The structure of the title coordination polymer is determined by multiple hydrogen-bonding interactions. In the crystal, two ligands coordinate with the metal centre, generating chains, which are further connected with each other via N—H⋯O hydrogen bonds, and expanded into the final framework through additional N—H⋯O hydrogen bonds.
Keywords: crystal structure, coordination polymer, mixed-ligands synthetic strategy, imidazole, dicarboxylic acid
Abstract
The asymmetric unit of the title coordination polymer, [Co(C9H4N2O4)(C2H4N4)]n or [Co(L 1)(L 2)]n, consists of one crystallographically independent Co2+ centre, one L 1 2− ligand and one L 2 ligand (L 1 = 1H-benzimidazole-5,6-dicarboxylic acid, L 2 = 3-amino-1,2,4-triazole). The Co2+ centre is coordinated by two carboxylato-O atoms from two independent L 1 2− ligands and two nitrogen atoms from L 2 and another L 1 ligand. Thus, the metal center adopts a four-coordinate mode, forming a tetrahedral geometry. Interestingly, through the combination of two L 1 2−, two L 2 ligands and two Co2+ ions, a basic repeating unit is constructed, resulting in the formation of a one-dimensional straight chain structure. These chains are further expanded to the final three-dimensional framework via N—H⋯O hydrogen-bonding interactions.
Chemical context
Over the past two decades, coordination polymers (CPs) have been demonstrated to represent a new type of crystalline organic–inorganic hybrid materials, and are unique in terms of their potentially high porosities, tunable pores, and diverse compositions (Du et al., 2013 ▸; Kitagawa et al., 2007 ▸; Cui et al., 2016 ▸). These features have enabled CPs to be constructed with great potential for various applications, such as gas adsorption/separation (Zhao et al., 2018 ▸), chemical sensing (Huang et al., 2017 ▸), heterogeneous catalysis (He et al., 2020 ▸) and energy storage/conversion (Lu et al., 2020 ▸). Meanwhile, the crystalline nature of CPs allows for the accurate determination of their structures using X-ray diffraction techniques and further, the revealing of structure–property relationships. The great potential of these compounds certainly promotes the development of synthetic strategies for new CPs. It has been demonstrated that many efficient synthetic routes, including metal exchange (Wang et al., 2017 ▸), ligand substitution (Han et al., 2014 ▸), directional construction based on secondary building units (SBUs) (Zou et al., 2016 ▸), and topology-guided reticular chemistry principles (Wang et al., 2016 ▸) have shown some advantages in fabricating new CPs with multiple structures and functionalities. In addition to the methods mentioned above, the mixed-ligands strategy is also considered to be an important approach for the integration of the properties of related ligands into a single coordination polymer and hence expansion of the structural diversity of CPs (Macreadie et al., 2020 ▸). In this context, we report the synthesis and crystal structure of the title coordination polymer poly[(3-amino-1,2,4-triazole)(μ3-1H-benzimidazole-5,6-dicarboxylato)cobalt(II)] (1), which was prepared by the solvothermal method using two simple ligands and a cobalt salt.
Structural commentary
The title coordination polymer (1) crystallizes in the monoclinic system, P21/c space group, and its asymmetric unit contains one Co2+ center, one L 1 2− anion and one L 2 ligand (Fig. 1 ▸). The metal center adopts a typical tetrahedral linkage geometry to coordinate with two carboxylato-O atoms from two independent L 1 2− ligands and two nitrogen atoms, one from L 2 and another from an L 1 ligand. Interestingly, through the combination of two L 1 2−, two L 2 ligands and two Co2+ ions, a basic repeating unit is constructed, resulting in the formation of a one-dimensional straight chain structure (as shown in Fig. 2 ▸). These chains are further connected via hydrogen bonding interactions (Fig. 3 ▸), generating a three-dimensional framework.
Figure 1.
A view of the asymmetric unit of the title coordination polymer showing the atom numbering with displacement ellipsoids drawn at the 50% probability level.
Figure 2.
A view of the one-dimensional straight chain structure within the coordination polymer.
Figure 3.
Structure of the title coordination polymer viewed along the (a) a axis and (b) c axis, respectively.
Supramolecular features
As mentioned above, extensive hydrogen-bonding interactions in the crystal of the title coordination polymer are observed, the numerical values of which are presented in Table 1 ▸. As shown in Fig. 4 ▸, each chain is linked to adjacent chains by N1—H1⋯O1 hydrogen bonds into infinite layer structures parallel to the bc plane. Meanwhile, these layers are linked by other intermolecular hydrogen bonds (e.g., N3—H3⋯O3 and N6—H6A⋯O3), resulting in the formation of the final three-dimensional supramolecular network. Due to the regular distribution of Co2+ metal sites, the high density of nitrogen atoms in the structure, and the packing arrangement of the supramolecular network, the coordination polymer has the potential to work as a molecular catalyst or to serve as the precursor material for preparing an electrocatalyst.
Table 1. Hydrogen-bond geometry (Å, °).
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
---|---|---|---|---|
N1—H1⋯O1i | 0.86 | 1.84 | 2.675 (4) | 163 |
N3—H3⋯O1ii | 0.86 | 2.48 | 3.104 (4) | 130 |
N3—H3⋯O3ii | 0.86 | 2.08 | 2.811 (4) | 142 |
N6—H6A⋯O3ii | 0.86 | 2.35 | 3.036 (5) | 136 |
N6—H6B⋯O2iii | 0.86 | 2.23 | 2.946 (5) | 141 |
C5—H5⋯O4iv | 0.93 | 2.58 | 3.312 (4) | 136 |
C9—H9⋯N5v | 0.93 | 2.48 | 3.332 (5) | 152 |
C11—H11⋯O1vi | 0.93 | 2.41 | 3.215 (5) | 145 |
Symmetry codes: (i) -x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}; (ii) -x+2, -y+1, -z+1; (iii) x, y+1, z; (iv) -x+1, -y+1, -z+1; (v) x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}; (vi) x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}.
Figure 4.
A view of the hydrogen bonds in the title coordination polymer. Intramolecular hydrogen bonds are omitted for clarity [symmetry codes: (#1) −1 + x, y, z; (#2) 1 − x, 1 − y, 1 − z; (#3) −x, + y,
− z; (#4) −1 + x, 1 + y, z; (#5) −x, 1 − y, 1 − z.
Database survey
A search of the Cambridge Crystallographic Database (CSD version 5.42, update of Feb 2021, Groom et al., 2016 ▸) for structures with 1H-benzimidazole-5,6-dicarboxylate gave 372 hits of which some are coordination polymers with prominent free pore space (also known as metal-organic frameworks, MOFs). For example, Li and co-workers reported a new three-dimensional non-interpenetrating metal–organic framework (BARKUD01), featuring one-dimensional nanotube channels and exhibiting excellent gas separation performances (Li et al., 2017 ▸). There are some Co2+ complexes containing only ligand L 1 [refcodes AJIKIO (Fu et al., 2009 ▸), NUCGUO (Wei et al., 2009 ▸), ROMRUH (Xu et al., 2009 ▸), ROMRUH01 (Wei et al., 2009 ▸), ROMRUH02 (Shi et al., 2012 ▸), SILZAP (Lo et al., 2007 ▸), SOGCEX (Gao et al., 2008 ▸), and YOTFET (Song et al., 2009 ▸)]. However, none of these exhibit a tetrahedral geometry around the Co atom. A zinc complex (BOVQUZ; Li et al., 2009 ▸) displays a tetrahedral coordination around the metal center. By using cyclopentadienyliron dicarbonyl dimer as a starting material, two new FeII-based MOFs have been constructed (HOHBEN and HOHBIR; Li et al., 2014 ▸). As a typical imidazole-carboxylate ligand, 1H-benzimidazole-5,6-dicarboxylate could bind rare earth/transition-metal centers with multiple coordination modes, which provides an ideal platform for the preparation of various coordination polymers, such as BASTOG (Sun et al., 2010 ▸), EHETAO (Jin et al., 2016 ▸) and FELBAC (Chai et al., 2018 ▸).
Synthesis and crystallization
A mixture of Co(NO3)2·6H2O (20 mg, 0.069 mmol), 1H-benzimidazole-5,6-dicarboxylic acid (10 mg, 0.049 mmol), 3-amino-1,2,4-triazole (10 mg, 0.119 mmol), DMA (2 mL) and H2O (2 mL) were added to a 20 mL vial. The reaction system was then heated at 373 K for 72 h in an oven. Purple block-shaped crystals of the title compound suitable for X-ray analysis were obtained.
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 2 ▸. H atoms were placed in calculated positions (N—H = 0.86 Å, C—H = 0.93 Å) and refined as riding with U iso(H) = 1.2U eq(N,C)
Table 2. Experimental details.
Crystal data | |
Chemical formula | [Co(C9H4N2O4)(C2H4N4)] |
M r | 347.16 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 279 |
a, b, c (Å) | 13.3368 (8), 6.8727 (4), 13.6015 (10) |
β (°) | 103.478 (7) |
V (Å3) | 1212.38 (14) |
Z | 4 |
Radiation type | Mo Kα |
μ (mm−1) | 1.45 |
Crystal size (mm) | 0.06 × 0.05 × 0.04 |
Data collection | |
Diffractometer | Rigaku Oxford Diffraction SuperNova, Dual, Cu at home/near, AtlasS2 |
Absorption correction | Multi-scan (CrysAlis PRO; Rigaku OD, 2018 ▸) |
Tmin, Tmax | 0.979, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5618, 2475, 1839 |
R int | 0.046 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F 2)], wR(F 2), S | 0.047, 0.098, 1.03 |
No. of reflections | 2475 |
No. of parameters | 199 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.45, −0.43 |
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021005867/dj2027sup1.cif
Supporting information file. DOI: 10.1107/S2056989021005867/dj2027Isup3.cdx
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021005867/dj2027Isup4.hkl
CCDC reference: 1996100
Additional supporting information: crystallographic information; 3D view; checkCIF report
supplementary crystallographic information
Crystal data
[Co(C9H4N2O4)(C2H4N4)] | F(000) = 700 |
Mr = 347.16 | Dx = 1.902 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 13.3368 (8) Å | Cell parameters from 1697 reflections |
b = 6.8727 (4) Å | θ = 4.3–26.7° |
c = 13.6015 (10) Å | µ = 1.45 mm−1 |
β = 103.478 (7)° | T = 279 K |
V = 1212.38 (14) Å3 | Block, purple |
Z = 4 | 0.06 × 0.05 × 0.04 mm |
Data collection
Rigaku Oxford Diffraction SuperNova, Dual, Cu at home/near, AtlasS2 diffractometer | 2475 independent reflections |
Graphite monochromator | 1839 reflections with I > 2σ(I) |
Detector resolution: 10.3376 pixels mm-1 | Rint = 0.046 |
phi and ω scans | θmax = 26.4°, θmin = 3.3° |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2018) | h = −14→16 |
Tmin = 0.979, Tmax = 1.000 | k = −8→8 |
5618 measured reflections | l = −17→12 |
Refinement
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.047 | H-atom parameters constrained |
wR(F2) = 0.098 | w = 1/[σ2(Fo2) + (0.0319P)2 + 0.6634P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.001 |
2475 reflections | Δρmax = 0.45 e Å−3 |
199 parameters | Δρmin = −0.43 e Å−3 |
0 restraints |
Special details
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x | y | z | Uiso*/Ueq | ||
Co1 | 0.75360 (3) | 0.69451 (6) | 0.52745 (4) | 0.02172 (16) | |
O2 | 0.76917 (18) | −0.1847 (3) | 0.40067 (19) | 0.0298 (6) | |
O1 | 0.74157 (18) | 0.0171 (3) | 0.27211 (19) | 0.0303 (6) | |
O4 | 0.66113 (18) | 0.4785 (3) | 0.4920 (2) | 0.0328 (6) | |
O3 | 0.77486 (18) | 0.2754 (4) | 0.4537 (2) | 0.0418 (7) | |
N2 | 0.3154 (2) | 0.1240 (4) | 0.3922 (2) | 0.0203 (6) | |
N1 | 0.3399 (2) | −0.1552 (4) | 0.3188 (2) | 0.0254 (7) | |
H1 | 0.326047 | −0.266046 | 0.289464 | 0.030* | |
N4 | 0.9004 (2) | 0.6928 (4) | 0.6053 (2) | 0.0264 (7) | |
C4 | 0.6862 (3) | 0.3188 (5) | 0.4544 (3) | 0.0216 (8) | |
C7 | 0.4351 (2) | −0.0655 (5) | 0.3432 (2) | 0.0197 (7) | |
C6 | 0.4188 (2) | 0.1110 (5) | 0.3892 (2) | 0.0190 (7) | |
C8 | 0.5319 (2) | −0.1215 (5) | 0.3322 (3) | 0.0223 (8) | |
H8 | 0.541882 | −0.239926 | 0.302707 | 0.027* | |
N3 | 1.0667 (2) | 0.7206 (5) | 0.6511 (3) | 0.0402 (9) | |
H3 | 1.129713 | 0.736543 | 0.647408 | 0.048* | |
C1 | 0.7158 (3) | −0.0546 (5) | 0.3456 (3) | 0.0210 (8) | |
C3 | 0.5986 (2) | 0.1848 (5) | 0.4132 (2) | 0.0205 (7) | |
C9 | 0.2731 (3) | −0.0376 (5) | 0.3493 (3) | 0.0254 (8) | |
H9 | 0.203572 | −0.067057 | 0.340978 | 0.031* | |
C2 | 0.6129 (2) | 0.0051 (5) | 0.3665 (2) | 0.0198 (7) | |
C5 | 0.5008 (2) | 0.2361 (5) | 0.4240 (3) | 0.0215 (8) | |
H5 | 0.490570 | 0.353422 | 0.454314 | 0.026* | |
N5 | 1.0361 (2) | 0.6888 (5) | 0.7393 (3) | 0.0449 (9) | |
N6 | 0.9921 (3) | 0.7490 (5) | 0.4760 (3) | 0.0491 (10) | |
H6A | 1.051093 | 0.765185 | 0.461830 | 0.059* | |
H6B | 0.936808 | 0.749236 | 0.428430 | 0.059* | |
C10 | 0.9863 (3) | 0.7234 (5) | 0.5721 (3) | 0.0300 (9) | |
C11 | 0.9367 (3) | 0.6734 (6) | 0.7073 (3) | 0.0380 (10) | |
H11 | 0.893449 | 0.650912 | 0.750793 | 0.046* |
Atomic displacement parameters (Å2)
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.0156 (3) | 0.0225 (3) | 0.0273 (3) | −0.0014 (2) | 0.00539 (19) | −0.0020 (2) |
O2 | 0.0248 (13) | 0.0346 (14) | 0.0315 (15) | 0.0118 (12) | 0.0097 (11) | 0.0126 (12) |
O1 | 0.0273 (14) | 0.0316 (14) | 0.0369 (16) | 0.0087 (12) | 0.0178 (12) | 0.0121 (12) |
O4 | 0.0234 (14) | 0.0270 (14) | 0.0481 (17) | −0.0055 (12) | 0.0083 (12) | −0.0114 (13) |
O3 | 0.0146 (13) | 0.0519 (18) | 0.061 (2) | −0.0066 (13) | 0.0135 (13) | −0.0209 (15) |
N2 | 0.0151 (14) | 0.0249 (15) | 0.0214 (16) | −0.0029 (13) | 0.0057 (12) | −0.0010 (13) |
N1 | 0.0206 (15) | 0.0259 (16) | 0.0307 (18) | −0.0053 (13) | 0.0080 (13) | −0.0088 (13) |
N4 | 0.0142 (14) | 0.0321 (17) | 0.0327 (18) | −0.0010 (13) | 0.0047 (13) | 0.0032 (14) |
C4 | 0.0197 (18) | 0.0233 (18) | 0.0228 (19) | −0.0069 (15) | 0.0068 (14) | −0.0014 (15) |
C7 | 0.0200 (18) | 0.0199 (17) | 0.0197 (18) | −0.0035 (15) | 0.0055 (14) | −0.0002 (14) |
C6 | 0.0175 (17) | 0.0200 (17) | 0.0201 (18) | −0.0007 (15) | 0.0060 (14) | 0.0020 (14) |
C8 | 0.0229 (18) | 0.0186 (17) | 0.026 (2) | 0.0030 (16) | 0.0069 (15) | −0.0033 (15) |
N3 | 0.0159 (16) | 0.062 (2) | 0.043 (2) | −0.0036 (16) | 0.0083 (15) | 0.0089 (18) |
C1 | 0.0222 (18) | 0.0175 (17) | 0.0239 (19) | −0.0018 (15) | 0.0067 (15) | −0.0053 (15) |
C3 | 0.0184 (17) | 0.0233 (18) | 0.0199 (18) | −0.0012 (15) | 0.0046 (14) | 0.0005 (15) |
C9 | 0.0190 (18) | 0.0292 (19) | 0.028 (2) | −0.0019 (16) | 0.0052 (15) | −0.0012 (16) |
C2 | 0.0178 (17) | 0.0223 (18) | 0.0187 (18) | 0.0024 (15) | 0.0030 (14) | 0.0041 (15) |
C5 | 0.0203 (18) | 0.0196 (17) | 0.0240 (19) | −0.0011 (15) | 0.0041 (15) | −0.0003 (15) |
N5 | 0.0260 (18) | 0.068 (3) | 0.039 (2) | −0.0059 (17) | 0.0032 (16) | 0.0083 (19) |
N6 | 0.0297 (19) | 0.084 (3) | 0.038 (2) | 0.0013 (19) | 0.0161 (16) | 0.010 (2) |
C10 | 0.0228 (19) | 0.031 (2) | 0.038 (2) | 0.0027 (17) | 0.0099 (17) | 0.0063 (18) |
C11 | 0.026 (2) | 0.055 (3) | 0.034 (2) | −0.001 (2) | 0.0066 (17) | 0.010 (2) |
Geometric parameters (Å, º)
Co1—O2i | 1.968 (2) | C7—C8 | 1.390 (4) |
Co1—O4 | 1.919 (2) | C6—C5 | 1.384 (4) |
Co1—N2ii | 2.016 (3) | C8—H8 | 0.9300 |
Co1—N4 | 1.997 (3) | C8—C2 | 1.381 (5) |
O2—C1 | 1.272 (4) | N3—H3 | 0.8600 |
O1—C1 | 1.234 (4) | N3—N5 | 1.372 (5) |
O4—C4 | 1.287 (4) | N3—C10 | 1.331 (5) |
O3—C4 | 1.222 (4) | C1—C2 | 1.521 (5) |
N2—C6 | 1.392 (4) | C3—C2 | 1.422 (5) |
N2—C9 | 1.319 (4) | C3—C5 | 1.392 (5) |
N1—H1 | 0.8600 | C9—H9 | 0.9300 |
N1—C7 | 1.380 (4) | C5—H5 | 0.9300 |
N1—C9 | 1.337 (4) | N5—C11 | 1.300 (5) |
N4—C10 | 1.342 (5) | N6—H6A | 0.8600 |
N4—C11 | 1.366 (5) | N6—H6B | 0.8600 |
C4—C3 | 1.490 (5) | N6—C10 | 1.339 (5) |
C7—C6 | 1.405 (5) | C11—H11 | 0.9300 |
O2i—Co1—N2ii | 111.64 (11) | N5—N3—H3 | 124.4 |
O2i—Co1—N4 | 100.15 (11) | C10—N3—H3 | 124.4 |
O4—Co1—O2i | 107.41 (11) | C10—N3—N5 | 111.1 (3) |
O4—Co1—N2ii | 105.49 (11) | O2—C1—C2 | 119.0 (3) |
O4—Co1—N4 | 128.46 (11) | O1—C1—O2 | 122.3 (3) |
N4—Co1—N2ii | 103.38 (11) | O1—C1—C2 | 118.6 (3) |
C1—O2—Co1iii | 130.8 (2) | C2—C3—C4 | 122.0 (3) |
C4—O4—Co1 | 123.3 (2) | C5—C3—C4 | 118.4 (3) |
C6—N2—Co1ii | 129.5 (2) | C5—C3—C2 | 119.6 (3) |
C9—N2—Co1ii | 124.0 (2) | N2—C9—N1 | 113.5 (3) |
C9—N2—C6 | 104.9 (3) | N2—C9—H9 | 123.2 |
C7—N1—H1 | 126.4 | N1—C9—H9 | 123.2 |
C9—N1—H1 | 126.4 | C8—C2—C1 | 115.8 (3) |
C9—N1—C7 | 107.3 (3) | C8—C2—C3 | 121.5 (3) |
C10—N4—Co1 | 129.0 (3) | C3—C2—C1 | 122.6 (3) |
C10—N4—C11 | 103.3 (3) | C6—C5—C3 | 119.4 (3) |
C11—N4—Co1 | 127.6 (3) | C6—C5—H5 | 120.3 |
O4—C4—C3 | 115.0 (3) | C3—C5—H5 | 120.3 |
O3—C4—O4 | 123.5 (3) | C11—N5—N3 | 102.1 (3) |
O3—C4—C3 | 121.4 (3) | H6A—N6—H6B | 120.0 |
N1—C7—C6 | 105.3 (3) | C10—N6—H6A | 120.0 |
N1—C7—C8 | 132.6 (3) | C10—N6—H6B | 120.0 |
C8—C7—C6 | 122.1 (3) | N3—C10—N4 | 108.5 (3) |
N2—C6—C7 | 109.0 (3) | N3—C10—N6 | 124.8 (4) |
C5—C6—N2 | 131.2 (3) | N6—C10—N4 | 126.7 (3) |
C5—C6—C7 | 119.8 (3) | N4—C11—H11 | 122.5 |
C7—C8—H8 | 121.2 | N5—C11—N4 | 115.1 (4) |
C2—C8—C7 | 117.5 (3) | N5—C11—H11 | 122.5 |
C2—C8—H8 | 121.2 | ||
Co1—O4—C4—O3 | 13.1 (5) | C7—C8—C2—C1 | −175.4 (3) |
Co1—O4—C4—C3 | −168.4 (2) | C5—C3—C2—C8 | −0.6 (5) |
C9—N1—C7—C8 | 178.0 (4) | C4—C3—C2—C8 | 177.4 (3) |
C9—N1—C7—C6 | −0.2 (4) | C5—C3—C2—C1 | 175.7 (3) |
C9—N2—C6—C5 | −179.1 (4) | C4—C3—C2—C1 | −6.3 (5) |
Co1ii—N2—C6—C5 | −13.5 (5) | O1—C1—C2—C8 | 98.3 (4) |
C9—N2—C6—C7 | −0.3 (4) | O2—C1—C2—C8 | −77.6 (4) |
Co1ii—N2—C6—C7 | 165.4 (2) | O1—C1—C2—C3 | −78.3 (4) |
N1—C7—C6—C5 | 179.3 (3) | O2—C1—C2—C3 | 105.8 (4) |
C8—C7—C6—C5 | 0.8 (5) | N2—C6—C5—C3 | 178.5 (3) |
N1—C7—C6—N2 | 0.3 (4) | C7—C6—C5—C3 | −0.2 (5) |
C8—C7—C6—N2 | −178.2 (3) | C2—C3—C5—C6 | 0.1 (5) |
N1—C7—C8—C2 | −179.2 (3) | C4—C3—C5—C6 | −177.9 (3) |
C6—C7—C8—C2 | −1.2 (5) | C10—N3—N5—C11 | 0.2 (4) |
Co1iii—O2—C1—O1 | 173.7 (2) | N5—N3—C10—N6 | −179.1 (4) |
Co1iii—O2—C1—C2 | −10.5 (4) | N5—N3—C10—N4 | −0.3 (4) |
O3—C4—C3—C5 | 174.7 (3) | C11—N4—C10—N3 | 0.3 (4) |
O4—C4—C3—C5 | −3.8 (5) | Co1—N4—C10—N3 | 176.1 (2) |
O3—C4—C3—C2 | −3.3 (5) | C11—N4—C10—N6 | 179.1 (4) |
O4—C4—C3—C2 | 178.2 (3) | Co1—N4—C10—N6 | −5.1 (6) |
C6—N2—C9—N1 | 0.2 (4) | N3—N5—C11—N4 | 0.0 (5) |
Co1ii—N2—C9—N1 | −166.5 (2) | C10—N4—C11—N5 | −0.2 (5) |
C7—N1—C9—N2 | 0.0 (4) | Co1—N4—C11—N5 | −176.1 (3) |
C7—C8—C2—C3 | 1.1 (5) |
Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y+1, −z+1; (iii) x, y−1, z.
Hydrogen-bond geometry (Å, º)
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1iv | 0.86 | 1.84 | 2.675 (4) | 163 |
N3—H3···O1v | 0.86 | 2.48 | 3.104 (4) | 130 |
N3—H3···O3v | 0.86 | 2.08 | 2.811 (4) | 142 |
N6—H6A···O3v | 0.86 | 2.35 | 3.036 (5) | 136 |
N6—H6B···O2i | 0.86 | 2.23 | 2.946 (5) | 141 |
C5—H5···O4ii | 0.93 | 2.58 | 3.312 (4) | 136 |
C5—H5···O4 | 0.93 | 2.37 | 2.698 (4) | 100 |
C9—H9···N5vi | 0.93 | 2.48 | 3.332 (5) | 152 |
C11—H11···O1vii | 0.93 | 2.41 | 3.215 (5) | 145 |
Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y+1, −z+1; (iv) −x+1, y−1/2, −z+1/2; (v) −x+2, −y+1, −z+1; (vi) x−1, −y+1/2, z−1/2; (vii) x, −y+1/2, z+1/2.
Funding Statement
This work was funded by Beijing University of Technology.
References
- Chai, J., Wang, P., Jia, J., Ma, B., Sun, J., Tao, Y., Zhang, P., Wang, L. & Fan, Y. (2018). Polyhedron, 141, 369–376.
- Cui, Y., Li, B., He, H., Zhou, W., Chen, B. & Qian, G. (2016). Acc. Chem. Res. 49, 483–493. [DOI] [PubMed]
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Du, M., Li, C.-P., Liu, C.-S. & Fang, S.-M. (2013). Coord. Chem. Rev. 257, 1282–1305.
- Fu, J.-D., Tang, Z.-W., Yuan, M.-Y. & Wen, Y.-H. (2009). Acta Cryst. E65, m1657. [DOI] [PMC free article] [PubMed]
- Gao, Q., Gao, W.-H., Zhang, C.-Y. & Xie, Y.-B. (2008). Acta Cryst. E64, m928. [DOI] [PMC free article] [PubMed]
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Han, Y., Li, J.-R., Xie, Y. & Guo, G. (2014). Chem. Soc. Rev. 43, 5952–5981. [DOI] [PubMed]
- He, T., Huang, Z., Yuan, S., Lv, X.-L., Kong, X.-J., Zou, X., Zhou, H.-C. & Li, J.-R. (2020). J. Am. Chem. Soc. 142, 13491–13499. [DOI] [PubMed]
- Huang, R.-W., Wei, Y.-S., Dong, X.-Y., Wu, X.-H., Du, C.-X., Zang, S.-Q. & Mak, T. C. W. (2017). Nat. Chem. 9, 689–697. [DOI] [PubMed]
- Jin, J., Chen, C., Gao, Y., Zhao, R., Wang, X., Lü, C., Chi, Y. & Niu, S. (2016). J. Solid State Chem. 235, 193–201.
- Kitagawa, S. & Matsuda, R. (2007). Coord. Chem. Rev. 251, 2490–2509.
- Li, J.-T., Li, J., Song, L.-M. & Ji, X.-H. (2017). Inorg. Chem. Commun. 83, 88–91.
- Li, Q., Tian, C., Zhang, H., Qian, J. & Du, S. (2014). CrystEngComm, 16, 9208–9215.
- Li, Z., Dai, J. & Yue, S. (2009). Acta Cryst. E65, m775. [DOI] [PMC free article] [PubMed]
- Lo, Y.-L., Wang, W.-C., Lee, G.-A. & Liu, Y.-H. (2007). Acta Cryst. E63, m2657–m2658.
- Lu, X.-F., Xia, B.-Y., Zang, S.-Q. & Lou, X.-W. (2020). Angew. Chem. 132, 4662–4678.
- Macreadie, L. K., Babarao, R., Setter, C. J., Lee, S. J., Qazvini, O. T., Seeber, A. J., Tsanaktsidis, J., Telfer, S. G., Batten, S. R. & Hill, M. R. (2020). Angew. Chem. Int. Ed. 59, 6090–6098. [DOI] [PubMed]
- Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Shi, Z.-F., Li, L. & Niu, S.-Y. (2012). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 42, 818–822.
- Song, W.-D., Wang, H., Li, S.-J., Qin, P.-W. & Hu, S.-W. (2009). Acta Cryst. E65, m702. [DOI] [PMC free article] [PubMed]
- Sun, Y.-G., Wu, Y.-L., Xiong, G., Smet, P. F., Ding, F., Guo, M.-Y., Zhu, M.-C., Gao, E. J., Poelman, D. & Verpoort, F. (2010). Dalton Trans. 39, 11383–11395. [DOI] [PubMed]
- Wang, J.-H., Zhang, Y., Li, M., Yan, S., Li, D. & Zhang, X.-M. (2017). Angew. Chem. Int. Ed. 56, 6478–6482.
- Wang, X., Lu, W., Gu, Z.-Y., Wei, Z. & Zhou, H.-C. (2016). Chem. Commun. 52, 1926–1929. [DOI] [PubMed]
- Wei, Y., Yu, Y., Sa, R., Li, Q. & Wu, K. (2009). CrystEngComm, 11, 1054–1060.
- Xu, K. & Yu, L.-P. (2009). Acta Cryst. E65, m295. [DOI] [PMC free article] [PubMed]
- Zhao, X., Wang, Y., Li, D.-S., Bu, X. & Feng, P. (2018). Adv. Mater. 30, 1705189. [DOI] [PubMed]
- Zou, R., Li, P.-Z., Zeng, Y.-F., Liu, J., Zhao, R., Duan, H., Luo, Z., Wang, J.-G., Zou, R. & Zhao, Y. (2016). Small, 12, 2334–2343. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021005867/dj2027sup1.cif
Supporting information file. DOI: 10.1107/S2056989021005867/dj2027Isup3.cdx
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021005867/dj2027Isup4.hkl
CCDC reference: 1996100
Additional supporting information: crystallographic information; 3D view; checkCIF report