The structure of bis(2-methylpyridinium) tetrachlorocuprate(II) is characterized by layers formed by [C6H8N]+ and [CuCl4]2– connected through N—H⋯Cl and C—H(phenyl)⋯Cl interactions. The layers are further connected by C—H(methyl)⋯Cl interactions.
Keywords: 2-picoline complex, inorganic supramolecular chemistry, crystal structure, hydrogen bonding
Abstract
The title compound, (C6H8N)2[CuCl4], crystallizes in the monoclinic space group I2/c. The coordination around the copper atom is a distorted tetrahedron. The 2-methylpyridinium ion (C6H8N+) interacts with the tetrachlorocuprate anion through N—H⋯Cl and C—H(phenyl)⋯Cl contacts, forming a hydrogen-bonded layer-like structure. The supramolecular structure is further stabilized by C—H(methyl)⋯Cl interactions between the layers.
Chemical context
Supramolecular organic and inorganic chemistry have been studied both from the fundamental as well as the application point of view, which is evident from the literature (Ziach et al., 2018 ▸; Thorat et al., 2013 ▸; Burslem et al., 2016 ▸). With the surge in the number of compounds reported, potential applications of supramolecular inorganic materials in energy storage, separation, catalysis, sensors, molecular magnets, optoelectronic materials, etc., have attracted greater attention in recent years (Mueller et al., 2006 ▸; Wan et al., 2006 ▸; Férey et al., 2003 ▸; James, 2003 ▸; Eddaoudi et al., 2002 ▸; Ruben et al., 2005 ▸, Kitagawa et al., 2004 ▸, Stavila et al., 2014 ▸). Because of the divergent combination of ligands and metal salts, an enormous number of structural architectures with different sizes and shapes could be constructed (Moulton & Zaworotko, 2001 ▸). The special characteristics and features such as ease of synthesis of the material, geometrically well-defined structures, exceptional tunability, post-synthetic modification, along with robustness of the material resulting from strong directional bonding, produce new opportunities and offer a unique platform amenable to the synthesis of more and more functional solids. For example, Adams et al. (2005 ▸) reported the synthesis of coordination compounds using a new synthetic route involving a thermal dehydrochlorination reaction in crystals of a pyridinium chlorometallate bicomponent system, i.e., anionic metal complexes and organic cations.
As part of ongoing studies in our group (PrakashaReddy & Pedireddi, 2007 ▸; Reddy et al., 2014 ▸), the synthesis of coordination complexes using pyridine ligands has been reported. Hence, we further extended our studies to utilize the pyridinium ligand and to study in situ the single-crystal-to-single-crystal transition (SCSCT) to investigate the reaction mechanism. In our endeavours to synthesize new functional solids, using a transition-metal anion and a pyridinium cation, we have chosen the CuCl2 and 2-methylpyridinium salt complex. Herein, we report the synthesis and crystal structure of a bis(2-methylpyridinium) tetrachlorocuprate coordination complex.
Structural commentary
The title complex crystallizes in the monoclinic space group I2/c. Since the Cu2+ cation occupies a special position, the asymmetric unit consists of a 2-methylpyridinium cation, [2-Me(Py)H]+, and half of a tetrachlorocuprate(II) anion, [CuCl4]2–. The molecular structure of the complex along with the atom-labelling scheme is shown in Fig. 1 ▸. Each copper center is four-coordinated by chlorine anions and adopts a distorted tetrahedral geometry. Structural analysis shows that the Cl—Cu—Cl angles vary from 98.55 (2) to 137.4 (3)° with four angles smaller and two larger than the standard tetrahedral angle. A plausible reason for a larger deviation from the standard 109.5° might be due to the N—H⋯Cl and C—H⋯Cl interactions. A similar marked deviation from the standard tetrahedral angle has been previously observed by other research groups (Wyrzykowski et al., 2011 ▸; Jasrotia et al., 2018 ▸). The Cu—Cl bond lengths [Cu1—Cl1 = 2.250 (1) Å, Cu1—Cl2 = 2.249 (1) Å] agree well with those reported for other structures (Marsh et al., 1982 ▸; Dodds et al., 2018 ▸; Molano et al., 2020 ▸; Reddy, 2020 ▸). The intramolecular Car—Car bond lengths in the [2-Me(Py)H]+ fall in the range 1.370 (3)–1.395 (3) Å. The N1—C2 and N1—C6 bond lengths are 1.350 (2) and 1.346 (2) Å, respectively.
Figure 1.
The molecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as small spheres of arbitrary size. [Symmetry code: (i) 1 − x, y,
− z.]
Supramolecular features and Hirshfeld surface analysis
In the crystal, complex molecules related by the twofold rotation axis are connected by pairs of N—H⋯Cl and Car—H⋯Cl interactions through a protonated N and an aromatic hydrogen attached to the carbon atom with the chloride ligand bonded to copper, forming a monomeric unit. These units interact with adjacent ones through Car—H⋯Cl hydrogen bonding (Table 1 ▸, Fig. 2 ▸). The N—H⋯Cl and C—H⋯Cl distances and associated bond angles lie within the ranges observed for other similar interactions reported in the literature (Adams et al., 2005 ▸; Vittaya et al., 2015 ▸; Wyrzykowski et al., 2011 ▸; Jasrotia et al., 2018 ▸). The supramolecular structure is further stabilized by Cmethyl—H⋯Cl interactions involving hydrogens of the methyl group and chlorides bonded to copper, generating layers along the crystallographic b axis (Fig. 3 ▸).
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N1—H1⋯Cl1i | 0.88 | 2.93 | 3.4297 (16) | 118 |
| N1—H1⋯Cl2i | 0.88 | 2.41 | 3.2050 (16) | 150 |
| C6—H6⋯Cl1ii | 0.95 | 2.62 | 3.453 (2) | 147 |
| C7—H7A⋯Cl2 | 0.98 | 2.92 | 3.850 (2) | 159 |
| C7—H7B⋯Cl2iii | 0.98 | 2.98 | 3.872 (2) | 151 |
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x+{\script{1\over 2}}, y-{\script{1\over 2}}, z+{\script{1\over 2}}; (iii) -x+1, -y+1, -z+1.
Figure 2.
The N—H⋯Cl and C—H⋯Cl interactions between cations and anions in the crystal structure of the title compound.
Figure 3.
The crystal packing of the title compound viewed along the b axis with intermolecular contacts shown as dashed lines.
To further investigate the intermolecular interactions present in the title compound, a Hirshfeld surface analysis was performed and the two-dimensional fingerprint plots were generated with Crystal Explorer17 (Turner et al., 2017 ▸). The Hirshfeld surface mapped over d norm and corresponding colours representing various interactions are shown in Fig. 4 ▸. The red points on the surface correspond to the N—H⋯Cl and C—H⋯Cl interactions. The two-dimensional fingerprint plots (McKinnon et al., 2007 ▸) are shown in Fig. 5 ▸. On the Hirshfeld surface, the largest contribution (53.1%) comes from the weak van der Waals H⋯H contacts. The interaction of d norm on the two-dimensional fingerprint plot shows two spikes; each one corresponds to H⋯H (39%) and H⋯Cl/Cl⋯H (32.5%) respectively. The H⋯Cl interaction highlights the hydrogen bond between adjacent moieties in the crystal structure. The C⋯H/H⋯C (16.5%) interactions appear as two shoulders. These interactions play a crucial role in the overall stabilization of the crystal packing.
Figure 4.
Hirshfeld surface mapped over d norm highlighting the regions of N—H⋯Cl and C—H⋯Cl intermolecular contacts.
Figure 5.
The full two-dimensional fingerprint plot for the organic cation in the title compound and those delineated into H⋯H (39%), Cl⋯H/H⋯Cl (32.5%) and C⋯H/H⋯C (16.5%) contacts.
Database survey
A search of the Cambridge Structural Database (CSD, Version 5.41, update of August 2020; Groom et al., 2016 ▸) revealed two related complexes containing 2-methylpyridinium: [2-methylpyridinium tetrachloroferrate(III)] (CCDC refcode WAYJEN; Wyrzykowski et al., 2011 ▸) and [bis(2-methyl-pyridinium) tetrachloro-zinc(II)] (CCDC refcode WIPCUW; Jasrotia et al., 2018 ▸). The molecular structures of both WAYJEN and WIPCUW display three-dimensional supramolecular networks arising from N—H⋯Cl and C—H⋯Cl interactions. In addition, the search also revealed a 2-methylpyridine and copper chloride complex: [dichloro-bis(2-methylpyridine)Cu(II)] (CCDC refcode CMPYCU01; Marsh et al., 1982 ▸) and [aqua-dichloro-bis(2-methylpyridine)Cu(II)] (CCDC refcode BIJWUM; Marsh et al., 1982 ▸) and a very recently published dichloridomethanolbis(2-methylpyridine)Cu(II) complex (Reddy, 2020 ▸). All of these structures display three-dimensional supramolecular networks stabilized by C—H⋯Cl and O—H⋯Cl interactions.
Synthesis and crystallization
Both 2-methylpyridine and anhydrous copper(II) chloride obtained from Aldrich were used for the reaction. Anhydrous copper(II) chloride (0.495 g, 0.005 mol) was dissolved in 10 ml of distilled water. To this solution, 2-methylpyridine (0.93 g, 0.01 mol) was added followed by addition of few drops of HCl (36%) and the resulting mixture was stirred for ∼30 min. at room temperature. The solution was then allowed to stand at room temperature for a few hours before being filtered and left at room temperature for crystallization. Block-shaped, pale-yellow-coloured crystals were obtained after 36 h.
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 2 ▸. H atoms were placed in calculated positions with C—H = 0.93–0.96 Å and N—H = 0.88 Å and refined as riding with fixed isotropic displacement parameters [U iso(H) = 1.2–1.5U eq(C, N)].
Table 2. Experimental details.
| Crystal data | |
| Chemical formula | (C6H8N)2[CuCl4] |
| M r | 393.62 |
| Crystal system, space group | Monoclinic, I2/c |
| Temperature (K) | 120 |
| a, b, c (Å) | 15.2354 (8), 8.3683 (3), 12.8372 (6) |
| β (°) | 99.205 (5) |
| V (Å3) | 1615.60 (13) |
| Z | 4 |
| Radiation type | Mo Kα |
| μ (mm−1) | 2.00 |
| Crystal size (mm) | 0.32 × 0.27 × 0.25 |
| Data collection | |
| Diffractometer | Agilent Xcalibur, Sapphire3 |
| Absorption correction | Analytical (CrysAlis PRO; Agilent, 2014 ▸) |
| Tmin, Tmax | 0.848, 0.965 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 24556, 2821, 2324 |
| R int | 0.071 |
| (sin θ/λ)max (Å−1) | 0.758 |
| Refinement | |
| R[F2 > 2σ(F 2)], wR(F 2), S | 0.036, 0.081, 1.08 |
| No. of reflections | 2821 |
| No. of parameters | 88 |
| H-atom treatment | H-atom parameters constrained |
| Δρmax, Δρmin (e Å−3) | 0.58, −0.58 |
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021006277/dj2020sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021006277/dj2020Isup2.hkl
CCDC reference: 2090586
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
We thank Dr J. S. Yadav, Provost and Director (R&D) for his support and encouragement.
supplementary crystallographic information
Crystal data
| (C6H8N)2[CuCl4] | F(000) = 796 |
| Mr = 393.62 | Dx = 1.618 Mg m−3 |
| Monoclinic, I2/c | Mo Kα radiation, λ = 0.71073 Å |
| a = 15.2354 (8) Å | Cell parameters from 5462 reflections |
| b = 8.3683 (3) Å | θ = 2.9–32.5° |
| c = 12.8372 (6) Å | µ = 2.00 mm−1 |
| β = 99.205 (5)° | T = 120 K |
| V = 1615.60 (13) Å3 | Blocks, pale yellow |
| Z = 4 | 0.32 × 0.27 × 0.25 mm |
Data collection
| Agilent Xcalibur, Sapphire3 diffractometer | 2324 reflections with I > 2σ(I) |
| Detector resolution: 16.1511 pixels mm-1 | Rint = 0.071 |
| ω scans | θmax = 32.6°, θmin = 2.9° |
| Absorption correction: analytical (CrysAlisPro; Agilent, 2014) | h = −22→22 |
| Tmin = 0.848, Tmax = 0.965 | k = −11→12 |
| 24556 measured reflections | l = −19→19 |
| 2821 independent reflections |
Refinement
| Refinement on F2 | Primary atom site location: iterative |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.036 | H-atom parameters constrained |
| wR(F2) = 0.081 | w = 1/[σ2(Fo2) + (0.0308P)2 + 1.4147P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.08 | (Δ/σ)max < 0.001 |
| 2821 reflections | Δρmax = 0.58 e Å−3 |
| 88 parameters | Δρmin = −0.58 e Å−3 |
| 0 restraints |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Cu1 | 0.500000 | 0.22261 (4) | 0.250000 | 0.01825 (9) | |
| Cl1 | 0.38953 (3) | 0.10590 (5) | 0.13863 (3) | 0.02196 (11) | |
| Cl2 | 0.41898 (3) | 0.32033 (5) | 0.36739 (4) | 0.02260 (11) | |
| N1 | 0.68501 (11) | 0.01294 (19) | 0.63521 (12) | 0.0218 (3) | |
| H1 | 0.642734 | −0.054296 | 0.645210 | 0.026* | |
| C2 | 0.66434 (12) | 0.1697 (2) | 0.62543 (13) | 0.0197 (3) | |
| C3 | 0.73176 (13) | 0.2747 (2) | 0.61076 (14) | 0.0222 (4) | |
| H3 | 0.720458 | 0.386273 | 0.605979 | 0.027* | |
| C4 | 0.83354 (14) | 0.0533 (2) | 0.61276 (16) | 0.0261 (4) | |
| H4 | 0.890816 | 0.012622 | 0.607122 | 0.031* | |
| C5 | 0.81548 (14) | 0.2165 (2) | 0.60311 (15) | 0.0247 (4) | |
| H5 | 0.861102 | 0.288380 | 0.591178 | 0.030* | |
| C6 | 0.76632 (14) | −0.0468 (2) | 0.63060 (15) | 0.0254 (4) | |
| H6 | 0.777088 | −0.158092 | 0.639704 | 0.031* | |
| C7 | 0.57039 (13) | 0.2174 (2) | 0.62851 (16) | 0.0259 (4) | |
| H7A | 0.536395 | 0.214343 | 0.556960 | 0.039* | |
| H7B | 0.569141 | 0.325976 | 0.656845 | 0.039* | |
| H7C | 0.543936 | 0.143189 | 0.673767 | 0.039* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Cu1 | 0.02142 (16) | 0.01465 (15) | 0.01929 (16) | 0.000 | 0.00510 (12) | 0.000 |
| Cl1 | 0.0253 (2) | 0.0174 (2) | 0.0226 (2) | −0.00165 (16) | 0.00223 (17) | −0.00185 (15) |
| Cl2 | 0.0276 (2) | 0.0172 (2) | 0.0246 (2) | 0.00035 (16) | 0.00935 (17) | −0.00340 (16) |
| N1 | 0.0268 (8) | 0.0154 (7) | 0.0235 (7) | −0.0023 (6) | 0.0054 (6) | 0.0011 (6) |
| C2 | 0.0264 (9) | 0.0172 (8) | 0.0155 (8) | −0.0004 (7) | 0.0033 (7) | 0.0000 (6) |
| C3 | 0.0311 (10) | 0.0150 (8) | 0.0203 (8) | −0.0030 (7) | 0.0040 (7) | 0.0004 (6) |
| C4 | 0.0251 (10) | 0.0266 (10) | 0.0267 (9) | 0.0016 (8) | 0.0040 (8) | −0.0010 (8) |
| C5 | 0.0281 (10) | 0.0221 (9) | 0.0244 (9) | −0.0069 (7) | 0.0056 (8) | −0.0008 (7) |
| C6 | 0.0326 (10) | 0.0172 (9) | 0.0265 (10) | 0.0031 (7) | 0.0048 (8) | 0.0016 (7) |
| C7 | 0.0263 (10) | 0.0243 (10) | 0.0276 (10) | 0.0018 (7) | 0.0061 (8) | 0.0004 (8) |
Geometric parameters (Å, º)
| Cu1—Cl1i | 2.2496 (5) | C3—C5 | 1.383 (3) |
| Cu1—Cl1 | 2.2496 (5) | C4—H4 | 0.9500 |
| Cu1—Cl2 | 2.2492 (4) | C4—C5 | 1.395 (3) |
| Cu1—Cl2i | 2.2492 (4) | C4—C6 | 1.370 (3) |
| N1—H1 | 0.8800 | C5—H5 | 0.9500 |
| N1—C2 | 1.350 (2) | C6—H6 | 0.9500 |
| N1—C6 | 1.346 (2) | C7—H7A | 0.9800 |
| C2—C3 | 1.387 (3) | C7—H7B | 0.9800 |
| C2—C7 | 1.493 (3) | C7—H7C | 0.9800 |
| C3—H3 | 0.9500 | ||
| Cl1—Cu1—Cl1i | 128.54 (3) | C5—C4—H4 | 121.0 |
| Cl2i—Cu1—Cl1 | 99.614 (17) | C6—C4—H4 | 121.0 |
| Cl2i—Cu1—Cl1i | 98.550 (17) | C6—C4—C5 | 118.10 (19) |
| Cl2—Cu1—Cl1 | 98.549 (17) | C3—C5—C4 | 120.61 (18) |
| Cl2—Cu1—Cl1i | 99.616 (17) | C3—C5—H5 | 119.7 |
| Cl2i—Cu1—Cl2 | 137.36 (3) | C4—C5—H5 | 119.7 |
| C2—N1—H1 | 118.0 | N1—C6—C4 | 119.91 (18) |
| C6—N1—H1 | 118.0 | N1—C6—H6 | 120.0 |
| C6—N1—C2 | 124.00 (17) | C4—C6—H6 | 120.0 |
| N1—C2—C3 | 117.46 (17) | C2—C7—H7A | 109.5 |
| N1—C2—C7 | 117.88 (17) | C2—C7—H7B | 109.5 |
| C3—C2—C7 | 124.64 (17) | C2—C7—H7C | 109.5 |
| C2—C3—H3 | 120.1 | H7A—C7—H7B | 109.5 |
| C5—C3—C2 | 119.88 (17) | H7A—C7—H7C | 109.5 |
| C5—C3—H3 | 120.1 | H7B—C7—H7C | 109.5 |
| N1—C2—C3—C5 | 2.2 (3) | C6—N1—C2—C3 | −0.6 (3) |
| C2—N1—C6—C4 | −1.5 (3) | C6—N1—C2—C7 | 177.92 (17) |
| C2—C3—C5—C4 | −1.7 (3) | C6—C4—C5—C3 | −0.4 (3) |
| C5—C4—C6—N1 | 2.0 (3) | C7—C2—C3—C5 | −176.27 (18) |
Symmetry code: (i) −x+1, y, −z+1/2.
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N1—H1···Cl1ii | 0.88 | 2.93 | 3.4297 (16) | 118 |
| N1—H1···Cl2ii | 0.88 | 2.41 | 3.2050 (16) | 150 |
| C6—H6···Cl1iii | 0.95 | 2.62 | 3.453 (2) | 147 |
| C7—H7A···Cl2 | 0.98 | 2.92 | 3.850 (2) | 159 |
| C7—H7B···Cl2iv | 0.98 | 2.98 | 3.872 (2) | 151 |
Symmetry codes: (ii) −x+1, −y, −z+1; (iii) x+1/2, y−1/2, z+1/2; (iv) −x+1, −y+1, −z+1.
Funding Statement
This work was funded by Indrashil University.
References
- Adams, C. J., Crawford, P. C., Orpen, A. G., Podesta, T. J. & Salt, B. (2005). Chem. Commun. pp. 2457–2458. [DOI] [PubMed]
- Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.
- Burslem, G. M., Kyle, H. F., Prabhakaran, P., Breeze, A. L., Edwards, T. A., Warriner, S. L., Nelson, A. & Wilson, A. J. (2016). Org. Biomol. Chem. 14, 3782–3786. [DOI] [PMC free article] [PubMed]
- Dodds, C. A. & Kennedy, A. R. (2018). Acta Cryst. E74, 1369–1372. [DOI] [PMC free article] [PubMed]
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O’Keeffe, M. & Yaghi, O. M. (2002). Science, 295, 469–472. [DOI] [PubMed]
- Férey, G., Latroche, M., Serre, C., Millange, F., Loiseau, T. & Percheron-Guégan, A. (2003). Chem. Commun. pp. 2976–2977. [DOI] [PubMed]
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- James, S. L. (2003). Chem. Soc. Rev. 32, 276–288.
- Jasrotia, D., Verma, S. K., Sridhar, B., Alvi, P. A. & Kumar, A. (2018). Mater. Chem. Phys. 207, 98–104.
- Kitagawa, S., Kitaura, R. & Noro, S. I. (2004). Angew. Chem. Int. Ed. 43, 2334–2375. [DOI] [PubMed]
- Marsh, W. E., Hatfield, W. E. & Hodgson, D. J. (1982). Inorg. Chem. 21, 2679–2684.
- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
- Molano, M. F., Lorett Velasquez, V. P., Erben, M. F., Nossa González, D. L., Loaiza, A. E., Echeverría, G. A., Piro, O. E., Tobón, Y. A., Ben Tayeb, K. & Gómez Castaño, J. A. (2020). Acta Cryst. E76, 148–154. [DOI] [PMC free article] [PubMed]
- Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658. [DOI] [PubMed]
- Mueller, U., Schubert, M., Teich, F., Puetter, H., Schierle-Arndt, K. & Pastré, J. (2006). J. Mater. Chem. 16, 626–636.
- Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.
- Palatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575–580.
- Palatinus, L. & van der Lee, A. (2008). J. Appl. Cryst. 41, 975–984.
- PrakashaReddy, J. & Pedireddi, V. R. (2007). Eur. J. Inorg. Chem. pp. 1150–1158.
- Reddy, J. P. (2020). Acta Cryst. E76, 1771–1774. [DOI] [PMC free article] [PubMed]
- Reddy, J. P., Swain, D. & Pedireddi, V. R. (2014). Cryst. Growth Des. 14, 5064–5071.
- Ruben, M., Ziener, U., Lehn, J. M., Ksenofontov, V., Gütlich, P. & Vaughan, G. B. M. (2005). Chem. Eur. J. 11, 94–100. [DOI] [PubMed]
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
- Stavila, V., Talin, A. A. & Allendorf, M. D. (2014). Chem. Soc. Rev. 43, 5994–6010. [DOI] [PubMed]
- Thorat, V. H., Ingole, T. S., Vijayadas, K. N., Nair, R. V., Kale, S. S., Ramesh, V. V. E., Davis, H. C., Prabhakaran, P., Gonnade, R. G., Gawade, R. L., Puranik, V. G., Rajamohanan, P. R. & Sanjayan, G. J. (2013). Eur. J. Org. Chem. pp. 3529–3542.
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.
- Vittaya, L., Leesakul, N., Saithong, S. & Chainok, K. (2015). Acta Cryst. E71, m201–m202. [DOI] [PMC free article] [PubMed]
- Wan, Y., Yang, H. & Zhao, D. (2006). Acc. Chem. Res. 39, 423–432. [DOI] [PubMed]
- Wyrzykowski, D., Wera, M., Sikorski, A., Jacewicz, D. & Chmurzyński, L. (2011). Cent. Eur. J. Chem. 9, 1096–1101.
- Ziach, K., Chollet, C., Parissi, V., Prabhakaran, P., Marchivie, M., Corvaglia, V., Bose, P. P., Laxmi-Reddy, K., Godde, F., Schmitter, J.-M., Chaignepain, S., Pourquier, P. & Huc, I. (2018). Nat. Chem. 10, 511–518. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021006277/dj2020sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021006277/dj2020Isup2.hkl
CCDC reference: 2090586
Additional supporting information: crystallographic information; 3D view; checkCIF report





