Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Jun 15;77(Pt 7):714–717. doi: 10.1107/S2056989021005867

Synthesis and crystal structure of poly[(3-amino-1,2,4-triazole)(μ3-1H-benzimidazole-5,6-di­carboxyl­ato)cobalt(II)]

Chen Zhao a, Yi Li a, Jin-Sheng Xiao a, Peng-Dan Zhang a, Xue-Qian Wu a,*, Qiang Chen a
PMCID: PMC8382063  PMID: 34513017

The structure of the title coordination polymer is determined by multiple hydrogen-bonding inter­actions. In the crystal, two ligands coordinate with the metal centre, generating chains, which are further connected with each other via N—H⋯O hydrogen bonds, and expanded into the final framework through additional N—H⋯O hydrogen bonds.

Keywords: crystal structure, coordination polymer, mixed-ligands synthetic strategy, imidazole, di­carb­oxy­lic acid

Abstract

The asymmetric unit of the title coordination polymer, [Co(C9H4N2O4)(C2H4N4)]n or [Co(L 1)(L 2)]n, consists of one crystallographically independent Co2+ centre, one L 1 2− ligand and one L 2 ligand (L 1 = 1H-benzimidazole-5,6-di­carb­oxy­lic acid, L 2 = 3-amino-1,2,4-triazole). The Co2+ centre is coordinated by two carboxyl­ato-O atoms from two independent L 1 2− ligands and two nitro­gen atoms from L 2 and another L 1 ligand. Thus, the metal center adopts a four-coordinate mode, forming a tetra­hedral geometry. Inter­estingly, through the combination of two L 1 2−, two L 2 ligands and two Co2+ ions, a basic repeating unit is constructed, resulting in the formation of a one-dimensional straight chain structure. These chains are further expanded to the final three-dimensional framework via N—H⋯O hydrogen-bonding inter­actions.

Chemical context  

Over the past two decades, coordination polymers (CPs) have been demonstrated to represent a new type of crystalline organic–inorganic hybrid materials, and are unique in terms of their potentially high porosities, tunable pores, and diverse compositions (Du et al., 2013; Kitagawa et al., 2007; Cui et al., 2016). These features have enabled CPs to be constructed with great potential for various applications, such as gas adsorption/separation (Zhao et al., 2018), chemical sensing (Huang et al., 2017), heterogeneous catalysis (He et al., 2020) and energy storage/conversion (Lu et al., 2020). Meanwhile, the crystalline nature of CPs allows for the accurate determination of their structures using X-ray diffraction techniques and further, the revealing of structure–property relationships. The great potential of these compounds certainly promotes the development of synthetic strategies for new CPs. It has been demonstrated that many efficient synthetic routes, including metal exchange (Wang et al., 2017), ligand substitution (Han et al., 2014), directional construction based on secondary building units (SBUs) (Zou et al., 2016), and topology-guided reticular chemistry principles (Wang et al., 2016) have shown some advantages in fabricating new CPs with multiple structures and functionalities. In addition to the methods mentioned above, the mixed-ligands strategy is also considered to be an important approach for the integration of the properties of related ligands into a single coordination polymer and hence expansion of the structural diversity of CPs (Macreadie et al., 2020). In this context, we report the synthesis and crystal structure of the title coordination polymer poly[(3-amino-1,2,4-triazole)(μ3-1H-benzimidazole-5,6-di­carboxyl­ato)cobalt(II)] (1), which was prepared by the solvothermal method using two simple ligands and a cobalt salt.graphic file with name e-77-00714-scheme1.jpg

Structural commentary  

The title coordination polymer (1) crystallizes in the monoclinic system, P21/c space group, and its asymmetric unit contains one Co2+ center, one L 1 2− anion and one L 2 ligand (Fig. 1). The metal center adopts a typical tetra­hedral linkage geometry to coordinate with two carboxyl­ato-O atoms from two independent L 1 2− ligands and two nitro­gen atoms, one from L 2 and another from an L 1 ligand. Inter­estingly, through the combination of two L 1 2−, two L 2 ligands and two Co2+ ions, a basic repeating unit is constructed, resulting in the formation of a one-dimensional straight chain structure (as shown in Fig. 2). These chains are further connected via hydrogen bonding inter­actions (Fig. 3), generating a three-dimensional framework.

Figure 1.

Figure 1

A view of the asymmetric unit of the title coordination polymer showing the atom numbering with displacement ellipsoids drawn at the 50% probability level.

Figure 2.

Figure 2

A view of the one-dimensional straight chain structure within the coordination polymer.

Figure 3.

Figure 3

Structure of the title coordination polymer viewed along the (a) a axis and (b) c axis, respectively.

Supra­molecular features  

As mentioned above, extensive hydrogen-bonding inter­actions in the crystal of the title coordination polymer are observed, the numerical values of which are presented in Table 1. As shown in Fig. 4, each chain is linked to adjacent chains by N1—H1⋯O1 hydrogen bonds into infinite layer structures parallel to the bc plane. Meanwhile, these layers are linked by other inter­molecular hydrogen bonds (e.g., N3—H3⋯O3 and N6—H6A⋯O3), resulting in the formation of the final three-dimensional supra­molecular network. Due to the regular distribution of Co2+ metal sites, the high density of nitro­gen atoms in the structure, and the packing arrangement of the supra­molecular network, the coordination polymer has the potential to work as a mol­ecular catalyst or to serve as the precursor material for preparing an electrocatalyst.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 1.84 2.675 (4) 163
N3—H3⋯O1ii 0.86 2.48 3.104 (4) 130
N3—H3⋯O3ii 0.86 2.08 2.811 (4) 142
N6—H6A⋯O3ii 0.86 2.35 3.036 (5) 136
N6—H6B⋯O2iii 0.86 2.23 2.946 (5) 141
C5—H5⋯O4iv 0.93 2.58 3.312 (4) 136
C9—H9⋯N5v 0.93 2.48 3.332 (5) 152
C11—H11⋯O1vi 0.93 2.41 3.215 (5) 145

Symmetry codes: (i) -x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}; (ii) -x+2, -y+1, -z+1; (iii) x, y+1, z; (iv) -x+1, -y+1, -z+1; (v) x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}; (vi) x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}.

Figure 4.

Figure 4

A view of the hydrogen bonds in the title coordination polymer. Intra­molecular hydrogen bonds are omitted for clarity [symmetry codes: (#1) −1 + x, y, z; (#2) 1 − x, 1 − y, 1 − z; (#3) −x, Inline graphic + y, Inline graphic − z; (#4) −1 + x, 1 + y, z; (#5) −x, 1 − y, 1 − z.

Database survey  

A search of the Cambridge Crystallographic Database (CSD version 5.42, update of Feb 2021, Groom et al., 2016) for structures with 1H-benzimidazole-5,6-di­carboxyl­ate gave 372 hits of which some are coordination polymers with prominent free pore space (also known as metal-organic frameworks, MOFs). For example, Li and co-workers reported a new three-dimensional non-inter­penetrating metal–organic framework (BARKUD01), featuring one-dimensional nanotube channels and exhibiting excellent gas separation performances (Li et al., 2017). There are some Co2+ complexes containing only ligand L 1 [refcodes AJIKIO (Fu et al., 2009), NUCGUO (Wei et al., 2009), ROMRUH (Xu et al., 2009), ROMRUH01 (Wei et al., 2009), ROMRUH02 (Shi et al., 2012), SILZAP (Lo et al., 2007), SOGCEX (Gao et al., 2008), and YOTFET (Song et al., 2009)]. However, none of these exhibit a tetra­hedral geometry around the Co atom. A zinc complex (BOVQUZ; Li et al., 2009) displays a tetra­hedral coordination around the metal center. By using cyclo­penta­dienyliron dicarbonyl dimer as a starting material, two new FeII-based MOFs have been constructed (HOHBEN and HOHBIR; Li et al., 2014). As a typical imidazole-carboxyl­ate ligand, 1H-benzimidazole-5,6-di­carboxyl­ate could bind rare earth/transition-metal centers with multiple coordination modes, which provides an ideal platform for the preparation of various coordination polymers, such as BASTOG (Sun et al., 2010), EHETAO (Jin et al., 2016) and FELBAC (Chai et al., 2018).

Synthesis and crystallization  

A mixture of Co(NO3)2·6H2O (20 mg, 0.069 mmol), 1H-benzimidazole-5,6-di­carb­oxy­lic acid (10 mg, 0.049 mmol), 3-amino-1,2,4-triazole (10 mg, 0.119 mmol), DMA (2 mL) and H2O (2 mL) were added to a 20 mL vial. The reaction system was then heated at 373 K for 72 h in an oven. Purple block-shaped crystals of the title compound suitable for X-ray analysis were obtained.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were placed in calculated positions (N—H = 0.86 Å, C—H = 0.93 Å) and refined as riding with U iso(H) = 1.2U eq(N,C)

Table 2. Experimental details.

Crystal data
Chemical formula [Co(C9H4N2O4)(C2H4N4)]
M r 347.16
Crystal system, space group Monoclinic, P21/c
Temperature (K) 279
a, b, c (Å) 13.3368 (8), 6.8727 (4), 13.6015 (10)
β (°) 103.478 (7)
V3) 1212.38 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.45
Crystal size (mm) 0.06 × 0.05 × 0.04
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova, Dual, Cu at home/near, AtlasS2
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018)
Tmin, Tmax 0.979, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 5618, 2475, 1839
R int 0.046
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F 2)], wR(F 2), S 0.047, 0.098, 1.03
No. of reflections 2475
No. of parameters 199
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.45, −0.43

Computer programs: CrysAlis PRO (Rigaku OD, 2018), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021005867/dj2027sup1.cif

e-77-00714-sup1.cif (191.9KB, cif)

Supporting information file. DOI: 10.1107/S2056989021005867/dj2027Isup3.cdx

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021005867/dj2027Isup4.hkl

e-77-00714-Isup4.hkl (198.3KB, hkl)

CCDC reference: 1996100

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

[Co(C9H4N2O4)(C2H4N4)] F(000) = 700
Mr = 347.16 Dx = 1.902 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 13.3368 (8) Å Cell parameters from 1697 reflections
b = 6.8727 (4) Å θ = 4.3–26.7°
c = 13.6015 (10) Å µ = 1.45 mm1
β = 103.478 (7)° T = 279 K
V = 1212.38 (14) Å3 Block, purple
Z = 4 0.06 × 0.05 × 0.04 mm

Data collection

Rigaku Oxford Diffraction SuperNova, Dual, Cu at home/near, AtlasS2 diffractometer 2475 independent reflections
Graphite monochromator 1839 reflections with I > 2σ(I)
Detector resolution: 10.3376 pixels mm-1 Rint = 0.046
phi and ω scans θmax = 26.4°, θmin = 3.3°
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2018) h = −14→16
Tmin = 0.979, Tmax = 1.000 k = −8→8
5618 measured reflections l = −17→12

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047 H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0319P)2 + 0.6634P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.001
2475 reflections Δρmax = 0.45 e Å3
199 parameters Δρmin = −0.43 e Å3
0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Co1 0.75360 (3) 0.69451 (6) 0.52745 (4) 0.02172 (16)
O2 0.76917 (18) −0.1847 (3) 0.40067 (19) 0.0298 (6)
O1 0.74157 (18) 0.0171 (3) 0.27211 (19) 0.0303 (6)
O4 0.66113 (18) 0.4785 (3) 0.4920 (2) 0.0328 (6)
O3 0.77486 (18) 0.2754 (4) 0.4537 (2) 0.0418 (7)
N2 0.3154 (2) 0.1240 (4) 0.3922 (2) 0.0203 (6)
N1 0.3399 (2) −0.1552 (4) 0.3188 (2) 0.0254 (7)
H1 0.326047 −0.266046 0.289464 0.030*
N4 0.9004 (2) 0.6928 (4) 0.6053 (2) 0.0264 (7)
C4 0.6862 (3) 0.3188 (5) 0.4544 (3) 0.0216 (8)
C7 0.4351 (2) −0.0655 (5) 0.3432 (2) 0.0197 (7)
C6 0.4188 (2) 0.1110 (5) 0.3892 (2) 0.0190 (7)
C8 0.5319 (2) −0.1215 (5) 0.3322 (3) 0.0223 (8)
H8 0.541882 −0.239926 0.302707 0.027*
N3 1.0667 (2) 0.7206 (5) 0.6511 (3) 0.0402 (9)
H3 1.129713 0.736543 0.647408 0.048*
C1 0.7158 (3) −0.0546 (5) 0.3456 (3) 0.0210 (8)
C3 0.5986 (2) 0.1848 (5) 0.4132 (2) 0.0205 (7)
C9 0.2731 (3) −0.0376 (5) 0.3493 (3) 0.0254 (8)
H9 0.203572 −0.067057 0.340978 0.031*
C2 0.6129 (2) 0.0051 (5) 0.3665 (2) 0.0198 (7)
C5 0.5008 (2) 0.2361 (5) 0.4240 (3) 0.0215 (8)
H5 0.490570 0.353422 0.454314 0.026*
N5 1.0361 (2) 0.6888 (5) 0.7393 (3) 0.0449 (9)
N6 0.9921 (3) 0.7490 (5) 0.4760 (3) 0.0491 (10)
H6A 1.051093 0.765185 0.461830 0.059*
H6B 0.936808 0.749236 0.428430 0.059*
C10 0.9863 (3) 0.7234 (5) 0.5721 (3) 0.0300 (9)
C11 0.9367 (3) 0.6734 (6) 0.7073 (3) 0.0380 (10)
H11 0.893449 0.650912 0.750793 0.046*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.0156 (3) 0.0225 (3) 0.0273 (3) −0.0014 (2) 0.00539 (19) −0.0020 (2)
O2 0.0248 (13) 0.0346 (14) 0.0315 (15) 0.0118 (12) 0.0097 (11) 0.0126 (12)
O1 0.0273 (14) 0.0316 (14) 0.0369 (16) 0.0087 (12) 0.0178 (12) 0.0121 (12)
O4 0.0234 (14) 0.0270 (14) 0.0481 (17) −0.0055 (12) 0.0083 (12) −0.0114 (13)
O3 0.0146 (13) 0.0519 (18) 0.061 (2) −0.0066 (13) 0.0135 (13) −0.0209 (15)
N2 0.0151 (14) 0.0249 (15) 0.0214 (16) −0.0029 (13) 0.0057 (12) −0.0010 (13)
N1 0.0206 (15) 0.0259 (16) 0.0307 (18) −0.0053 (13) 0.0080 (13) −0.0088 (13)
N4 0.0142 (14) 0.0321 (17) 0.0327 (18) −0.0010 (13) 0.0047 (13) 0.0032 (14)
C4 0.0197 (18) 0.0233 (18) 0.0228 (19) −0.0069 (15) 0.0068 (14) −0.0014 (15)
C7 0.0200 (18) 0.0199 (17) 0.0197 (18) −0.0035 (15) 0.0055 (14) −0.0002 (14)
C6 0.0175 (17) 0.0200 (17) 0.0201 (18) −0.0007 (15) 0.0060 (14) 0.0020 (14)
C8 0.0229 (18) 0.0186 (17) 0.026 (2) 0.0030 (16) 0.0069 (15) −0.0033 (15)
N3 0.0159 (16) 0.062 (2) 0.043 (2) −0.0036 (16) 0.0083 (15) 0.0089 (18)
C1 0.0222 (18) 0.0175 (17) 0.0239 (19) −0.0018 (15) 0.0067 (15) −0.0053 (15)
C3 0.0184 (17) 0.0233 (18) 0.0199 (18) −0.0012 (15) 0.0046 (14) 0.0005 (15)
C9 0.0190 (18) 0.0292 (19) 0.028 (2) −0.0019 (16) 0.0052 (15) −0.0012 (16)
C2 0.0178 (17) 0.0223 (18) 0.0187 (18) 0.0024 (15) 0.0030 (14) 0.0041 (15)
C5 0.0203 (18) 0.0196 (17) 0.0240 (19) −0.0011 (15) 0.0041 (15) −0.0003 (15)
N5 0.0260 (18) 0.068 (3) 0.039 (2) −0.0059 (17) 0.0032 (16) 0.0083 (19)
N6 0.0297 (19) 0.084 (3) 0.038 (2) 0.0013 (19) 0.0161 (16) 0.010 (2)
C10 0.0228 (19) 0.031 (2) 0.038 (2) 0.0027 (17) 0.0099 (17) 0.0063 (18)
C11 0.026 (2) 0.055 (3) 0.034 (2) −0.001 (2) 0.0066 (17) 0.010 (2)

Geometric parameters (Å, º)

Co1—O2i 1.968 (2) C7—C8 1.390 (4)
Co1—O4 1.919 (2) C6—C5 1.384 (4)
Co1—N2ii 2.016 (3) C8—H8 0.9300
Co1—N4 1.997 (3) C8—C2 1.381 (5)
O2—C1 1.272 (4) N3—H3 0.8600
O1—C1 1.234 (4) N3—N5 1.372 (5)
O4—C4 1.287 (4) N3—C10 1.331 (5)
O3—C4 1.222 (4) C1—C2 1.521 (5)
N2—C6 1.392 (4) C3—C2 1.422 (5)
N2—C9 1.319 (4) C3—C5 1.392 (5)
N1—H1 0.8600 C9—H9 0.9300
N1—C7 1.380 (4) C5—H5 0.9300
N1—C9 1.337 (4) N5—C11 1.300 (5)
N4—C10 1.342 (5) N6—H6A 0.8600
N4—C11 1.366 (5) N6—H6B 0.8600
C4—C3 1.490 (5) N6—C10 1.339 (5)
C7—C6 1.405 (5) C11—H11 0.9300
O2i—Co1—N2ii 111.64 (11) N5—N3—H3 124.4
O2i—Co1—N4 100.15 (11) C10—N3—H3 124.4
O4—Co1—O2i 107.41 (11) C10—N3—N5 111.1 (3)
O4—Co1—N2ii 105.49 (11) O2—C1—C2 119.0 (3)
O4—Co1—N4 128.46 (11) O1—C1—O2 122.3 (3)
N4—Co1—N2ii 103.38 (11) O1—C1—C2 118.6 (3)
C1—O2—Co1iii 130.8 (2) C2—C3—C4 122.0 (3)
C4—O4—Co1 123.3 (2) C5—C3—C4 118.4 (3)
C6—N2—Co1ii 129.5 (2) C5—C3—C2 119.6 (3)
C9—N2—Co1ii 124.0 (2) N2—C9—N1 113.5 (3)
C9—N2—C6 104.9 (3) N2—C9—H9 123.2
C7—N1—H1 126.4 N1—C9—H9 123.2
C9—N1—H1 126.4 C8—C2—C1 115.8 (3)
C9—N1—C7 107.3 (3) C8—C2—C3 121.5 (3)
C10—N4—Co1 129.0 (3) C3—C2—C1 122.6 (3)
C10—N4—C11 103.3 (3) C6—C5—C3 119.4 (3)
C11—N4—Co1 127.6 (3) C6—C5—H5 120.3
O4—C4—C3 115.0 (3) C3—C5—H5 120.3
O3—C4—O4 123.5 (3) C11—N5—N3 102.1 (3)
O3—C4—C3 121.4 (3) H6A—N6—H6B 120.0
N1—C7—C6 105.3 (3) C10—N6—H6A 120.0
N1—C7—C8 132.6 (3) C10—N6—H6B 120.0
C8—C7—C6 122.1 (3) N3—C10—N4 108.5 (3)
N2—C6—C7 109.0 (3) N3—C10—N6 124.8 (4)
C5—C6—N2 131.2 (3) N6—C10—N4 126.7 (3)
C5—C6—C7 119.8 (3) N4—C11—H11 122.5
C7—C8—H8 121.2 N5—C11—N4 115.1 (4)
C2—C8—C7 117.5 (3) N5—C11—H11 122.5
C2—C8—H8 121.2
Co1—O4—C4—O3 13.1 (5) C7—C8—C2—C1 −175.4 (3)
Co1—O4—C4—C3 −168.4 (2) C5—C3—C2—C8 −0.6 (5)
C9—N1—C7—C8 178.0 (4) C4—C3—C2—C8 177.4 (3)
C9—N1—C7—C6 −0.2 (4) C5—C3—C2—C1 175.7 (3)
C9—N2—C6—C5 −179.1 (4) C4—C3—C2—C1 −6.3 (5)
Co1ii—N2—C6—C5 −13.5 (5) O1—C1—C2—C8 98.3 (4)
C9—N2—C6—C7 −0.3 (4) O2—C1—C2—C8 −77.6 (4)
Co1ii—N2—C6—C7 165.4 (2) O1—C1—C2—C3 −78.3 (4)
N1—C7—C6—C5 179.3 (3) O2—C1—C2—C3 105.8 (4)
C8—C7—C6—C5 0.8 (5) N2—C6—C5—C3 178.5 (3)
N1—C7—C6—N2 0.3 (4) C7—C6—C5—C3 −0.2 (5)
C8—C7—C6—N2 −178.2 (3) C2—C3—C5—C6 0.1 (5)
N1—C7—C8—C2 −179.2 (3) C4—C3—C5—C6 −177.9 (3)
C6—C7—C8—C2 −1.2 (5) C10—N3—N5—C11 0.2 (4)
Co1iii—O2—C1—O1 173.7 (2) N5—N3—C10—N6 −179.1 (4)
Co1iii—O2—C1—C2 −10.5 (4) N5—N3—C10—N4 −0.3 (4)
O3—C4—C3—C5 174.7 (3) C11—N4—C10—N3 0.3 (4)
O4—C4—C3—C5 −3.8 (5) Co1—N4—C10—N3 176.1 (2)
O3—C4—C3—C2 −3.3 (5) C11—N4—C10—N6 179.1 (4)
O4—C4—C3—C2 178.2 (3) Co1—N4—C10—N6 −5.1 (6)
C6—N2—C9—N1 0.2 (4) N3—N5—C11—N4 0.0 (5)
Co1ii—N2—C9—N1 −166.5 (2) C10—N4—C11—N5 −0.2 (5)
C7—N1—C9—N2 0.0 (4) Co1—N4—C11—N5 −176.1 (3)
C7—C8—C2—C3 1.1 (5)

Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y+1, −z+1; (iii) x, y−1, z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1iv 0.86 1.84 2.675 (4) 163
N3—H3···O1v 0.86 2.48 3.104 (4) 130
N3—H3···O3v 0.86 2.08 2.811 (4) 142
N6—H6A···O3v 0.86 2.35 3.036 (5) 136
N6—H6B···O2i 0.86 2.23 2.946 (5) 141
C5—H5···O4ii 0.93 2.58 3.312 (4) 136
C5—H5···O4 0.93 2.37 2.698 (4) 100
C9—H9···N5vi 0.93 2.48 3.332 (5) 152
C11—H11···O1vii 0.93 2.41 3.215 (5) 145

Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y+1, −z+1; (iv) −x+1, y−1/2, −z+1/2; (v) −x+2, −y+1, −z+1; (vi) x−1, −y+1/2, z−1/2; (vii) x, −y+1/2, z+1/2.

Funding Statement

This work was funded by Beijing University of Technology.

References

  1. Chai, J., Wang, P., Jia, J., Ma, B., Sun, J., Tao, Y., Zhang, P., Wang, L. & Fan, Y. (2018). Polyhedron, 141, 369–376.
  2. Cui, Y., Li, B., He, H., Zhou, W., Chen, B. & Qian, G. (2016). Acc. Chem. Res. 49, 483–493. [DOI] [PubMed]
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  4. Du, M., Li, C.-P., Liu, C.-S. & Fang, S.-M. (2013). Coord. Chem. Rev. 257, 1282–1305.
  5. Fu, J.-D., Tang, Z.-W., Yuan, M.-Y. & Wen, Y.-H. (2009). Acta Cryst. E65, m1657. [DOI] [PMC free article] [PubMed]
  6. Gao, Q., Gao, W.-H., Zhang, C.-Y. & Xie, Y.-B. (2008). Acta Cryst. E64, m928. [DOI] [PMC free article] [PubMed]
  7. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  8. Han, Y., Li, J.-R., Xie, Y. & Guo, G. (2014). Chem. Soc. Rev. 43, 5952–5981. [DOI] [PubMed]
  9. He, T., Huang, Z., Yuan, S., Lv, X.-L., Kong, X.-J., Zou, X., Zhou, H.-C. & Li, J.-R. (2020). J. Am. Chem. Soc. 142, 13491–13499. [DOI] [PubMed]
  10. Huang, R.-W., Wei, Y.-S., Dong, X.-Y., Wu, X.-H., Du, C.-X., Zang, S.-Q. & Mak, T. C. W. (2017). Nat. Chem. 9, 689–697. [DOI] [PubMed]
  11. Jin, J., Chen, C., Gao, Y., Zhao, R., Wang, X., Lü, C., Chi, Y. & Niu, S. (2016). J. Solid State Chem. 235, 193–201.
  12. Kitagawa, S. & Matsuda, R. (2007). Coord. Chem. Rev. 251, 2490–2509.
  13. Li, J.-T., Li, J., Song, L.-M. & Ji, X.-H. (2017). Inorg. Chem. Commun. 83, 88–91.
  14. Li, Q., Tian, C., Zhang, H., Qian, J. & Du, S. (2014). CrystEngComm, 16, 9208–9215.
  15. Li, Z., Dai, J. & Yue, S. (2009). Acta Cryst. E65, m775. [DOI] [PMC free article] [PubMed]
  16. Lo, Y.-L., Wang, W.-C., Lee, G.-A. & Liu, Y.-H. (2007). Acta Cryst. E63, m2657–m2658.
  17. Lu, X.-F., Xia, B.-Y., Zang, S.-Q. & Lou, X.-W. (2020). Angew. Chem. 132, 4662–4678.
  18. Macreadie, L. K., Babarao, R., Setter, C. J., Lee, S. J., Qazvini, O. T., Seeber, A. J., Tsanaktsidis, J., Telfer, S. G., Batten, S. R. & Hill, M. R. (2020). Angew. Chem. Int. Ed. 59, 6090–6098. [DOI] [PubMed]
  19. Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  20. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  21. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  22. Shi, Z.-F., Li, L. & Niu, S.-Y. (2012). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 42, 818–822.
  23. Song, W.-D., Wang, H., Li, S.-J., Qin, P.-W. & Hu, S.-W. (2009). Acta Cryst. E65, m702. [DOI] [PMC free article] [PubMed]
  24. Sun, Y.-G., Wu, Y.-L., Xiong, G., Smet, P. F., Ding, F., Guo, M.-Y., Zhu, M.-C., Gao, E. J., Poelman, D. & Verpoort, F. (2010). Dalton Trans. 39, 11383–11395. [DOI] [PubMed]
  25. Wang, J.-H., Zhang, Y., Li, M., Yan, S., Li, D. & Zhang, X.-M. (2017). Angew. Chem. Int. Ed. 56, 6478–6482.
  26. Wang, X., Lu, W., Gu, Z.-Y., Wei, Z. & Zhou, H.-C. (2016). Chem. Commun. 52, 1926–1929. [DOI] [PubMed]
  27. Wei, Y., Yu, Y., Sa, R., Li, Q. & Wu, K. (2009). CrystEngComm, 11, 1054–1060.
  28. Xu, K. & Yu, L.-P. (2009). Acta Cryst. E65, m295. [DOI] [PMC free article] [PubMed]
  29. Zhao, X., Wang, Y., Li, D.-S., Bu, X. & Feng, P. (2018). Adv. Mater. 30, 1705189. [DOI] [PubMed]
  30. Zou, R., Li, P.-Z., Zeng, Y.-F., Liu, J., Zhao, R., Duan, H., Luo, Z., Wang, J.-G., Zou, R. & Zhao, Y. (2016). Small, 12, 2334–2343. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021005867/dj2027sup1.cif

e-77-00714-sup1.cif (191.9KB, cif)

Supporting information file. DOI: 10.1107/S2056989021005867/dj2027Isup3.cdx

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021005867/dj2027Isup4.hkl

e-77-00714-Isup4.hkl (198.3KB, hkl)

CCDC reference: 1996100

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES