In the crystal, molecules are linked by pairs of N—H⋯O hydrogen bonds into ribbons along the c-axis direction. The layered crystal packing is further consolidated by van der Waals and C—H⋯π interactions.
Keywords: crystal structure; 1,3-diazinane ring; hydrogen bonds; Hirshfeld surface analysis
Abstract
In the crystal, the whole molecule of the title compound, C14H12N4O7·0.224H2O, is nearly planar with a maximum deviation from the least-squares plane of 0.352 (1) Å. The molecular conformation is stabilized by an intramolecular N—H⋯O hydrogen bond, generating an S(6) ring motif. In the crystal, molecules are linked by centrosymmetric pairs of N—H⋯O hydrogen bonds, forming ribbons along the c-axis direction. These ribbons connected by van der Waals contacts, forming sheets parallel to the ac plane. There are also intermolecular van der Waals contacts and and C—H⋯π interactions between the sheets. A Hirshfeld surface analysis indicates that the most prevalent interactions are O⋯H/H⋯O (41.2%), H⋯H (19.2%), C⋯H/H⋯C (12.2%) and C⋯O/ O⋯C (8.4%).
Chemical context
Arylhydrazones, besides their biological significance (Viswanathan et al., 2019 ▸), can also be used as precursors in the synthesis of coordination compounds (Gurbanov et al., 2017 ▸, 2018a
▸,b
▸; Ma et al., 2017a
▸,b
▸) and as building blocks in the construction of supramolecular structures owing to their hydrogen-bond donor and acceptor capabilities (Mahmoudi et al., 2016 ▸, 2017a
▸,b
▸,c
▸, 2018a
▸,b
▸; 2019 ▸). All the reported hydrazone ligands are stabilized in the hydrazone form by intramolecular resonance-assisted hydrogen bonding (RAHB) between the hydrazone =N—NH— fragment and the carbonyl group, giving a six-membered ring (Gurbanov et al., 2020a
▸; Kopylovich et al., 2011a
▸,b
▸; Mizar et al., 2012 ▸). The use of multifunctional ligands in coordination chemistry is a common way to increase the water solubility of metal complexes, which is important for catalytic applications in aqueous medium (Ma et al., 2020 ▸, 2021 ▸; Mahmudov et al., 2013 ▸; Sutradhar et al., 2015 ▸, 2016 ▸). Moreover, non-covalent interactions such as hydrogen, halogen and chalcogen bonds as well as π-interactions or their cooperation are able to contribute to synthesis and catalysis and improve the properties of materials (Gurbanov et al., 2020b
▸; Karmakar et al., 2017 ▸; Khalilov et al., 2018a
▸,b
▸; Mac Leod et al., 2012 ▸; Shikhaliyev et al., 2019 ▸; Shixaliyev et al., 2014 ▸). For that, the main skeleton of the hydrazone ligand should be decorated by non-covalent bond donor centre(s). In a continuation of our work in this area, we have prepared a new hydrazone ligand, dimethyl 5-{2-[2,4,6-trioxotetrahydropyrimidin-5(2H)-ylidene] hydrazineyl}isophthalate, which provides the centres for coordination and intermolecular non-covalent interactions.
Structural commentary
The asymmetric unit of the title structure contains one title molecule and a water molecule, which partially occupies a small cavity with an occupancy factor of 0.224 (5). The title molecule (Fig. 1 ▸) is nearly planar with the largest deviation from the least-squares plane being 0.352 (1) Å for the methylcarboxylate atom O6. The 1,3-diazinane ring makes a dihedral angle of 9.96 (5)° with the benzene ring. The planar molecular conformation is stabilized by an intramolecular N—H⋯O contact (Table 1 ▸), generating an S(6) ring motif (Bernstein et al., 1995 ▸).
Figure 1.
The molecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.
Table 1. Hydrogen-bond geometry (Å, °).
Cg2 is the centroid of the C5–C10 benzene ring.
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N1—H1N⋯O2i | 0.86 | 2.03 | 2.8800 (13) | 174 |
| N2—H2N⋯O3ii | 0.90 | 2.01 | 2.8931 (15) | 168 |
| N4—H4N⋯O3 | 0.86 | 2.02 | 2.6571 (15) | 131 |
| C6—H6⋯Ow1 | 0.95 | 2.14 | 3.061 (6) | 163 |
| C12—H12B⋯O1iii | 0.98 | 2.39 | 3.2743 (17) | 149 |
| C14—H14B⋯O4iv | 0.98 | 2.53 | 3.4754 (16) | 163 |
| C12—H12C⋯Cg2v | 0.98 | 2.73 | 3.4717 (15) | 133 |
Symmetry codes: (i) -x+1, y, -z+{\script{5\over 2}}; (ii) -x+1, y, -z+{\script{3\over 2}}; (iii) x, y, z-1; (iv) x, y, z+1; (v) x, -y+1, z-{\script{1\over 2}}.
Supramolecular features
In the crystal, the molecules are linked by pairs of N—H⋯O hydrogen bonds into ribbons along the c-axis direction (Table 1 ▸). These ribbons are connected by van der Waals interactions, forming sheets parallel to the ac plane. There are also other van der Waals contacts and C—H⋯π interactions between the sheets (Table 2 ▸), consolidating the crystal packing (Figs. 2 ▸–4 ▸ ▸).
Table 2. Summary of short interatomic contacts (Å) in the title compound.
| Contact | Distance | Symmetry operation |
|---|---|---|
| O1⋯*Ow1 | 3.129 | x, y, 1 + z |
| O1⋯H12B | 2.39 | x, y, 1 + z |
| O1⋯H4N | 2.59 | x, 1 − y, {1\over 2} + z |
| H12A⋯O1 | 2.67 | {1\over 2} − x, {1\over 2} − y, 1 − z |
| H1N⋯O2 | 2.03 | 1 − x, y, {5\over 2} − z |
| O2⋯*Ow1 | 2.662 | 1 − x, y, {3\over 2} − z |
| N2⋯O2 | 3.226 | 1 − x, 1 − y, 2 − z |
| O2⋯H14C | 2.64 | {1\over 2} + x, {1\over 2} − y, {1\over 2} + z |
| H2N⋯O3 | 2.01 | 1 − x, y, {3\over 2} − z |
| H4N⋯O1 | 2.59 | x, 1 − y, − {1\over 2} + z |
| H12B⋯O1 | 2.39 | x, y, − 1 + z |
| H8⋯O6 | 2.66 | −x, y, {1\over 2} − z |
| H14A⋯O6 | 2.67 | −x, 1 − y, 1 − z |
| H14C⋯O2 | 2.64 | −{1\over 2} + x, {1\over 2} − y, − {1\over 2} + z |
| C1⋯*Ow1 | 3.297 | x, 1 − y, {1\over 2} + z |
| H6⋯*Ow1 | 2.14 | x, y, z |
| H12B⋯C12 | 3.10 | {1\over 2} − x, {1\over 2} − y, −z |
| H14B⋯C14 | 2.93 | −x, y, {3\over 2} − z |
| H12A⋯*Ow1 | 2.70 | {1\over 2} − x, {1\over 2} − y, −z |
*Ow1 indicates the oxygen atom of the water molecule with an occupancy of 0.224 (5).
Figure 2.
A view down the a axis showing the intermolecular contacts forming the layered structure.
Figure 3.
A view of intermolecular hydrogen bonds forming the ribbons along the c-axis direction.
Figure 4.
A view of the projection on the ab plane showing the contacts between layers.
Hirshfeld surface analysis
The Hirshfeld surface for the title molecule was performed and its associated two-dimensional fingerprint plots were prepared using Crystal Explorer 17 (Turner et al., 2017 ▸) to further investigate the intermolecular interactions in the title structure. The oxygen atom of the water molecule with partial occupancy was not taken into account. The Hirshfeld surface mapped over d norm with corresponding colours representing intermolecular interactions is shown in Fig. 5 ▸. The red spots on the surface correspond to the N—H⋯O and C—H⋯O interactions (Tables 1 ▸ and 2 ▸). The Hirshfeld surface mapped over electrostatic potential (Spackman et al., 2009 ▸) is shown in Fig. 6 ▸. The blue regions indicate positive electrostatic potential (hydrogen-bond donors), while the red regions indicate negative electrostatic potential (hydrogen-bond acceptors). The two-dimensional fingerprint plots (McKinnon et al., 2007 ▸) are shown in Fig. 7 ▸. O⋯H/H.·O contacts make the largest contribution (41.2%; Fig. 7 ▸ b) to the Hirshfeld surface. The other large contributions to the Hirshfeld surface are from H⋯H (19.2%; Fig. 7 ▸ c), C⋯H/H⋯C (12.2%; Fig. 7 ▸ d) and C⋯O/O⋯C (8.4%; Fig. 7 ▸ e) interactions. All contributions to the Hirshfeld surface are listed in Table 3 ▸. These interactions play a crucial role in the overall cohesion of the crystal packing.
Figure 5.
A view of the Hirshfeld surface mapped over d norm, with interactions to neighbouring molecules shown as green dashed lines.
Figure 6.
The Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range from −0.0500 to 0.0500 a.u. using the STO-3G basis set at the Hartree–Fock level of theory. Hydrogen-bond donors and acceptors are shown as blue and red regions around the atoms, corresponding to positive and negative potentials, respectively.
Figure 7.
The two-dimensional fingerprint plots of the title compound, showing (a) all interactions, and delineated into (b) O⋯H/H⋯O, (c) H⋯H, (d) C⋯H/H⋯C and (e) C⋯O/O⋯C, interactions [d e and d i represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (internal) the surface, respectively].
Table 3. Percentage contributions of interatomic contacts to the Hirshfeld surface for the title compound.
| Contact | Percentage contribution |
|---|---|
| O⋯H/H⋯O | 41.2 |
| H⋯H | 19.2 |
| C⋯H/H⋯C | 12.2 |
| C⋯O/O⋯C | 8.4 |
| O⋯O | 5.6 |
| N⋯O/O⋯N | 4.7 |
| C⋯N/N⋯C | 3.2 |
| C⋯C | 2.8 |
| N⋯H/H⋯N | 2.7 |
Database survey
A search of Cambridge Crystallographic Database (CSD, version 5.40, update of September 2019; Groom et al., 2016 ▸) was undertaken for structures containing the 5-(2-methylhydrazinylidene)-1,3-diazinane moiety. The first three structures are free bases are: 2-{2-[(1H-imidazol-5-yl)methylidene]-1-methylhydrazinyl}pyridine (QUGVEW; Bocian et al., 2020 ▸), 2-{2-[(1H-imidazol-2-yl)methylidene]-1-methylhydrazinyl}-1H-benzimidazole monohydrate (QUGVIA; Bocian et al., 2020 ▸) and 2-{1-methyl-2-[(1-methyl-1H-imidazol-2-yl)methylidene]hydrazinyl}-1H-benzimidazole hydrate unknown solvate (QUGVOG; Bocian et al., 2020 ▸). The other two are triflate salts are: 5-{[2-(1H-benzimidazol-2-yl)-2-methylhydrazinylidene]methyl}-1H-imidazol-3-ium trifluoromethanesulfonate monohydrate (QUGVUM; Bocian et al., 2020 ▸) and (2-{2-[(1H-imidazol-3-ium-2-yl)methylene]-1-methylhydrazineyl}pyridin-1-ium) bis(trifluoromethanesulfonate) (QUGWAT; Bocian et al., 2020 ▸).
In the structures of QUGVEW, QUGVIA, QUGVOG, QUGVUM and QUGWAT, the most important contribution to the stabilization of the crystal packing is provided by π–π interactions, especially between cations in the structures of salts, while the characteristics of the crystal architecture are influenced by directional interactions, especially relatively strong hydrogen bonds. In one of the structures (QUGWAT), an interesting example of a non-typical F⋯O interaction was found whose length, 2.859 (2) Å, is one of the shortest ever reported.
Synthesis and crystallization
Diazotization: 2.09 g (10 mmol) of dimethyl 5-aminoisophthalate were dissolved in 50 mL of water, the solution was cooled on an ice bath to 273 K and 0.69 g (10 mmol) of NaNO2 were added; 2.00 mL of HCl were then added in 0.5 mL portions over 1 h. The temperature of the mixture should not exceed 278 K.
Azocoupling: NaOH (0.40 g, 10 mmol) was added to a mixture of 10 mmol (1.28 g) of barbituric acid with 25.00 mL of water. The solution was cooled on an ice bath and a suspension of 3,5-bis(methoxycarbonyl)benzenediazonium chloride, prepared according to the procedure described above, was added in two equal portions under vigorous stirring for 1 h. The formed precipitate of the title compound was filtered off, recrystallized from methanol and dried in air. Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.
The title compound: Yield, 68% (based on barbituric acid), yellow powder soluble in DMSO, methanol, ethanol and DMF. Analysis calculated for C14H12N4O7 (M r = 348.27): C, 48.28; H, 3.47; N, 16.09; found: C, 48.25 H, 3.41; N, 16.03%. ESI–MS: m/z: 349.2 [M r + H]+. IR (KBr): 3160, 3090 and 2846 ν(NH), 1745 and 1663 ν(C=O), 1610 ν(C=O⋯H) cm−1. 1H NMR (300.130 MHz) in DMSO-d 6, internal TMS, δ (ppm): 8.20–8.36 (3H, Ar—H), 11.32 (s, 1H, N—H), 11.54 (s, 1H, N—H), 14.08 (s, 1H, N—H). 13C{1H} NMR (75.468 MHz, DMSO-d 6). δ: 55.6 (2OCH3), 119.54 (2Ar—H), 121.8 (Ar-H), 127.4 (2C—COOCH3), 133.25 (C=N), 142.87 (C—NHN=), 150.24 (C=O), 160.32 (C=O), 161.90 (C=O⋯H) and 166.56 (2COOCH3).
Refinement details
Crystal data, data collection and structure refinement details are summarized in Table 4 ▸. The H atoms of the NH groups were located by difference Fourier synthesis and their coordinates were fixed. All C-bound H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 and 0.98 Å, and with U iso(H) = 1.2 or 1.5U eq(C). There is a small cavity in the crystal, which is only partially occupied by a water molecule, with an occupancy of 0.224 (5), and its hydrogen atoms could not be located.
Table 4. Experimental details.
| Crystal data | |
| Chemical formula | C14H12N4O7·0.224H2O |
| M r | 351.86 |
| Crystal system, space group | Monoclinic, C2/c |
| Temperature (K) | 150 |
| a, b, c (Å) | 24.2097 (11), 12.6311 (6), 10.4022 (5) |
| β (°) | 113.133 (2) |
| V (Å3) | 2925.2 (2) |
| Z | 8 |
| Radiation type | Mo Kα |
| μ (mm−1) | 0.13 |
| Crystal size (mm) | 0.34 × 0.32 × 0.27 |
| Data collection | |
| Diffractometer | Bruker APEXII CCD |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 34832, 2944, 2699 |
| R int | 0.017 |
| (sin θ/λ)max (Å−1) | 0.625 |
| Refinement | |
| R[F2 > 2σ(F 2)], wR(F 2), S | 0.034, 0.102, 1.04 |
| No. of reflections | 2944 |
| No. of parameters | 241 |
| No. of restraints | 6 |
| H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
| Δρmax, Δρmin (e Å−3) | 0.29, −0.21 |
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021006563/yk2153sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021006563/yk2153Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989021006563/yk2153Isup3.cml
CCDC reference: 2091530
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
The authors’ contributions are as follows. Conceptualization, ZA, MA, GZM, FEH, SRH, NTS, and AB; methodology, SRH, and NTS; investigation, ZA, and GZM; writing (original draft), FEH, MA and AB; writing (review and editing of the manuscript), MA and AB; crystal-structure determination, GZM; visualization, ZA, and MA; funding acquisition, GZM, FEH, SRH, and NTS; resources, ZA, MA and AB; supervision, MA and AB.
supplementary crystallographic information
Crystal data
| C14H12N4O7·0.224H2O | F(000) = 1454 |
| Mr = 351.86 | Dx = 1.598 Mg m−3 |
| Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
| a = 24.2097 (11) Å | Cell parameters from 9840 reflections |
| b = 12.6311 (6) Å | θ = 3.2–26.4° |
| c = 10.4022 (5) Å | µ = 0.13 mm−1 |
| β = 113.133 (2)° | T = 150 K |
| V = 2925.2 (2) Å3 | Block, orange |
| Z = 8 | 0.34 × 0.32 × 0.27 mm |
Data collection
| Bruker APEXII CCD diffractometer | Rint = 0.017 |
| φ and ω scans | θmax = 26.4°, θmin = 3.2° |
| 34832 measured reflections | h = −30→30 |
| 2944 independent reflections | k = −15→15 |
| 2699 reflections with I > 2σ(I) | l = −13→13 |
Refinement
| Refinement on F2 | 6 restraints |
| Least-squares matrix: full | Hydrogen site location: mixed |
| R[F2 > 2σ(F2)] = 0.034 | H atoms treated by a mixture of independent and constrained refinement |
| wR(F2) = 0.102 | w = 1/[σ2(Fo2) + (0.0586P)2 + 2.1077P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.04 | (Δ/σ)max < 0.001 |
| 2944 reflections | Δρmax = 0.29 e Å−3 |
| 241 parameters | Δρmin = −0.21 e Å−3 |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | Occ. (<1) | |
| C1 | 0.37057 (5) | 0.39423 (9) | 0.82909 (12) | 0.0190 (2) | |
| C2 | 0.37833 (5) | 0.39902 (9) | 0.97648 (12) | 0.0207 (2) | |
| C3 | 0.48693 (5) | 0.37742 (9) | 1.04270 (12) | 0.0208 (2) | |
| C4 | 0.42279 (5) | 0.38365 (8) | 0.79361 (12) | 0.0186 (2) | |
| C5 | 0.24165 (5) | 0.38344 (8) | 0.50833 (12) | 0.0192 (2) | |
| C6 | 0.23130 (5) | 0.37794 (9) | 0.36716 (12) | 0.0204 (2) | |
| H6 | 0.263906 | 0.380695 | 0.338172 | 0.025* | |
| C7 | 0.17254 (5) | 0.36834 (9) | 0.26874 (11) | 0.0197 (2) | |
| C8 | 0.12459 (5) | 0.36539 (9) | 0.31079 (12) | 0.0201 (2) | |
| H8 | 0.084612 | 0.358679 | 0.243355 | 0.024* | |
| C9 | 0.13569 (5) | 0.37237 (9) | 0.45277 (12) | 0.0200 (2) | |
| C10 | 0.19423 (5) | 0.38111 (9) | 0.55282 (12) | 0.0203 (2) | |
| H10 | 0.201704 | 0.385399 | 0.649417 | 0.024* | |
| C11 | 0.15859 (5) | 0.35937 (9) | 0.11562 (12) | 0.0211 (2) | |
| C12 | 0.19700 (5) | 0.35182 (11) | −0.05977 (12) | 0.0264 (3) | |
| H12A | 0.177183 | 0.284238 | −0.096410 | 0.040* | |
| H12B | 0.235389 | 0.355077 | −0.070599 | 0.040* | |
| H12C | 0.171209 | 0.410245 | −0.111573 | 0.040* | |
| C13 | 0.08236 (5) | 0.37078 (10) | 0.49220 (12) | 0.0231 (3) | |
| C14 | 0.04671 (6) | 0.39831 (12) | 0.66992 (14) | 0.0307 (3) | |
| H14A | 0.022390 | 0.461429 | 0.630597 | 0.046* | |
| H14B | 0.062181 | 0.401216 | 0.772194 | 0.046* | |
| H14C | 0.021864 | 0.334851 | 0.636695 | 0.046* | |
| N1 | 0.43716 (4) | 0.38898 (8) | 1.07229 (10) | 0.0215 (2) | |
| H1N | 0.445330 | 0.388946 | 1.160377 | 0.026 (4)* | |
| N2 | 0.47752 (4) | 0.37483 (8) | 0.90340 (10) | 0.0209 (2) | |
| H2N | 0.510968 | 0.367522 | 0.886519 | 0.032 (4)* | |
| N3 | 0.31416 (4) | 0.39456 (7) | 0.73771 (10) | 0.0197 (2) | |
| N4 | 0.30173 (4) | 0.38952 (8) | 0.60489 (10) | 0.0202 (2) | |
| H4N | 0.329280 | 0.391432 | 0.572748 | 0.041 (5)* | |
| O1 | 0.33809 (4) | 0.41106 (8) | 1.01707 (9) | 0.0285 (2) | |
| O2 | 0.53768 (4) | 0.37191 (8) | 1.13392 (9) | 0.0279 (2) | |
| O3 | 0.41946 (4) | 0.38163 (7) | 0.67172 (8) | 0.0229 (2) | |
| O4 | 0.10827 (4) | 0.35077 (8) | 0.02776 (9) | 0.0310 (2) | |
| O5 | 0.20773 (4) | 0.36060 (7) | 0.08791 (8) | 0.0250 (2) | |
| O6 | 0.03258 (4) | 0.35068 (10) | 0.41153 (10) | 0.0431 (3) | |
| O7 | 0.09668 (4) | 0.39450 (8) | 0.62583 (9) | 0.0292 (2) | |
| OW1 | 0.3463 (2) | 0.3484 (4) | 0.3151 (6) | 0.0466 (19) | 0.224 (5) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| C1 | 0.0158 (5) | 0.0212 (5) | 0.0187 (5) | −0.0008 (4) | 0.0054 (4) | −0.0001 (4) |
| C2 | 0.0184 (5) | 0.0233 (6) | 0.0203 (6) | −0.0022 (4) | 0.0074 (5) | −0.0026 (4) |
| C3 | 0.0192 (5) | 0.0237 (6) | 0.0179 (5) | 0.0009 (4) | 0.0054 (4) | −0.0003 (4) |
| C4 | 0.0166 (5) | 0.0198 (5) | 0.0175 (5) | −0.0002 (4) | 0.0047 (4) | 0.0010 (4) |
| C5 | 0.0157 (5) | 0.0195 (5) | 0.0193 (5) | −0.0003 (4) | 0.0034 (4) | 0.0016 (4) |
| C6 | 0.0188 (5) | 0.0220 (5) | 0.0209 (6) | 0.0006 (4) | 0.0081 (4) | 0.0018 (4) |
| C7 | 0.0203 (5) | 0.0198 (5) | 0.0177 (6) | 0.0005 (4) | 0.0061 (4) | 0.0010 (4) |
| C8 | 0.0171 (5) | 0.0211 (5) | 0.0189 (5) | −0.0002 (4) | 0.0034 (4) | 0.0003 (4) |
| C9 | 0.0173 (5) | 0.0223 (5) | 0.0193 (5) | −0.0007 (4) | 0.0061 (4) | 0.0006 (4) |
| C10 | 0.0197 (5) | 0.0229 (5) | 0.0172 (5) | −0.0006 (4) | 0.0061 (4) | 0.0006 (4) |
| C11 | 0.0210 (5) | 0.0222 (5) | 0.0192 (5) | 0.0008 (4) | 0.0070 (4) | 0.0011 (4) |
| C12 | 0.0253 (6) | 0.0365 (7) | 0.0180 (6) | 0.0003 (5) | 0.0092 (5) | 0.0008 (5) |
| C13 | 0.0185 (6) | 0.0295 (6) | 0.0192 (5) | −0.0006 (4) | 0.0053 (4) | 0.0002 (4) |
| C14 | 0.0221 (6) | 0.0462 (8) | 0.0262 (6) | −0.0023 (5) | 0.0121 (5) | −0.0036 (5) |
| N1 | 0.0184 (5) | 0.0310 (5) | 0.0141 (5) | −0.0001 (4) | 0.0054 (4) | −0.0023 (4) |
| N2 | 0.0149 (5) | 0.0304 (5) | 0.0167 (5) | 0.0025 (4) | 0.0056 (4) | 0.0005 (4) |
| N3 | 0.0174 (5) | 0.0219 (5) | 0.0181 (5) | −0.0007 (3) | 0.0053 (4) | −0.0001 (3) |
| N4 | 0.0153 (5) | 0.0270 (5) | 0.0176 (5) | −0.0005 (3) | 0.0055 (4) | 0.0017 (4) |
| O1 | 0.0192 (4) | 0.0439 (5) | 0.0244 (4) | −0.0026 (4) | 0.0108 (3) | −0.0066 (4) |
| O2 | 0.0190 (4) | 0.0441 (5) | 0.0169 (4) | 0.0043 (4) | 0.0032 (3) | −0.0004 (3) |
| O3 | 0.0178 (4) | 0.0344 (5) | 0.0161 (4) | −0.0001 (3) | 0.0062 (3) | 0.0014 (3) |
| O4 | 0.0211 (4) | 0.0510 (6) | 0.0187 (4) | −0.0024 (4) | 0.0056 (3) | −0.0028 (4) |
| O5 | 0.0204 (4) | 0.0370 (5) | 0.0172 (4) | 0.0008 (3) | 0.0071 (3) | 0.0015 (3) |
| O6 | 0.0175 (4) | 0.0853 (8) | 0.0252 (5) | −0.0085 (5) | 0.0069 (4) | −0.0130 (5) |
| O7 | 0.0190 (4) | 0.0498 (6) | 0.0193 (4) | −0.0038 (4) | 0.0080 (3) | −0.0038 (4) |
| OW1 | 0.031 (3) | 0.056 (3) | 0.058 (3) | 0.001 (2) | 0.024 (2) | 0.004 (2) |
Geometric parameters (Å, º)
| C1—N3 | 1.3223 (15) | C9—C10 | 1.3945 (16) |
| C1—C4 | 1.4557 (16) | C9—C13 | 1.5006 (16) |
| C1—C2 | 1.4708 (15) | C10—H10 | 0.9500 |
| C2—O1 | 1.2140 (14) | C11—O4 | 1.2068 (14) |
| C2—N1 | 1.3864 (14) | C11—O5 | 1.3298 (14) |
| C3—O2 | 1.2242 (14) | C12—O5 | 1.4581 (14) |
| C3—N1 | 1.3638 (15) | C12—H12A | 0.9800 |
| C3—N2 | 1.3759 (15) | C12—H12B | 0.9800 |
| C4—O3 | 1.2387 (14) | C12—H12C | 0.9800 |
| C4—N2 | 1.3724 (14) | C13—O6 | 1.1944 (15) |
| C5—C6 | 1.3909 (16) | C13—O7 | 1.3280 (15) |
| C5—C10 | 1.3968 (16) | C14—O7 | 1.4533 (14) |
| C5—N4 | 1.4080 (14) | C14—H14A | 0.9800 |
| C6—C7 | 1.3936 (16) | C14—H14B | 0.9800 |
| C6—H6 | 0.9500 | C14—H14C | 0.9800 |
| C7—C8 | 1.3926 (16) | N1—H1N | 0.8580 |
| C7—C11 | 1.4970 (15) | N2—H2N | 0.8982 |
| C8—C9 | 1.3963 (16) | N3—N4 | 1.2950 (14) |
| C8—H8 | 0.9500 | N4—H4N | 0.8557 |
| N3—C1—C4 | 124.93 (10) | O4—C11—O5 | 124.04 (10) |
| N3—C1—C2 | 114.97 (10) | O4—C11—C7 | 123.45 (10) |
| C4—C1—C2 | 120.00 (10) | O5—C11—C7 | 112.50 (9) |
| O1—C2—N1 | 119.97 (10) | O5—C12—H12A | 109.5 |
| O1—C2—C1 | 125.19 (10) | O5—C12—H12B | 109.5 |
| N1—C2—C1 | 114.84 (9) | H12A—C12—H12B | 109.5 |
| O2—C3—N1 | 122.53 (10) | O5—C12—H12C | 109.5 |
| O2—C3—N2 | 121.04 (10) | H12A—C12—H12C | 109.5 |
| N1—C3—N2 | 116.41 (10) | H12B—C12—H12C | 109.5 |
| O3—C4—N2 | 120.22 (10) | O6—C13—O7 | 124.04 (11) |
| O3—C4—C1 | 123.21 (10) | O6—C13—C9 | 123.36 (11) |
| N2—C4—C1 | 116.56 (10) | O7—C13—C9 | 112.60 (9) |
| C6—C5—C10 | 121.20 (10) | O7—C14—H14A | 109.5 |
| C6—C5—N4 | 117.59 (10) | O7—C14—H14B | 109.5 |
| C10—C5—N4 | 121.20 (10) | H14A—C14—H14B | 109.5 |
| C5—C6—C7 | 119.25 (10) | O7—C14—H14C | 109.5 |
| C5—C6—H6 | 120.4 | H14A—C14—H14C | 109.5 |
| C7—C6—H6 | 120.4 | H14B—C14—H14C | 109.5 |
| C8—C7—C6 | 120.52 (10) | C3—N1—C2 | 126.63 (9) |
| C8—C7—C11 | 117.69 (10) | C3—N1—H1N | 112.8 |
| C6—C7—C11 | 121.79 (10) | C2—N1—H1N | 120.6 |
| C7—C8—C9 | 119.52 (10) | C4—N2—C3 | 125.51 (10) |
| C7—C8—H8 | 120.2 | C4—N2—H2N | 119.7 |
| C9—C8—H8 | 120.2 | C3—N2—H2N | 114.8 |
| C10—C9—C8 | 120.75 (11) | N4—N3—C1 | 120.55 (10) |
| C10—C9—C13 | 121.89 (10) | N3—N4—C5 | 120.38 (9) |
| C8—C9—C13 | 117.35 (10) | N3—N4—H4N | 121.7 |
| C9—C10—C5 | 118.75 (10) | C5—N4—H4N | 117.9 |
| C9—C10—H10 | 120.6 | C11—O5—C12 | 115.04 (9) |
| C5—C10—H10 | 120.6 | C13—O7—C14 | 115.50 (9) |
| N3—C1—C2—O1 | −5.85 (17) | C6—C7—C11—O5 | 0.66 (15) |
| C4—C1—C2—O1 | 177.58 (11) | C10—C9—C13—O6 | −170.65 (13) |
| N3—C1—C2—N1 | 174.41 (9) | C8—C9—C13—O6 | 9.75 (18) |
| C4—C1—C2—N1 | −2.17 (15) | C10—C9—C13—O7 | 9.60 (16) |
| N3—C1—C4—O3 | 5.51 (18) | C8—C9—C13—O7 | −170.00 (10) |
| C2—C1—C4—O3 | −178.27 (10) | O2—C3—N1—C2 | 177.97 (11) |
| N3—C1—C4—N2 | −173.94 (10) | N2—C3—N1—C2 | −0.46 (17) |
| C2—C1—C4—N2 | 2.27 (15) | O1—C2—N1—C3 | −178.47 (11) |
| C10—C5—C6—C7 | −0.97 (16) | C1—C2—N1—C3 | 1.29 (17) |
| N4—C5—C6—C7 | 177.91 (10) | O3—C4—N2—C3 | 179.07 (11) |
| C5—C6—C7—C8 | 0.67 (16) | C1—C4—N2—C3 | −1.46 (16) |
| C5—C6—C7—C11 | −178.47 (10) | O2—C3—N2—C4 | −177.92 (11) |
| C6—C7—C8—C9 | 0.14 (16) | N1—C3—N2—C4 | 0.53 (17) |
| C11—C7—C8—C9 | 179.32 (10) | C4—C1—N3—N4 | −2.91 (17) |
| C7—C8—C9—C10 | −0.68 (16) | C2—C1—N3—N4 | −179.30 (9) |
| C7—C8—C9—C13 | 178.92 (10) | C1—N3—N4—C5 | 176.15 (10) |
| C8—C9—C10—C5 | 0.40 (16) | C6—C5—N4—N3 | −179.84 (10) |
| C13—C9—C10—C5 | −179.18 (10) | C10—C5—N4—N3 | −0.97 (16) |
| C6—C5—C10—C9 | 0.43 (16) | O4—C11—O5—C12 | 0.65 (16) |
| N4—C5—C10—C9 | −178.40 (10) | C7—C11—O5—C12 | 179.85 (9) |
| C8—C7—C11—O4 | 0.70 (17) | O6—C13—O7—C14 | −1.96 (19) |
| C6—C7—C11—O4 | 179.87 (11) | C9—C13—O7—C14 | 177.79 (10) |
| C8—C7—C11—O5 | −178.51 (10) |
Hydrogen-bond geometry (Å, º)
Cg2 is the centroid of the C5–C10 benzene ring.
| D—H···A | D—H | H···A | D···A | D—H···A |
| N1—H1N···O2i | 0.86 | 2.03 | 2.8800 (13) | 174 |
| N2—H2N···O3ii | 0.90 | 2.01 | 2.8931 (15) | 168 |
| N4—H4N···O3 | 0.86 | 2.02 | 2.6571 (15) | 131 |
| N4—H4N···O1iii | 0.86 | 2.59 | 2.9302 (14) | 105 |
| C6—H6···Ow1 | 0.95 | 2.14 | 3.061 (6) | 163 |
| C12—H12B···O1iv | 0.98 | 2.39 | 3.2743 (17) | 149 |
| C14—H14B···O4v | 0.98 | 2.53 | 3.4754 (16) | 163 |
| C12—H12C···Cg2iii | 0.98 | 2.73 | 3.4717 (15) | 133 |
Symmetry codes: (i) −x+1, y, −z+5/2; (ii) −x+1, y, −z+3/2; (iii) x, −y+1, z−1/2; (iv) x, y, z−1; (v) x, y, z+1.
Funding Statement
This work was funded by Baki Dövlet Universiteti.
References
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bocian, A., Gorczyński, A., Marcinkowski, D., Dutkiewicz, G., Patroniak, V. & Kubicki, M. (2020). Acta Cryst. C76, 367–374. [DOI] [PubMed]
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633.
- Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837. [DOI] [PubMed]
- Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018a). Aust. J. Chem. 71, 190–194.
- Gurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018b). Inorg. Chim. Acta, 471, 130–136.
- Gurbanov, A. V., Mahmudov, K. T., Sutradhar, M., Guedes da Silva, F. C., Mahmudov, T. A., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). J. Organomet. Chem. 834, 22–27.
- Karmakar, A., Rúbio, G. M. D. M., Paul, A., Guedes da Silva, M. F. C., Mahmudov, K. T., Guseinov, F. I., Carabineiro, S. A. C. & Pombeiro, A. J. L. (2017). Dalton Trans. 46, 8649–8657. [DOI] [PubMed]
- Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Maharramov, A. M., Nagiyev, F. N. & Brito, I. (2018a). Z. Kristallogr. New Cryst. Struct. 233, 1019–1020.
- Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Nagiyev, F. N. & Brito, I. (2018b). Z. Kristallogr. New Cryst. Struct. 233, 947–948.
- Kopylovich, M. N., Mahmudov, K. T., Haukka, M., Luzyanin, K. V. & Pombeiro, A. J. L. (2011a). Inorg. Chim. Acta, 374, 175–180.
- Kopylovich, M. N., Mahmudov, K. T., Mizar, A. & Pombeiro, A. J. L. (2011b). Chem. Commun. 47, 7248–7250. [DOI] [PubMed]
- Ma, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526–533.
- Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). Mol. Catal. 428, 17–23.
- Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.
- Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482.
- Mac Leod, T. C. O., Kopylovich, M. N., Guedes da Silva, M. F. C., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Appl. Catal. Gen. 439–440, 15–23.
- Mahmoudi, G., Bauzá, A., Gurbanov, A. V., Zubkov, F. I., Maniukiewicz, W., Rodríguez-Diéguez, A., López-Torres, E. & Frontera, A. (2016). CrystEngComm, 18, 9056–9066.
- Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192–205.
- Mahmoudi, G., Gurbanov, A. V., Rodríguez-Hermida, S., Carballo, R., Amini, M., Bacchi, A., Mitoraj, M. P., Sagan, F., Kukułka, M. & Safin, D. A. (2017b). Inorg. Chem. 56, 9698–9709. [DOI] [PubMed]
- Mahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108–117.
- Mahmoudi, G., Seth, S. K., Bauzá, A., Zubkov, F. I., Gurbanov, A. V., White, J., Stilinović, V., Doert, T. & Frontera, A. (2018a). CrystEngComm, 20, 2812–2821.
- Mahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018b). New J. Chem. 42, 4959–4971.
- Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017c). Eur. J. Inorg. Chem. pp. 4763–4772.
- Mahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108–112.
- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
- Mizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. pp. 2305–2313.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038.
- Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807–4815.
- Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
- Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
- Sutradhar, M., Alegria, E. C. B. A., Mahmudov, K. T., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2016). RSC Adv. 6, 8079–8088.
- Sutradhar, M., Martins, L. M. D. R. S., Guedes da Silva, M. F. C., Mahmudov, K. T., Liu, C.-M. & Pombeiro, A. J. L. (2015). Eur. J. Inorg. Chem. pp. 3959–3969.
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.
- Viswanathan, A., Kute, D., Musa, A., Mani, S. K., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291–303. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021006563/yk2153sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021006563/yk2153Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989021006563/yk2153Isup3.cml
CCDC reference: 2091530
Additional supporting information: crystallographic information; 3D view; checkCIF report







