0.0124 (10) 0.0015 (9) 0.0000 (9)
C28 0.0284 (11) 0.0220 (10) 0.0223 (10) −0.0013 (8) 0.0041 (8) 0.0042 (8)
C29 0.0146 (9) 0.0156 (9) 0.0286 (10) 0.0010 (7) 0.0001 (7) 0.0089 (8)
C30 0.0127 (8) 0.0150 (8) 0.0221 (9) 0.0014 (7) 0.0036 (7) 0.0079 (7)
C31 0.0222 (10) 0.0226 (10) 0.0234 (10) −0.0014 (8) −0.0026 (8) 0.0113 (8)
C32 0.0318 (11) 0.0228 (10) 0.0233 (10) −0.0062 (8) −0.0042 (8) 0.0042 (8)
C33 0.0271 (10) 0.0141 (9) 0.0324 (11) −0.0021 (8) 0.0020 (8) 0.0066 (8)
C34 0.0259 (10) 0.0201 (10) 0.0294 (10) −0.0001 (8) −0.0004 (8) 0.0141 (8)
C35 0.0231 (10) 0.0181 (9) 0.0212 (9) −0.0033 (7) −0.0032 (7) 0.0081 (8)
C36 0.0252 (10) 0.0139 (9) 0.0214 (9) 0.0035 (7) −0.0040 (8) 0.0051 (7)
C37 0.0203 (9) 0.0158 (9) 0.0197 (9) 0.0054 (7) −0.0010 (7) 0.0062 (7)
C38 0.0268 (11) 0.0240 (10) 0.0296 (11) 0.0023 (8) −0.0008 (8) 0.0136 (9)
C39 0.0426 (13) 0.0329 (12) 0.0248 (11) 0.0110 (10) 0.0012 (9) 0.0161 (9)
C40 0.0358 (12) 0.0333 (12) 0.0226 (10) 0.0122 (10) −0.0092 (9) 0.0046 (9)
C41 0.0213 (10) 0.0270 (11) 0.0325 (11) 0.0030 (8) −0.0057 (8) 0.0036 (9)
C42 0.0207 (10) 0.0217 (10) 0.0250 (10) 0.0042 (8) 0.0008 (8) 0.0075 (8)
O1 0.0614 (13) 0.0745 (15) 0.0344 (10) −0.0014 (11) −0.0080 (9) 0.0205 (10)
C43 0.0286 (12) 0.0586 (16) 0.0255 (11) −0.0101 (11) −0.0076 (9) 0.0186 (11)
C44 0.0256 (11) 0.0528 (15) 0.0261 (11) −0.0107 (10) −0.0017 (9) 0.0181 (10)
C45 0.0242 (11) 0.0483 (14) 0.0310 (12) −0.0096 (10) 0.0036 (9) 0.0140 (11)
C46 0.0350 (13) 0.080 (2) 0.0313 (13) −0.0133 (13) −0.0103 (10) 0.0308 (14)
C47 0.0313 (14) 0.088 (2) 0.0444 (16) 0.0005 (14) 0.0021 (11) 0.0351 (16)
C48 0.0423 (15) 0.0525 (16) 0.0411 (14) −0.0083 (12) 0.0014 (12) 0.0136 (13)
C49 0.0310 (12) 0.0455 (14) 0.0190 (10) −0.0032 (10) −0.0067 (9) 0.0099 (9)

cyclo-Dodecakis(µ2-phenylmethanethiolato-κ2S:S)hexapalladium(6 PdPd)–anthracene-9,10-dione (1/1) (mo_b0283_0m) . Geometric parameters (Å, º)

Pd1—Pd2 3.1609 (2) C19—H19 0.9500
Pd1—Pd3i 3.1139 (2) C19—C20 1.381 (4)
Pd1—S1 2.3231 (5) C20—H20 0.9500
Pd1—S2 2.3374 (5) C20—C21 1.384 (3)
Pd1—S3 2.3281 (5) C21—H21 0.9500
Pd1—S6i 2.3264 (5) C22—H22A 0.9900
Pd2—Pd3 3.0892 (2) C22—H22B 0.9900
Pd2—S2 2.3342 (5) C22—C23 1.504 (2)
Pd2—S3 2.3154 (4) C23—C24 1.394 (3)
Pd2—S4 2.3250 (4) C23—C28 1.387 (3)
Pd2—S5 2.3277 (5) C24—H24 0.9500
Pd3—Pd1i 3.1139 (2) C24—C25 1.387 (3)
Pd3—S1i 2.3367 (5) C25—H25 0.9500
Pd3—S4 2.3230 (5) C25—C26 1.382 (4)
Pd3—S5 2.3197 (4) C26—H26 0.9500
Pd3—S6 2.3264 (5) C26—C27 1.380 (4)
S1—Pd3i 2.3367 (5) C27—H27 0.9500
S1—C1 1.8402 (18) C27—C28 1.390 (3)
S2—C8 1.8440 (19) C28—H28 0.9500
S3—C15 1.8378 (19) C29—H29A 0.9900
S4—C22 1.8411 (19) C29—H29B 0.9900
S5—C29 1.8365 (19) C29—C30 1.507 (2)
S6—Pd1i 2.3264 (5) C30—C31 1.385 (3)
S6—C36 1.8434 (19) C30—C35 1.396 (3)
C1—H1A 0.9900 C31—H31 0.9500
C1—H1B 0.9900 C31—C32 1.391 (3)
C1—C2 1.501 (3) C32—H32 0.9500
C2—C3 1.398 (3) C32—C33 1.383 (3)
C2—C7 1.392 (3) C33—H33 0.9500
C3—H3 0.9500 C33—C34 1.384 (3)
C3—C4 1.386 (3) C34—H34 0.9500
C4—H4 0.9500 C34—C35 1.385 (3)
C4—C5 1.390 (4) C35—H35 0.9500
C5—H5 0.9500 C36—H36A 0.9900
C5—C6 1.376 (4) C36—H36B 0.9900
C6—H6 0.9500 C36—C37 1.505 (3)
C6—C7 1.392 (3) C37—C38 1.393 (3)
C7—H7 0.9500 C37—C42 1.389 (3)
C8—H8A 0.9900 C38—H38 0.9500
C8—H8B 0.9900 C38—C39 1.394 (3)
C8—C9 1.501 (3) C39—H39 0.9500
C9—C10 1.394 (3) C39—C40 1.382 (4)
C9—C14 1.396 (3) C40—H40 0.9500
C10—H10 0.9500 C40—C41 1.383 (3)
C10—C11 1.384 (3) C41—H41 0.9500
C11—H11 0.9500 C41—C42 1.389 (3)
C11—C12 1.384 (4) C42—H42 0.9500
C12—H12 0.9500 O1—C43 1.240 (3)
C12—C13 1.382 (4) C43—C44 1.470 (4)
C13—H13 0.9500 C43—C45ii 1.473 (4)
C13—C14 1.384 (3) C44—C45 1.425 (3)
C14—H14 0.9500 C44—C49 1.383 (3)
C15—H15A 0.9900 C45—C43ii 1.473 (4)
C15—H15B 0.9900 C45—C46 1.354 (4)
C15—C16 1.501 (2) C46—H46 0.9500
C16—C17 1.393 (3) C46—C47 1.436 (5)
C16—C21 1.394 (3) C47—H47 0.9500
C17—H17 0.9500 C47—C48 1.387 (4)
C17—C18 1.391 (3) C48—H48 0.9500
C18—H18 0.9500 C48—C49 1.389 (4)
C18—C19 1.383 (4) C49—H49 0.9500
Pd3i—Pd1—Pd2 122.696 (6) C16—C15—S3 109.37 (13)
S1—Pd1—Pd2 133.948 (12) C16—C15—H15A 109.8
S1—Pd1—Pd3i 48.255 (11) C16—C15—H15B 109.8
S1—Pd1—S2 99.152 (16) C17—C16—C15 120.28 (17)
S1—Pd1—S3 178.778 (16) C17—C16—C21 118.90 (18)
S1—Pd1—S6i 81.998 (16) C21—C16—C15 120.82 (18)
S2—Pd1—Pd2 47.378 (11) C16—C17—H17 119.8
S2—Pd1—Pd3i 129.132 (12) C18—C17—C16 120.5 (2)
S3—Pd1—Pd2 46.933 (11) C18—C17—H17 119.8
S3—Pd1—Pd3i 132.454 (13) C17—C18—H18 119.9
S3—Pd1—S2 81.033 (16) C19—C18—C17 120.1 (2)
S6i—Pd1—Pd2 128.215 (13) C19—C18—H18 119.9
S6i—Pd1—Pd3i 47.991 (11) C18—C19—H19 120.2
S6i—Pd1—S2 174.139 (16) C20—C19—C18 119.59 (19)
S6i—Pd1—S3 97.940 (16) C20—C19—H19 120.2
Pd3—Pd2—Pd1 121.425 (6) C19—C20—H20 119.6
S2—Pd2—Pd1 47.463 (11) C19—C20—C21 120.8 (2)
S2—Pd2—Pd3 128.222 (12) C21—C20—H20 119.6
S3—Pd2—Pd1 47.270 (12) C16—C21—H21 119.9
S3—Pd2—Pd3 131.984 (12) C20—C21—C16 120.1 (2)
S3—Pd2—S2 81.367 (16) C20—C21—H21 119.9
S3—Pd2—S4 177.813 (17) S4—C22—H22A 110.0
S3—Pd2—S5 98.089 (16) S4—C22—H22B 110.0
S4—Pd2—Pd1 134.849 (12) H22A—C22—H22B 108.4
S4—Pd2—Pd3 48.318 (11) C23—C22—S4 108.39 (12)
S4—Pd2—S2 99.980 (16) C23—C22—H22A 110.0
S4—Pd2—S5 80.756 (16) C23—C22—H22B 110.0
S5—Pd2—Pd1 128.271 (13) C24—C23—C22 120.23 (17)
S5—Pd2—Pd3 48.229 (11) C28—C23—C22 120.67 (17)
S5—Pd2—S2 173.880 (17) C28—C23—C24 119.10 (18)
Pd2—Pd3—Pd1i 115.879 (6) C23—C24—H24 119.8
S1i—Pd3—Pd1i 47.884 (11) C25—C24—C23 120.4 (2)
S1i—Pd3—Pd2 130.174 (12) C25—C24—H24 119.8
S4—Pd3—Pd1i 132.157 (12) C24—C25—H25 120.0
S4—Pd3—Pd2 48.373 (11) C26—C25—C24 119.9 (2)
S4—Pd3—S1i 178.547 (16) C26—C25—H25 120.0
S4—Pd3—S6 99.246 (16) C25—C26—H26 119.9
S5—Pd3—Pd1i 125.043 (13) C27—C26—C25 120.1 (2)
S5—Pd3—Pd2 48.449 (12) C27—C26—H26 119.9
S5—Pd3—S1i 97.903 (16) C26—C27—H27 120.0
S5—Pd3—S4 80.964 (16) C26—C27—C28 120.1 (2)
S5—Pd3—S6 169.831 (17) C28—C27—H27 120.0
S6—Pd3—Pd1i 47.990 (11) C23—C28—C27 120.3 (2)
S6—Pd3—Pd2 124.764 (13) C23—C28—H28 119.8
S6—Pd3—S1i 81.707 (16) C27—C28—H28 119.8
Pd1—S1—Pd3i 83.862 (15) S5—C29—H29A 109.2
C1—S1—Pd1 109.07 (6) S5—C29—H29B 109.2
C1—S1—Pd3i 111.18 (6) H29A—C29—H29B 107.9
Pd2—S2—Pd1 85.159 (15) C30—C29—S5 111.89 (13)
C8—S2—Pd1 103.40 (6) C30—C29—H29A 109.2
C8—S2—Pd2 106.26 (7) C30—C29—H29B 109.2
Pd2—S3—Pd1 85.797 (15) C31—C30—C29 119.56 (17)
C15—S3—Pd1 110.88 (7) C31—C30—C35 118.78 (17)
C15—S3—Pd2 111.96 (6) C35—C30—C29 121.64 (17)
Pd3—S4—Pd2 83.308 (15) C30—C31—H31 119.8
C22—S4—Pd2 111.99 (6) C30—C31—C32 120.31 (18)
C22—S4—Pd3 112.72 (6) C32—C31—H31 119.8
Pd3—S5—Pd2 83.321 (15) C31—C32—H32 119.7
C29—S5—Pd2 103.36 (6) C33—C32—C31 120.59 (19)
C29—S5—Pd3 109.93 (6) C33—C32—H32 119.7
Pd1i—S6—Pd3 84.020 (15) C32—C33—H33 120.3
C36—S6—Pd1i 108.12 (6) C32—C33—C34 119.45 (18)
C36—S6—Pd3 106.45 (7) C34—C33—H33 120.3
S1—C1—H1A 109.6 C33—C34—H34 119.9
S1—C1—H1B 109.6 C33—C34—C35 120.10 (18)
H1A—C1—H1B 108.1 C35—C34—H34 119.9
C2—C1—S1 110.14 (13) C30—C35—H35 119.6
C2—C1—H1A 109.6 C34—C35—C30 120.75 (18)
C2—C1—H1B 109.6 C34—C35—H35 119.6
C3—C2—C1 120.30 (17) S6—C36—H36A 109.9
C7—C2—C1 121.12 (18) S6—C36—H36B 109.9
C7—C2—C3 118.57 (18) H36A—C36—H36B 108.3
C2—C3—H3 119.7 C37—C36—S6 108.93 (13)
C4—C3—C2 120.7 (2) C37—C36—H36A 109.9
C4—C3—H3 119.7 C37—C36—H36B 109.9
C3—C4—H4 120.0 C38—C37—C36 120.57 (18)
C3—C4—C5 120.0 (2) C42—C37—C36 120.61 (17)
C5—C4—H4 120.0 C42—C37—C38 118.81 (18)
C4—C5—H5 120.1 C37—C38—H38 119.8
C6—C5—C4 119.9 (2) C37—C38—C39 120.4 (2)
C6—C5—H5 120.1 C39—C38—H38 119.8
C5—C6—H6 119.9 C38—C39—H39 119.9
C5—C6—C7 120.3 (2) C40—C39—C38 120.1 (2)
C7—C6—H6 119.9 C40—C39—H39 119.9
C2—C7—C6 120.6 (2) C39—C40—H40 120.1
C2—C7—H7 119.7 C39—C40—C41 119.8 (2)
C6—C7—H7 119.7 C41—C40—H40 120.1
S2—C8—H8A 109.5 C40—C41—H41 119.9
S2—C8—H8B 109.5 C40—C41—C42 120.2 (2)
H8A—C8—H8B 108.0 C42—C41—H41 119.9
C9—C8—S2 110.92 (13) C37—C42—H42 119.7
C9—C8—H8A 109.5 C41—C42—C37 120.6 (2)
C9—C8—H8B 109.5 C41—C42—H42 119.7
C10—C9—C8 120.45 (18) O1—C43—C44 120.5 (3)
C10—C9—C14 119.15 (19) O1—C43—C45ii 120.3 (3)
C14—C9—C8 120.40 (19) C44—C43—C45ii 119.2 (2)
C9—C10—H10 120.0 C45—C44—C43 120.8 (2)
C11—C10—C9 120.1 (2) C49—C44—C43 119.5 (2)
C11—C10—H10 120.0 C49—C44—C45 119.6 (2)
C10—C11—H11 119.8 C44—C45—C43ii 120.0 (2)
C10—C11—C12 120.5 (3) C46—C45—C43ii 120.6 (2)
C12—C11—H11 119.8 C46—C45—C44 119.4 (2)
C11—C12—H12 120.1 C45—C46—H46 119.1
C13—C12—C11 119.8 (2) C45—C46—C47 121.9 (2)
C13—C12—H12 120.1 C47—C46—H46 119.1
C12—C13—H13 119.9 C46—C47—H47 121.4
C12—C13—C14 120.2 (2) C48—C47—C46 117.2 (3)
C14—C13—H13 119.9 C48—C47—H47 121.4
C9—C14—H14 119.9 C47—C48—H48 119.2
C13—C14—C9 120.3 (2) C47—C48—C49 121.6 (3)
C13—C14—H14 119.9 C49—C48—H48 119.2
S3—C15—H15A 109.8 C44—C49—C48 120.2 (2)
S3—C15—H15B 109.8 C44—C49—H49 119.9
H15A—C15—H15B 108.2 C48—C49—H49 119.9
Pd1—S1—C1—C2 152.50 (12) C17—C18—C19—C20 −1.1 (3)
Pd1—S2—C8—C9 −170.66 (13) C18—C19—C20—C21 1.3 (3)
Pd1—S3—C15—C16 121.75 (12) C19—C20—C21—C16 −0.2 (3)
Pd1i—S6—C36—C37 175.62 (12) C21—C16—C17—C18 1.1 (3)
Pd2—S2—C8—C9 −81.85 (14) C22—C23—C24—C25 −179.93 (19)
Pd2—S3—C15—C16 −144.29 (11) C22—C23—C28—C27 179.26 (19)
Pd2—S4—C22—C23 −132.34 (11) C23—C24—C25—C26 0.8 (3)
Pd2—S5—C29—C30 −60.03 (14) C24—C23—C28—C27 −1.1 (3)
Pd3i—S1—C1—C2 −116.78 (12) C24—C25—C26—C27 −1.4 (4)
Pd3—S4—C22—C23 135.78 (11) C25—C26—C27—C28 0.7 (4)
Pd3—S5—C29—C30 −147.68 (12) C26—C27—C28—C23 0.5 (3)
Pd3—S6—C36—C37 86.64 (13) C28—C23—C24—C25 0.5 (3)
S1—C1—C2—C3 −78.1 (2) C29—C30—C31—C32 177.18 (19)
S1—C1—C2—C7 102.25 (18) C29—C30—C35—C34 −177.65 (18)
S2—C8—C9—C10 93.6 (2) C30—C31—C32—C33 0.6 (3)
S2—C8—C9—C14 −85.6 (2) C31—C30—C35—C34 0.9 (3)
S3—C15—C16—C17 125.44 (16) C31—C32—C33—C34 0.7 (3)
S3—C15—C16—C21 −54.9 (2) C32—C33—C34—C35 −1.2 (3)
S4—C22—C23—C24 −89.47 (19) C33—C34—C35—C30 0.4 (3)
S4—C22—C23—C28 90.15 (19) C35—C30—C31—C32 −1.4 (3)
S5—C29—C30—C31 139.77 (16) C36—C37—C38—C39 −179.55 (19)
S5—C29—C30—C35 −41.7 (2) C36—C37—C42—C41 −179.97 (18)
S6—C36—C37—C38 92.23 (19) C37—C38—C39—C40 −0.2 (3)
S6—C36—C37—C42 −86.4 (2) C38—C37—C42—C41 1.3 (3)
C1—C2—C3—C4 −179.22 (18) C38—C39—C40—C41 0.9 (3)
C1—C2—C7—C6 179.76 (18) C39—C40—C41—C42 −0.4 (3)
C2—C3—C4—C5 −0.8 (3) C40—C41—C42—C37 −0.7 (3)
C3—C2—C7—C6 0.1 (3) C42—C37—C38—C39 −0.9 (3)
C3—C4—C5—C6 0.6 (3) O1—C43—C44—C45 176.5 (2)
C4—C5—C6—C7 −0.1 (3) O1—C43—C44—C49 −1.6 (4)
C5—C6—C7—C2 −0.3 (3) C43—C44—C45—C43ii 0.8 (4)
C7—C2—C3—C4 0.5 (3) C43—C44—C45—C46 −179.7 (2)
C8—C9—C10—C11 179.8 (2) C43—C44—C49—C48 −178.4 (2)
C8—C9—C14—C13 −179.77 (19) C43ii—C45—C46—C47 179.3 (2)
C9—C10—C11—C12 0.5 (4) C44—C45—C46—C47 −0.1 (4)
C10—C9—C14—C13 1.0 (3) C45ii—C43—C44—C45 −0.8 (4)
C10—C11—C12—C13 0.0 (4) C45ii—C43—C44—C49 −178.9 (2)
C11—C12—C13—C14 0.0 (4) C45—C44—C49—C48 3.5 (4)
C12—C13—C14—C9 −0.6 (3) C45—C46—C47—C48 0.0 (4)
C14—C9—C10—C11 −1.0 (3) C46—C47—C48—C49 1.8 (4)
C15—C16—C17—C18 −179.22 (18) C47—C48—C49—C44 −3.6 (4)
C15—C16—C21—C20 179.37 (18) C49—C44—C45—C43ii 178.9 (2)
C16—C17—C18—C19 −0.1 (3) C49—C44—C45—C46 −1.7 (3)
C17—C16—C21—C20 −0.9 (3)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+1, −z+2.

Funding Statement

This work was funded by Franche-Comté grant RECH-MOB15–000017 to A. Raghuvanshi.

References

  1. Ananikov, V. P., Orlov, N. V., Zalesskiy, S. S., Beletskaya, I. P., Khrustalev, V. N., Morokuma, K. & Musaev, D. G. (2012). J. Am. Chem. Soc. 134, 6637–6649. [DOI] [PubMed]
  2. Awaleh, M. O., Badia, A. & Brisse, F. (2005). Acta Cryst. E61, m1586–m1587.
  3. Awaleh, M. O., Baril-Robert, F., Reber, C., Badia, A. & Brisse, F. (2008). Inorg. Chem. 47, 2964–2974. [DOI] [PubMed]
  4. Binkowska, I., Ratajczak–Sitarz, M., Katrusiak, A. & Jarczewski, A. (2009). J. Mol. Struct. 928, 54–58.
  5. Blake, A. J., Holder, A. J., Roberts, Y. V. & Schröder, M. (1988). Acta Cryst. C44, 360–361.
  6. Bondi, A. (1964). J. Phys. Chem. 68, 441–451.
  7. Bruker (2016). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  8. Bruker (2018). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
  9. Cao, R., Su, W., Hong, M., Zhang, W., Lu, J. & Wong, W. (1998). Chem. Commun. pp. 2083–2084.
  10. Chen, J., Pan, Y., Wang, Z. & Zhao, P. (2017). Dalton Trans. 46, 12964–12970. [DOI] [PubMed]
  11. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  12. Fowelin, C., Schüpbach, B. & Terfort, A. (2007). Eur. J. Org. Chem. pp. 1013–1017.
  13. Fu, Y. & Brock, C. P. (1998). Acta Cryst. B54, 308–315.
  14. Gao, X. & Chen, W. (2017). Chem. Commun. 53, 9733–9736. [DOI] [PubMed]
  15. Gopalakrishnan, R., Jacob, J. P., Moideen, S. F. T., Lalu, L. M., Unnikrishnan, P. A. & Prathapan, S. (2015). Arkivoc, 7, 316–329.
  16. Goswami, S. & Maity, A. C. (2008). Tetrahedron Lett. 49, 3092–3096.
  17. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  18. Higgins, J. D. & Suggs, J. W. (1988). Inorg. Chim. Acta, 145, 247–252.
  19. Hu, T.-L., Li, J.-R., Xie, Y.-B. & Bu, X.-H. (2006). Cryst. Growth Des. 6, 648–655.
  20. Hu, X.-L., Wang, K., Li, X., Pan, Q.-Q. & Su, Z.-M. (2020). New J. Chem. 44, 12496–12502.
  21. Knauer, L., Knorr, M., Viau, L. & Strohmann, C. (2020). Acta Cryst. E76, 38–41. [DOI] [PMC free article] [PubMed]
  22. Knaust, J. M. & Keller, S. W. (2003). CrystEngComm, 5, 459–465.
  23. Knorr, M., Khatyr, A., Dini Aleo, A., El Yaagoubi, A., Strohmann, C., Kubicki, M. M., Rousselin, Y., Aly, S. M., Fortin, D., Lapprand, A. & Harvey, P. D. (2014). Cryst. Growth Des. 14, 5373–5387.
  24. Kunchur, N. R. (1971). Acta Cryst. B27, 2292.
  25. Lee, S. G., Choi, K.-Y., Kim, Y.-J., Park, S. & Lee, S. W. (2015). Polyhedron, 85, 880–887.
  26. Lewis, M., Carrell, H. L., Glusker, J. P. & Sparks, R. A. (1976). Acta Cryst. B32, 2040–2044.
  27. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  28. Madhu, S., Josimuddin, S. & Ravikanth, M. (2014). New J. Chem. 38, 3770–3776.
  29. Mahmudov, K. T., Hasanov, X. I., Maharramov, A. M., Azizova, A. N., Ragimov, K. Q., Askerov, R. K., Kopylovich, M. N., Ma, Z. & Pombeiro, A. J. L. (2013). Inorg. Chem. Commun. 29, 37–39.
  30. Martin, H. J., Pfeiffer, C. R., Davies, S. E., Davis, A. L., Lewis, W. & Champness, N. R. (2018). ACS Omega, 3, 8769–8776. [DOI] [PMC free article] [PubMed]
  31. Mohanty, A., Singh, U. P., Butcher, R. J., Das, N. & Roy, P. (2020). CrystEngComm, 22, 4468–4477.
  32. Murray, S. G., Levason, W. & Tuttlebee, H. E. (1981). Inorg. Chim. Acta, 51, 185–189.
  33. Olah, G. A., Narang, S. C. & Salem, G. F. (1980). Synthesis, pp. 659–660.
  34. Peindy, H. N., Guyon, F., Khatyr, A., Knorr, M. & Strohmann, C. (2007). Eur. J. Inorg. Chem. pp. 1823–1828.
  35. Pickardt, J. & Rautenberg, N. (1986). Z. Naturforsch. Teil B, 41, 409–412.
  36. Quah, H. S., Ng, L. T., Donnadieu, B., Tan, G. K. & Vittal, J. J. (2016). Inorg. Chem. 55, 10851–10854. [DOI] [PubMed]
  37. Raghuvanshi, A., Dargallay, N. J., Knorr, M., Viau, L., Knauer, L. & Strohmann, C. (2017). J. Inorg. Organomet. Polym. 27, 1501–1513.
  38. Raghuvanshi, A., Knauer, L., Viau, L., Knorr, M. & Strohmann, C. (2020). Acta Cryst. E76, 484–487. [DOI] [PMC free article] [PubMed]
  39. Raghuvanshi, A., Knorr, M., Knauer, L., Strohmann, C., Boullanger, S., Moutarlier, V. & Viau, L. (2019). Inorg. Chem. 58, 5753–5775. [DOI] [PubMed]
  40. Rao, G. K., Kumar, A., Saleem, F., Singh, M. P., Kumar, S., Kumar, B., Mukherjee, G. & Singh, A. K. (2015). Dalton Trans. 44, 6600–6612. [DOI] [PubMed]
  41. Schlachter, A., Lapprand, A., Fortin, D., Strohmann, C., Harvey, P. D. M. & Knorr, M. (2020). Inorg. Chem. 59, 3686–3708. [DOI] [PubMed]
  42. Schlachter, A., Viau, L., Fortin, D., Knauer, L., Strohmann, C., Knorr, M. & Harvey, P. D. (2018). Inorg. Chem. 57, 13564–13576. [DOI] [PubMed]
  43. Schwarze, T., Müller, H., Dosche, C., Klamroth, T., Mickler, W., Kelling, A., Löhmannsröben, H.-G., Saalfrank, P. & Holdt, H.-J. (2007). Angew. Chem. Int. Ed. 46, 1671–1674. [DOI] [PubMed]
  44. Shaterian, H. R., Azizi, K. & Fahimi, N. (2011). J. Sulfur Chem. 32, 85–91.
  45. Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8.
  46. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  47. Shichibu, Y., Yoshida, K. & Konishi, K. (2016). Inorg. Chem. 55, 9147–9149. [DOI] [PubMed]
  48. Slouf, M. (2002). J. Mol. Struct. 611, 139–146.
  49. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  50. Stash, A. I., Levashova, V. V., Lebedev, S. A., Hoskov, Yu. G., Mal’kov, A. A. & Romm, I. P. (2009). Russ. J. Coord. Chem. 35, 136–141.
  51. Stash, A. I., Perepelkova, T. I., Noskov, Yu. G., Buslaeva, T. M. & Romm, I. P. (2001). Russ. J. Coord. Chem. 27, 585–590.
  52. Su, W., Cao, R., Hong, M., Zhou, Z., Xie, F., Liu, H. & Mak, T. C. W. (1997a). Polyhedron, 16, 2531–2535.
  53. Su, W., Hong, M., Cao, R. & Liu, H. (1997b). Acta Cryst. C53, 66–67.
  54. Takemura, T., Kozawa, K., Uchida, T. & Mori, N. (1984). Chem. Lett. 13, 1839–1842.
  55. Thomas, P. J., Lavanya, A., Sabareesh, V. & Kulkarni, G. U. (2001). J. Chem. Sci. 113, 611–619.
  56. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.
  57. Wang, X., Gao, W.-Y., Luan, J., Wojtas, L. & Ma, S. (2016). Chem. Commun. 52, 1971–1974. [DOI] [PubMed]
  58. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  59. Yang, H., Kim, T. H., Moon, S.-H. & Kim, J. (2010). Acta Cryst. E66, o1519. [DOI] [PMC free article] [PubMed]
  60. Yang, Z., Klabunde, K. J. & Sorensen, C. M. (2007). J. Phys. Chem. C, 111, 18143–18147.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) mo_b0159_0m, mo_b0283_0m, New_Global_Publ_Block. DOI: 10.1107/S2056989021006113/hb7976sup1.cif

e-77-00718-sup1.cif (4.2MB, cif)

Structure factors: contains datablock(s) mo_b0159_0m. DOI: 10.1107/S2056989021006113/hb7976mo_b0159_0msup2.hkl

Structure factors: contains datablock(s) mo_b0283_0m. DOI: 10.1107/S2056989021006113/hb7976mo_b0283_0msup3.hkl

CCDC references: 2089413, 2089412

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES