The title compound consists of cholesteryl and heptanoate units, in which the six-membered rings adopt chair and twisted-boat conformations, while the five-membered ring adopts an envelope conformation. In the crystal, the molecules are aligned along the a-axis direction and stacked along the b-axis direction.
Keywords: crystal structure, cholesteryl, cholesterol
Abstract
The title compound, C34H58O2, consists of cholesteryl and heptanoate units, in which the six-membered rings adopt chair and twisted-boat conformations while the five-membered ring adopts an envelope conformation. In the crystal, the molecules are aligned along the a-axis direction and stacked along the b-axis direction. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (92.4%) and H⋯O/O⋯H (6.1%) interactions. van der Waals interactions are the dominant interactions in the crystal packing. Density functional theory (DFT) optimized structures at the B3LYP/ 6–31 G(d) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap, and the molecular electrostatic potential (MEP) of the compound was investigated.
Chemical context
Cholesterol is an important constituent of cell membranes with a rigid ring system and a short branched hydrocarbon tail. It modulates membrane fluidity over the range of physiological temperatures and also reduces the permeability of the plasma membrane to protons and sodium ions. In the liver, it is converted to bile, which is then stored in the gallbladder. It functions in intracellular transport, cell signaling and nerve conduction within the cell membrane and is an important precursor in several biochemical pathways within the cells, in the synthesis of vitamin D and steroid hormones, including the adrenal gland hormones cortisol and aldosterone as well as sex hormones progesterone, oestrogens, and testosterone, and their derivatives. Cholesteryl esters are formed between the carboxylate group of a fatty acid and the hydroxyl group of cholesterol and have a lower solubility in water than cholesterol. These esters are also important in many biological mechanisms and numerous experimental investigations have been performed on cholesterol derivatives (Faiman et al., 1976 ▸; Goheen et al., 1977 ▸; Bush et al., 1980 ▸; Di Vizio et al., 2008 ▸; Ikonen, 2008 ▸). Thus, due to the importance of cholesterol and its esters, we report herein the crystallization, the molecular and crystal structures along with the Hirshfeld surface analysis and the interaction energy and DFT studies of the title compound, (I), whose magnetic properties were previously studied by electron paramagnetic resonance (EPR), (Sayin et al., 2013 ▸).
Structural commentary
As shown in Fig. 1 ▸, the title compound, (I), consists of cholesteryl and heptanoate units. A puckering analysis (Cremer & Pople, 1975 ▸) of the six-membered A (C8–C11/C13/C14), B (C10/C11/C15–C18), C (C17–C21/C23) and the five-membered D (C23–C26/C21) rings gave the parameters [Q T = 0.5403 (16) Å, θ = 6.86 (18)° and φ = 327.4 (15)°, adopting a chair conformation (for A), Q T = 0.4839 (15) Å, θ = 129.5 (3)° and φ = 328.2 (2)°, adopting a twisted-boat conformation (for B), Q T = 0.5646 (15) Å, θ = 6.44 (14)° and φ = 245.1 (14)°, adopting a chair conformation (for C) and q 2 = 0.4635 (16) Å and φ = 191.7 (2)°, adopting an envelope conformation, where atom C21 is at the flap position and 0.693 (2) Å away from best plane of the remaining atoms (for D)]. The O1—C7 [1.348 (3) Å] and O2—C7 [1.196 (3) Å] bonds in the carboxylate group indicate localized single and double bonds. The O1—C7—O2 [123.8 (2)°] bond angle seems to be increased compared to that present in a free acid [122.2°].
Figure 1.
The asymmetric unit of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Supramolecular features
In the crystal, the molecules are aligned along the a-axis direction and stacked along the b-axis direction (Fig. 2 ▸).
Figure 2.
A partial packing diagram viewed down the c axis.
Hirshfeld surface analysis
In order to visualize the intermolecular interactions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977 ▸; Spackman & Jayatilaka, 2009 ▸) was carried out by using Crystal Explorer 17.5 (Turner et al., 2017 ▸). In the HS plotted over d norm (Fig. 3 ▸), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016 ▸). The bright-red spots indicate their roles as the respective donors and/or acceptors. The overall two-dimensional fingerprint plot, Fig. 4 ▸ a, and those delineated into H⋯H, H⋯O/O⋯H and H⋯C/C⋯H contacts (McKinnon et al., 2007 ▸) are illustrated in Fig. 4 ▸ b–d, respectively, together with their relative contributions to the Hirshfeld surface. The most important interaction is H⋯H (Table 1 ▸) contributing 92.4% to the overall crystal packing, which is reflected in Fig. 4 ▸ b as widely scattered points of high density due to the large hydrogen content of the molecule with the tip at d e = d i = 1.11 Å. The pair of spikes in the fingerprint plot delineated into H⋯O/O⋯H contacts (Table 1 ▸) have a symmetrical distribution of points (6.1% contribution, Fig. 4 ▸ c) with the tips at d e + d i = 2.66 Å. In the absence of C—H⋯π interactions, the pair of characteristic wings in the fingerprint plot delineated into H⋯C/C⋯H contacts (Table 1 ▸, Fig. 4 ▸ c, 1.5% contribution) has the tips at d e + d i = 2.89 Å.
Figure 3.
View of the three-dimensional Hirshfeld surface of the title compound plotted over d norm in the range of 0.0196 to 1.7047 a.u.
Figure 4.
The full two-dimensional fingerprint plots for the title compound, showing (a) all interactions, and those delineated into (b) H⋯H, (c) H⋯O/O⋯H and (d) H⋯C/C⋯H interactions. The d i and d e values are the closest internal and external distances (in Å) from given points on the Hirshfeld surface contacts.
Table 1. Selected interatomic distances (Å).
| O2⋯H8 | 2.43 | H9A⋯H15 | 2.26 |
| C9⋯H12C | 2.78 | H9B⋯H12C | 2.30 |
| C12⋯H19A | 2.63 | H12A⋯H19A | 2.21 |
| C13⋯H19B | 2.79 | H12B⋯H17 | 2.30 |
| C17⋯H22C | 2.78 | H12C⋯H14A | 2.37 |
| C19⋯H22C | 2.74 | H13A⋯H19B | 2.29 |
| C19⋯H12A | 2.73 | H13B⋯H18 | 2.27 |
| C22⋯H19A | 2.77 | H16A⋯H23 | 2.36 |
| C22⋯H27 | 2.70 | H17⋯H22C | 2.26 |
| C24⋯H22B | 2.68 | H19A⋯H22C | 2.23 |
| C25⋯H22B | 2.71 | H20B⋯H28B | 2.17 |
| C25⋯H29A | 2.51 | H22B⋯H24B | 2.34 |
| C28⋯H20B | 2.78 | H25A⋯H29A | 2.32 |
| C30⋯H28A | 2.79 | H28A⋯H30A | 2.26 |
| C30⋯H33A | 2.75 | H30B⋯H33A | 2.33 |
| H3A⋯H6B | 2.31 |
The Hirshfeld surface representations with the function d norm plotted onto the surface are shown for the H⋯H and H⋯O/O⋯H interactions in Fig. 5 ▸ a–b, respectively.
Figure 5.
The Hirshfeld surface representations with the function d norm plotted onto the surface for (a) H⋯H and (b) H⋯O/O⋯H interactions.
The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H and H⋯O/O⋯H interactions suggest that van der Waals interactions play the major role in the crystal packing (Hathwar et al., 2015 ▸).
Interaction energy calculations
The intermolecular interaction energies are calculated using the CE–B3LYP/6–31G(d,p) energy model available in Crystal Explorer 17.5 (Turner et al., 2017 ▸), where a cluster of molecules is generated by applying crystallographic symmetry operations with respect to a selected central molecule within the radius of 3.8 Å by default (Turner et al., 2014 ▸). The total intermolecular energy (E tot) is the sum of electrostatic (E ele), polarization (E pol), dispersion (E dis) and exchange-repulsion (E rep) energies (Turner et al., 2015 ▸) with scale factors of 1.057, 0.740, 0.871 and 0.618, respectively (Mackenzie et al., 2017 ▸). The evaluation of the energies indicates that the stabilizations in the title compound are dominated by the dispersion energy contributions.
DFT calculations
The optimized structure (Fig. 6 ▸) of the title compound was generated theoretically via density functional theory (DFT) using standard B3LYP functional and 6–31 G(d) basis-set calculations (Becke, 1993 ▸) as implemented in GAUSSIAN 09 (Frisch et al., 2009 ▸). The theoretical and experimental results were in good agreement (Table 2 ▸). As is common in these studies, there are differences between the observed and calculated values because the former pertain to the solid state while the latter are for an isolated molecule in the gas phase. The correlation graphs based on the calculations of the bond lengths and angles for comparison with the experimental results are shown in Fig. 7 ▸ a and b, respectively. The highest-occupied molecular orbital (HOMO), acting as an electron donor, and the lowest-unoccupied molecular orbital (LUMO), acting as an electron acceptor, are very important parameters for quantum chemistry. When the energy gap is small, the molecule is highly polarizable and has high chemical reactivity and it is characterized as soft. The DFT calculations provide some important information on the reactivity and site selectivity of the molecular framework. E HOMO and E LUMO clarify the inevitable charge exchange collaboration inside the studied material, electronegativity (χ), hardness (η), potential (μ), electrophilicity (ω) and softness (σ) are recorded in Table 3 ▸. The significance of η and σ is to evaluate both the reactivity and stability. The HOMO and LUMO energy levels are shown in Fig. 8 ▸. The HOMO is localized in the plane extending over the whole cholesteryl heptanoate ring, while the LUMO is localized on the oxygens and their surrounding atoms. The energy band gap [ΔE = E LUMO − E HOMO] of the molecule is 6.49 eV, and the frontier molecular orbital energies, E HOMO and E LUMO are −7.05 and −0.56 eV, respectively.
Figure 6.
The optimized structure of the title compound, (I).
Table 2. Comparison of the selected (X-ray and DFT) geometric data (Å, °).
| Bonds/angles | X-ray | B3LYP/6–31G(d) |
|---|---|---|
| O2—C7 | 1.196 (3) | 1.21334 |
| O1—C7 | 1.348 (3) | 1.35309 |
| O1—C8 | 1.458 (2) | 1.45445 |
| C7—C6 | 1.510 (3) | 1.51813 |
| C5—C6 | 1.516 (3) | 1.53121 |
| C5—C4 | 1.530 (3) | 1.53654 |
| C4—C3 | 1.512 (4) | 1.53569 |
| C3—C2 | 1.523 (3) | 1.53425 |
| C1—C2 | 1.510 (4) | 1.53213 |
| C8—C14 | 1.513 (3) | 1.52760 |
| C8—C9 | 1.518 (3) | 1.52497 |
| C10—C9 | 1.519 (3) | 1.53951 |
| C11—C12 | 1.545 (3) | 1.54603 |
| C11—C18 | 1.558 (3) | 1.56904 |
| C17—C18 | 1.544 (3) | 1.55696 |
| C22—C21 | 1.530 (3) | 1.54490 |
| C23—C21 | 1.538 (3) | 1.55738 |
| C24—C23 | 1.527 (3) | 1.55738 |
| C24—C25 | 1.538 (3) | 1.55293 |
| C26—C27 | 1.535 (3) | 1.55117 |
| C28—C27 | 1.528 (3) | 1.53804 |
| C29—C27 | 1.539 (3) | 1.54887 |
| C29—C30 | 1.525 (3) | 1.53709 |
| C31—C30 | 1.523 (3) | 1.53617 |
| C31—C32 | 1.524 (3) | 1.54188 |
| C33—C32 | 1.509 (4) | 1.53652 |
| C34—C32 | 1.518 (4) | 1.53610 |
| C1—C2—C3 | 113.9 (2) | 113.26388 |
| C3—C4—C5 | 115.3 (2) | 114.95515 |
| C5—C6—C7 | 113.7 (2) | 112.96691 |
| C6—C7—O1 | 110.5 (2) | 110.59081 |
| C7—O1—C8 | 117.58 (19) | 117.36016 |
| C9—C8—C14 | 110.85 (19) | 111.83435 |
| C10—C11—C13 | 108.31 (17) | 107.22354 |
| C16—C17—C18 | 110.06 (17) | 111.14810 |
| C18—C19—C20 | 113.82 (17) | 113.68808 |
| C20—C21—C23 | 106.26 (17) | 106.65458 |
| C23—C24—C25 | 103.79 (18) | 103.66681 |
| C26—C27—C29 | 110.60 (18) | 110.09045 |
| C29—C30—C31 | 112.0 (2) | 112.44335 |
| C31—C32—C33 | 113.3 (2) | 112.54400 |
| C31—C32—C34 | 110.2 (2) | 110.56977 |
| C1—C2—C3—C4 | −177.7 (2) | 179.78287 |
| C6—C7—O1—C8 | −179.5 (2) | 179.67988 |
| C9—C10—C11—C18 | −166.45 (19) | 164.70017 |
| C16—C17—C23—C24 | −57.6 (3) | −53.53645 |
| C25—C26—C27—C29 | 56.7 (3) | 58.14095 |
| C29—C30—C31—C32 | 170.8 (2) | 174.94079 |
| C30—C31—C32—C33 | 58.8 (3) | 63.49014 |
| C30—C31—C32—C34 | −176.9 (3) | −172.43112 |
Figure 7.
The correlation graphs of the calculated and experimental (a) bond lengths and (b) bond angles of the title compound, (I).
Table 3. Calculated energies.
| Molecular Energy (a.u.) (eV) | Compound (I) |
|---|---|
| Total Energy, TE (eV) | −40334.80 |
| EHOMO (eV) | −7.05 |
| ELUMO (eV) | −0.56 |
| Gap, ΔE (eV) | 6.49 |
| Dipole moment, μ (Debye) | −4.07 |
| Ionization potential, I (eV) | 7.05 |
| Electron affinity, A | 0.56 |
| Electronegativity, χ | 4.06 |
| Hardness, η | 2.14 |
| Electrophilicity index, ω | 3.85 |
| Softness, σ | 0.23 |
| Fraction of electron transferred, ΔN | 0.49 |
Figure 8.
The LUMO and HOMO energies of the title compound, (I).
The molecular electrical potential surfaces or electrostatic potential energy maps illustrate the charge distributions of the molecules in three dimensions, allowing one to visualize variably charged regions of the molecule, which may be used to determine how molecules interact with one another. Electrostatic potential maps (MEPs) are invaluable in predicting the behaviour of complex molecules. The MEP of the title compound is shown in Fig. 9 ▸, where the negative electrostatic potential formed around O1 and O2 atoms and positive potential (green) formed around the hydrogen atoms. The MEP values of atoms O1 and O2 are −0.050 and −0.017 a.u., respectively. Thus, atoms O1 and O2 are the most appropriate ones for electrophilic attacks while H atoms are more appropriate for nucleophilic attacks.
Figure 9.
The MEP plot of the title compound, (I).
Database survey
Cholesterol and its esters take part significantly in many biological mechanisms, being important components for the manufacture of bile acids, steroid hormones and several fat-soluble vitamins. For the numerous experimental investigations, see: Faiman & Larsson, 1976 ▸; Goheen et al., 1977 ▸; Bush et al., 1980 ▸; Di Vizio et al., 2008 ▸; Ikonen, 2008 ▸. For the first electron paramagnetic resonance (EPR) study of free radicals in X-ray-irradiated powdered cholesterol, hormones and vitamins, see: Rexroad & Gordy, 1959 ▸. For gamma-irradiated sterol groups studied at low temperatures, see: Sevilla et al., 1986 ▸. For EPR and electron-nuclear double resonance (ENDOR) studies to elucidate the structure of free radicals formed in gamma-irradiated single crystals of selected steroids, see: Smaller & Matheson, 1958 ▸; Krzyminiewski, Hafez et al., 1987 ▸; Krzyminiewski et al., 1990 ▸; Szyczewski & Möbius, 1994 ▸; Szyczewski, 1996 ▸; Szyczewski et al., 1998 ▸; Çalişkan et al., 2004 ▸; Szyczewski et al., 2005 ▸; Sayin et al., 2011 ▸. For EPR studies of cholesteryl heptanoate, see: Sayin et al., 2013 ▸.
Synthesis and crystallization
The white fine crystalline powder of cholesteryl heptanoate (C34H58O2) was purchased from Merck, and single crystals were grown by slow evaporation of a concentrated ethyl acetate solution.
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 4 ▸. The C-bound H atoms were positioned geometrically, with C—H = 0.96, 0.97 and 0.98 Å for methyl, methylene and methine H atoms, respectively, and constrained to ride on their parent atoms, with U iso(H) = k × U eq(C), where k = 1.5 for methyl H atoms and k = 1.2 for methylene and methine H atoms.
Table 4. Experimental details.
| Crystal data | |
| Chemical formula | C34H58O2 |
| M r | 498.80 |
| Crystal system, space group | Monoclinic, P21 |
| Temperature (K) | 120 |
| a, b, c (Å) | 12.0622 (3), 9.2715 (2), 13.8140 (4) |
| β (°) | 92.306 (2) |
| V (Å3) | 1543.63 (7) |
| Z | 2 |
| Radiation type | Mo Kα |
| μ (mm−1) | 0.06 |
| Crystal size (mm) | 0.30 × 0.22 × 0.09 |
| Data collection | |
| Diffractometer | Bruker APEXII QUAZAR three-circle diffractometer |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 15024, 6805, 6079 |
| R int | 0.041 |
| (sin θ/λ)max (Å−1) | 0.649 |
| Refinement | |
| R[F2 > 2σ(F 2)], wR(F 2), S | 0.046, 0.118, 1.03 |
| No. of reflections | 6805 |
| No. of parameters | 331 |
| No. of restraints | 1 |
| H-atom treatment | H-atom parameters constrained |
| Δρmax, Δρmin (e Å−3) | 0.24, −0.22 |
| Absolute structure | Flack xdetermined using 2417 quotients [(I +)−(I −)]/[(I +)+(I −)] (Parsons et al., 2013 ▸) |
| Absolute structure parameter | 0.3 (7) |
Supplementary Material
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989021005661/mw2174sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021005661/mw2174Isup2.hkl
CCDC reference: 2087356
Additional supporting information: crystallographic information; 3D view; checkCIF report
supplementary crystallographic information
Crystal data
| C34H58O2 | F(000) = 556 |
| Mr = 498.80 | Dx = 1.073 Mg m−3 |
| Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
| a = 12.0622 (3) Å | Cell parameters from 5761 reflections |
| b = 9.2715 (2) Å | θ = 2.2–27.3° |
| c = 13.8140 (4) Å | µ = 0.06 mm−1 |
| β = 92.306 (2)° | T = 120 K |
| V = 1543.63 (7) Å3 | Plate, colourless |
| Z = 2 | 0.30 × 0.22 × 0.09 mm |
Data collection
| Bruker APEXII QUAZAR three-circle diffractometer | Rint = 0.041 |
| Detector resolution: 8.3333 pixels mm-1 | θmax = 27.5°, θmin = 1.5° |
| φ and ω scans | h = −15→15 |
| 15024 measured reflections | k = −12→12 |
| 6805 independent reflections | l = −17→17 |
| 6079 reflections with I > 2σ(I) |
Refinement
| Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
| Least-squares matrix: full | H-atom parameters constrained |
| R[F2 > 2σ(F2)] = 0.046 | w = 1/[σ2(Fo2) + (0.0614P)2 + 0.1758P] where P = (Fo2 + 2Fc2)/3 |
| wR(F2) = 0.118 | (Δ/σ)max < 0.001 |
| S = 1.03 | Δρmax = 0.24 e Å−3 |
| 6805 reflections | Δρmin = −0.22 e Å−3 |
| 331 parameters | Absolute structure: Flack xdetermined using 2417 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
| 1 restraint | Absolute structure parameter: 0.3 (7) |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| O1 | 0.88629 (14) | 0.64631 (18) | 0.15841 (13) | 0.0314 (4) | |
| O2 | 0.91179 (18) | 0.8775 (2) | 0.11617 (18) | 0.0518 (6) | |
| C1 | 1.4569 (2) | 0.5375 (3) | −0.03304 (19) | 0.0381 (6) | |
| H1A | 1.504609 | 0.496801 | −0.079854 | 0.057* | |
| H1B | 1.431548 | 0.462591 | 0.008619 | 0.057* | |
| H1C | 1.497197 | 0.608290 | 0.004961 | 0.057* | |
| C2 | 1.3584 (2) | 0.6081 (3) | −0.08471 (17) | 0.0316 (5) | |
| H2A | 1.320002 | 0.536527 | −0.124748 | 0.038* | |
| H2B | 1.385067 | 0.682562 | −0.127298 | 0.038* | |
| C3 | 1.2763 (2) | 0.6752 (3) | −0.01697 (17) | 0.0330 (6) | |
| H3A | 1.251610 | 0.601733 | 0.027306 | 0.040* | |
| H3B | 1.313740 | 0.749700 | 0.021227 | 0.040* | |
| C4 | 1.1761 (2) | 0.7401 (3) | −0.06989 (18) | 0.0308 (5) | |
| H4A | 1.140592 | 0.665786 | −0.109617 | 0.037* | |
| H4B | 1.201347 | 0.814656 | −0.113085 | 0.037* | |
| C5 | 1.0894 (2) | 0.8056 (3) | −0.00503 (19) | 0.0304 (5) | |
| H5A | 1.124902 | 0.877278 | 0.036917 | 0.036* | |
| H5B | 1.033294 | 0.854229 | −0.045343 | 0.036* | |
| C6 | 1.0337 (2) | 0.6940 (3) | 0.0568 (2) | 0.0367 (6) | |
| H6A | 1.006225 | 0.616313 | 0.015417 | 0.044* | |
| H6B | 1.088515 | 0.653667 | 0.102419 | 0.044* | |
| C7 | 0.9385 (2) | 0.7534 (3) | 0.1125 (2) | 0.0335 (6) | |
| C8 | 0.79138 (19) | 0.6851 (3) | 0.21509 (17) | 0.0273 (5) | |
| H8 | 0.804295 | 0.779292 | 0.245756 | 0.033* | |
| C9 | 0.78323 (19) | 0.5697 (3) | 0.29241 (17) | 0.0261 (5) | |
| H9A | 0.848991 | 0.572960 | 0.335142 | 0.031* | |
| H9B | 0.780098 | 0.475481 | 0.261901 | 0.031* | |
| C10 | 0.68089 (18) | 0.5910 (2) | 0.35138 (16) | 0.0220 (4) | |
| C11 | 0.57079 (18) | 0.6073 (2) | 0.29501 (15) | 0.0205 (4) | |
| C12 | 0.5379 (2) | 0.4598 (3) | 0.25045 (17) | 0.0267 (5) | |
| H12A | 0.475360 | 0.471934 | 0.206043 | 0.040* | |
| H12B | 0.518810 | 0.394491 | 0.301058 | 0.040* | |
| H12C | 0.599259 | 0.421289 | 0.216544 | 0.040* | |
| C13 | 0.58615 (19) | 0.7181 (3) | 0.21267 (16) | 0.0247 (5) | |
| H13A | 0.519863 | 0.717802 | 0.170516 | 0.030* | |
| H13B | 0.593196 | 0.813491 | 0.241059 | 0.030* | |
| C14 | 0.68645 (19) | 0.6904 (3) | 0.15136 (17) | 0.0278 (5) | |
| H14A | 0.676936 | 0.599652 | 0.117096 | 0.033* | |
| H14B | 0.692363 | 0.766606 | 0.103719 | 0.033* | |
| C15 | 0.69011 (18) | 0.5926 (2) | 0.44767 (16) | 0.0242 (5) | |
| H15 | 0.760872 | 0.583827 | 0.476350 | 0.029* | |
| C16 | 0.59494 (18) | 0.6076 (3) | 0.51323 (15) | 0.0249 (5) | |
| H16A | 0.596925 | 0.703036 | 0.542050 | 0.030* | |
| H16B | 0.603350 | 0.537672 | 0.565224 | 0.030* | |
| C17 | 0.48277 (18) | 0.5853 (2) | 0.46075 (15) | 0.0205 (4) | |
| H17 | 0.471506 | 0.481913 | 0.449347 | 0.025* | |
| C18 | 0.47990 (17) | 0.6643 (2) | 0.36225 (15) | 0.0195 (4) | |
| H18 | 0.498642 | 0.765154 | 0.376379 | 0.023* | |
| C19 | 0.36285 (18) | 0.6654 (3) | 0.31454 (15) | 0.0241 (5) | |
| H19A | 0.344502 | 0.568507 | 0.292694 | 0.029* | |
| H19B | 0.362694 | 0.727231 | 0.257918 | 0.029* | |
| C20 | 0.27255 (18) | 0.7178 (3) | 0.38188 (16) | 0.0237 (5) | |
| H20A | 0.285173 | 0.818564 | 0.397559 | 0.028* | |
| H20B | 0.200528 | 0.709896 | 0.348451 | 0.028* | |
| C21 | 0.27233 (17) | 0.6294 (2) | 0.47595 (15) | 0.0199 (4) | |
| C22 | 0.2384 (2) | 0.4731 (2) | 0.45499 (18) | 0.0269 (5) | |
| H22A | 0.166143 | 0.471404 | 0.423254 | 0.040* | |
| H22B | 0.236660 | 0.420533 | 0.514769 | 0.040* | |
| H22C | 0.291140 | 0.429430 | 0.413806 | 0.040* | |
| C23 | 0.39003 (17) | 0.6415 (2) | 0.52227 (14) | 0.0196 (4) | |
| H23 | 0.404155 | 0.744866 | 0.531215 | 0.024* | |
| C24 | 0.3794 (2) | 0.5788 (3) | 0.62369 (16) | 0.0272 (5) | |
| H24A | 0.436235 | 0.617339 | 0.668192 | 0.033* | |
| H24B | 0.385290 | 0.474515 | 0.622739 | 0.033* | |
| C25 | 0.26318 (19) | 0.6266 (3) | 0.65246 (16) | 0.0266 (5) | |
| H25A | 0.268795 | 0.698477 | 0.703457 | 0.032* | |
| H25B | 0.221731 | 0.544824 | 0.675685 | 0.032* | |
| C26 | 0.20397 (17) | 0.6915 (2) | 0.55966 (15) | 0.0210 (4) | |
| H26 | 0.216305 | 0.795963 | 0.561267 | 0.025* | |
| C27 | 0.07807 (18) | 0.6667 (3) | 0.55763 (15) | 0.0251 (5) | |
| H27 | 0.065026 | 0.562329 | 0.557622 | 0.030* | |
| C28 | 0.0200 (2) | 0.7293 (3) | 0.46669 (18) | 0.0342 (6) | |
| H28A | −0.058932 | 0.724501 | 0.472814 | 0.051* | |
| H28B | 0.040410 | 0.674760 | 0.411099 | 0.051* | |
| H28C | 0.041967 | 0.828039 | 0.459043 | 0.051* | |
| C29 | 0.02759 (19) | 0.7298 (3) | 0.64897 (17) | 0.0295 (5) | |
| H29A | 0.076544 | 0.707596 | 0.704403 | 0.035* | |
| H29B | 0.024675 | 0.833916 | 0.642601 | 0.035* | |
| C30 | −0.08842 (19) | 0.6749 (3) | 0.66924 (16) | 0.0274 (5) | |
| H30A | −0.139634 | 0.705361 | 0.617273 | 0.033* | |
| H30B | −0.087729 | 0.570343 | 0.670378 | 0.033* | |
| C31 | −0.1289 (2) | 0.7309 (3) | 0.76532 (18) | 0.0355 (6) | |
| H31A | −0.117039 | 0.834280 | 0.767913 | 0.043* | |
| H31B | −0.083762 | 0.687938 | 0.817400 | 0.043* | |
| C32 | −0.2505 (2) | 0.7007 (3) | 0.78366 (17) | 0.0302 (5) | |
| H32 | −0.295137 | 0.747125 | 0.731650 | 0.036* | |
| C33 | −0.2788 (3) | 0.5422 (3) | 0.7824 (2) | 0.0433 (7) | |
| H33A | −0.262037 | 0.501912 | 0.720684 | 0.065* | |
| H33B | −0.356401 | 0.530157 | 0.793139 | 0.065* | |
| H33C | −0.236003 | 0.493674 | 0.832650 | 0.065* | |
| C34 | −0.2821 (3) | 0.7685 (4) | 0.8787 (2) | 0.0544 (9) | |
| H34A | −0.266938 | 0.870126 | 0.877199 | 0.082* | |
| H34B | −0.239742 | 0.724853 | 0.931153 | 0.082* | |
| H34C | −0.359790 | 0.753511 | 0.887713 | 0.082* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| O1 | 0.0290 (9) | 0.0269 (9) | 0.0393 (10) | 0.0008 (7) | 0.0154 (7) | −0.0006 (7) |
| O2 | 0.0526 (13) | 0.0282 (10) | 0.0772 (16) | 0.0055 (9) | 0.0329 (11) | 0.0059 (10) |
| C1 | 0.0320 (14) | 0.0523 (17) | 0.0305 (13) | −0.0027 (12) | 0.0073 (11) | 0.0017 (12) |
| C2 | 0.0344 (13) | 0.0339 (13) | 0.0269 (12) | −0.0017 (11) | 0.0082 (10) | 0.0022 (10) |
| C3 | 0.0293 (12) | 0.0445 (15) | 0.0253 (11) | −0.0018 (11) | 0.0048 (9) | 0.0024 (11) |
| C4 | 0.0330 (13) | 0.0312 (13) | 0.0287 (12) | −0.0034 (10) | 0.0087 (10) | 0.0065 (10) |
| C5 | 0.0315 (13) | 0.0260 (12) | 0.0339 (13) | −0.0021 (10) | 0.0053 (10) | 0.0026 (10) |
| C6 | 0.0329 (13) | 0.0294 (13) | 0.0492 (15) | 0.0020 (11) | 0.0183 (11) | 0.0053 (12) |
| C7 | 0.0314 (13) | 0.0293 (13) | 0.0406 (14) | −0.0007 (10) | 0.0104 (11) | 0.0020 (11) |
| C8 | 0.0262 (11) | 0.0255 (11) | 0.0309 (12) | 0.0001 (10) | 0.0114 (9) | −0.0057 (10) |
| C9 | 0.0222 (11) | 0.0281 (12) | 0.0281 (11) | 0.0011 (9) | 0.0028 (9) | −0.0035 (9) |
| C10 | 0.0224 (11) | 0.0172 (10) | 0.0265 (11) | 0.0008 (8) | 0.0039 (8) | −0.0032 (8) |
| C11 | 0.0219 (10) | 0.0204 (11) | 0.0195 (10) | −0.0006 (8) | 0.0029 (8) | −0.0028 (8) |
| C12 | 0.0285 (12) | 0.0244 (11) | 0.0275 (12) | −0.0006 (9) | 0.0035 (9) | −0.0071 (9) |
| C13 | 0.0279 (11) | 0.0252 (12) | 0.0215 (10) | 0.0042 (9) | 0.0057 (9) | −0.0004 (9) |
| C14 | 0.0328 (12) | 0.0281 (12) | 0.0231 (11) | 0.0027 (10) | 0.0097 (9) | −0.0008 (9) |
| C15 | 0.0196 (10) | 0.0251 (11) | 0.0279 (11) | 0.0010 (9) | −0.0007 (8) | −0.0013 (9) |
| C16 | 0.0249 (11) | 0.0302 (12) | 0.0197 (10) | 0.0039 (10) | 0.0012 (8) | −0.0003 (9) |
| C17 | 0.0223 (10) | 0.0193 (10) | 0.0201 (10) | 0.0020 (8) | 0.0031 (8) | −0.0001 (8) |
| C18 | 0.0220 (10) | 0.0184 (10) | 0.0183 (10) | 0.0003 (8) | 0.0030 (8) | −0.0018 (8) |
| C19 | 0.0237 (11) | 0.0301 (12) | 0.0185 (10) | 0.0015 (9) | 0.0020 (8) | 0.0010 (9) |
| C20 | 0.0214 (10) | 0.0275 (12) | 0.0222 (10) | 0.0025 (9) | 0.0014 (8) | 0.0010 (9) |
| C21 | 0.0201 (10) | 0.0202 (10) | 0.0196 (10) | 0.0004 (8) | 0.0018 (8) | −0.0010 (8) |
| C22 | 0.0282 (12) | 0.0242 (12) | 0.0289 (12) | −0.0014 (9) | 0.0077 (9) | −0.0052 (9) |
| C23 | 0.0218 (10) | 0.0189 (10) | 0.0182 (10) | 0.0024 (8) | 0.0021 (8) | 0.0001 (8) |
| C24 | 0.0290 (12) | 0.0309 (12) | 0.0218 (11) | 0.0071 (10) | 0.0040 (9) | 0.0045 (9) |
| C25 | 0.0296 (12) | 0.0307 (12) | 0.0198 (10) | 0.0046 (10) | 0.0046 (9) | 0.0023 (9) |
| C26 | 0.0231 (10) | 0.0205 (10) | 0.0197 (10) | 0.0017 (9) | 0.0021 (8) | −0.0011 (8) |
| C27 | 0.0236 (11) | 0.0284 (12) | 0.0237 (11) | −0.0004 (9) | 0.0054 (8) | −0.0043 (9) |
| C28 | 0.0238 (12) | 0.0484 (16) | 0.0306 (13) | 0.0023 (11) | 0.0035 (9) | −0.0017 (11) |
| C29 | 0.0250 (11) | 0.0375 (14) | 0.0265 (12) | 0.0007 (10) | 0.0060 (9) | −0.0080 (10) |
| C30 | 0.0272 (11) | 0.0301 (12) | 0.0252 (11) | 0.0006 (10) | 0.0061 (9) | −0.0047 (10) |
| C31 | 0.0302 (13) | 0.0496 (16) | 0.0273 (12) | −0.0016 (11) | 0.0078 (10) | −0.0125 (11) |
| C32 | 0.0317 (12) | 0.0334 (13) | 0.0262 (11) | 0.0029 (10) | 0.0095 (9) | 0.0004 (10) |
| C33 | 0.0514 (17) | 0.0420 (16) | 0.0376 (15) | −0.0039 (13) | 0.0157 (13) | −0.0029 (12) |
| C34 | 0.0498 (18) | 0.061 (2) | 0.0543 (19) | −0.0098 (15) | 0.0281 (15) | −0.0249 (16) |
Geometric parameters (Å, º)
| O1—C7 | 1.348 (3) | C18—C19 | 1.534 (3) |
| O1—C8 | 1.458 (2) | C18—H18 | 0.9800 |
| O2—C7 | 1.196 (3) | C19—C20 | 1.539 (3) |
| C1—C2 | 1.510 (4) | C19—H19A | 0.9700 |
| C1—H1A | 0.9600 | C19—H19B | 0.9700 |
| C1—H1B | 0.9600 | C20—C21 | 1.536 (3) |
| C1—H1C | 0.9600 | C20—H20A | 0.9700 |
| C2—C3 | 1.523 (3) | C20—H20B | 0.9700 |
| C2—H2A | 0.9700 | C21—C22 | 1.530 (3) |
| C2—H2B | 0.9700 | C21—C23 | 1.538 (3) |
| C3—C4 | 1.512 (4) | C21—C26 | 1.557 (3) |
| C3—H3A | 0.9700 | C22—H22A | 0.9600 |
| C3—H3B | 0.9700 | C22—H22B | 0.9600 |
| C4—C5 | 1.530 (3) | C22—H22C | 0.9600 |
| C4—H4A | 0.9700 | C23—C24 | 1.527 (3) |
| C4—H4B | 0.9700 | C23—H23 | 0.9800 |
| C5—C6 | 1.516 (3) | C24—C25 | 1.538 (3) |
| C5—H5A | 0.9700 | C24—H24A | 0.9700 |
| C5—H5B | 0.9700 | C24—H24B | 0.9700 |
| C6—C7 | 1.510 (3) | C25—C26 | 1.563 (3) |
| C6—H6A | 0.9700 | C25—H25A | 0.9700 |
| C6—H6B | 0.9700 | C25—H25B | 0.9700 |
| C8—C14 | 1.513 (3) | C26—C27 | 1.535 (3) |
| C8—C9 | 1.518 (3) | C26—H26 | 0.9800 |
| C8—H8 | 0.9800 | C27—C28 | 1.528 (3) |
| C9—C10 | 1.519 (3) | C27—C29 | 1.539 (3) |
| C9—H9A | 0.9700 | C27—H27 | 0.9800 |
| C9—H9B | 0.9700 | C28—H28A | 0.9600 |
| C10—C15 | 1.330 (3) | C28—H28B | 0.9600 |
| C10—C11 | 1.520 (3) | C28—H28C | 0.9600 |
| C11—C12 | 1.545 (3) | C29—C30 | 1.525 (3) |
| C11—C13 | 1.549 (3) | C29—H29A | 0.9700 |
| C11—C18 | 1.558 (3) | C29—H29B | 0.9700 |
| C12—H12A | 0.9600 | C30—C31 | 1.523 (3) |
| C12—H12B | 0.9600 | C30—H30A | 0.9700 |
| C12—H12C | 0.9600 | C30—H30B | 0.9700 |
| C13—C14 | 1.526 (3) | C31—C32 | 1.524 (3) |
| C13—H13A | 0.9700 | C31—H31A | 0.9700 |
| C13—H13B | 0.9700 | C31—H31B | 0.9700 |
| C14—H14A | 0.9700 | C32—C33 | 1.509 (4) |
| C14—H14B | 0.9700 | C32—C34 | 1.518 (4) |
| C15—C16 | 1.497 (3) | C32—H32 | 0.9800 |
| C15—H15 | 0.9300 | C33—H33A | 0.9600 |
| C16—C17 | 1.523 (3) | C33—H33B | 0.9600 |
| C16—H16A | 0.9700 | C33—H33C | 0.9600 |
| C16—H16B | 0.9700 | C34—H34A | 0.9600 |
| C17—C23 | 1.524 (3) | C34—H34B | 0.9600 |
| C17—C18 | 1.544 (3) | C34—H34C | 0.9600 |
| C17—H17 | 0.9800 | ||
| O2···C14 | 3.277 (2) | H4B···H9Bi | 2.56 |
| O2···H5A | 2.83 | H5A···H33Cvii | 2.45 |
| O2···H5B | 2.73 | H5B···H6Ai | 2.51 |
| O2···H8 | 2.43 | H8···H13B | 2.56 |
| O2···H14B | 2.84 | H9A···H15 | 2.26 |
| O2···H4Ai | 2.75 | H9A···H28Av | 2.58 |
| C20···C28 | 3.309 (2) | H9B···H12C | 2.30 |
| C22···C28 | 3.556 (2) | H9B···H14A | 2.58 |
| C3···H6B | 2.86 | H12A···H13A | 2.40 |
| C6···H3A | 2.81 | H12A···H19A | 2.21 |
| C7···H14B | 2.97 | H12B···H17 | 2.30 |
| C9···H12C | 2.78 | H12C···H14A | 2.37 |
| C12···H17 | 2.90 | H13A···H19B | 2.29 |
| C12···H9B | 2.92 | H13B···H18 | 2.27 |
| C12···H14A | 2.85 | H13B···H24Bvii | 2.41 |
| C12···H19A | 2.63 | H14B···H34Bviii | 2.58 |
| C13···H19B | 2.79 | H15···H28Av | 2.54 |
| C14···H12C | 2.87 | H15···H30Av | 2.51 |
| C15···H18 | 2.95 | H16A···H18 | 2.60 |
| C15···H26ii | 2.98 | H16A···H23 | 2.36 |
| C16···H24A | 2.93 | H16A···H22Cvii | 2.56 |
| C17···H12B | 2.87 | H16B···H20Aii | 2.48 |
| C17···H22C | 2.78 | H17···H22C | 2.26 |
| C19···H22C | 2.74 | H18···H23 | 2.47 |
| C19···H12A | 2.73 | H18···H24Bvii | 2.39 |
| C19···H13A | 2.84 | H19A···H22C | 2.23 |
| C20···H28B | 2.87 | H20A···H23 | 2.39 |
| C21···H28B | 2.93 | H20A···H26 | 2.45 |
| C22···H19A | 2.77 | H20A···H33Aix | 2.37 |
| C22···H24B | 2.86 | H20B···H22A | 2.48 |
| C22···H30Aiii | 2.91 | H20B···H28B | 2.17 |
| C22···H27 | 2.70 | H22A···H27 | 2.41 |
| C22···H17 | 2.82 | H22A···H28B | 2.42 |
| C24···H16B | 2.88 | H22A···H30Aiii | 2.55 |
| C24···H22B | 2.68 | H22B···H24B | 2.34 |
| C25···H22B | 2.71 | H22B···H25B | 2.52 |
| C25···H29A | 2.51 | H22B···H27 | 2.54 |
| C27···H22A | 2.83 | H23···H26 | 2.37 |
| C28···H20B | 2.78 | H25A···H29A | 2.32 |
| C28···H30A | 2.90 | H25B···H27 | 2.45 |
| C29···H25B | 2.91 | H25B···H29A | 2.36 |
| C30···H28A | 2.79 | H26···H28C | 2.50 |
| C30···H33A | 2.75 | H27···H30B | 2.46 |
| C33···H30B | 2.84 | H27···H28Ciii | 2.53 |
| H1A···H33Biv | 2.49 | H28A···H30A | 2.26 |
| H1B···H3A | 2.55 | H28C···H29B | 2.55 |
| H1B···H34Cii | 2.58 | H29A···H31B | 2.54 |
| H1C···H3B | 2.59 | H29B···H28C | 2.55 |
| H1C···H13Av | 2.51 | H29B···H31A | 2.48 |
| H2A···H4A | 2.49 | H30A···H32 | 2.53 |
| H2A···H14Bvi | 2.52 | H30B···H33A | 2.33 |
| H2B···H4B | 2.55 | H31A···H34A | 2.42 |
| H2B···H12Ci | 2.54 | H31B···H33C | 2.59 |
| H3A···H6B | 2.31 | H31B···H34B | 2.52 |
| H3A···H34Aii | 2.52 | H33B···H34C | 2.45 |
| H3B···H5A | 2.58 | H33C···H34B | 2.54 |
| H4A···H6A | 2.46 | ||
| C7—O1—C8 | 117.58 (19) | C17—C18—H18 | 106.3 |
| C2—C1—H1A | 109.5 | C11—C18—H18 | 106.3 |
| C2—C1—H1B | 109.5 | C18—C19—C20 | 113.82 (17) |
| H1A—C1—H1B | 109.5 | C18—C19—H19A | 108.8 |
| C2—C1—H1C | 109.5 | C20—C19—H19A | 108.8 |
| H1A—C1—H1C | 109.5 | C18—C19—H19B | 108.8 |
| H1B—C1—H1C | 109.5 | C20—C19—H19B | 108.8 |
| C1—C2—C3 | 113.9 (2) | H19A—C19—H19B | 107.7 |
| C1—C2—H2A | 108.8 | C21—C20—C19 | 111.60 (18) |
| C3—C2—H2A | 108.8 | C21—C20—H20A | 109.3 |
| C1—C2—H2B | 108.8 | C19—C20—H20A | 109.3 |
| C3—C2—H2B | 108.8 | C21—C20—H20B | 109.3 |
| H2A—C2—H2B | 107.7 | C19—C20—H20B | 109.3 |
| C4—C3—C2 | 113.1 (2) | H20A—C20—H20B | 108.0 |
| C4—C3—H3A | 109.0 | C22—C21—C20 | 110.77 (18) |
| C2—C3—H3A | 109.0 | C22—C21—C23 | 112.56 (18) |
| C4—C3—H3B | 109.0 | C20—C21—C23 | 106.26 (17) |
| C2—C3—H3B | 109.0 | C22—C21—C26 | 110.19 (18) |
| H3A—C3—H3B | 107.8 | C20—C21—C26 | 116.73 (18) |
| C3—C4—C5 | 115.3 (2) | C23—C21—C26 | 99.87 (16) |
| C3—C4—H4A | 108.5 | C21—C22—H22A | 109.5 |
| C5—C4—H4A | 108.5 | C21—C22—H22B | 109.5 |
| C3—C4—H4B | 108.5 | H22A—C22—H22B | 109.5 |
| C5—C4—H4B | 108.5 | C21—C22—H22C | 109.5 |
| H4A—C4—H4B | 107.5 | H22A—C22—H22C | 109.5 |
| C6—C5—C4 | 112.9 (2) | H22B—C22—H22C | 109.5 |
| C6—C5—H5A | 109.0 | C17—C23—C24 | 118.16 (18) |
| C4—C5—H5A | 109.0 | C17—C23—C21 | 115.40 (17) |
| C6—C5—H5B | 109.0 | C24—C23—C21 | 104.12 (17) |
| C4—C5—H5B | 109.0 | C17—C23—H23 | 106.1 |
| H5A—C5—H5B | 107.8 | C24—C23—H23 | 106.1 |
| C7—C6—C5 | 113.7 (2) | C21—C23—H23 | 106.1 |
| C7—C6—H6A | 108.8 | C23—C24—C25 | 103.79 (18) |
| C5—C6—H6A | 108.8 | C23—C24—H24A | 111.0 |
| C7—C6—H6B | 108.8 | C25—C24—H24A | 111.0 |
| C5—C6—H6B | 108.8 | C23—C24—H24B | 111.0 |
| H6A—C6—H6B | 107.7 | C25—C24—H24B | 111.0 |
| O2—C7—O1 | 123.8 (2) | H24A—C24—H24B | 109.0 |
| O2—C7—C6 | 125.7 (2) | C24—C25—C26 | 106.87 (17) |
| O1—C7—C6 | 110.5 (2) | C24—C25—H25A | 110.3 |
| O1—C8—C14 | 110.61 (18) | C26—C25—H25A | 110.3 |
| O1—C8—C9 | 106.15 (18) | C24—C25—H25B | 110.3 |
| C14—C8—C9 | 110.85 (19) | C26—C25—H25B | 110.3 |
| O1—C8—H8 | 109.7 | H25A—C25—H25B | 108.6 |
| C14—C8—H8 | 109.7 | C27—C26—C21 | 118.94 (17) |
| C9—C8—H8 | 109.7 | C27—C26—C25 | 112.11 (18) |
| C8—C9—C10 | 111.26 (19) | C21—C26—C25 | 103.22 (17) |
| C8—C9—H9A | 109.4 | C27—C26—H26 | 107.3 |
| C10—C9—H9A | 109.4 | C21—C26—H26 | 107.3 |
| C8—C9—H9B | 109.4 | C25—C26—H26 | 107.3 |
| C10—C9—H9B | 109.4 | C28—C27—C26 | 112.24 (18) |
| H9A—C9—H9B | 108.0 | C28—C27—C29 | 110.25 (19) |
| C15—C10—C9 | 120.0 (2) | C26—C27—C29 | 110.60 (18) |
| C15—C10—C11 | 123.19 (19) | C28—C27—H27 | 107.9 |
| C9—C10—C11 | 116.77 (18) | C26—C27—H27 | 107.9 |
| C10—C11—C12 | 108.74 (18) | C29—C27—H27 | 107.9 |
| C10—C11—C13 | 108.31 (17) | C27—C28—H28A | 109.5 |
| C12—C11—C13 | 109.31 (18) | C27—C28—H28B | 109.5 |
| C10—C11—C18 | 110.47 (17) | H28A—C28—H28B | 109.5 |
| C12—C11—C18 | 111.26 (18) | C27—C28—H28C | 109.5 |
| C13—C11—C18 | 108.70 (17) | H28A—C28—H28C | 109.5 |
| C11—C12—H12A | 109.5 | H28B—C28—H28C | 109.5 |
| C11—C12—H12B | 109.5 | C30—C29—C27 | 114.8 (2) |
| H12A—C12—H12B | 109.5 | C30—C29—H29A | 108.6 |
| C11—C12—H12C | 109.5 | C27—C29—H29A | 108.6 |
| H12A—C12—H12C | 109.5 | C30—C29—H29B | 108.6 |
| H12B—C12—H12C | 109.5 | C27—C29—H29B | 108.6 |
| C14—C13—C11 | 114.64 (18) | H29A—C29—H29B | 107.5 |
| C14—C13—H13A | 108.6 | C31—C30—C29 | 112.0 (2) |
| C11—C13—H13A | 108.6 | C31—C30—H30A | 109.2 |
| C14—C13—H13B | 108.6 | C29—C30—H30A | 109.2 |
| C11—C13—H13B | 108.6 | C31—C30—H30B | 109.2 |
| H13A—C13—H13B | 107.6 | C29—C30—H30B | 109.2 |
| C8—C14—C13 | 110.22 (18) | H30A—C30—H30B | 107.9 |
| C8—C14—H14A | 109.6 | C30—C31—C32 | 115.3 (2) |
| C13—C14—H14A | 109.6 | C30—C31—H31A | 108.5 |
| C8—C14—H14B | 109.6 | C32—C31—H31A | 108.5 |
| C13—C14—H14B | 109.6 | C30—C31—H31B | 108.5 |
| H14A—C14—H14B | 108.1 | C32—C31—H31B | 108.5 |
| C10—C15—C16 | 124.8 (2) | H31A—C31—H31B | 107.5 |
| C10—C15—H15 | 117.6 | C33—C32—C34 | 110.4 (2) |
| C16—C15—H15 | 117.6 | C33—C32—C31 | 113.3 (2) |
| C15—C16—C17 | 112.80 (18) | C34—C32—C31 | 110.2 (2) |
| C15—C16—H16A | 109.0 | C33—C32—H32 | 107.6 |
| C17—C16—H16A | 109.0 | C34—C32—H32 | 107.6 |
| C15—C16—H16B | 109.0 | C31—C32—H32 | 107.6 |
| C17—C16—H16B | 109.0 | C32—C33—H33A | 109.5 |
| H16A—C16—H16B | 107.8 | C32—C33—H33B | 109.5 |
| C16—C17—C23 | 110.24 (17) | H33A—C33—H33B | 109.5 |
| C16—C17—C18 | 110.06 (17) | C32—C33—H33C | 109.5 |
| C23—C17—C18 | 109.77 (17) | H33A—C33—H33C | 109.5 |
| C16—C17—H17 | 108.9 | H33B—C33—H33C | 109.5 |
| C23—C17—H17 | 108.9 | C32—C34—H34A | 109.5 |
| C18—C17—H17 | 108.9 | C32—C34—H34B | 109.5 |
| C19—C18—C17 | 111.67 (17) | H34A—C34—H34B | 109.5 |
| C19—C18—C11 | 113.81 (17) | C32—C34—H34C | 109.5 |
| C17—C18—C11 | 111.91 (17) | H34A—C34—H34C | 109.5 |
| C19—C18—H18 | 106.3 | H34B—C34—H34C | 109.5 |
| C1—C2—C3—C4 | −177.7 (2) | C12—C11—C18—C17 | 76.1 (2) |
| C2—C3—C4—C5 | 178.5 (2) | C13—C11—C18—C17 | −163.47 (18) |
| C3—C4—C5—C6 | −65.4 (3) | C17—C18—C19—C20 | 50.5 (2) |
| C4—C5—C6—C7 | −173.1 (2) | C11—C18—C19—C20 | 178.42 (19) |
| C8—O1—C7—O2 | 0.5 (4) | C18—C19—C20—C21 | −55.4 (3) |
| C8—O1—C7—C6 | −179.5 (2) | C19—C20—C21—C22 | −66.0 (2) |
| C5—C6—C7—O2 | −5.8 (4) | C19—C20—C21—C23 | 56.5 (2) |
| C5—C6—C7—O1 | 174.2 (2) | C19—C20—C21—C26 | 166.82 (18) |
| C7—O1—C8—C14 | 85.5 (3) | C16—C17—C23—C24 | −57.6 (3) |
| C7—O1—C8—C9 | −154.2 (2) | C18—C17—C23—C24 | −179.04 (19) |
| O1—C8—C9—C10 | −175.13 (18) | C16—C17—C23—C21 | 178.27 (18) |
| C14—C8—C9—C10 | −55.0 (2) | C18—C17—C23—C21 | 56.9 (2) |
| C8—C9—C10—C15 | −129.1 (2) | C22—C21—C23—C17 | 61.6 (2) |
| C8—C9—C10—C11 | 51.9 (3) | C20—C21—C23—C17 | −59.8 (2) |
| C15—C10—C11—C12 | −107.8 (2) | C26—C21—C23—C17 | 178.40 (18) |
| C9—C10—C11—C12 | 71.2 (2) | C22—C21—C23—C24 | −69.6 (2) |
| C15—C10—C11—C13 | 133.5 (2) | C20—C21—C23—C24 | 168.99 (18) |
| C9—C10—C11—C13 | −47.5 (2) | C26—C21—C23—C24 | 47.2 (2) |
| C15—C10—C11—C18 | 14.6 (3) | C17—C23—C24—C25 | −165.15 (19) |
| C9—C10—C11—C18 | −166.45 (19) | C21—C23—C24—C25 | −35.6 (2) |
| C10—C11—C13—C14 | 49.6 (2) | C23—C24—C25—C26 | 9.7 (3) |
| C12—C11—C13—C14 | −68.7 (2) | C22—C21—C26—C27 | −46.1 (3) |
| C18—C11—C13—C14 | 169.67 (18) | C20—C21—C26—C27 | 81.3 (3) |
| O1—C8—C14—C13 | 175.0 (2) | C23—C21—C26—C27 | −164.72 (19) |
| C9—C8—C14—C13 | 57.6 (2) | C22—C21—C26—C25 | 78.7 (2) |
| C11—C13—C14—C8 | −56.5 (3) | C20—C21—C26—C25 | −153.80 (19) |
| C9—C10—C15—C16 | −177.8 (2) | C23—C21—C26—C25 | −39.9 (2) |
| C11—C10—C15—C16 | 1.2 (4) | C24—C25—C26—C27 | 148.31 (19) |
| C10—C15—C16—C17 | 13.7 (3) | C24—C25—C26—C21 | 19.1 (2) |
| C15—C16—C17—C23 | −164.41 (19) | C21—C26—C27—C28 | −59.3 (3) |
| C15—C16—C17—C18 | −43.2 (2) | C25—C26—C27—C28 | −179.7 (2) |
| C16—C17—C18—C19 | −170.74 (18) | C21—C26—C27—C29 | 177.2 (2) |
| C23—C17—C18—C19 | −49.2 (2) | C25—C26—C27—C29 | 56.7 (3) |
| C16—C17—C18—C11 | 60.4 (2) | C28—C27—C29—C30 | 72.1 (3) |
| C23—C17—C18—C11 | −178.14 (17) | C26—C27—C29—C30 | −163.2 (2) |
| C10—C11—C18—C19 | −172.54 (18) | C27—C29—C30—C31 | 174.7 (2) |
| C12—C11—C18—C19 | −51.7 (2) | C29—C30—C31—C32 | 170.8 (2) |
| C13—C11—C18—C19 | 68.8 (2) | C30—C31—C32—C33 | 58.8 (3) |
| C10—C11—C18—C17 | −44.8 (2) | C30—C31—C32—C34 | −176.9 (3) |
Symmetry codes: (i) −x+2, y+1/2, −z; (ii) −x+1, y−1/2, −z+1; (iii) −x, y−1/2, −z+1; (iv) x+2, y, z−1; (v) x+1, y, z; (vi) −x+2, y−1/2, −z; (vii) −x+1, y+1/2, −z+1; (viii) x+1, y, z−1; (ix) −x, y+1/2, −z+1.
Funding Statement
This work was funded by Hacettepe University Scientific Research Project Unit grant 013 D04 602 004.
References
- Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.
- Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bush, S. F., Levin, H. & Levin, I. W. (1980). Chem. Phys. Lipids, 27, 101–111.
- Çalişkan, B., Aras, E., Aşik, B., Büyüm, M. & Birey, M. (2004). Radiat. Eff. Defects Solids, 159, 1–5.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
- Di Vizio, D., Solomon, K. R. & Freeman, M. R. (2008). Tumori J. 94, 633–639. [DOI] [PubMed]
- Faiman, R., Larsson, K. & Long, D. A. (1976). J. Raman Spectrosc. 5, 3–7.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.
- Goheen, S. C., Lis, L. J. & Kauffman, J. W. (1977). Chem. Phys. Lipids, 20, 253–262.
- Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. [DOI] [PMC free article] [PubMed]
- Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.
- Ikonen, E. (2008). Nat. Rev. Mol. Cell Biol. 9, 125–138. [DOI] [PubMed]
- Krzyminiewski, R., Hafez, A. M., Szyczewski, A. & Pietrzak, J. (1987). J. Mol. Struct. 160, 127–133.
- Krzyminiewski, R., Pietrzak, J. & Konopka, R. (1990). J. Mol. Struct. 240, 133–140.
- Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587. [DOI] [PMC free article] [PubMed]
- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
- Rexroad, H. N. & Gordy, W. (1959). Proc. Natl Acad. Sci. USA, 45, 256–269. [DOI] [PMC free article] [PubMed]
- Sayin, U., Can, C., Türkkan, E., Dereli, Ö., Ozmen, A. & Yüksel, H. (2013). Acta Phys. Pol. A, 124, 70–73.
- Sayin, U., Yüksel, H. & Birey, M. (2011). Radiat. Phys. Chem. 80, 1203–1207.
- Sevilla, C. L., Becker, D. & Sevilla, M. D. (1986). J. Phys. Chem. 90, 2963–2968.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Smaller, B. & Matheson, M. S. (1958). J. Chem. Phys. 28, 1169–1178.
- Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
- Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
- Szyczewski, A. (1996). Appl. Radiat. Isot. 47, 1675–1681. [DOI] [PubMed]
- Szyczewski, A., Endeward, B. & Möbius, K. (1998). Appl. Radiat. Isot. 49, 59–65. [DOI] [PubMed]
- Szyczewski, A. & Möbius, K. (1994). J. Mol. Struct. 318, 87–93.
- Szyczewski, A., Pietrzak, J. & Möbius, K. (2005). Acta Phys. Pol. A, 108, 119–126.
- Turner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249–4255. [DOI] [PubMed]
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.
- Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738. [DOI] [PubMed]
- Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989021005661/mw2174sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021005661/mw2174Isup2.hkl
CCDC reference: 2087356
Additional supporting information: crystallographic information; 3D view; checkCIF report









