Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Jun 30;77(Pt 7):755–758. doi: 10.1107/S2056989021006435

Crystal structure, Hirshfeld and electronic transition analysis of 2-[(1H-benzimidazol-1-yl)meth­yl]benzoic acid

Arif Ali a, Mohd Muslim a, Saima Kamaal a, Adeeba Ahmed a, Musheer Ahmad a,*, M Shahid b, Jamal A Khan a, Necmi Dege c, Saleem Javed d, Ashraf Mashrai e,*
PMCID: PMC8382057  PMID: 34513025

In the title compound, the benzimidazole ring system is inclined to the the benzene ring by 78.04 (10)°. The crystal structure features O—H⋯N and C—H⋯O hydrogen bonding and C—H⋯π and π–π inter­actions.

Keywords: crystal structure, benzimidazole, Tauc plot, Hirshfeld surface analysis

Abstract

In the title compound, C15H12N2O2, the benzimidazole ring system is inclined to the benzene ring by 78.04 (10)°. The crystal structure features O—H⋯N and C—H⋯O hydrogen bonding and C—H⋯π and π–π inter­actions, which were investigated using Hirshfeld surface analysis.

Chemical context  

Benzimidazole is a naturally ocurring compound, being present in vitamin B12 (Crofts et al., 2014) and may also be synthesized from benzoic acid and o-phenyl­enedi­amine in presence of an excess of acid. Benzimidazole and its derivatives show biological activities such as anti­bacterial, anti­fungal (Yadav et al., 2015), anti­microbial (Shruthi et al., 2016), and anti­cancer (Kalalbandi et al., 2015). Cyano­benzyl compounds are used as inter­mediates in the synthesis of species that possess significant pharmaceutical properties. Compounds having carb­oxy­lic acid as a functional group have shown chelating properties and thus have potential applications in the field of biology. Such groups are also helpful in building metal–organic frameworks that usually form supra­molecular networks due to extensive hydrogen bonding and weak inter­actions. For example, 4-[(1H-benzo[d]imidazol-1-yl)meth­yl]benzoic acid has been used to construct coordination polymers with different metal ions (Ahmad et al., 2013). Herein, we report the title compound, 2-[(1H-benzimidazol-1-yl)meth­yl]benzoic acid, which was synthesized by a condensation reaction of benzimidazole and 2-(bromo­meth­yl) benzo­nitrile in aceto­nitrile followed by a hydrolysis process.graphic file with name e-77-00755-scheme1.jpg

Structural commentary  

The asymmetric unit of the title compound is illustrated in Fig. 1. The mol­ecule is non-planar with a dihedral angle of 78.04 (10) between the benzimidazole ring system and the benzene ring. The N1—C8—C7 angle is 113.31° and the C9—N1—C8—C7 torsion angle is −116.8 (2)°,. The C10—C15 bond length [1.408 (3) Å] is comparable to that in a similar benzimidazole derivative (Faizi et al., 2017). The C—O bond lengths [C1—O1 = 1.319 (3) and C1—O2 = 1.216 (3) Å] are in the expected range (Kamaal et al., 2019).

Figure 1.

Figure 1

Asymmetric unit of title compound, with atom labelling and displacement ellipsoids are drawn at the 50% probability level.

Supra­molecular features  

In the crystal, the mol­ecules are connected via O—H⋯N and C—H⋯O hydrogen bonds (Table 1), forming a 1D framework along the b-axis direction (Fig. 2). C—H⋯π and π–π inter­actions [centroid–centroid distance = 3.6166 (15) Å] between the N1/N2/C9/C10/C15 and C2–C7 rings also occur, leading to the formation of the supra­molecular structure (Fig. 3).

Table 1. Hydrogen-bond geometry (Å, °).

Cg1, Cg2, Cg3 and Cg4 are the centroids of the N1/N2/C9/C10/C15, C2–C7, C10–C15 and N1/N2/C9–15 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2i 0.88 (3) 1.73 (3) 2.592 (3) 164 (4)
C8—H8A⋯O1ii 0.99 (1) 2.62 (1) 3.374 (3) 133 (1)
C4—H4⋯Cg1iii 0.95 (1) 2.99 (1) 3.865 (3) 155 (1)
C4—H4⋯Cg3iii 0.95 (1) 2.51 (1) 3.408 (3) 157 (1)
C4—H4⋯Cg4iii 0.95 (1) 2.51 (1) 3.454 (3) 170 (1)
C5—H5⋯Cg2iii 0.95 (1) 2.76 (1) 3.554 (3) 142 (1)

Symmetry codes: (i) -x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}; (ii) -x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}; (iii) x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1.

Figure 2.

Figure 2

View of the crystal packing along the a axis, showing O—H⋯N and C—H⋯O hydrogen-bonding inter­actions forming a one-dimensional chain.

Figure 3.

Figure 3

The hydrogen bonding and C—H⋯π and π–π inter­actions form zigzag chains, giving a supra­molecular structure along the bc plane.

Database survey  

A search of the Cambridge Structural Database (CSD, Version 5.42, November 2020; Groom et al., 2016) found five examples of similar compounds: bis­(penta­fluoro­phen­yl)-(μ-{1,1′-[1,2-phenyl­enebis(methyl­ene)]bis­(1H-benzimidazole)})digold(I) acetone solvate (WOPLIZ; Zheng et al., 2019), 3,3′-[1,2-phenyl­enebis(methyl­ene)]bis­(1-ethyl­benzimidazolium) dibromide (LANHAL; Haque et al., 2012), 2-[(1H-benzimidazol-1-yl)meth­yl]benzo­nitrile (JONYUJ; Akkoç et al., 2017), 1-[(2-cyano­phen­yl)meth­yl]-3-[(2-methyl­phen­yl)meth­yl]-1H-benzimidazol-3-ium (JONZAQ; Akkoç et al., 2017) and 1-(2-cyano­benz­yl)-3-methyl-1H-3,1-benzimidazol-3-ium bromide (MOCWAE; Ghdhayeb et al., 2014).

Hirshfeld surface analysis  

A Hirshfeld surface analysis was performed and the two-dimensional fingerprint plots generated (McKinnon et al., 2007; Spackman & Jayatilaka et al., 2009) using CrystalExplorer17 (Turner et al., 2017). The Hirshfeld surface mapped over d norm, colour-mapped from red (shorter distance than the sum of van der Waals radii) through white to blue (longer distance than the sum of the van der Waals radii). The principal weak inter­actions are clearly visible. The surface coverage corresponding to O—H⋯N and C—H⋯O inter­actions are 9% and 11.8%, respectively. The dark-red spot indicates significant hydrogen bonding.

The two-dimensional finger plots are given in Fig. 4. The principal contributions to the overall surface are from H⋯H (42.4%, Fig. 4 b), C⋯H/H⋯C (27.4%, Fig. 4 c) and N⋯H/H⋯N 9% (Fig. 4 d) inter­actions. The contributions of inter­actions such as C⋯C 4.8% are negligible.

Figure 4.

Figure 4

The Hirshfeld surface of the title compound mapped over d norm, in the range −0.722 to 1.183. (a) The overall two-dimensional finger plot of the title compound and those delineated into (b) H⋯H (42.4%), (c) C⋯H/ H⋯C (27.4%) and (d) N⋯H/H⋯N (9%) inter­actions, (e) significant hydrogen bonding and (f) extended supra­molecular form.

Electronic transition analysis  

Electro-conducting materials synthesized by conjugated organic compounds show promising electronic properties due to the availability of delocalized electrons, except for semiconducting materials such as TiO2, ZnO and other metal oxide nano-materials, which are electro-conducting in themselves (Odziomek et al., 2017). The electronic properties of organic compounds depend on the electronic transition between the highest occupied mol­ecular orbital (HOMO) or valence band and lowest occupied mol­ecular orbital (LUMO) or conduction band. In a simple method, the energy band gap (Eg) of organic mol­ecule is determined by a Tauc plot from the absorption spectra (λmax = 245 nm, in this case). The band gap energy, Eg = 4.6 eV, of the title compound is very large (Fig. 5). This large band gap arises due to high π-conjugation or polarization in the title mol­ecule system. The title mol­ecule could be useful for developing or enhancing the organic electronic properties of conducting materials such as metal–organic frameworks.

Figure 5.

Figure 5

Energy band gap of the title mol­ecule by Tauc plot from absorption spectra.

Synthesis and crystallization  

In an equimolar ratio, benzimidazole (2 g, 16.9 mmol) and dry K2CO3 (4.66 g, 33.85 mmol) were mixed in a round-bottom flask in aceto­nitrile (MeCN, 60 ml) under an inert atmosphere. The mixture was then allowed to stirred for 60 min at 363 K then treated with 2-(bromo­meth­yl) benzo­nitrile (3.31 g, 16.9 mmol), and the resulting solution refluxed for 24 h. After completion of this step, the solution was allowed to cool to room temperature and the mixture was poured slowly onto ice–water (100 ml) under constant stirring. A greenish muddy crystalline precipitate was obtained and it was left to stand at 293 K for two days. After two days, a crystalline powder of 2-[(1H-benzo[d]imidazol-1-yl)meth­yl]benzo­nitrile was obtained (Ahmad et al., 2013).

The title compound was synthesized by hydrolysis of 2-[(1H-benzo[d]imidazol-1-yl)meth­yl]benzo­nitrile, 2 g being mixed with 20 equimolar of potassium hydroxide (6.86 g, 8.58 mmol) in water. The solution was refluxed at 373 K for 36 h, the resultant solution was then allowed to cool at room temperature and then poured onto ice–water, and after that acidified using 6 N HCl for protonation. The protonated solution was kept for slow evaporation. After two weeks, pale-yellow cubic crystals were obtained in good yield, which were suitable for data collection. The reaction scheme is shown in Fig. 6.

Figure 6.

Figure 6

Reaction scheme.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2.

Table 2. Experimental details.

Crystal data
Chemical formula C15H12N2O2
M r 252.28
Crystal system, space group Orthorhombic, P212121
Temperature (K) 100
a, b, c (Å) 6.5690 (8), 12.7956 (15), 14.1278 (16)
V3) 1187.5 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.38 × 0.21 × 0.14
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014)
No. of measured, independent and observed [I ≥ 2u(I)] reflections 18798, 2095, 1759
R int 0.107
(sin θ/λ)max−1) 0.596
 
Refinement
R[F2 > 2σ(F 2)], wR(F 2), S 0.044, 0.091, 1.09
No. of reflections 2095
No. of parameters 176
No. of restraints 1
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.24, −0.28

Computer programs: APEX2 and SAINT (Bruker, 2014), olex2.solve (Bourhis et al., 2015), olex2.refine (Bourhis et al., 2015) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021006435/ex2044sup1.cif

e-77-00755-sup1.cif (22.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021006435/ex2044Isup2.hkl

e-77-00755-Isup2.hkl (168.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021006435/ex2044Isup3.cml

CCDC reference: 2091351

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the Department of Applied Chemistry, Aligarh Muslim University, for providing laboratory facilities. Author contribution are as follows. Conceptualization, MA and AM; methodology, AA and MS; investigation, MM, SK, SJ and JAK; writing (original draft), AA and ND; writing (review and editing of the manuscript), AAfall and ADA; visualization, MA, AA and AM; funding acquisition, AM; resources, ND and MA; supervision, MA and AM.

supplementary crystallographic information

Crystal data

C15H12N2O2 Dx = 1.411 Mg m3
Mr = 252.28 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121 Cell parameters from 1209 reflections
a = 6.5690 (8) Å θ = 2.9–22.1°
b = 12.7956 (15) Å µ = 0.10 mm1
c = 14.1278 (16) Å T = 100 K
V = 1187.5 (2) Å3 Block, colourless
Z = 4 0.38 × 0.21 × 0.14 mm
F(000) = 528.253

Data collection

Bruker APEXII CCD diffractometer 1759 reflections with I≥ 2u(I)
Detector resolution: X-ray pixels mm-1 Rint = 0.107
φ and ω scans θmax = 25.1°, θmin = 3.2°
Absorption correction: multi-scan (SADABS; Bruker, 2014) h = −8→8
k = −17→17
18798 measured reflections l = −18→18
2095 independent reflections

Refinement

Refinement on F2 21 constraints
Least-squares matrix: full Primary atom site location: iterative
R[F2 > 2σ(F2)] = 0.044 All H-atom parameters refined
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0284P)2 + 0.3178P] where P = (Fo2 + 2Fc2)/3
S = 1.09 (Δ/σ)max = 0.004
2095 reflections Δρmax = 0.24 e Å3
176 parameters Δρmin = −0.28 e Å3
1 restraint

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.2861 (4) 0.82904 (18) 0.71973 (18) 0.0170 (6)
C2 0.4789 (4) 0.81263 (19) 0.66504 (18) 0.0166 (6)
C3 0.5267 (4) 0.88501 (19) 0.59451 (17) 0.0186 (6)
H3 0.4333 (4) 0.93965 (19) 0.58083 (17) 0.0223 (8)*
C4 0.7074 (4) 0.8790 (2) 0.54393 (18) 0.0213 (6)
H4 0.7359 (4) 0.9282 (2) 0.49537 (18) 0.0256 (8)*
C5 0.8447 (4) 0.80132 (19) 0.56462 (18) 0.0204 (7)
H5 0.9705 (4) 0.79769 (19) 0.53166 (18) 0.0245 (8)*
C6 0.7985 (4) 0.7280 (2) 0.63408 (18) 0.0196 (6)
H6 0.8941 (4) 0.6743 (2) 0.64778 (18) 0.0235 (7)*
C7 0.6164 (4) 0.7311 (2) 0.68391 (17) 0.0163 (6)
C8 0.5804 (4) 0.6465 (2) 0.75638 (17) 0.0179 (6)
H8a 0.7114 (4) 0.6115 (2) 0.77035 (17) 0.0215 (7)*
H8b 0.5313 (4) 0.6790 (2) 0.81572 (17) 0.0215 (7)*
C9 0.2503 (4) 0.54778 (19) 0.76721 (18) 0.0197 (6)
H9 0.2023 (4) 0.58470 (19) 0.82111 (18) 0.0236 (7)*
C10 0.2677 (4) 0.43913 (19) 0.65142 (17) 0.0176 (6)
C11 0.2311 (4) 0.3622 (2) 0.58413 (19) 0.0229 (6)
H11 0.1089 (4) 0.3224 (2) 0.58480 (19) 0.0274 (8)*
C12 0.3793 (4) 0.3456 (2) 0.51608 (19) 0.0248 (7)
H12 0.3580 (4) 0.2940 (2) 0.46874 (19) 0.0297 (8)*
C13 0.5601 (4) 0.40366 (19) 0.51595 (18) 0.0223 (7)
H13 0.6590 (4) 0.39013 (19) 0.46844 (18) 0.0267 (8)*
C14 0.5993 (4) 0.4801 (2) 0.58275 (18) 0.0197 (6)
H14 0.7226 (4) 0.5188 (2) 0.58240 (18) 0.0236 (8)*
C15 0.4494 (4) 0.49744 (19) 0.65048 (17) 0.0156 (6)
N1 0.4321 (3) 0.56758 (15) 0.72553 (14) 0.0158 (5)
N2 0.1467 (3) 0.47270 (16) 0.72598 (15) 0.0195 (5)
O1 0.1923 (3) 0.91615 (15) 0.69535 (13) 0.0228 (5)
O2 0.2246 (3) 0.77045 (13) 0.78116 (12) 0.0227 (4)
H1 0.078 (4) 0.924 (3) 0.727 (2) 0.077 (13)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0165 (14) 0.0131 (13) 0.0214 (14) −0.0029 (12) −0.0021 (12) −0.0043 (12)
C2 0.0186 (14) 0.0126 (13) 0.0184 (14) −0.0064 (11) −0.0017 (12) −0.0040 (11)
C3 0.0246 (16) 0.0118 (14) 0.0193 (14) 0.0002 (12) −0.0039 (12) −0.0027 (11)
C4 0.0257 (16) 0.0207 (14) 0.0175 (14) −0.0068 (13) 0.0054 (13) −0.0014 (12)
C5 0.0217 (15) 0.0172 (14) 0.0223 (16) −0.0060 (12) 0.0068 (12) −0.0042 (12)
C6 0.0187 (14) 0.0166 (13) 0.0235 (15) 0.0024 (12) −0.0007 (12) −0.0050 (12)
C7 0.0166 (13) 0.0158 (14) 0.0164 (13) −0.0037 (12) −0.0020 (11) −0.0056 (11)
C8 0.0166 (13) 0.0181 (14) 0.0190 (14) −0.0010 (12) −0.0033 (12) −0.0009 (12)
C9 0.0241 (15) 0.0163 (14) 0.0186 (14) 0.0038 (12) 0.0022 (13) 0.0027 (12)
C10 0.0210 (14) 0.0149 (13) 0.0170 (13) 0.0010 (12) −0.0025 (12) 0.0032 (11)
C11 0.0235 (15) 0.0183 (14) 0.0268 (15) −0.0006 (13) −0.0034 (13) 0.0007 (12)
C12 0.0339 (17) 0.0159 (14) 0.0244 (16) 0.0026 (14) −0.0028 (14) −0.0030 (13)
C13 0.0295 (17) 0.0185 (15) 0.0188 (14) 0.0077 (12) 0.0031 (13) 0.0007 (12)
C14 0.0201 (15) 0.0178 (14) 0.0212 (14) −0.0002 (12) 0.0010 (12) 0.0031 (12)
C15 0.0198 (15) 0.0117 (13) 0.0153 (13) 0.0008 (11) −0.0027 (12) 0.0017 (11)
N1 0.0160 (12) 0.0144 (11) 0.0170 (11) −0.0010 (9) −0.0006 (10) 0.0000 (10)
N2 0.0222 (12) 0.0136 (12) 0.0226 (12) −0.0009 (10) 0.0014 (11) 0.0032 (10)
O1 0.0170 (11) 0.0199 (10) 0.0316 (11) 0.0030 (9) 0.0012 (9) 0.0042 (9)
O2 0.0250 (10) 0.0171 (9) 0.0259 (11) 0.0012 (8) 0.0075 (9) 0.0031 (9)

Geometric parameters (Å, º)

C1—C2 1.499 (3) C9—H9 0.950 (4)
C1—O1 1.319 (3) C9—N1 1.356 (3)
C1—O2 1.216 (3) C9—N2 1.313 (3)
C2—C3 1.396 (3) C10—C11 1.390 (3)
C2—C7 1.405 (3) C10—C15 1.408 (3)
C3—H3 0.950 (4) C10—N2 1.388 (3)
C3—C4 1.388 (3) C11—H11 0.9501 (4)
C4—H4 0.950 (4) C11—C12 1.385 (4)
C4—C5 1.373 (4) C12—H12 0.950 (4)
C5—H5 0.950 (4) C12—C13 1.401 (4)
C5—C6 1.391 (4) C13—H13 0.950 (4)
C6—H6 0.951 (4) C13—C14 1.383 (3)
C6—C7 1.389 (4) C14—H14 0.949 (4)
C7—C8 1.508 (3) C14—C15 1.391 (4)
C8—H8a 0.990 (4) C15—N1 1.394 (3)
C8—H8b 0.990 (3) O1—H1 0.878 (18)
C8—N1 1.469 (3)
O1—C1—C2 112.3 (2) N1—C9—H9 123.20 (14)
O2—C1—C2 124.2 (2) N2—C9—H9 123.20 (15)
O2—C1—O1 123.5 (2) N2—C9—N1 113.6 (2)
C3—C2—C1 117.7 (2) C15—C10—C11 121.1 (2)
C7—C2—C1 123.3 (2) N2—C10—C11 129.7 (2)
C7—C2—C3 118.9 (2) N2—C10—C15 109.2 (2)
H3—C3—C2 119.23 (15) H11—C11—C10 121.25 (15)
C4—C3—C2 121.5 (2) C12—C11—C10 117.5 (3)
C4—C3—H3 119.23 (15) C12—C11—H11 121.25 (16)
H4—C4—C3 120.26 (15) H12—C12—C11 119.48 (16)
C5—C4—C3 119.5 (2) C13—C12—C11 121.0 (2)
C5—C4—H4 120.26 (15) C13—C12—H12 119.48 (15)
H5—C5—C4 120.16 (15) H13—C13—C12 118.94 (15)
C6—C5—C4 119.7 (2) C14—C13—C12 122.1 (2)
C6—C5—H5 120.16 (16) C14—C13—H13 118.94 (16)
H6—C6—C5 119.13 (16) H14—C14—C13 121.59 (16)
C7—C6—C5 121.7 (2) C15—C14—C13 116.8 (3)
C7—C6—H6 119.13 (16) C15—C14—H14 121.59 (16)
C6—C7—C2 118.6 (2) C14—C15—C10 121.5 (2)
C8—C7—C2 124.1 (2) N1—C15—C10 105.3 (2)
C8—C7—C6 117.3 (2) N1—C15—C14 133.2 (2)
H8a—C8—C7 108.91 (14) C9—N1—C8 125.7 (2)
H8b—C8—C7 108.91 (13) C15—N1—C8 127.9 (2)
H8b—C8—H8a 107.7 (3) C15—N1—C9 106.4 (2)
N1—C8—C7 113.31 (19) C10—N2—C9 105.4 (2)
N1—C8—H8a 108.91 (12) H1—O1—C1 111 (2)
N1—C8—H8b 108.91 (12)
C1—C2—C3—C4 176.5 (2) C8—N1—C9—N2 −179.6 (2)
C1—C2—C7—C6 −174.8 (2) C8—N1—C15—C10 179.7 (3)
C1—C2—C7—C8 4.3 (3) C8—N1—C15—C14 −1.3 (3)
C2—C3—C4—C5 −1.2 (3) C9—N1—C15—C10 1.0 (2)
C2—C7—C6—C5 −1.9 (3) C9—N1—C15—C14 179.9 (2)
C2—C7—C8—N1 75.2 (3) C9—N2—C10—C11 −179.2 (2)
C3—C4—C5—C6 1.8 (3) C9—N2—C10—C15 0.4 (2)
C4—C5—C6—C7 −0.2 (3) C10—C11—C12—C13 0.6 (3)
C5—C6—C7—C8 178.9 (2) C10—C15—C14—C13 0.7 (3)
C6—C7—C8—N1 −105.6 (2) C11—C12—C13—C14 −0.3 (3)
C7—C8—N1—C9 −116.8 (2) C12—C13—C14—C15 −0.4 (3)
C7—C8—N1—C15 64.7 (3) C13—C14—C15—N1 −178.1 (2)

Hydrogen-bond geometry (Å, º)

Cg1, Cg2, Cg3 and Cg4 are the centroids of the N1/N2/C9/C10/C15, C2–C7, C10–C15 and N1/N2/C9–15 rings, respectively.

D—H···A D—H H···A D···A D—H···A
O1—H1···N2i 0.88 (3) 1.73 (3) 2.592 (3) 164 (4)
C8—H8A···O1ii 0.99 (1) 2.62 (1) 3.374 (3) 133 (1)
C3—H3···O1 0.95 (1) 2.28 (1) 2.648 (3) 102 (1)
C8—H8B···O2 0.99 (1) 2.38 (1) 2.846 (3) 108 (1)
C9—H9···O2 0.95 (1) 2.45 (1) 2.861 (3) 106 (1)
C4—H4···Cg1iii 0.95 (1) 2.99 (1) 3.865 (3) 155 (1)
C4—H4···Cg3iii 0.95 (1) 2.51 (1) 3.408 (3) 157 (1)
C4—H4···Cg4iii 0.95 (1) 2.51 (1) 3.454 (3) 170 (1)
C5—H5···Cg2iii 0.95 (1) 2.76 (1) 3.554 (3) 142 (1)

Symmetry codes: (i) −x, y+1/2, −z+3/2; (ii) −x+1, y−1/2, −z+3/2; (iii) x+1/2, −y+3/2, −z+1.

Funding Statement

This work was funded by University Grants Commission; Department of Pharmacy, University of Science and Technology, Ibb Branch, Yemen.

References

  1. Ahmad, M. & Bharadwaj, P. K. (2013). Polyhedron, 52, 1145–1152.
  2. Akkoç, S., Kayser, V., İlhan, I. O., Hibbs, D. E., Gök, Y., Williams, P. A., Hawkins, B. & Lai, F. (2017). J. Organomet. Chem. 839, 98–107.
  3. Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. [DOI] [PMC free article] [PubMed]
  4. Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Crofts, T. S., Men, Y., Alvarez-Cohen, L. & Taga, M. E. (2014). Front. Microbiol. 5, PMID 25431570. [DOI] [PMC free article] [PubMed]
  6. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  7. Faizi, M. S. H., Dege, N. & Malinkin, S. (2017). Acta Cryst. E73, 1180–1183. [DOI] [PMC free article] [PubMed]
  8. Ghdhayeb, M. Z., Haque, R. A. & Budagumpi, S. (2014). J. Organomet. Chem. 757, 42–50.
  9. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  10. Haque, R. A., Iqbal, M. A., Budagumpi, S., Hemamalini, M. & Fun, H.-K. (2012). Acta Cryst. E68, o573. [DOI] [PMC free article] [PubMed]
  11. Kalalbandi, V. K. A. & Seetharamappa, J. (2015). Med. Chem. Commun. 6, 1942–1953.
  12. Kamaal, S., Faizi, M. S. H., Ali, A., Ahmad, M., Gupta, M., Dege, N. & Iskenderov, T. (2019). Acta Cryst. E75, 159–162. [DOI] [PMC free article] [PubMed]
  13. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816. [DOI] [PubMed]
  14. Odziomek, K., Ushizima, D., Oberbek, P., KurzydŁowski, K. J., Puzyn, T. & Haranczyk, M. (2017). J. Microsc. 265, 34–50. [DOI] [PubMed]
  15. Shruthi, N., Poojary, B., Kumar, V., Hussain, M. M., Rai, V. M., Pai, V. R., Bhat, M. & Revannasiddappa, B. C. (2016). RSC Adv. 6, 8303–8316.
  16. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  17. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net
  18. Yadav, G. & Ganguly, S. (2015). Eur. J. Med. Chem. 97, 419–443. [DOI] [PubMed]
  19. Zheng, Q., Borsley, S., Nichol, G. S., Duarte, F. & Cockroft, S. L. (2019). Angew. Chem. Int. Ed. 58, 12617–12623. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021006435/ex2044sup1.cif

e-77-00755-sup1.cif (22.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021006435/ex2044Isup2.hkl

e-77-00755-Isup2.hkl (168.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021006435/ex2044Isup3.cml

CCDC reference: 2091351

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES