Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Jun 4;77(Pt 7):686–691. doi: 10.1107/S2056989021005661

Crystal structure, Hirshfeld surface analysis, inter­action energy, and DFT studies of cholesteryl hepta­noate

Nurcan Akduran a,*, Tuncay Karakurt b, Tuncer Hökelek c
PMCID: PMC8382062  PMID: 34513011

The title compound consists of cholesteryl and hepta­noate units, in which the six-membered rings adopt chair and twisted-boat conformations, while the five-membered ring adopts an envelope conformation. In the crystal, the mol­ecules are aligned along the a-axis direction and stacked along the b-axis direction.

Keywords: crystal structure, cholester­yl, cholesterol

Abstract

The title compound, C34H58O2, consists of cholesteryl and hepta­noate units, in which the six-membered rings adopt chair and twisted-boat conformations while the five-membered ring adopts an envelope conformation. In the crystal, the mol­ecules are aligned along the a-axis direction and stacked along the b-axis direction. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (92.4%) and H⋯O/O⋯H (6.1%) inter­actions. van der Waals inter­actions are the dominant inter­actions in the crystal packing. Density functional theory (DFT) optimized structures at the B3LYP/ 6–31 G(d) level are compared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap, and the mol­ecular electrostatic potential (MEP) of the compound was investigated.

Chemical context  

Cholesterol is an important constituent of cell membranes with a rigid ring system and a short branched hydro­carbon tail. It modulates membrane fluidity over the range of physiological temperatures and also reduces the permeability of the plasma membrane to protons and sodium ions. In the liver, it is converted to bile, which is then stored in the gallbladder. It functions in intra­cellular transport, cell signaling and nerve conduction within the cell membrane and is an important precursor in several biochemical pathways within the cells, in the synthesis of vitamin D and steroid hormones, including the adrenal gland hormones cortisol and aldosterone as well as sex hormones progesterone, oestrogens, and testosterone, and their derivatives. Cholesteryl esters are formed between the carboxyl­ate group of a fatty acid and the hydroxyl group of cholesterol and have a lower solubility in water than cholesterol. These esters are also important in many biological mechanisms and numerous experimental investigations have been performed on cholesterol derivatives (Faiman et al., 1976; Goheen et al., 1977; Bush et al., 1980; Di Vizio et al., 2008; Ikonen, 2008). Thus, due to the importance of cholesterol and its esters, we report herein the crystallization, the mol­ecular and crystal structures along with the Hirshfeld surface analysis and the inter­action energy and DFT studies of the title compound, (I), whose magnetic properties were previously studied by electron paramagnetic resonance (EPR), (Sayin et al., 2013).graphic file with name e-77-00686-scheme1.jpg

Structural commentary  

As shown in Fig. 1, the title compound, (I), consists of cholesteryl and hepta­noate units. A puckering analysis (Cremer & Pople, 1975) of the six-membered A (C8–C11/C13/C14), B (C10/C11/C15–C18), C (C17–C21/C23) and the five-membered D (C23–C26/C21) rings gave the parameters [Q T = 0.5403 (16) Å, θ = 6.86 (18)° and φ = 327.4 (15)°, adopting a chair conformation (for A), Q T = 0.4839 (15) Å, θ = 129.5 (3)° and φ = 328.2 (2)°, adopting a twisted-boat conformation (for B), Q T = 0.5646 (15) Å, θ = 6.44 (14)° and φ = 245.1 (14)°, adopting a chair conformation (for C) and q 2 = 0.4635 (16) Å and φ = 191.7 (2)°, adopting an envelope conformation, where atom C21 is at the flap position and 0.693 (2) Å away from best plane of the remaining atoms (for D)]. The O1—C7 [1.348 (3) Å] and O2—C7 [1.196 (3) Å] bonds in the carboxyl­ate group indicate localized single and double bonds. The O1—C7—O2 [123.8 (2)°] bond angle seems to be increased compared to that present in a free acid [122.2°].

Figure 1.

Figure 1

The asymmetric unit of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Supra­molecular features  

In the crystal, the mol­ecules are aligned along the a-axis direction and stacked along the b-axis direction (Fig. 2).

Figure 2.

Figure 2

A partial packing diagram viewed down the c axis.

Hirshfeld surface analysis  

In order to visualize the inter­molecular inter­actions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) was carried out by using Crystal Explorer 17.5 (Turner et al., 2017). In the HS plotted over d norm (Fig. 3), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016). The bright-red spots indicate their roles as the respective donors and/or acceptors. The overall two-dimensional fingerprint plot, Fig. 4 a, and those delineated into H⋯H, H⋯O/O⋯H and H⋯C/C⋯H contacts (McKinnon et al., 2007) are illustrated in Fig. 4 bd, respectively, together with their relative contributions to the Hirshfeld surface. The most important inter­action is H⋯H (Table 1) contributing 92.4% to the overall crystal packing, which is reflected in Fig. 4 b as widely scattered points of high density due to the large hydrogen content of the mol­ecule with the tip at d e = d i = 1.11 Å. The pair of spikes in the fingerprint plot delineated into H⋯O/O⋯H contacts (Table 1) have a symmetrical distribution of points (6.1% contribution, Fig. 4 c) with the tips at d e + d i = 2.66 Å. In the absence of C—H⋯π inter­actions, the pair of characteristic wings in the fingerprint plot delineated into H⋯C/C⋯H contacts (Table 1, Fig. 4 c, 1.5% contribution) has the tips at d e + d i = 2.89 Å.

Figure 3.

Figure 3

View of the three-dimensional Hirshfeld surface of the title compound plotted over d norm in the range of 0.0196 to 1.7047 a.u.

Figure 4.

Figure 4

The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and those delineated into (b) H⋯H, (c) H⋯O/O⋯H and (d) H⋯C/C⋯H inter­actions. The d i and d e values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface contacts.

Table 1. Selected interatomic distances (Å).

O2⋯H8 2.43 H9A⋯H15 2.26
C9⋯H12C 2.78 H9B⋯H12C 2.30
C12⋯H19A 2.63 H12A⋯H19A 2.21
C13⋯H19B 2.79 H12B⋯H17 2.30
C17⋯H22C 2.78 H12C⋯H14A 2.37
C19⋯H22C 2.74 H13A⋯H19B 2.29
C19⋯H12A 2.73 H13B⋯H18 2.27
C22⋯H19A 2.77 H16A⋯H23 2.36
C22⋯H27 2.70 H17⋯H22C 2.26
C24⋯H22B 2.68 H19A⋯H22C 2.23
C25⋯H22B 2.71 H20B⋯H28B 2.17
C25⋯H29A 2.51 H22B⋯H24B 2.34
C28⋯H20B 2.78 H25A⋯H29A 2.32
C30⋯H28A 2.79 H28A⋯H30A 2.26
C30⋯H33A 2.75 H30B⋯H33A 2.33
H3A⋯H6B 2.31    

The Hirshfeld surface representations with the function d norm plotted onto the surface are shown for the H⋯H and H⋯O/O⋯H inter­actions in Fig. 5 ab, respectively.

Figure 5.

Figure 5

The Hirshfeld surface representations with the function d norm plotted onto the surface for (a) H⋯H and (b) H⋯O/O⋯H inter­actions.

The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H and H⋯O/O⋯H inter­actions suggest that van der Waals inter­actions play the major role in the crystal packing (Hathwar et al., 2015).

Inter­action energy calculations  

The inter­molecular inter­action energies are calculated using the CE–B3LYP/6–31G(d,p) energy model available in Crystal Explorer 17.5 (Turner et al., 2017), where a cluster of mol­ecules is generated by applying crystallographic symmetry operations with respect to a selected central mol­ecule within the radius of 3.8 Å by default (Turner et al., 2014). The total inter­molecular energy (E tot) is the sum of electrostatic (E ele), polarization (E pol), dispersion (E dis) and exchange-repulsion (E rep) energies (Turner et al., 2015) with scale factors of 1.057, 0.740, 0.871 and 0.618, respectively (Mackenzie et al., 2017). The evaluation of the energies indicates that the stabilizations in the title compound are dominated by the dispersion energy contributions.

DFT calculations  

The optimized structure (Fig. 6) of the title compound was generated theoretically via density functional theory (DFT) using standard B3LYP functional and 6–31 G(d) basis-set calculations (Becke, 1993) as implemented in GAUSSIAN 09 (Frisch et al., 2009). The theoretical and experimental results were in good agreement (Table 2). As is common in these studies, there are differences between the observed and calculated values because the former pertain to the solid state while the latter are for an isolated mol­ecule in the gas phase. The correlation graphs based on the calculations of the bond lengths and angles for comparison with the experimental results are shown in Fig. 7 a and b, respectively. The highest-occupied mol­ecular orbital (HOMO), acting as an electron donor, and the lowest-unoccupied mol­ecular orbital (LUMO), acting as an electron acceptor, are very important parameters for quantum chemistry. When the energy gap is small, the mol­ecule is highly polarizable and has high chemical reactivity and it is characterized as soft. The DFT calculations provide some important information on the reactivity and site selectivity of the mol­ecular framework. E HOMO and E LUMO clarify the inevitable charge exchange collaboration inside the studied material, electronegativity (χ), hardness (η), potential (μ), electrophilicity (ω) and softness (σ) are recorded in Table 3. The significance of η and σ is to evaluate both the reactivity and stability. The HOMO and LUMO energy levels are shown in Fig. 8. The HOMO is localized in the plane extending over the whole cholesteryl hepta­noate ring, while the LUMO is localized on the oxygens and their surrounding atoms. The energy band gap [ΔE = E LUMO − E HOMO] of the mol­ecule is 6.49 eV, and the frontier mol­ecular orbital energies, E HOMO and E LUMO are −7.05 and −0.56 eV, respectively.

Figure 6.

Figure 6

The optimized structure of the title compound, (I).

Table 2. Comparison of the selected (X-ray and DFT) geometric data (Å, °).

Bonds/angles X-ray B3LYP/6–31G(d)
O2—C7 1.196 (3) 1.21334
O1—C7 1.348 (3) 1.35309
O1—C8 1.458 (2) 1.45445
C7—C6 1.510 (3) 1.51813
C5—C6 1.516 (3) 1.53121
C5—C4 1.530 (3) 1.53654
C4—C3 1.512 (4) 1.53569
C3—C2 1.523 (3) 1.53425
C1—C2 1.510 (4) 1.53213
C8—C14 1.513 (3) 1.52760
C8—C9 1.518 (3) 1.52497
C10—C9 1.519 (3) 1.53951
C11—C12 1.545 (3) 1.54603
C11—C18 1.558 (3) 1.56904
C17—C18 1.544 (3) 1.55696
C22—C21 1.530 (3) 1.54490
C23—C21 1.538 (3) 1.55738
C24—C23 1.527 (3) 1.55738
C24—C25 1.538 (3) 1.55293
C26—C27 1.535 (3) 1.55117
C28—C27 1.528 (3) 1.53804
C29—C27 1.539 (3) 1.54887
C29—C30 1.525 (3) 1.53709
C31—C30 1.523 (3) 1.53617
C31—C32 1.524 (3) 1.54188
C33—C32 1.509 (4) 1.53652
C34—C32 1.518 (4) 1.53610
     
C1—C2—C3 113.9 (2) 113.26388
C3—C4—C5 115.3 (2) 114.95515
C5—C6—C7 113.7 (2) 112.96691
C6—C7—O1 110.5 (2) 110.59081
C7—O1—C8 117.58 (19) 117.36016
C9—C8—C14 110.85 (19) 111.83435
C10—C11—C13 108.31 (17) 107.22354
C16—C17—C18 110.06 (17) 111.14810
C18—C19—C20 113.82 (17) 113.68808
C20—C21—C23 106.26 (17) 106.65458
C23—C24—C25 103.79 (18) 103.66681
C26—C27—C29 110.60 (18) 110.09045
C29—C30—C31 112.0 (2) 112.44335
C31—C32—C33 113.3 (2) 112.54400
C31—C32—C34 110.2 (2) 110.56977
     
C1—C2—C3—C4 −177.7 (2) 179.78287
C6—C7—O1—C8 −179.5 (2) 179.67988
C9—C10—C11—C18 −166.45 (19) 164.70017
C16—C17—C23—C24 −57.6 (3) −53.53645
C25—C26—C27—C29 56.7 (3) 58.14095
C29—C30—C31—C32 170.8 (2) 174.94079
C30—C31—C32—C33 58.8 (3) 63.49014
C30—C31—C32—C34 −176.9 (3) −172.43112

Figure 7.

Figure 7

The correlation graphs of the calculated and experimental (a) bond lengths and (b) bond angles of the title compound, (I).

Table 3. Calculated energies.

Mol­ecular Energy (a.u.) (eV) Compound (I)
Total Energy, TE (eV) −40334.80
EHOMO (eV) −7.05
ELUMO (eV) −0.56
Gap, ΔE (eV) 6.49
Dipole moment, μ (Debye) −4.07
Ionization potential, I (eV) 7.05
Electron affinity, A 0.56
Electronegativity, χ 4.06
Hardness, η 2.14
Electrophilicity index, ω 3.85
Softness, σ 0.23
Fraction of electron transferred, ΔN 0.49

Figure 8.

Figure 8

The LUMO and HOMO energies of the title compound, (I).

The mol­ecular electrical potential surfaces or electrostatic potential energy maps illustrate the charge distributions of the mol­ecules in three dimensions, allowing one to visualize variably charged regions of the mol­ecule, which may be used to determine how mol­ecules inter­act with one another. Electrostatic potential maps (MEPs) are invaluable in predicting the behaviour of complex mol­ecules. The MEP of the title compound is shown in Fig. 9, where the negative electrostatic potential formed around O1 and O2 atoms and positive potential (green) formed around the hydrogen atoms. The MEP values of atoms O1 and O2 are −0.050 and −0.017 a.u., respectively. Thus, atoms O1 and O2 are the most appropriate ones for electrophilic attacks while H atoms are more appropriate for nucleophilic attacks.

Figure 9.

Figure 9

The MEP plot of the title compound, (I).

Database survey  

Cholesterol and its esters take part significantly in many biological mechanisms, being important components for the manufacture of bile acids, steroid hormones and several fat-soluble vitamins. For the numerous experimental investigations, see: Faiman & Larsson, 1976; Goheen et al., 1977; Bush et al., 1980; Di Vizio et al., 2008; Ikonen, 2008. For the first electron paramagnetic resonance (EPR) study of free radicals in X-ray-irradiated powdered cholesterol, hormones and vitamins, see: Rexroad & Gordy, 1959. For gamma-irradiated sterol groups studied at low temperatures, see: Sevilla et al., 1986. For EPR and electron-nuclear double resonance (ENDOR) studies to elucidate the structure of free radicals formed in gamma-irradiated single crystals of selected steroids, see: Smaller & Matheson, 1958; Krzyminiewski, Hafez et al., 1987; Krzyminiewski et al., 1990; Szyczewski & Möbius, 1994; Szyczewski, 1996; Szyczewski et al., 1998; Çalişkan et al., 2004; Szyczewski et al., 2005; Sayin et al., 2011. For EPR studies of cholesteryl hepta­noate, see: Sayin et al., 2013.

Synthesis and crystallization  

The white fine crystalline powder of cholesteryl hepta­noate (C34H58O2) was purchased from Merck, and single crystals were grown by slow evaporation of a concentrated ethyl acetate solution.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 4. The C-bound H atoms were positioned geometrically, with C—H = 0.96, 0.97 and 0.98 Å for methyl, methyl­ene and methine H atoms, respectively, and constrained to ride on their parent atoms, with U iso(H) = k × U eq(C), where k = 1.5 for methyl H atoms and k = 1.2 for methyl­ene and methine H atoms.

Table 4. Experimental details.

Crystal data
Chemical formula C34H58O2
M r 498.80
Crystal system, space group Monoclinic, P21
Temperature (K) 120
a, b, c (Å) 12.0622 (3), 9.2715 (2), 13.8140 (4)
β (°) 92.306 (2)
V3) 1543.63 (7)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.06
Crystal size (mm) 0.30 × 0.22 × 0.09
 
Data collection
Diffractometer Bruker APEXII QUAZAR three-circle diffractometer
No. of measured, independent and observed [I > 2σ(I)] reflections 15024, 6805, 6079
R int 0.041
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F 2)], wR(F 2), S 0.046, 0.118, 1.03
No. of reflections 6805
No. of parameters 331
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.24, −0.22
Absolute structure Flack xdetermined using 2417 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter 0.3 (7)

Computer programs: APEX2 and SAINT (Bruker, 2012), SHELXT (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ), ORTEP-3 for Windows (Farrugia, 2012), WinGX publication routines (Farrugia, 2012) and PLATON (Spek, 2020).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989021005661/mw2174sup1.cif

e-77-00686-sup1.cif (468.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021005661/mw2174Isup2.hkl

e-77-00686-Isup2.hkl (540.7KB, hkl)

CCDC reference: 2087356

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C34H58O2 F(000) = 556
Mr = 498.80 Dx = 1.073 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
a = 12.0622 (3) Å Cell parameters from 5761 reflections
b = 9.2715 (2) Å θ = 2.2–27.3°
c = 13.8140 (4) Å µ = 0.06 mm1
β = 92.306 (2)° T = 120 K
V = 1543.63 (7) Å3 Plate, colourless
Z = 2 0.30 × 0.22 × 0.09 mm

Data collection

Bruker APEXII QUAZAR three-circle diffractometer Rint = 0.041
Detector resolution: 8.3333 pixels mm-1 θmax = 27.5°, θmin = 1.5°
φ and ω scans h = −15→15
15024 measured reflections k = −12→12
6805 independent reflections l = −17→17
6079 reflections with I > 2σ(I)

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.046 w = 1/[σ2(Fo2) + (0.0614P)2 + 0.1758P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.118 (Δ/σ)max < 0.001
S = 1.03 Δρmax = 0.24 e Å3
6805 reflections Δρmin = −0.22 e Å3
331 parameters Absolute structure: Flack xdetermined using 2417 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraint Absolute structure parameter: 0.3 (7)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.88629 (14) 0.64631 (18) 0.15841 (13) 0.0314 (4)
O2 0.91179 (18) 0.8775 (2) 0.11617 (18) 0.0518 (6)
C1 1.4569 (2) 0.5375 (3) −0.03304 (19) 0.0381 (6)
H1A 1.504609 0.496801 −0.079854 0.057*
H1B 1.431548 0.462591 0.008619 0.057*
H1C 1.497197 0.608290 0.004961 0.057*
C2 1.3584 (2) 0.6081 (3) −0.08471 (17) 0.0316 (5)
H2A 1.320002 0.536527 −0.124748 0.038*
H2B 1.385067 0.682562 −0.127298 0.038*
C3 1.2763 (2) 0.6752 (3) −0.01697 (17) 0.0330 (6)
H3A 1.251610 0.601733 0.027306 0.040*
H3B 1.313740 0.749700 0.021227 0.040*
C4 1.1761 (2) 0.7401 (3) −0.06989 (18) 0.0308 (5)
H4A 1.140592 0.665786 −0.109617 0.037*
H4B 1.201347 0.814656 −0.113085 0.037*
C5 1.0894 (2) 0.8056 (3) −0.00503 (19) 0.0304 (5)
H5A 1.124902 0.877278 0.036917 0.036*
H5B 1.033294 0.854229 −0.045343 0.036*
C6 1.0337 (2) 0.6940 (3) 0.0568 (2) 0.0367 (6)
H6A 1.006225 0.616313 0.015417 0.044*
H6B 1.088515 0.653667 0.102419 0.044*
C7 0.9385 (2) 0.7534 (3) 0.1125 (2) 0.0335 (6)
C8 0.79138 (19) 0.6851 (3) 0.21509 (17) 0.0273 (5)
H8 0.804295 0.779292 0.245756 0.033*
C9 0.78323 (19) 0.5697 (3) 0.29241 (17) 0.0261 (5)
H9A 0.848991 0.572960 0.335142 0.031*
H9B 0.780098 0.475481 0.261901 0.031*
C10 0.68089 (18) 0.5910 (2) 0.35138 (16) 0.0220 (4)
C11 0.57079 (18) 0.6073 (2) 0.29501 (15) 0.0205 (4)
C12 0.5379 (2) 0.4598 (3) 0.25045 (17) 0.0267 (5)
H12A 0.475360 0.471934 0.206043 0.040*
H12B 0.518810 0.394491 0.301058 0.040*
H12C 0.599259 0.421289 0.216544 0.040*
C13 0.58615 (19) 0.7181 (3) 0.21267 (16) 0.0247 (5)
H13A 0.519863 0.717802 0.170516 0.030*
H13B 0.593196 0.813491 0.241059 0.030*
C14 0.68645 (19) 0.6904 (3) 0.15136 (17) 0.0278 (5)
H14A 0.676936 0.599652 0.117096 0.033*
H14B 0.692363 0.766606 0.103719 0.033*
C15 0.69011 (18) 0.5926 (2) 0.44767 (16) 0.0242 (5)
H15 0.760872 0.583827 0.476350 0.029*
C16 0.59494 (18) 0.6076 (3) 0.51323 (15) 0.0249 (5)
H16A 0.596925 0.703036 0.542050 0.030*
H16B 0.603350 0.537672 0.565224 0.030*
C17 0.48277 (18) 0.5853 (2) 0.46075 (15) 0.0205 (4)
H17 0.471506 0.481913 0.449347 0.025*
C18 0.47990 (17) 0.6643 (2) 0.36225 (15) 0.0195 (4)
H18 0.498642 0.765154 0.376379 0.023*
C19 0.36285 (18) 0.6654 (3) 0.31454 (15) 0.0241 (5)
H19A 0.344502 0.568507 0.292694 0.029*
H19B 0.362694 0.727231 0.257918 0.029*
C20 0.27255 (18) 0.7178 (3) 0.38188 (16) 0.0237 (5)
H20A 0.285173 0.818564 0.397559 0.028*
H20B 0.200528 0.709896 0.348451 0.028*
C21 0.27233 (17) 0.6294 (2) 0.47595 (15) 0.0199 (4)
C22 0.2384 (2) 0.4731 (2) 0.45499 (18) 0.0269 (5)
H22A 0.166143 0.471404 0.423254 0.040*
H22B 0.236660 0.420533 0.514769 0.040*
H22C 0.291140 0.429430 0.413806 0.040*
C23 0.39003 (17) 0.6415 (2) 0.52227 (14) 0.0196 (4)
H23 0.404155 0.744866 0.531215 0.024*
C24 0.3794 (2) 0.5788 (3) 0.62369 (16) 0.0272 (5)
H24A 0.436235 0.617339 0.668192 0.033*
H24B 0.385290 0.474515 0.622739 0.033*
C25 0.26318 (19) 0.6266 (3) 0.65246 (16) 0.0266 (5)
H25A 0.268795 0.698477 0.703457 0.032*
H25B 0.221731 0.544824 0.675685 0.032*
C26 0.20397 (17) 0.6915 (2) 0.55966 (15) 0.0210 (4)
H26 0.216305 0.795963 0.561267 0.025*
C27 0.07807 (18) 0.6667 (3) 0.55763 (15) 0.0251 (5)
H27 0.065026 0.562329 0.557622 0.030*
C28 0.0200 (2) 0.7293 (3) 0.46669 (18) 0.0342 (6)
H28A −0.058932 0.724501 0.472814 0.051*
H28B 0.040410 0.674760 0.411099 0.051*
H28C 0.041967 0.828039 0.459043 0.051*
C29 0.02759 (19) 0.7298 (3) 0.64897 (17) 0.0295 (5)
H29A 0.076544 0.707596 0.704403 0.035*
H29B 0.024675 0.833916 0.642601 0.035*
C30 −0.08842 (19) 0.6749 (3) 0.66924 (16) 0.0274 (5)
H30A −0.139634 0.705361 0.617273 0.033*
H30B −0.087729 0.570343 0.670378 0.033*
C31 −0.1289 (2) 0.7309 (3) 0.76532 (18) 0.0355 (6)
H31A −0.117039 0.834280 0.767913 0.043*
H31B −0.083762 0.687938 0.817400 0.043*
C32 −0.2505 (2) 0.7007 (3) 0.78366 (17) 0.0302 (5)
H32 −0.295137 0.747125 0.731650 0.036*
C33 −0.2788 (3) 0.5422 (3) 0.7824 (2) 0.0433 (7)
H33A −0.262037 0.501912 0.720684 0.065*
H33B −0.356401 0.530157 0.793139 0.065*
H33C −0.236003 0.493674 0.832650 0.065*
C34 −0.2821 (3) 0.7685 (4) 0.8787 (2) 0.0544 (9)
H34A −0.266938 0.870126 0.877199 0.082*
H34B −0.239742 0.724853 0.931153 0.082*
H34C −0.359790 0.753511 0.887713 0.082*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0290 (9) 0.0269 (9) 0.0393 (10) 0.0008 (7) 0.0154 (7) −0.0006 (7)
O2 0.0526 (13) 0.0282 (10) 0.0772 (16) 0.0055 (9) 0.0329 (11) 0.0059 (10)
C1 0.0320 (14) 0.0523 (17) 0.0305 (13) −0.0027 (12) 0.0073 (11) 0.0017 (12)
C2 0.0344 (13) 0.0339 (13) 0.0269 (12) −0.0017 (11) 0.0082 (10) 0.0022 (10)
C3 0.0293 (12) 0.0445 (15) 0.0253 (11) −0.0018 (11) 0.0048 (9) 0.0024 (11)
C4 0.0330 (13) 0.0312 (13) 0.0287 (12) −0.0034 (10) 0.0087 (10) 0.0065 (10)
C5 0.0315 (13) 0.0260 (12) 0.0339 (13) −0.0021 (10) 0.0053 (10) 0.0026 (10)
C6 0.0329 (13) 0.0294 (13) 0.0492 (15) 0.0020 (11) 0.0183 (11) 0.0053 (12)
C7 0.0314 (13) 0.0293 (13) 0.0406 (14) −0.0007 (10) 0.0104 (11) 0.0020 (11)
C8 0.0262 (11) 0.0255 (11) 0.0309 (12) 0.0001 (10) 0.0114 (9) −0.0057 (10)
C9 0.0222 (11) 0.0281 (12) 0.0281 (11) 0.0011 (9) 0.0028 (9) −0.0035 (9)
C10 0.0224 (11) 0.0172 (10) 0.0265 (11) 0.0008 (8) 0.0039 (8) −0.0032 (8)
C11 0.0219 (10) 0.0204 (11) 0.0195 (10) −0.0006 (8) 0.0029 (8) −0.0028 (8)
C12 0.0285 (12) 0.0244 (11) 0.0275 (12) −0.0006 (9) 0.0035 (9) −0.0071 (9)
C13 0.0279 (11) 0.0252 (12) 0.0215 (10) 0.0042 (9) 0.0057 (9) −0.0004 (9)
C14 0.0328 (12) 0.0281 (12) 0.0231 (11) 0.0027 (10) 0.0097 (9) −0.0008 (9)
C15 0.0196 (10) 0.0251 (11) 0.0279 (11) 0.0010 (9) −0.0007 (8) −0.0013 (9)
C16 0.0249 (11) 0.0302 (12) 0.0197 (10) 0.0039 (10) 0.0012 (8) −0.0003 (9)
C17 0.0223 (10) 0.0193 (10) 0.0201 (10) 0.0020 (8) 0.0031 (8) −0.0001 (8)
C18 0.0220 (10) 0.0184 (10) 0.0183 (10) 0.0003 (8) 0.0030 (8) −0.0018 (8)
C19 0.0237 (11) 0.0301 (12) 0.0185 (10) 0.0015 (9) 0.0020 (8) 0.0010 (9)
C20 0.0214 (10) 0.0275 (12) 0.0222 (10) 0.0025 (9) 0.0014 (8) 0.0010 (9)
C21 0.0201 (10) 0.0202 (10) 0.0196 (10) 0.0004 (8) 0.0018 (8) −0.0010 (8)
C22 0.0282 (12) 0.0242 (12) 0.0289 (12) −0.0014 (9) 0.0077 (9) −0.0052 (9)
C23 0.0218 (10) 0.0189 (10) 0.0182 (10) 0.0024 (8) 0.0021 (8) 0.0001 (8)
C24 0.0290 (12) 0.0309 (12) 0.0218 (11) 0.0071 (10) 0.0040 (9) 0.0045 (9)
C25 0.0296 (12) 0.0307 (12) 0.0198 (10) 0.0046 (10) 0.0046 (9) 0.0023 (9)
C26 0.0231 (10) 0.0205 (10) 0.0197 (10) 0.0017 (9) 0.0021 (8) −0.0011 (8)
C27 0.0236 (11) 0.0284 (12) 0.0237 (11) −0.0004 (9) 0.0054 (8) −0.0043 (9)
C28 0.0238 (12) 0.0484 (16) 0.0306 (13) 0.0023 (11) 0.0035 (9) −0.0017 (11)
C29 0.0250 (11) 0.0375 (14) 0.0265 (12) 0.0007 (10) 0.0060 (9) −0.0080 (10)
C30 0.0272 (11) 0.0301 (12) 0.0252 (11) 0.0006 (10) 0.0061 (9) −0.0047 (10)
C31 0.0302 (13) 0.0496 (16) 0.0273 (12) −0.0016 (11) 0.0078 (10) −0.0125 (11)
C32 0.0317 (12) 0.0334 (13) 0.0262 (11) 0.0029 (10) 0.0095 (9) 0.0004 (10)
C33 0.0514 (17) 0.0420 (16) 0.0376 (15) −0.0039 (13) 0.0157 (13) −0.0029 (12)
C34 0.0498 (18) 0.061 (2) 0.0543 (19) −0.0098 (15) 0.0281 (15) −0.0249 (16)

Geometric parameters (Å, º)

O1—C7 1.348 (3) C18—C19 1.534 (3)
O1—C8 1.458 (2) C18—H18 0.9800
O2—C7 1.196 (3) C19—C20 1.539 (3)
C1—C2 1.510 (4) C19—H19A 0.9700
C1—H1A 0.9600 C19—H19B 0.9700
C1—H1B 0.9600 C20—C21 1.536 (3)
C1—H1C 0.9600 C20—H20A 0.9700
C2—C3 1.523 (3) C20—H20B 0.9700
C2—H2A 0.9700 C21—C22 1.530 (3)
C2—H2B 0.9700 C21—C23 1.538 (3)
C3—C4 1.512 (4) C21—C26 1.557 (3)
C3—H3A 0.9700 C22—H22A 0.9600
C3—H3B 0.9700 C22—H22B 0.9600
C4—C5 1.530 (3) C22—H22C 0.9600
C4—H4A 0.9700 C23—C24 1.527 (3)
C4—H4B 0.9700 C23—H23 0.9800
C5—C6 1.516 (3) C24—C25 1.538 (3)
C5—H5A 0.9700 C24—H24A 0.9700
C5—H5B 0.9700 C24—H24B 0.9700
C6—C7 1.510 (3) C25—C26 1.563 (3)
C6—H6A 0.9700 C25—H25A 0.9700
C6—H6B 0.9700 C25—H25B 0.9700
C8—C14 1.513 (3) C26—C27 1.535 (3)
C8—C9 1.518 (3) C26—H26 0.9800
C8—H8 0.9800 C27—C28 1.528 (3)
C9—C10 1.519 (3) C27—C29 1.539 (3)
C9—H9A 0.9700 C27—H27 0.9800
C9—H9B 0.9700 C28—H28A 0.9600
C10—C15 1.330 (3) C28—H28B 0.9600
C10—C11 1.520 (3) C28—H28C 0.9600
C11—C12 1.545 (3) C29—C30 1.525 (3)
C11—C13 1.549 (3) C29—H29A 0.9700
C11—C18 1.558 (3) C29—H29B 0.9700
C12—H12A 0.9600 C30—C31 1.523 (3)
C12—H12B 0.9600 C30—H30A 0.9700
C12—H12C 0.9600 C30—H30B 0.9700
C13—C14 1.526 (3) C31—C32 1.524 (3)
C13—H13A 0.9700 C31—H31A 0.9700
C13—H13B 0.9700 C31—H31B 0.9700
C14—H14A 0.9700 C32—C33 1.509 (4)
C14—H14B 0.9700 C32—C34 1.518 (4)
C15—C16 1.497 (3) C32—H32 0.9800
C15—H15 0.9300 C33—H33A 0.9600
C16—C17 1.523 (3) C33—H33B 0.9600
C16—H16A 0.9700 C33—H33C 0.9600
C16—H16B 0.9700 C34—H34A 0.9600
C17—C23 1.524 (3) C34—H34B 0.9600
C17—C18 1.544 (3) C34—H34C 0.9600
C17—H17 0.9800
O2···C14 3.277 (2) H4B···H9Bi 2.56
O2···H5A 2.83 H5A···H33Cvii 2.45
O2···H5B 2.73 H5B···H6Ai 2.51
O2···H8 2.43 H8···H13B 2.56
O2···H14B 2.84 H9A···H15 2.26
O2···H4Ai 2.75 H9A···H28Av 2.58
C20···C28 3.309 (2) H9B···H12C 2.30
C22···C28 3.556 (2) H9B···H14A 2.58
C3···H6B 2.86 H12A···H13A 2.40
C6···H3A 2.81 H12A···H19A 2.21
C7···H14B 2.97 H12B···H17 2.30
C9···H12C 2.78 H12C···H14A 2.37
C12···H17 2.90 H13A···H19B 2.29
C12···H9B 2.92 H13B···H18 2.27
C12···H14A 2.85 H13B···H24Bvii 2.41
C12···H19A 2.63 H14B···H34Bviii 2.58
C13···H19B 2.79 H15···H28Av 2.54
C14···H12C 2.87 H15···H30Av 2.51
C15···H18 2.95 H16A···H18 2.60
C15···H26ii 2.98 H16A···H23 2.36
C16···H24A 2.93 H16A···H22Cvii 2.56
C17···H12B 2.87 H16B···H20Aii 2.48
C17···H22C 2.78 H17···H22C 2.26
C19···H22C 2.74 H18···H23 2.47
C19···H12A 2.73 H18···H24Bvii 2.39
C19···H13A 2.84 H19A···H22C 2.23
C20···H28B 2.87 H20A···H23 2.39
C21···H28B 2.93 H20A···H26 2.45
C22···H19A 2.77 H20A···H33Aix 2.37
C22···H24B 2.86 H20B···H22A 2.48
C22···H30Aiii 2.91 H20B···H28B 2.17
C22···H27 2.70 H22A···H27 2.41
C22···H17 2.82 H22A···H28B 2.42
C24···H16B 2.88 H22A···H30Aiii 2.55
C24···H22B 2.68 H22B···H24B 2.34
C25···H22B 2.71 H22B···H25B 2.52
C25···H29A 2.51 H22B···H27 2.54
C27···H22A 2.83 H23···H26 2.37
C28···H20B 2.78 H25A···H29A 2.32
C28···H30A 2.90 H25B···H27 2.45
C29···H25B 2.91 H25B···H29A 2.36
C30···H28A 2.79 H26···H28C 2.50
C30···H33A 2.75 H27···H30B 2.46
C33···H30B 2.84 H27···H28Ciii 2.53
H1A···H33Biv 2.49 H28A···H30A 2.26
H1B···H3A 2.55 H28C···H29B 2.55
H1B···H34Cii 2.58 H29A···H31B 2.54
H1C···H3B 2.59 H29B···H28C 2.55
H1C···H13Av 2.51 H29B···H31A 2.48
H2A···H4A 2.49 H30A···H32 2.53
H2A···H14Bvi 2.52 H30B···H33A 2.33
H2B···H4B 2.55 H31A···H34A 2.42
H2B···H12Ci 2.54 H31B···H33C 2.59
H3A···H6B 2.31 H31B···H34B 2.52
H3A···H34Aii 2.52 H33B···H34C 2.45
H3B···H5A 2.58 H33C···H34B 2.54
H4A···H6A 2.46
C7—O1—C8 117.58 (19) C17—C18—H18 106.3
C2—C1—H1A 109.5 C11—C18—H18 106.3
C2—C1—H1B 109.5 C18—C19—C20 113.82 (17)
H1A—C1—H1B 109.5 C18—C19—H19A 108.8
C2—C1—H1C 109.5 C20—C19—H19A 108.8
H1A—C1—H1C 109.5 C18—C19—H19B 108.8
H1B—C1—H1C 109.5 C20—C19—H19B 108.8
C1—C2—C3 113.9 (2) H19A—C19—H19B 107.7
C1—C2—H2A 108.8 C21—C20—C19 111.60 (18)
C3—C2—H2A 108.8 C21—C20—H20A 109.3
C1—C2—H2B 108.8 C19—C20—H20A 109.3
C3—C2—H2B 108.8 C21—C20—H20B 109.3
H2A—C2—H2B 107.7 C19—C20—H20B 109.3
C4—C3—C2 113.1 (2) H20A—C20—H20B 108.0
C4—C3—H3A 109.0 C22—C21—C20 110.77 (18)
C2—C3—H3A 109.0 C22—C21—C23 112.56 (18)
C4—C3—H3B 109.0 C20—C21—C23 106.26 (17)
C2—C3—H3B 109.0 C22—C21—C26 110.19 (18)
H3A—C3—H3B 107.8 C20—C21—C26 116.73 (18)
C3—C4—C5 115.3 (2) C23—C21—C26 99.87 (16)
C3—C4—H4A 108.5 C21—C22—H22A 109.5
C5—C4—H4A 108.5 C21—C22—H22B 109.5
C3—C4—H4B 108.5 H22A—C22—H22B 109.5
C5—C4—H4B 108.5 C21—C22—H22C 109.5
H4A—C4—H4B 107.5 H22A—C22—H22C 109.5
C6—C5—C4 112.9 (2) H22B—C22—H22C 109.5
C6—C5—H5A 109.0 C17—C23—C24 118.16 (18)
C4—C5—H5A 109.0 C17—C23—C21 115.40 (17)
C6—C5—H5B 109.0 C24—C23—C21 104.12 (17)
C4—C5—H5B 109.0 C17—C23—H23 106.1
H5A—C5—H5B 107.8 C24—C23—H23 106.1
C7—C6—C5 113.7 (2) C21—C23—H23 106.1
C7—C6—H6A 108.8 C23—C24—C25 103.79 (18)
C5—C6—H6A 108.8 C23—C24—H24A 111.0
C7—C6—H6B 108.8 C25—C24—H24A 111.0
C5—C6—H6B 108.8 C23—C24—H24B 111.0
H6A—C6—H6B 107.7 C25—C24—H24B 111.0
O2—C7—O1 123.8 (2) H24A—C24—H24B 109.0
O2—C7—C6 125.7 (2) C24—C25—C26 106.87 (17)
O1—C7—C6 110.5 (2) C24—C25—H25A 110.3
O1—C8—C14 110.61 (18) C26—C25—H25A 110.3
O1—C8—C9 106.15 (18) C24—C25—H25B 110.3
C14—C8—C9 110.85 (19) C26—C25—H25B 110.3
O1—C8—H8 109.7 H25A—C25—H25B 108.6
C14—C8—H8 109.7 C27—C26—C21 118.94 (17)
C9—C8—H8 109.7 C27—C26—C25 112.11 (18)
C8—C9—C10 111.26 (19) C21—C26—C25 103.22 (17)
C8—C9—H9A 109.4 C27—C26—H26 107.3
C10—C9—H9A 109.4 C21—C26—H26 107.3
C8—C9—H9B 109.4 C25—C26—H26 107.3
C10—C9—H9B 109.4 C28—C27—C26 112.24 (18)
H9A—C9—H9B 108.0 C28—C27—C29 110.25 (19)
C15—C10—C9 120.0 (2) C26—C27—C29 110.60 (18)
C15—C10—C11 123.19 (19) C28—C27—H27 107.9
C9—C10—C11 116.77 (18) C26—C27—H27 107.9
C10—C11—C12 108.74 (18) C29—C27—H27 107.9
C10—C11—C13 108.31 (17) C27—C28—H28A 109.5
C12—C11—C13 109.31 (18) C27—C28—H28B 109.5
C10—C11—C18 110.47 (17) H28A—C28—H28B 109.5
C12—C11—C18 111.26 (18) C27—C28—H28C 109.5
C13—C11—C18 108.70 (17) H28A—C28—H28C 109.5
C11—C12—H12A 109.5 H28B—C28—H28C 109.5
C11—C12—H12B 109.5 C30—C29—C27 114.8 (2)
H12A—C12—H12B 109.5 C30—C29—H29A 108.6
C11—C12—H12C 109.5 C27—C29—H29A 108.6
H12A—C12—H12C 109.5 C30—C29—H29B 108.6
H12B—C12—H12C 109.5 C27—C29—H29B 108.6
C14—C13—C11 114.64 (18) H29A—C29—H29B 107.5
C14—C13—H13A 108.6 C31—C30—C29 112.0 (2)
C11—C13—H13A 108.6 C31—C30—H30A 109.2
C14—C13—H13B 108.6 C29—C30—H30A 109.2
C11—C13—H13B 108.6 C31—C30—H30B 109.2
H13A—C13—H13B 107.6 C29—C30—H30B 109.2
C8—C14—C13 110.22 (18) H30A—C30—H30B 107.9
C8—C14—H14A 109.6 C30—C31—C32 115.3 (2)
C13—C14—H14A 109.6 C30—C31—H31A 108.5
C8—C14—H14B 109.6 C32—C31—H31A 108.5
C13—C14—H14B 109.6 C30—C31—H31B 108.5
H14A—C14—H14B 108.1 C32—C31—H31B 108.5
C10—C15—C16 124.8 (2) H31A—C31—H31B 107.5
C10—C15—H15 117.6 C33—C32—C34 110.4 (2)
C16—C15—H15 117.6 C33—C32—C31 113.3 (2)
C15—C16—C17 112.80 (18) C34—C32—C31 110.2 (2)
C15—C16—H16A 109.0 C33—C32—H32 107.6
C17—C16—H16A 109.0 C34—C32—H32 107.6
C15—C16—H16B 109.0 C31—C32—H32 107.6
C17—C16—H16B 109.0 C32—C33—H33A 109.5
H16A—C16—H16B 107.8 C32—C33—H33B 109.5
C16—C17—C23 110.24 (17) H33A—C33—H33B 109.5
C16—C17—C18 110.06 (17) C32—C33—H33C 109.5
C23—C17—C18 109.77 (17) H33A—C33—H33C 109.5
C16—C17—H17 108.9 H33B—C33—H33C 109.5
C23—C17—H17 108.9 C32—C34—H34A 109.5
C18—C17—H17 108.9 C32—C34—H34B 109.5
C19—C18—C17 111.67 (17) H34A—C34—H34B 109.5
C19—C18—C11 113.81 (17) C32—C34—H34C 109.5
C17—C18—C11 111.91 (17) H34A—C34—H34C 109.5
C19—C18—H18 106.3 H34B—C34—H34C 109.5
C1—C2—C3—C4 −177.7 (2) C12—C11—C18—C17 76.1 (2)
C2—C3—C4—C5 178.5 (2) C13—C11—C18—C17 −163.47 (18)
C3—C4—C5—C6 −65.4 (3) C17—C18—C19—C20 50.5 (2)
C4—C5—C6—C7 −173.1 (2) C11—C18—C19—C20 178.42 (19)
C8—O1—C7—O2 0.5 (4) C18—C19—C20—C21 −55.4 (3)
C8—O1—C7—C6 −179.5 (2) C19—C20—C21—C22 −66.0 (2)
C5—C6—C7—O2 −5.8 (4) C19—C20—C21—C23 56.5 (2)
C5—C6—C7—O1 174.2 (2) C19—C20—C21—C26 166.82 (18)
C7—O1—C8—C14 85.5 (3) C16—C17—C23—C24 −57.6 (3)
C7—O1—C8—C9 −154.2 (2) C18—C17—C23—C24 −179.04 (19)
O1—C8—C9—C10 −175.13 (18) C16—C17—C23—C21 178.27 (18)
C14—C8—C9—C10 −55.0 (2) C18—C17—C23—C21 56.9 (2)
C8—C9—C10—C15 −129.1 (2) C22—C21—C23—C17 61.6 (2)
C8—C9—C10—C11 51.9 (3) C20—C21—C23—C17 −59.8 (2)
C15—C10—C11—C12 −107.8 (2) C26—C21—C23—C17 178.40 (18)
C9—C10—C11—C12 71.2 (2) C22—C21—C23—C24 −69.6 (2)
C15—C10—C11—C13 133.5 (2) C20—C21—C23—C24 168.99 (18)
C9—C10—C11—C13 −47.5 (2) C26—C21—C23—C24 47.2 (2)
C15—C10—C11—C18 14.6 (3) C17—C23—C24—C25 −165.15 (19)
C9—C10—C11—C18 −166.45 (19) C21—C23—C24—C25 −35.6 (2)
C10—C11—C13—C14 49.6 (2) C23—C24—C25—C26 9.7 (3)
C12—C11—C13—C14 −68.7 (2) C22—C21—C26—C27 −46.1 (3)
C18—C11—C13—C14 169.67 (18) C20—C21—C26—C27 81.3 (3)
O1—C8—C14—C13 175.0 (2) C23—C21—C26—C27 −164.72 (19)
C9—C8—C14—C13 57.6 (2) C22—C21—C26—C25 78.7 (2)
C11—C13—C14—C8 −56.5 (3) C20—C21—C26—C25 −153.80 (19)
C9—C10—C15—C16 −177.8 (2) C23—C21—C26—C25 −39.9 (2)
C11—C10—C15—C16 1.2 (4) C24—C25—C26—C27 148.31 (19)
C10—C15—C16—C17 13.7 (3) C24—C25—C26—C21 19.1 (2)
C15—C16—C17—C23 −164.41 (19) C21—C26—C27—C28 −59.3 (3)
C15—C16—C17—C18 −43.2 (2) C25—C26—C27—C28 −179.7 (2)
C16—C17—C18—C19 −170.74 (18) C21—C26—C27—C29 177.2 (2)
C23—C17—C18—C19 −49.2 (2) C25—C26—C27—C29 56.7 (3)
C16—C17—C18—C11 60.4 (2) C28—C27—C29—C30 72.1 (3)
C23—C17—C18—C11 −178.14 (17) C26—C27—C29—C30 −163.2 (2)
C10—C11—C18—C19 −172.54 (18) C27—C29—C30—C31 174.7 (2)
C12—C11—C18—C19 −51.7 (2) C29—C30—C31—C32 170.8 (2)
C13—C11—C18—C19 68.8 (2) C30—C31—C32—C33 58.8 (3)
C10—C11—C18—C17 −44.8 (2) C30—C31—C32—C34 −176.9 (3)

Symmetry codes: (i) −x+2, y+1/2, −z; (ii) −x+1, y−1/2, −z+1; (iii) −x, y−1/2, −z+1; (iv) x+2, y, z−1; (v) x+1, y, z; (vi) −x+2, y−1/2, −z; (vii) −x+1, y+1/2, −z+1; (viii) x+1, y, z−1; (ix) −x, y+1/2, −z+1.

Funding Statement

This work was funded by Hacettepe University Scientific Research Project Unit grant 013 D04 602 004.

References

  1. Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.
  2. Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bush, S. F., Levin, H. & Levin, I. W. (1980). Chem. Phys. Lipids, 27, 101–111.
  4. Çalişkan, B., Aras, E., Aşik, B., Büyüm, M. & Birey, M. (2004). Radiat. Eff. Defects Solids, 159, 1–5.
  5. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  6. Di Vizio, D., Solomon, K. R. & Freeman, M. R. (2008). Tumori J. 94, 633–639. [DOI] [PubMed]
  7. Faiman, R., Larsson, K. & Long, D. A. (1976). J. Raman Spectrosc. 5, 3–7.
  8. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  9. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.
  10. Goheen, S. C., Lis, L. J. & Kauffman, J. W. (1977). Chem. Phys. Lipids, 20, 253–262.
  11. Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. [DOI] [PMC free article] [PubMed]
  12. Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.
  13. Ikonen, E. (2008). Nat. Rev. Mol. Cell Biol. 9, 125–138. [DOI] [PubMed]
  14. Krzyminiewski, R., Hafez, A. M., Szyczewski, A. & Pietrzak, J. (1987). J. Mol. Struct. 160, 127–133.
  15. Krzyminiewski, R., Pietrzak, J. & Konopka, R. (1990). J. Mol. Struct. 240, 133–140.
  16. Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587. [DOI] [PMC free article] [PubMed]
  17. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  18. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  19. Rexroad, H. N. & Gordy, W. (1959). Proc. Natl Acad. Sci. USA, 45, 256–269. [DOI] [PMC free article] [PubMed]
  20. Sayin, U., Can, C., Türkkan, E., Dereli, Ö., Ozmen, A. & Yüksel, H. (2013). Acta Phys. Pol. A, 124, 70–73.
  21. Sayin, U., Yüksel, H. & Birey, M. (2011). Radiat. Phys. Chem. 80, 1203–1207.
  22. Sevilla, C. L., Becker, D. & Sevilla, M. D. (1986). J. Phys. Chem. 90, 2963–2968.
  23. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  24. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  25. Smaller, B. & Matheson, M. S. (1958). J. Chem. Phys. 28, 1169–1178.
  26. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  27. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  28. Szyczewski, A. (1996). Appl. Radiat. Isot. 47, 1675–1681. [DOI] [PubMed]
  29. Szyczewski, A., Endeward, B. & Möbius, K. (1998). Appl. Radiat. Isot. 49, 59–65. [DOI] [PubMed]
  30. Szyczewski, A. & Möbius, K. (1994). J. Mol. Struct. 318, 87–93.
  31. Szyczewski, A., Pietrzak, J. & Möbius, K. (2005). Acta Phys. Pol. A, 108, 119–126.
  32. Turner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249–4255. [DOI] [PubMed]
  33. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.
  34. Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738. [DOI] [PubMed]
  35. Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989021005661/mw2174sup1.cif

e-77-00686-sup1.cif (468.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021005661/mw2174Isup2.hkl

e-77-00686-Isup2.hkl (540.7KB, hkl)

CCDC reference: 2087356

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES