Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Jun 25;77(Pt 7):730–733. doi: 10.1107/S2056989021005600

Crystal structure and Hirshfeld surface analysis of ethyl 2-({5-acetyl-3-cyano-6-methyl-4-[(E)-2-phenyl­ethen­yl]pyridin-2-yl}sulfan­yl)acetate

Safiyyah A H Al-Waleedy a,*, Shaaban K Mohamed b,c,*, Joel T Mague d, Mehmet Akkurt e, Mohamed S Abbady f, Etify A Bakhite f
PMCID: PMC8382064  PMID: 34513020

The styryl and ester substituents are displaced to opposite sides of the plane through the pyridine ring while the acetyl group is rotated well out of that plane. In the crystal, inversion-related C—H⋯O hydrogen bonds form chains extending parallel to the a-axis direction, which pack with partial inter­calation of the styryl and ester substituents.

Keywords: crystal structure, pyridine, styr­yl, ester, hydrogen bond, Hirshfeld surface analysis

Abstract

In the title mol­ecule, C21H20N2O3S, the styryl and ester substituents are displaced to opposite sides of the plane of the pyridine ring. In the crystal, C—H⋯O hydrogen bonds form chains extending parallel to the a-axis direction, which pack with partial inter­calation of the styryl and ester substituents. A Hirshfeld surface analysis indicates that the most significant contributions to the crystal packing are from H⋯H (43.6%), C⋯H/H⋯C (15.6%), O⋯H/H⋯O (14.9%) and N⋯H/H⋯N (11.2%) contacts.

Chemical context  

Numerous pyridine-containing natural products and synthetic organic compounds with various biophysio- and pharmacological activities have been reported (Gibson et al., 2007; Vidaillac et al., 2007). These scaffolds are also of widespread inter­est in supra­molecular and coordination chemistry, as well as for materials science (Balasubramanian & Keay, 1996). The above findings promoted us to study the crystal structure of the title compound, C21H20N2O3S.graphic file with name e-77-00730-scheme1.jpg

Structural commentary  

The styryl substituent and the ester group are displaced to opposite sides of the plane of the pyridine ring (Fig. 1). The dihedral angle between the mean planes of the phenyl (C8–C13) and pyridine (N1/C1–C5) rings is 27.86 (3)°. The C1—C2—C14—C15 torsion angle of 68.1 (2)° indicates that the acetyl group is rotated well out of the plane of the pyridine ring, while the N1—C4—S1—C18 torsion angle of −5.66 (12)° shows that the link to the ester group is nearly coplanar with the pyridine ring.

Figure 1.

Figure 1

The title mol­ecule with labelling scheme and displacement ellipsoids at the 50% probability level.

Supra­molecular features  

In the crystal, inversion dimers are formed by inter­molecular C15—H15A⋯O2 hydrogen bonds between a methyl H atom of the acetyl group and the carbonyl O atom of the ester function. These dimers are further linked by inversion-related C18—H18B⋯O1 hydrogen bonds between a methyl­ene H atom and the carbonyl O atom of the acetyl group (Table 1) to form ribbons of mol­ecules extending parallel to the a-axis direction (Fig. 2). The chains pack with a partial inter­calation of the styryl and ester substituents (Fig. 3).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15A⋯O2i 0.98 (2) 2.56 (2) 3.375 (2) 139.9 (17)
C18—H18B⋯O1ii 0.965 (17) 2.493 (17) 3.2989 (17) 140.9 (13)

Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+1, -z+1.

Figure 2.

Figure 2

A portion of one hydrogen–bonded chain in a view along the c-axis direction. C—H⋯O hydrogen bonds are depicted by dashed lines.

Figure 3.

Figure 3

Packing of the mol­ecules in the title compound in a view along the b-axis direction. C—H⋯O hydrogen bonds are depicted by dashed lines.

Hirshfeld surface analysis  

To qu­antify the inter­molecular inter­actions in the title compound, a Hirshfeld surface analysis was performed and two-dimensional fingerprint plots were generated using Crystal Explorer (Turner et al., 2017). The Hirshfeld surface mapped over d norm in the range −0.1607 to +1.3888 arbitrary units is depicted in Fig. 4, where the red regions indicate apparent hydrogen bonds in this structure. The intensities of the red areas are greater for C15—H15A⋯O2 and C18—H18B⋯O1, indicating the strongest inter­actions as compared to other red spots on the Hirshfeld surface; Table 2 lists corresponding close inter­molecular contacts. The two-dimensional fingerprint plots (Fig. 5) reveal that the largest contributions are from H⋯H (43.6%; Fig. 5 b), C⋯H/H⋯C (15.6%; Fig. 5 c), O⋯H/H⋯O (14.9%; Fig. 5 d) and N⋯H/H⋯N (11.2%; Fig. 5 e) inter­actions. Other inter­actions contributing less to the crystal packing are S⋯H/H⋯S (5.9%), C⋯C (4.4%), N⋯C/C⋯N (1.5%), S⋯O/O⋯S (1.1%), O⋯C/C⋯O (1.0%), O⋯O (0.3%), N⋯N (0.2%) and S⋯C/C⋯S (0.2%).

Figure 4.

Figure 4

A view of the three-dimensional Hirshfeld surface for the title compound, plotted over d norm in the range −0.1607 to +1.3888 a.u.

Table 2. Summary of short inter­atomic contacts (Å) in the title compound.

Contact Distance Symmetry operation
H20B⋯H16B 2.53 x, 1 + y, z
H18B⋯H7 2.42 1 − x, 1 − y, 1 − z
O2⋯H10 2.613 {3\over 2} − x, {1\over 2} + y, {1\over 2} − z
H15A⋯O2 2.56 2 − x, 1 − y, 1 − z
N2⋯H20A 2.63 −{1\over 2} + x, {3\over 2} − y, −{1\over 2} + z
H11⋯H11 2.31 1 − x, −y, −z
H12⋯H20A 2.47 −{1\over 2} + x, {1\over 2} − y, −{1\over 2} + z
H16A⋯H21B 2.49 {3\over 2} − x, −{1\over 2} + y, {3\over 2} − z

Figure 5.

Figure 5

A view of the two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) O⋯H/H⋯O and (e) N⋯H/H⋯N inter­actions. The d i and d e values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

Database survey  

A search of the Cambridge Structural Database (version 5.42, update 1, Feb 2021; Groom et al., 2016) for related structures with the 2-sulfanyl­pyridine-3-carbo­nitrile moiety of the title compound gave the following matches: ethyl 4-methyl-2-phenyl-6-thioxo-1,6-di­hydro-5-pyrimidine­carboxyl­ate monohydrate (DEWCIS; Cunha et al., 2007), ethyl 4-(5-eth­oxy­carbonyl-6-methyl-2-phenyl-4-pyrimidinyldisulfan­yl)-6-meth­yl-2-phenyl-5-pyrimidine­carboxyl­ate (DEWCAK; Cunha et al., 2007), ethyl 4-{[(4-chloro­phen­yl)meth­yl]sulfan­yl}-6-meth­yl-2-phenyl­pyrimidine-5-carboxyl­ate (NILKOL; Stolarczyk et al., 2018), (4-{[(4-chloro­phen­yl)meth­yl]sulfan­yl}-6-methyl-2-phenyl­pyrimidin-5-yl)methanol (NILKUR; Stolarczyk et al., 2018) and 4-{[(4-chloro­phen­yl)meth­yl]sulfan­yl}-5,6-dimethyl-2-phenyl­pyrimidine (NILLAY; Stolarczyk et al., 2018).

Compound DEWCIS crystallizes in the space group P21/c with one mol­ecule in the asymmetric unit. N—H⋯O, O—H⋯N and O—H⋯S inter­actions involving the water mol­ecules, as well as π–π stacking inter­actions between the mol­ecules along the b axis contribute to the formation of layers parallel to the bc plane. The stability of the mol­ecular packing is achieved by van der Waals inter­actions between these layers. Compound DEWCAK crystallizes in the space group P Inline graphic with one mol­ecule in the asymmetric unit. In the crystal structure of DEWCAK, there are no classical hydrogen bonds. The mol­ecular packing is stabilized by C—H⋯π inter­actions and π–π stacking inter­actions. Compound NILKOL crystallizes in the space group P Inline graphic with one mol­ecule in the asymmetric unit, whereas compounds NILKUR and NILLAY crystallize in the space group P21/c with two and one mol­ecules, respectively, in their asymmetric units. The conformation of each mol­ecule is best defined by the dihedral angles formed between the pyrimidine ring and the planes of the two aryl substituents attached at the 2- and 4-positions. The only structural difference between the three compounds is the substituent at the 5-position of the pyrimidine ring, but they present significantly different features in their hydrogen-bonding inter­actions. NILKOL displays a chain structure whereby the chains are further extended into a two-dimensional network. In NILKUR and NILLAY, the hydrogen-bonded chains have no further aggregation.

Synthesis and crystallization  

A mixture of 5-acetyl-3-cyano-6-methyl-4-styryl­pyridine-2(1H)-thione (3.24 g, 10 mmol), ethyl chloro­acetate (1.1 ml, 10 mmol) and sodium acetate trihydrate (1.5 g, 11 mmol) in ethanol (40 ml) was heated under reflux for 30 min. The solid that formed after dilution with water (20 ml) was filtered off and recrystallized from methanol in the form of fine colourless crystals of the title compound, yield 85%; m.p. 343–344 K. Its IR spectrum showed characteristic absorption bands at 2219 cm−1 for (C≡N), at 1748 cm−1 for (C=O, non conjugated ester) and at 1724 cm−1 for (C=O, conjugated ester). The 1H NMR spectrum (400 MHz, DMSO-d 6) displayed a multiplet at δ = 6.60–7.63 ppm (7H: CH=CH and Ar-Hs), a multiplet at δ = 4.16–4.37 ppm (6H: two OCH2 and SCH2), a singlet at δ = 2.52 ppm (3H, CH3 at C-6, overlapped with solvent signal) and a multiplet at δ = 1.21–1.27 ppm (6H: two CH3 of ester groups).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. The C-bound H atoms were refined freely, while the H atoms of the C16 methyl group were placed geometrically (C—H = 0.98 Å) and refined as riding atoms with U iso(H) = 1.5U eq(C).

Table 3. Experimental details.

Crystal data
Chemical formula C21H20N2O3S
M r 380.45
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 10.7365 (4), 9.7590 (3), 18.5600 (7)
β (°) 90.066 (1)
V3) 1944.67 (12)
Z 4
Radiation type Cu Kα
μ (mm−1) 1.67
Crystal size (mm) 0.27 × 0.12 × 0.05
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
Tmin, Tmax 0.80, 0.92
No. of measured, independent and observed [I > 2σ(I)] reflections 14722, 3912, 3520
R int 0.034
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F 2)], wR(F 2), S 0.033, 0.088, 1.04
No. of reflections 3912
No. of parameters 314
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.22, −0.29

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ), DIAMOND (Brandenburg & Putz, 2012) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989021005600/wm5610sup1.cif

e-77-00730-sup1.cif (456.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021005600/wm5610Isup2.hkl

e-77-00730-Isup2.hkl (312KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021005600/wm5610Isup3.cml

CCDC reference: 2087180

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Author contributions are as follows: Conceptualization, EAB, MSA and SKM; methodology, JTM, EAB and MA; investigation, JTM, SKM, and EAB; writing (original draft), JTM, AM, SKM and EAB; writing (review and editing of the manuscript), MA and SKM; visualization, MA, SKM and JTM; funding acquisition, SAHA and SKM; resources, MA, JTM, EAB and SKM. AAA, VNK and FNN; supervision, SKM and MA.

supplementary crystallographic information

Crystal data

C21H20N2O3S F(000) = 800
Mr = 380.45 Dx = 1.299 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.54178 Å
a = 10.7365 (4) Å Cell parameters from 9951 reflections
b = 9.7590 (3) Å θ = 4.8–74.6°
c = 18.5600 (7) Å µ = 1.67 mm1
β = 90.066 (1)° T = 150 K
V = 1944.67 (12) Å3 Column, colourless
Z = 4 0.27 × 0.12 × 0.05 mm

Data collection

Bruker D8 VENTURE PHOTON 100 CMOS diffractometer 3912 independent reflections
Radiation source: INCOATEC IµS micro–focus source 3520 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.034
Detector resolution: 10.4167 pixels mm-1 θmax = 74.6°, θmin = 4.8°
ω scans h = −13→12
Absorption correction: multi-scan (SADABS; Krause et al., 2015) k = −11→12
Tmin = 0.80, Tmax = 0.92 l = −21→22
14722 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.033 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0426P)2 + 0.7692P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
3912 reflections Δρmax = 0.22 e Å3
314 parameters Δρmin = −0.28 e Å3
0 restraints Extinction correction: SHELXL 2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: dual Extinction coefficient: 0.0041 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Independent refinement of the hydrogen atoms attached to C16 led to an unreasonable geometry so these were included as riding contributions (C—H = 0.98 Å) with an AFIX 137 instruction.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.62964 (3) 0.76240 (3) 0.45327 (2) 0.02319 (11)
O1 0.65133 (9) 0.07606 (9) 0.47995 (6) 0.0295 (2)
O2 0.85513 (10) 0.82982 (12) 0.54910 (6) 0.0367 (3)
O3 0.73641 (9) 0.93032 (11) 0.63373 (5) 0.0304 (2)
N1 0.67271 (10) 0.51703 (11) 0.51422 (6) 0.0222 (2)
N2 0.58138 (13) 0.65298 (13) 0.27261 (7) 0.0351 (3)
C1 0.66330 (11) 0.37425 (13) 0.38230 (7) 0.0203 (3)
C2 0.69019 (12) 0.30604 (13) 0.44698 (7) 0.0202 (3)
C3 0.69103 (12) 0.38044 (13) 0.51167 (7) 0.0215 (3)
C4 0.65042 (12) 0.58371 (13) 0.45305 (7) 0.0201 (3)
C5 0.64281 (12) 0.51610 (13) 0.38647 (7) 0.0208 (3)
C6 0.64972 (13) 0.30725 (14) 0.31165 (7) 0.0233 (3)
H6 0.6751 (17) 0.363 (2) 0.2711 (10) 0.038 (5)*
C7 0.59846 (13) 0.18469 (14) 0.30086 (7) 0.0239 (3)
H7 0.5717 (16) 0.1327 (18) 0.3420 (10) 0.033 (4)*
C8 0.57238 (12) 0.12114 (13) 0.23083 (7) 0.0222 (3)
C9 0.58480 (13) 0.19075 (14) 0.16518 (7) 0.0245 (3)
H9 0.6136 (17) 0.284 (2) 0.1648 (9) 0.034 (5)*
C10 0.55575 (13) 0.12655 (16) 0.10077 (8) 0.0276 (3)
H10 0.5629 (17) 0.178 (2) 0.0567 (10) 0.041 (5)*
C11 0.51380 (14) −0.00811 (16) 0.10078 (8) 0.0295 (3)
H11 0.4913 (18) −0.0529 (19) 0.0555 (10) 0.040 (5)*
C12 0.50215 (15) −0.07840 (15) 0.16501 (8) 0.0312 (3)
H12 0.4716 (17) −0.170 (2) 0.1652 (10) 0.037 (5)*
C13 0.53114 (14) −0.01448 (15) 0.22967 (8) 0.0279 (3)
H13 0.5240 (17) −0.0659 (18) 0.2763 (10) 0.036 (5)*
C14 0.72087 (12) 0.15479 (13) 0.44955 (7) 0.0220 (3)
C15 0.84103 (15) 0.10914 (17) 0.41681 (10) 0.0351 (3)
H15A 0.907 (2) 0.149 (2) 0.4470 (12) 0.056 (6)*
H15B 0.846 (2) 0.008 (2) 0.4173 (12) 0.058 (6)*
H14C 0.8516 (19) 0.147 (2) 0.3658 (12) 0.051 (6)*
C16 0.71490 (14) 0.31393 (14) 0.58331 (7) 0.0282 (3)
H16A 0.723453 0.384753 0.620421 0.042*
H16B 0.791792 0.260036 0.580824 0.042*
H16C 0.645041 0.253596 0.595442 0.042*
C17 0.60967 (13) 0.59215 (14) 0.32293 (7) 0.0245 (3)
C18 0.63109 (13) 0.80140 (14) 0.54760 (7) 0.0231 (3)
H18A 0.6100 (17) 0.717 (2) 0.5740 (10) 0.037 (5)*
H18B 0.5672 (16) 0.8694 (18) 0.5554 (9) 0.027 (4)*
C19 0.75457 (13) 0.85366 (14) 0.57467 (7) 0.0244 (3)
C20 0.84825 (15) 0.98717 (19) 0.66682 (9) 0.0380 (4)
H20A 0.904 (2) 0.910 (2) 0.6807 (12) 0.053 (6)*
H20B 0.896 (2) 1.047 (2) 0.6298 (12) 0.056 (6)*
C21 0.80775 (18) 1.0701 (2) 0.73071 (10) 0.0410 (4)
H21A 0.883 (2) 1.109 (2) 0.7550 (13) 0.065 (7)*
H21B 0.762 (2) 1.014 (2) 0.7639 (12) 0.051 (6)*
H21C 0.751 (2) 1.144 (2) 0.7167 (11) 0.049 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.03027 (19) 0.01732 (17) 0.02199 (18) 0.00121 (12) −0.00303 (12) −0.00091 (11)
O1 0.0316 (5) 0.0202 (5) 0.0367 (6) 0.0000 (4) 0.0043 (4) 0.0046 (4)
O2 0.0248 (5) 0.0464 (7) 0.0389 (6) 0.0060 (4) −0.0025 (4) −0.0121 (5)
O3 0.0289 (5) 0.0356 (6) 0.0266 (5) 0.0020 (4) −0.0059 (4) −0.0092 (4)
N1 0.0257 (6) 0.0202 (5) 0.0208 (6) −0.0021 (4) −0.0033 (4) −0.0004 (4)
N2 0.0473 (8) 0.0295 (6) 0.0285 (7) −0.0007 (6) −0.0097 (6) 0.0023 (5)
C1 0.0199 (6) 0.0200 (6) 0.0209 (6) −0.0030 (5) −0.0009 (5) −0.0009 (5)
C2 0.0203 (6) 0.0180 (6) 0.0224 (6) −0.0021 (5) −0.0018 (5) 0.0007 (5)
C3 0.0224 (6) 0.0201 (6) 0.0220 (7) −0.0025 (5) −0.0032 (5) 0.0008 (5)
C4 0.0199 (6) 0.0192 (6) 0.0211 (6) −0.0021 (5) −0.0023 (5) −0.0002 (5)
C5 0.0223 (6) 0.0203 (6) 0.0199 (6) −0.0022 (5) −0.0033 (5) 0.0012 (5)
C6 0.0283 (7) 0.0222 (6) 0.0195 (6) −0.0010 (5) −0.0012 (5) −0.0010 (5)
C7 0.0281 (7) 0.0245 (7) 0.0193 (6) −0.0024 (5) 0.0000 (5) −0.0010 (5)
C8 0.0233 (6) 0.0230 (6) 0.0201 (6) −0.0001 (5) −0.0010 (5) −0.0028 (5)
C9 0.0271 (7) 0.0233 (7) 0.0232 (7) −0.0021 (5) −0.0012 (5) 0.0003 (5)
C10 0.0290 (7) 0.0329 (7) 0.0209 (7) 0.0010 (6) −0.0022 (5) 0.0007 (6)
C11 0.0337 (7) 0.0323 (7) 0.0226 (7) 0.0009 (6) −0.0057 (6) −0.0064 (6)
C12 0.0418 (8) 0.0230 (7) 0.0287 (8) −0.0048 (6) −0.0045 (6) −0.0046 (6)
C13 0.0368 (8) 0.0240 (7) 0.0228 (7) −0.0035 (6) −0.0018 (6) −0.0006 (5)
C14 0.0244 (6) 0.0202 (6) 0.0214 (6) −0.0002 (5) −0.0042 (5) −0.0005 (5)
C15 0.0311 (8) 0.0294 (8) 0.0448 (10) 0.0052 (6) 0.0068 (7) 0.0029 (7)
C16 0.0393 (8) 0.0239 (7) 0.0214 (7) −0.0016 (6) −0.0065 (6) 0.0022 (5)
C17 0.0293 (7) 0.0211 (6) 0.0231 (7) −0.0022 (5) −0.0044 (5) −0.0016 (5)
C18 0.0257 (7) 0.0207 (6) 0.0230 (7) 0.0004 (5) 0.0007 (5) −0.0027 (5)
C19 0.0277 (7) 0.0223 (6) 0.0231 (6) 0.0038 (5) −0.0038 (5) −0.0008 (5)
C20 0.0329 (8) 0.0429 (9) 0.0383 (9) 0.0026 (7) −0.0140 (7) −0.0119 (7)
C21 0.0458 (10) 0.0446 (10) 0.0324 (9) −0.0011 (8) −0.0100 (7) −0.0095 (7)

Geometric parameters (Å, º)

S1—C4 1.7581 (13) C9—H9 0.960 (19)
S1—C18 1.7918 (14) C10—C11 1.389 (2)
O1—C14 1.2112 (16) C10—H10 0.96 (2)
O2—C19 1.2026 (17) C11—C12 1.381 (2)
O3—C19 1.3417 (17) C11—H11 0.98 (2)
O3—C20 1.4578 (18) C12—C13 1.388 (2)
N1—C4 1.3301 (17) C12—H12 0.956 (19)
N1—C3 1.3482 (17) C13—H13 1.003 (19)
N2—C17 1.1473 (19) C14—C15 1.4946 (19)
C1—C2 1.4025 (18) C15—H15A 0.98 (2)
C1—C5 1.4038 (18) C15—H15B 0.99 (2)
C1—C6 1.4723 (18) C15—H14C 1.02 (2)
C2—C3 1.4032 (18) C16—H16A 0.9800
C2—C14 1.5130 (17) C16—H16B 0.9800
C3—C16 1.5013 (18) C16—H16C 0.9800
C4—C5 1.4032 (18) C18—C19 1.5061 (19)
C5—C17 1.4378 (18) C18—H18A 0.988 (19)
C6—C7 1.332 (2) C18—H18B 0.965 (17)
C6—H6 0.968 (19) C20—C21 1.500 (2)
C7—C8 1.4669 (18) C20—H20A 1.00 (2)
C7—H7 0.961 (18) C20—H20B 1.04 (2)
C8—C13 1.3958 (19) C21—H21A 1.00 (2)
C8—C9 1.4016 (19) C21—H21B 0.96 (2)
C9—C10 1.385 (2) C21—H21C 0.97 (2)
C4—S1—C18 102.24 (6) C12—C13—H13 120.2 (10)
C19—O3—C20 115.85 (11) C8—C13—H13 119.0 (10)
C4—N1—C3 118.68 (11) O1—C14—C15 122.21 (12)
C2—C1—C5 116.93 (11) O1—C14—C2 119.95 (12)
C2—C1—C6 124.86 (12) C15—C14—C2 117.77 (12)
C5—C1—C6 118.14 (11) C14—C15—H15A 105.7 (13)
C1—C2—C3 119.21 (12) C14—C15—H15B 109.9 (13)
C1—C2—C14 122.32 (11) H15A—C15—H15B 110.5 (18)
C3—C2—C14 118.47 (11) C14—C15—H14C 111.5 (12)
N1—C3—C2 122.74 (12) H15A—C15—H14C 107.7 (17)
N1—C3—C16 114.90 (11) H15B—C15—H14C 111.2 (17)
C2—C3—C16 122.34 (12) C3—C16—H16A 109.5
N1—C4—C5 122.14 (12) C3—C16—H16B 109.5
N1—C4—S1 120.40 (10) H16A—C16—H16B 109.5
C5—C4—S1 117.46 (10) C3—C16—H16C 109.5
C4—C5—C1 120.22 (12) H16A—C16—H16C 109.5
C4—C5—C17 119.59 (12) H16B—C16—H16C 109.5
C1—C5—C17 120.16 (12) N2—C17—C5 178.94 (16)
C7—C6—C1 124.98 (12) C19—C18—S1 113.86 (10)
C7—C6—H6 120.3 (11) C19—C18—H18A 108.7 (11)
C1—C6—H6 114.6 (11) S1—C18—H18A 107.8 (11)
C6—C7—C8 126.26 (13) C19—C18—H18B 110.0 (10)
C6—C7—H7 118.6 (11) S1—C18—H18B 106.7 (10)
C8—C7—H7 115.1 (11) H18A—C18—H18B 109.7 (14)
C13—C8—C9 118.47 (12) O2—C19—O3 124.17 (13)
C13—C8—C7 118.34 (12) O2—C19—C18 126.38 (13)
C9—C8—C7 123.18 (12) O3—C19—C18 109.43 (11)
C10—C9—C8 120.64 (13) O3—C20—C21 107.39 (14)
C10—C9—H9 119.7 (11) O3—C20—H20A 108.7 (13)
C8—C9—H9 119.7 (11) C21—C20—H20A 112.2 (13)
C9—C10—C11 120.03 (13) O3—C20—H20B 110.0 (12)
C9—C10—H10 118.6 (12) C21—C20—H20B 111.1 (12)
C11—C10—H10 121.4 (12) H20A—C20—H20B 107.4 (17)
C12—C11—C10 119.98 (13) C20—C21—H21A 109.1 (13)
C12—C11—H11 119.8 (11) C20—C21—H21B 110.5 (13)
C10—C11—H11 120.2 (11) H21A—C21—H21B 109.7 (18)
C11—C12—C13 120.18 (13) C20—C21—H21C 111.6 (12)
C11—C12—H12 120.1 (11) H21A—C21—H21C 110.1 (18)
C13—C12—H12 119.7 (11) H21B—C21—H21C 105.8 (18)
C12—C13—C8 120.69 (13)
C5—C1—C2—C3 2.15 (18) C5—C1—C6—C7 −140.67 (14)
C6—C1—C2—C3 −175.01 (12) C1—C6—C7—C8 173.53 (13)
C5—C1—C2—C14 −176.70 (11) C6—C7—C8—C13 172.91 (14)
C6—C1—C2—C14 6.15 (19) C6—C7—C8—C9 −8.2 (2)
C4—N1—C3—C2 1.39 (19) C13—C8—C9—C10 0.5 (2)
C4—N1—C3—C16 −179.73 (12) C7—C8—C9—C10 −178.32 (13)
C1—C2—C3—N1 −3.20 (19) C8—C9—C10—C11 0.0 (2)
C14—C2—C3—N1 175.69 (12) C9—C10—C11—C12 −0.6 (2)
C1—C2—C3—C16 177.99 (12) C10—C11—C12—C13 0.6 (2)
C14—C2—C3—C16 −3.12 (19) C11—C12—C13—C8 0.0 (2)
C3—N1—C4—C5 1.39 (19) C9—C8—C13—C12 −0.5 (2)
C3—N1—C4—S1 −178.47 (10) C7—C8—C13—C12 178.38 (14)
C18—S1—C4—N1 −5.66 (12) C1—C2—C14—O1 −114.75 (15)
C18—S1—C4—C5 174.48 (10) C3—C2—C14—O1 66.40 (17)
N1—C4—C5—C1 −2.31 (19) C1—C2—C14—C15 68.12 (17)
S1—C4—C5—C1 177.55 (10) C3—C2—C14—C15 −110.73 (15)
N1—C4—C5—C17 175.55 (12) C4—S1—C18—C19 98.96 (10)
S1—C4—C5—C17 −4.59 (17) C20—O3—C19—O2 0.6 (2)
C2—C1—C5—C4 0.44 (18) C20—O3—C19—C18 179.32 (12)
C6—C1—C5—C4 177.79 (12) S1—C18—C19—O2 −26.34 (19)
C2—C1—C5—C17 −177.42 (12) S1—C18—C19—O3 154.93 (10)
C6—C1—C5—C17 −0.06 (18) C19—O3—C20—C21 179.23 (14)
C2—C1—C6—C7 36.5 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C15—H15A···O2i 0.98 (2) 2.56 (2) 3.375 (2) 139.9 (17)
C18—H18B···O1ii 0.965 (17) 2.493 (17) 3.2989 (17) 140.9 (13)

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, −y+1, −z+1.

Funding Statement

This work was funded by National Science Foundation grant 1228232; Tulane University.

References

  1. Balasubramanian, M. & Keay, J. G. (1996). In Comprehensive Heterocyclic Chemistry II, edited by A. R Katritzky, C. W. Rees & E. F. V. Scriven, pp. 245–300. Oxford: Pergamon.
  2. Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2016). APEX3 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.
  4. Cunha, S., Bastos, R. M., Silva, P. O., Nobre Costa, G. A., Vencato, I., Lariucci, C., Napolitano, H. B., de Oliveira, C. M. A., Kato, L., da Silva, C. C., Menezes, D. & Vannier-Santos, M. A. (2007). Monatsh. Chem. 138, 111–119.
  5. Gibson, V. C., Redshaw, C. & Solan, G. A. (2007). Chem. Rev. 107, 1745–1776. [DOI] [PubMed]
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  8. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  9. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  10. Stolarczyk, M., Bryndal, I., Matera-Witkiewicz, A., Lis, T., Królewska-Golińska, K., Cieślak, M., Kaźmierczak-Barańska, J. & Cieplik, J. (2018). Acta Cryst. C74, 1138–1145. [DOI] [PubMed]
  11. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. University of Western Australia. http://hirshfeldsurface.net
  12. Vidaillac, C., Guillon, J., Arpin, C., Forfar-Bares, I., Ba, B. B., Grellet, J., Moreau, S., Caignard, D. H., Jarry, C. & Quentin, C. (2007). Antimicrob. Agents Chemother. 51, 831–838. [DOI] [PMC free article] [PubMed]
  13. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989021005600/wm5610sup1.cif

e-77-00730-sup1.cif (456.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021005600/wm5610Isup2.hkl

e-77-00730-Isup2.hkl (312KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021005600/wm5610Isup3.cml

CCDC reference: 2087180

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES