Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Jun 30;77(Pt 7):759–764. doi: 10.1107/S2056989021006563

Crystal structure and Hirshfeld surface analysis of dimethyl 5-[2-(2,4,6-trioxo-1,3-diazinan-5-yl­idene)hydrazin-1-yl]benzene-1,3-di­carboxyl­ate 0.224-hydrate

Zeliha Atioğlu a, Mehmet Akkurt b, Gunay Z Mammadova c, Fatali E Huseynov d, Sevinj R Hajiyeva c, Nazim T Shamilov c, Ajaya Bhattarai e,*
PMCID: PMC8382054  PMID: 34513026

In the crystal, mol­ecules are linked by pairs of N—H⋯O hydrogen bonds into ribbons along the c-axis direction. The layered crystal packing is further consolidated by van der Waals and C—H⋯π inter­actions.

Keywords: crystal structure; 1,3-diazinane ring; hydrogen bonds; Hirshfeld surface analysis

Abstract

In the crystal, the whole mol­ecule of the title compound, C14H12N4O7·0.224H2O, is nearly planar with a maximum deviation from the least-squares plane of 0.352 (1) Å. The mol­ecular conformation is stabilized by an intra­molecular N—H⋯O hydrogen bond, generating an S(6) ring motif. In the crystal, mol­ecules are linked by centrosymmetric pairs of N—H⋯O hydrogen bonds, forming ribbons along the c-axis direction. These ribbons connected by van der Waals contacts, forming sheets parallel to the ac plane. There are also inter­molecular van der Waals contacts and and C—H⋯π inter­actions between the sheets. A Hirshfeld surface analysis indicates that the most prevalent inter­actions are O⋯H/H⋯O (41.2%), H⋯H (19.2%), C⋯H/H⋯C (12.2%) and C⋯O/ O⋯C (8.4%).

Chemical context  

Aryl­hydrazones, besides their biological significance (Viswanathan et al., 2019), can also be used as precursors in the synthesis of coordination compounds (Gurbanov et al., 2017, 2018a ,b ; Ma et al., 2017a ,b ) and as building blocks in the construction of supra­molecular structures owing to their hydrogen-bond donor and acceptor capabilities (Mahmoudi et al., 2016, 2017a ,b ,c , 2018a ,b ; 2019). All the reported hydrazone ligands are stabilized in the hydrazone form by intra­molecular resonance-assisted hydrogen bonding (RAHB) between the hydrazone =N—NH— fragment and the carbonyl group, giving a six-membered ring (Gurbanov et al., 2020a ; Kopylovich et al., 2011a ,b ; Mizar et al., 2012). The use of multifunctional ligands in coordination chemistry is a common way to increase the water solubility of metal complexes, which is important for catalytic applications in aqueous medium (Ma et al., 2020, 2021; Mahmudov et al., 2013; Sutradhar et al., 2015, 2016). Moreover, non-covalent inter­actions such as hydrogen, halogen and chalcogen bonds as well as π-inter­actions or their cooperation are able to contribute to synthesis and catalysis and improve the properties of materials (Gurbanov et al., 2020b ; Karmakar et al., 2017; Khalilov et al., 2018a ,b ; Mac Leod et al., 2012; Shikhaliyev et al., 2019; Shixaliyev et al., 2014). For that, the main skeleton of the hydrazone ligand should be decorated by non-covalent bond donor centre(s). In a continuation of our work in this area, we have prepared a new hydrazone ligand, dimethyl 5-{2-[2,4,6-trioxo­tetra­hydro­pyrimidin-5(2H)-yl­id­ene] hydrazine­yl}isophthalate, which provides the centres for coordination and inter­molecular non-covalent inter­actions.graphic file with name e-77-00759-scheme1.jpg

Structural commentary  

The asymmetric unit of the title structure contains one title mol­ecule and a water mol­ecule, which partially occupies a small cavity with an occupancy factor of 0.224 (5). The title mol­ecule (Fig. 1) is nearly planar with the largest deviation from the least-squares plane being 0.352 (1) Å for the methyl­carboxyl­ate atom O6. The 1,3-diazinane ring makes a dihedral angle of 9.96 (5)° with the benzene ring. The planar mol­ecular conformation is stabilized by an intra­molecular N—H⋯O contact (Table 1), generating an S(6) ring motif (Bernstein et al., 1995).

Figure 1.

Figure 1

The mol­ecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the C5–C10 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.86 2.03 2.8800 (13) 174
N2—H2N⋯O3ii 0.90 2.01 2.8931 (15) 168
N4—H4N⋯O3 0.86 2.02 2.6571 (15) 131
C6—H6⋯Ow1 0.95 2.14 3.061 (6) 163
C12—H12B⋯O1iii 0.98 2.39 3.2743 (17) 149
C14—H14B⋯O4iv 0.98 2.53 3.4754 (16) 163
C12—H12CCg2v 0.98 2.73 3.4717 (15) 133

Symmetry codes: (i) -x+1, y, -z+{\script{5\over 2}}; (ii) -x+1, y, -z+{\script{3\over 2}}; (iii) x, y, z-1; (iv) x, y, z+1; (v) x, -y+1, z-{\script{1\over 2}}.

Supra­molecular features  

In the crystal, the mol­ecules are linked by pairs of N—H⋯O hydrogen bonds into ribbons along the c-axis direction (Table 1). These ribbons are connected by van der Waals inter­actions, forming sheets parallel to the ac plane. There are also other van der Waals contacts and C—H⋯π inter­actions between the sheets (Table 2), consolidating the crystal packing (Figs. 2–4 ).

Table 2. Summary of short inter­atomic contacts (Å) in the title compound.

Contact Distance Symmetry operation
O1⋯*Ow1 3.129 x, y, 1 + z
O1⋯H12B 2.39 x, y, 1 + z
O1⋯H4N 2.59 x, 1 − y, {1\over 2} + z
H12A⋯O1 2.67 {1\over 2} − x, {1\over 2} − y, 1 − z
H1N⋯O2 2.03 1 − x, y, {5\over 2} − z
O2⋯*Ow1 2.662 1 − x, y, {3\over 2} − z
N2⋯O2 3.226 1 − x, 1 − y, 2 − z
O2⋯H14C 2.64 {1\over 2} + x, {1\over 2} − y, {1\over 2} + z
H2N⋯O3 2.01 1 − x, y, {3\over 2} − z
H4N⋯O1 2.59 x, 1 − y, − {1\over 2} + z
H12B⋯O1 2.39 x, y, − 1 + z
H8⋯O6 2.66 x, y, {1\over 2} − z
H14A⋯O6 2.67 x, 1 − y, 1 − z
H14C⋯O2 2.64 −{1\over 2} + x, {1\over 2} − y, − {1\over 2} + z
C1⋯*Ow1 3.297 x, 1 − y, {1\over 2} + z
H6⋯*Ow1 2.14 x, y, z
H12B⋯C12 3.10 {1\over 2} − x, {1\over 2} − y, −z
H14B⋯C14 2.93 x, y, {3\over 2} − z
H12A⋯*Ow1 2.70 {1\over 2} − x, {1\over 2} − y, −z

*Ow1 indicates the oxygen atom of the water mol­ecule with an occupancy of 0.224 (5).

Figure 2.

Figure 2

A view down the a axis showing the inter­molecular contacts forming the layered structure.

Figure 3.

Figure 3

A view of inter­molecular hydrogen bonds forming the ribbons along the c-axis direction.

Figure 4.

Figure 4

A view of the projection on the ab plane showing the contacts between layers.

Hirshfeld surface analysis  

The Hirshfeld surface for the title mol­ecule was performed and its associated two-dimensional fingerprint plots were prepared using Crystal Explorer 17 (Turner et al., 2017) to further investigate the inter­molecular inter­actions in the title structure. The oxygen atom of the water mol­ecule with partial occupancy was not taken into account. The Hirshfeld surface mapped over d norm with corresponding colours representing inter­molecular inter­actions is shown in Fig. 5. The red spots on the surface correspond to the N—H⋯O and C—H⋯O inter­actions (Tables 1 and 2). The Hirshfeld surface mapped over electrostatic potential (Spackman et al., 2009) is shown in Fig. 6. The blue regions indicate positive electrostatic potential (hydrogen-bond donors), while the red regions indicate negative electrostatic potential (hydrogen-bond acceptors). The two-dimensional fingerprint plots (McKinnon et al., 2007) are shown in Fig. 7. O⋯H/H.·O contacts make the largest contribution (41.2%; Fig. 7 b) to the Hirshfeld surface. The other large contributions to the Hirshfeld surface are from H⋯H (19.2%; Fig. 7 c), C⋯H/H⋯C (12.2%; Fig. 7 d) and C⋯O/O⋯C (8.4%; Fig. 7 e) inter­actions. All contributions to the Hirshfeld surface are listed in Table 3. These inter­actions play a crucial role in the overall cohesion of the crystal packing.

Figure 5.

Figure 5

A view of the Hirshfeld surface mapped over d norm, with inter­actions to neighbouring mol­ecules shown as green dashed lines.

Figure 6.

Figure 6

The Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range from −0.0500 to 0.0500 a.u. using the STO-3G basis set at the Hartree–Fock level of theory. Hydrogen-bond donors and acceptors are shown as blue and red regions around the atoms, corresponding to positive and negative potentials, respectively.

Figure 7.

Figure 7

The two-dimensional fingerprint plots of the title compound, showing (a) all inter­actions, and delineated into (b) O⋯H/H⋯O, (c) H⋯H, (d) C⋯H/H⋯C and (e) C⋯O/O⋯C, inter­actions [d e and d i represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].

Table 3. Percentage contributions of inter­atomic contacts to the Hirshfeld surface for the title compound.

Contact Percentage contribution
O⋯H/H⋯O 41.2
H⋯H 19.2
C⋯H/H⋯C 12.2
C⋯O/O⋯C 8.4
O⋯O 5.6
N⋯O/O⋯N 4.7
C⋯N/N⋯C 3.2
C⋯C 2.8
N⋯H/H⋯N 2.7

Database survey  

A search of Cambridge Crystallographic Database (CSD, version 5.40, update of September 2019; Groom et al., 2016) was undertaken for structures containing the 5-(2-methyl­hydrazinyl­idene)-1,3-diazinane moiety. The first three structures are free bases are: 2-{2-[(1H-imidazol-5-yl)methyl­idene]-1-methyl­hydrazin­yl}pyridine (QUGVEW; Bocian et al., 2020), 2-{2-[(1H-imidazol-2-yl)methyl­idene]-1-methyl­hydrazin­yl}-1H-benzimidazole monohydrate (QUGVIA; Bocian et al., 2020) and 2-{1-methyl-2-[(1-methyl-1H-imidazol-2-yl)methyl­idene]hydrazin­yl}-1H-benzimidazole hydrate unknown solvate (QUGVOG; Bocian et al., 2020). The other two are triflate salts are: 5-{[2-(1H-benzimidazol-2-yl)-2-methyl­hydrazinyl­idene]meth­yl}-1H-imidazol-3-ium tri­fluoro­meth­ane­sulfonate monohydrate (QUGVUM; Bocian et al., 2020) and (2-{2-[(1H-imidazol-3-ium-2-yl)methyl­ene]-1-methyl­hydrazine­yl}pyridin-1-ium) bis­(tri­fluoro­methane­sulfonate) (QUGWAT; Bocian et al., 2020).

In the structures of QUGVEW, QUGVIA, QUGVOG, QUGVUM and QUGWAT, the most important contribution to the stabilization of the crystal packing is provided by π–π inter­actions, especially between cations in the structures of salts, while the characteristics of the crystal architecture are influenced by directional inter­actions, especially relatively strong hydrogen bonds. In one of the structures (QUGWAT), an inter­esting example of a non-typical F⋯O inter­action was found whose length, 2.859 (2) Å, is one of the shortest ever reported.

Synthesis and crystallization  

Diazo­tization: 2.09 g (10 mmol) of dimethyl 5-amino­isophthalate were dissolved in 50 mL of water, the solution was cooled on an ice bath to 273 K and 0.69 g (10 mmol) of NaNO2 were added; 2.00 mL of HCl were then added in 0.5 mL portions over 1 h. The temperature of the mixture should not exceed 278 K.

Azocoupling: NaOH (0.40 g, 10 mmol) was added to a mixture of 10 mmol (1.28 g) of barbituric acid with 25.00 mL of water. The solution was cooled on an ice bath and a suspension of 3,5-bis(meth­oxy­carbon­yl)benzene­diazo­nium chloride, prepared according to the procedure described above, was added in two equal portions under vigorous stirring for 1 h. The formed precipitate of the title compound was filtered off, recrystallized from methanol and dried in air. Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

The title compound: Yield, 68% (based on barbituric acid), yellow powder soluble in DMSO, methanol, ethanol and DMF. Analysis calculated for C14H12N4O7 (M r = 348.27): C, 48.28; H, 3.47; N, 16.09; found: C, 48.25 H, 3.41; N, 16.03%. ESI–MS: m/z: 349.2 [M r + H]+. IR (KBr): 3160, 3090 and 2846 ν(NH), 1745 and 1663 ν(C=O), 1610 ν(C=O⋯H) cm−1. 1H NMR (300.130 MHz) in DMSO-d 6, inter­nal TMS, δ (ppm): 8.20–8.36 (3H, Ar—H), 11.32 (s, 1H, N—H), 11.54 (s, 1H, N—H), 14.08 (s, 1H, N—H). 13C{1H} NMR (75.468 MHz, DMSO-d 6). δ: 55.6 (2OCH3), 119.54 (2Ar—H), 121.8 (Ar-H), 127.4 (2C—COOCH3), 133.25 (C=N), 142.87 (C—NHN=), 150.24 (C=O), 160.32 (C=O), 161.90 (C=O⋯H) and 166.56 (2COOCH3).

Refinement details  

Crystal data, data collection and structure refinement details are summarized in Table 4. The H atoms of the NH groups were located by difference Fourier synthesis and their coord­inates were fixed. All C-bound H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 and 0.98 Å, and with U iso(H) = 1.2 or 1.5U eq(C). There is a small cavity in the crystal, which is only partially occupied by a water mol­ecule, with an occupancy of 0.224 (5), and its hydrogen atoms could not be located.

Table 4. Experimental details.

Crystal data
Chemical formula C14H12N4O7·0.224H2O
M r 351.86
Crystal system, space group Monoclinic, C2/c
Temperature (K) 150
a, b, c (Å) 24.2097 (11), 12.6311 (6), 10.4022 (5)
β (°) 113.133 (2)
V3) 2925.2 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.13
Crystal size (mm) 0.34 × 0.32 × 0.27
 
Data collection
Diffractometer Bruker APEXII CCD
No. of measured, independent and observed [I > 2σ(I)] reflections 34832, 2944, 2699
R int 0.017
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F 2)], wR(F 2), S 0.034, 0.102, 1.04
No. of reflections 2944
No. of parameters 241
No. of restraints 6
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.29, −0.21

Computer programs: APEX2 and SAINT (Bruker, 2007), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2020).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021006563/yk2153sup1.cif

e-77-00759-sup1.cif (1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021006563/yk2153Isup2.hkl

e-77-00759-Isup2.hkl (235.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021006563/yk2153Isup3.cml

CCDC reference: 2091530

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors’ contributions are as follows. Conceptualization, ZA, MA, GZM, FEH, SRH, NTS, and AB; methodology, SRH, and NTS; investigation, ZA, and GZM; writing (original draft), FEH, MA and AB; writing (review and editing of the manuscript), MA and AB; crystal-structure determination, GZM; visualization, ZA, and MA; funding acquisition, GZM, FEH, SRH, and NTS; resources, ZA, MA and AB; supervision, MA and AB.

supplementary crystallographic information

Crystal data

C14H12N4O7·0.224H2O F(000) = 1454
Mr = 351.86 Dx = 1.598 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 24.2097 (11) Å Cell parameters from 9840 reflections
b = 12.6311 (6) Å θ = 3.2–26.4°
c = 10.4022 (5) Å µ = 0.13 mm1
β = 113.133 (2)° T = 150 K
V = 2925.2 (2) Å3 Block, orange
Z = 8 0.34 × 0.32 × 0.27 mm

Data collection

Bruker APEXII CCD diffractometer Rint = 0.017
φ and ω scans θmax = 26.4°, θmin = 3.2°
34832 measured reflections h = −30→30
2944 independent reflections k = −15→15
2699 reflections with I > 2σ(I) l = −13→13

Refinement

Refinement on F2 6 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.034 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0586P)2 + 2.1077P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
2944 reflections Δρmax = 0.29 e Å3
241 parameters Δρmin = −0.21 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.37057 (5) 0.39423 (9) 0.82909 (12) 0.0190 (2)
C2 0.37833 (5) 0.39902 (9) 0.97648 (12) 0.0207 (2)
C3 0.48693 (5) 0.37742 (9) 1.04270 (12) 0.0208 (2)
C4 0.42279 (5) 0.38365 (8) 0.79361 (12) 0.0186 (2)
C5 0.24165 (5) 0.38344 (8) 0.50833 (12) 0.0192 (2)
C6 0.23130 (5) 0.37794 (9) 0.36716 (12) 0.0204 (2)
H6 0.263906 0.380695 0.338172 0.025*
C7 0.17254 (5) 0.36834 (9) 0.26874 (11) 0.0197 (2)
C8 0.12459 (5) 0.36539 (9) 0.31079 (12) 0.0201 (2)
H8 0.084612 0.358679 0.243355 0.024*
C9 0.13569 (5) 0.37237 (9) 0.45277 (12) 0.0200 (2)
C10 0.19423 (5) 0.38111 (9) 0.55282 (12) 0.0203 (2)
H10 0.201704 0.385399 0.649417 0.024*
C11 0.15859 (5) 0.35937 (9) 0.11562 (12) 0.0211 (2)
C12 0.19700 (5) 0.35182 (11) −0.05977 (12) 0.0264 (3)
H12A 0.177183 0.284238 −0.096410 0.040*
H12B 0.235389 0.355077 −0.070599 0.040*
H12C 0.171209 0.410245 −0.111573 0.040*
C13 0.08236 (5) 0.37078 (10) 0.49220 (12) 0.0231 (3)
C14 0.04671 (6) 0.39831 (12) 0.66992 (14) 0.0307 (3)
H14A 0.022390 0.461429 0.630597 0.046*
H14B 0.062181 0.401216 0.772194 0.046*
H14C 0.021864 0.334851 0.636695 0.046*
N1 0.43716 (4) 0.38898 (8) 1.07229 (10) 0.0215 (2)
H1N 0.445330 0.388946 1.160377 0.026 (4)*
N2 0.47752 (4) 0.37483 (8) 0.90340 (10) 0.0209 (2)
H2N 0.510968 0.367522 0.886519 0.032 (4)*
N3 0.31416 (4) 0.39456 (7) 0.73771 (10) 0.0197 (2)
N4 0.30173 (4) 0.38952 (8) 0.60489 (10) 0.0202 (2)
H4N 0.329280 0.391432 0.572748 0.041 (5)*
O1 0.33809 (4) 0.41106 (8) 1.01707 (9) 0.0285 (2)
O2 0.53768 (4) 0.37191 (8) 1.13392 (9) 0.0279 (2)
O3 0.41946 (4) 0.38163 (7) 0.67172 (8) 0.0229 (2)
O4 0.10827 (4) 0.35077 (8) 0.02776 (9) 0.0310 (2)
O5 0.20773 (4) 0.36060 (7) 0.08791 (8) 0.0250 (2)
O6 0.03258 (4) 0.35068 (10) 0.41153 (10) 0.0431 (3)
O7 0.09668 (4) 0.39450 (8) 0.62583 (9) 0.0292 (2)
OW1 0.3463 (2) 0.3484 (4) 0.3151 (6) 0.0466 (19) 0.224 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0158 (5) 0.0212 (5) 0.0187 (5) −0.0008 (4) 0.0054 (4) −0.0001 (4)
C2 0.0184 (5) 0.0233 (6) 0.0203 (6) −0.0022 (4) 0.0074 (5) −0.0026 (4)
C3 0.0192 (5) 0.0237 (6) 0.0179 (5) 0.0009 (4) 0.0054 (4) −0.0003 (4)
C4 0.0166 (5) 0.0198 (5) 0.0175 (5) −0.0002 (4) 0.0047 (4) 0.0010 (4)
C5 0.0157 (5) 0.0195 (5) 0.0193 (5) −0.0003 (4) 0.0034 (4) 0.0016 (4)
C6 0.0188 (5) 0.0220 (5) 0.0209 (6) 0.0006 (4) 0.0081 (4) 0.0018 (4)
C7 0.0203 (5) 0.0198 (5) 0.0177 (6) 0.0005 (4) 0.0061 (4) 0.0010 (4)
C8 0.0171 (5) 0.0211 (5) 0.0189 (5) −0.0002 (4) 0.0034 (4) 0.0003 (4)
C9 0.0173 (5) 0.0223 (5) 0.0193 (5) −0.0007 (4) 0.0061 (4) 0.0006 (4)
C10 0.0197 (5) 0.0229 (5) 0.0172 (5) −0.0006 (4) 0.0061 (4) 0.0006 (4)
C11 0.0210 (5) 0.0222 (5) 0.0192 (5) 0.0008 (4) 0.0070 (4) 0.0011 (4)
C12 0.0253 (6) 0.0365 (7) 0.0180 (6) 0.0003 (5) 0.0092 (5) 0.0008 (5)
C13 0.0185 (6) 0.0295 (6) 0.0192 (5) −0.0006 (4) 0.0053 (4) 0.0002 (4)
C14 0.0221 (6) 0.0462 (8) 0.0262 (6) −0.0023 (5) 0.0121 (5) −0.0036 (5)
N1 0.0184 (5) 0.0310 (5) 0.0141 (5) −0.0001 (4) 0.0054 (4) −0.0023 (4)
N2 0.0149 (5) 0.0304 (5) 0.0167 (5) 0.0025 (4) 0.0056 (4) 0.0005 (4)
N3 0.0174 (5) 0.0219 (5) 0.0181 (5) −0.0007 (3) 0.0053 (4) −0.0001 (3)
N4 0.0153 (5) 0.0270 (5) 0.0176 (5) −0.0005 (3) 0.0055 (4) 0.0017 (4)
O1 0.0192 (4) 0.0439 (5) 0.0244 (4) −0.0026 (4) 0.0108 (3) −0.0066 (4)
O2 0.0190 (4) 0.0441 (5) 0.0169 (4) 0.0043 (4) 0.0032 (3) −0.0004 (3)
O3 0.0178 (4) 0.0344 (5) 0.0161 (4) −0.0001 (3) 0.0062 (3) 0.0014 (3)
O4 0.0211 (4) 0.0510 (6) 0.0187 (4) −0.0024 (4) 0.0056 (3) −0.0028 (4)
O5 0.0204 (4) 0.0370 (5) 0.0172 (4) 0.0008 (3) 0.0071 (3) 0.0015 (3)
O6 0.0175 (4) 0.0853 (8) 0.0252 (5) −0.0085 (5) 0.0069 (4) −0.0130 (5)
O7 0.0190 (4) 0.0498 (6) 0.0193 (4) −0.0038 (4) 0.0080 (3) −0.0038 (4)
OW1 0.031 (3) 0.056 (3) 0.058 (3) 0.001 (2) 0.024 (2) 0.004 (2)

Geometric parameters (Å, º)

C1—N3 1.3223 (15) C9—C10 1.3945 (16)
C1—C4 1.4557 (16) C9—C13 1.5006 (16)
C1—C2 1.4708 (15) C10—H10 0.9500
C2—O1 1.2140 (14) C11—O4 1.2068 (14)
C2—N1 1.3864 (14) C11—O5 1.3298 (14)
C3—O2 1.2242 (14) C12—O5 1.4581 (14)
C3—N1 1.3638 (15) C12—H12A 0.9800
C3—N2 1.3759 (15) C12—H12B 0.9800
C4—O3 1.2387 (14) C12—H12C 0.9800
C4—N2 1.3724 (14) C13—O6 1.1944 (15)
C5—C6 1.3909 (16) C13—O7 1.3280 (15)
C5—C10 1.3968 (16) C14—O7 1.4533 (14)
C5—N4 1.4080 (14) C14—H14A 0.9800
C6—C7 1.3936 (16) C14—H14B 0.9800
C6—H6 0.9500 C14—H14C 0.9800
C7—C8 1.3926 (16) N1—H1N 0.8580
C7—C11 1.4970 (15) N2—H2N 0.8982
C8—C9 1.3963 (16) N3—N4 1.2950 (14)
C8—H8 0.9500 N4—H4N 0.8557
N3—C1—C4 124.93 (10) O4—C11—O5 124.04 (10)
N3—C1—C2 114.97 (10) O4—C11—C7 123.45 (10)
C4—C1—C2 120.00 (10) O5—C11—C7 112.50 (9)
O1—C2—N1 119.97 (10) O5—C12—H12A 109.5
O1—C2—C1 125.19 (10) O5—C12—H12B 109.5
N1—C2—C1 114.84 (9) H12A—C12—H12B 109.5
O2—C3—N1 122.53 (10) O5—C12—H12C 109.5
O2—C3—N2 121.04 (10) H12A—C12—H12C 109.5
N1—C3—N2 116.41 (10) H12B—C12—H12C 109.5
O3—C4—N2 120.22 (10) O6—C13—O7 124.04 (11)
O3—C4—C1 123.21 (10) O6—C13—C9 123.36 (11)
N2—C4—C1 116.56 (10) O7—C13—C9 112.60 (9)
C6—C5—C10 121.20 (10) O7—C14—H14A 109.5
C6—C5—N4 117.59 (10) O7—C14—H14B 109.5
C10—C5—N4 121.20 (10) H14A—C14—H14B 109.5
C5—C6—C7 119.25 (10) O7—C14—H14C 109.5
C5—C6—H6 120.4 H14A—C14—H14C 109.5
C7—C6—H6 120.4 H14B—C14—H14C 109.5
C8—C7—C6 120.52 (10) C3—N1—C2 126.63 (9)
C8—C7—C11 117.69 (10) C3—N1—H1N 112.8
C6—C7—C11 121.79 (10) C2—N1—H1N 120.6
C7—C8—C9 119.52 (10) C4—N2—C3 125.51 (10)
C7—C8—H8 120.2 C4—N2—H2N 119.7
C9—C8—H8 120.2 C3—N2—H2N 114.8
C10—C9—C8 120.75 (11) N4—N3—C1 120.55 (10)
C10—C9—C13 121.89 (10) N3—N4—C5 120.38 (9)
C8—C9—C13 117.35 (10) N3—N4—H4N 121.7
C9—C10—C5 118.75 (10) C5—N4—H4N 117.9
C9—C10—H10 120.6 C11—O5—C12 115.04 (9)
C5—C10—H10 120.6 C13—O7—C14 115.50 (9)
N3—C1—C2—O1 −5.85 (17) C6—C7—C11—O5 0.66 (15)
C4—C1—C2—O1 177.58 (11) C10—C9—C13—O6 −170.65 (13)
N3—C1—C2—N1 174.41 (9) C8—C9—C13—O6 9.75 (18)
C4—C1—C2—N1 −2.17 (15) C10—C9—C13—O7 9.60 (16)
N3—C1—C4—O3 5.51 (18) C8—C9—C13—O7 −170.00 (10)
C2—C1—C4—O3 −178.27 (10) O2—C3—N1—C2 177.97 (11)
N3—C1—C4—N2 −173.94 (10) N2—C3—N1—C2 −0.46 (17)
C2—C1—C4—N2 2.27 (15) O1—C2—N1—C3 −178.47 (11)
C10—C5—C6—C7 −0.97 (16) C1—C2—N1—C3 1.29 (17)
N4—C5—C6—C7 177.91 (10) O3—C4—N2—C3 179.07 (11)
C5—C6—C7—C8 0.67 (16) C1—C4—N2—C3 −1.46 (16)
C5—C6—C7—C11 −178.47 (10) O2—C3—N2—C4 −177.92 (11)
C6—C7—C8—C9 0.14 (16) N1—C3—N2—C4 0.53 (17)
C11—C7—C8—C9 179.32 (10) C4—C1—N3—N4 −2.91 (17)
C7—C8—C9—C10 −0.68 (16) C2—C1—N3—N4 −179.30 (9)
C7—C8—C9—C13 178.92 (10) C1—N3—N4—C5 176.15 (10)
C8—C9—C10—C5 0.40 (16) C6—C5—N4—N3 −179.84 (10)
C13—C9—C10—C5 −179.18 (10) C10—C5—N4—N3 −0.97 (16)
C6—C5—C10—C9 0.43 (16) O4—C11—O5—C12 0.65 (16)
N4—C5—C10—C9 −178.40 (10) C7—C11—O5—C12 179.85 (9)
C8—C7—C11—O4 0.70 (17) O6—C13—O7—C14 −1.96 (19)
C6—C7—C11—O4 179.87 (11) C9—C13—O7—C14 177.79 (10)
C8—C7—C11—O5 −178.51 (10)

Hydrogen-bond geometry (Å, º)

Cg2 is the centroid of the C5–C10 benzene ring.

D—H···A D—H H···A D···A D—H···A
N1—H1N···O2i 0.86 2.03 2.8800 (13) 174
N2—H2N···O3ii 0.90 2.01 2.8931 (15) 168
N4—H4N···O3 0.86 2.02 2.6571 (15) 131
N4—H4N···O1iii 0.86 2.59 2.9302 (14) 105
C6—H6···Ow1 0.95 2.14 3.061 (6) 163
C12—H12B···O1iv 0.98 2.39 3.2743 (17) 149
C14—H14B···O4v 0.98 2.53 3.4754 (16) 163
C12—H12C···Cg2iii 0.98 2.73 3.4717 (15) 133

Symmetry codes: (i) −x+1, y, −z+5/2; (ii) −x+1, y, −z+3/2; (iii) x, −y+1, z−1/2; (iv) x, y, z−1; (v) x, y, z+1.

Funding Statement

This work was funded by Baki Dövlet Universiteti.

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bocian, A., Gorczyński, A., Marcinkowski, D., Dutkiewicz, G., Patroniak, V. & Kubicki, M. (2020). Acta Cryst. C76, 367–374. [DOI] [PubMed]
  3. Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  6. Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633.
  7. Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837. [DOI] [PubMed]
  8. Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018a). Aust. J. Chem. 71, 190–194.
  9. Gurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018b). Inorg. Chim. Acta, 471, 130–136.
  10. Gurbanov, A. V., Mahmudov, K. T., Sutradhar, M., Guedes da Silva, F. C., Mahmudov, T. A., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). J. Organomet. Chem. 834, 22–27.
  11. Karmakar, A., Rúbio, G. M. D. M., Paul, A., Guedes da Silva, M. F. C., Mahmudov, K. T., Guseinov, F. I., Carabineiro, S. A. C. & Pombeiro, A. J. L. (2017). Dalton Trans. 46, 8649–8657. [DOI] [PubMed]
  12. Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Maharramov, A. M., Nagiyev, F. N. & Brito, I. (2018a). Z. Kristallogr. New Cryst. Struct. 233, 1019–1020.
  13. Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Nagiyev, F. N. & Brito, I. (2018b). Z. Kristallogr. New Cryst. Struct. 233, 947–948.
  14. Kopylovich, M. N., Mahmudov, K. T., Haukka, M., Luzyanin, K. V. & Pombeiro, A. J. L. (2011a). Inorg. Chim. Acta, 374, 175–180.
  15. Kopylovich, M. N., Mahmudov, K. T., Mizar, A. & Pombeiro, A. J. L. (2011b). Chem. Commun. 47, 7248–7250. [DOI] [PubMed]
  16. Ma, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526–533.
  17. Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). Mol. Catal. 428, 17–23.
  18. Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.
  19. Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482.
  20. Mac Leod, T. C. O., Kopylovich, M. N., Guedes da Silva, M. F. C., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Appl. Catal. Gen. 439–440, 15–23.
  21. Mahmoudi, G., Bauzá, A., Gurbanov, A. V., Zubkov, F. I., Maniukiewicz, W., Rodríguez-Diéguez, A., López-Torres, E. & Frontera, A. (2016). CrystEngComm, 18, 9056–9066.
  22. Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192–205.
  23. Mahmoudi, G., Gurbanov, A. V., Rodríguez-Hermida, S., Carballo, R., Amini, M., Bacchi, A., Mitoraj, M. P., Sagan, F., Kukułka, M. & Safin, D. A. (2017b). Inorg. Chem. 56, 9698–9709. [DOI] [PubMed]
  24. Mahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108–117.
  25. Mahmoudi, G., Seth, S. K., Bauzá, A., Zubkov, F. I., Gurbanov, A. V., White, J., Stilinović, V., Doert, T. & Frontera, A. (2018a). CrystEngComm, 20, 2812–2821.
  26. Mahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018b). New J. Chem. 42, 4959–4971.
  27. Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017c). Eur. J. Inorg. Chem. pp. 4763–4772.
  28. Mahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108–112.
  29. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  30. Mizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. pp. 2305–2313.
  31. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  32. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  33. Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038.
  34. Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807–4815.
  35. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  36. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  37. Sutradhar, M., Alegria, E. C. B. A., Mahmudov, K. T., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2016). RSC Adv. 6, 8079–8088.
  38. Sutradhar, M., Martins, L. M. D. R. S., Guedes da Silva, M. F. C., Mahmudov, K. T., Liu, C.-M. & Pombeiro, A. J. L. (2015). Eur. J. Inorg. Chem. pp. 3959–3969.
  39. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.
  40. Viswanathan, A., Kute, D., Musa, A., Mani, S. K., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291–303. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021006563/yk2153sup1.cif

e-77-00759-sup1.cif (1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021006563/yk2153Isup2.hkl

e-77-00759-Isup2.hkl (235.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021006563/yk2153Isup3.cml

CCDC reference: 2091530

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES