Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Jun 11;77(Pt 7):708–713. doi: 10.1107/S2056989021005570

Hexanuclear copper(II) complex of 2-hy­droxy-N,N′-bis­[1-(2-hy­droxy­phen­yl)ethyl­idene]propane-1,3-di­amine incorporating an open-cubane core

Momath Kébé a, Ibrahima Elhadji Thiam a,*, Mouhamadou Moustapha Sow b, Ousmane Diouf a, Aliou Hamady Barry c, Abdou Salam Sall a, Pascal Retailleau d, Mohamed Gaye a
PMCID: PMC8382066  PMID: 34513016

In the title Schiff base hexa­nuclear copper(II) complex, two discrete environments are present in the structure: CuNO4 and CuNO3. Four copper(II) cations are situated in a distorted square-pyramidal environment, while two copper(II) cations are located in a slightly square-planar geometry. Three of the copper(II) cations occupy three vertices of an open cubane Cu3O4.

Keywords: crystal structure; 1-(2-hy­droxy­phen­yl)ethanone; 1,3-di­amino­propan-2-ol; open-cubane; hydrazone

Abstract

The title mol­ecular structure, namely, di­aqua­tris­(μ3-1,3-bis­{[1-(2-oxidophen­yl)ethyl­idene]amino}­propan-2-olato)-μ3-hydroxido-dinitrato­hexa­copper(II) ethanol tris­olvate, [Cu6(C19H19N2O3)3(NO3)2(OH)(H2O)2]·3C2H5OH, corres­ponds to a non-symmetric hexa­nuclear copper complex. The complex exhibits one core in which three CuII metal centres are mutually inter­connected, two by two, via three phenolato oxygen anions acting in a μ2-mode. These three copper cations are inter­connected in a μ3-mode by one hydroxyl group. An open-cube structure is generated in which each of the CuII cations of the three CuO4N units is connected by two μ2-O anions from phenolate groups and one μ3-O atom from a hy­droxy anion. Each of the three penta­coordinated CuII cations situated in the open-cube unit has a distorted NO4 square-pyramidal environment. Each of these three CuII centres is inter­connected with another CuII cation via one enolate O atom in μ2-mode, yielding one CuNO4 unit and two CuNO3 units. The penta­coordinated CuII atom has a distorted square-pyramidal environment while the two tetra­coordinated copper(II) cations are situated in a square-planar environment. A series of intra­molecular O—H⋯O hydrogen bonds are observed. In the crystal, the units are connected two by two by inter­molecular C—H⋯O and O—H⋯O hydrogen bonds, thus forming sheets parallel to the ac plane.

Chemical context  

The coordination chemistry of penta­dentate ligands has been studied extensively. That their structures present symmetrical or asymmetrical pendant arms and bear donor atoms is an asset widely exploited in coordination chemistry. The presence of donor sites on aliphatic or aromatic arms has made it possible to prepare a wide variety of compounds with various structures and inter­esting physical and chemical properties. 1,3-Di­amino­propan-2-ol, which has three donor sites, is a good precursor for the synthesis of ligands with several cavities that can act as chelating agents and/or as bridging ligands (Song et al., 2004; Shit et al., 2013). These types of ligands can generate high nuclearity complexes with original structures. Indeed, ligands rich in hydroxyl groups and containing other donor sites such as nitro­gen are used to prepare complexes with very diverse structures (Gungor & Kara, 2015; Dutta et al., 2020; Shit et al., 2013; Sarı et al., 2006). Several synthetic strategies have been developed to control the nuclearity and lead to specific applications in mol­ecular magnetism (Popov et al., 2012; Mikuriya et al., 2018), mol­ecular biology (Grundmeier & Dau, 2012), electrochemistry (Musie et al., 2003) and catalysis (Gamez et al., 2001). The self-assembly synthetic strategy involving transition-metal cations and multidentate ligands has been widely used by coordination chemists, as a result of the wide variety of fascinating structures with the presence of multiple metal centres. The high nuclearity of these complexes and the inter­actions that can take place between metal cations has increased their inter­est to chemists (Bonanno et al., 2018; Yang et al., 2014; Haldar et al., 2019).graphic file with name e-77-00708-scheme1.jpg

In a continuation of our work on multidentate Schiff base complexes (Sall et al., 2019; Sarr et al., 2018a ,b ; Mamour et al., 2018), we have explored the possibility of preparing high nuclearity complexes using a Schiff base rich in hydroxyl groups. From 1,3-di­amino­propan-2-ol and 1-(2-hy­droxy­phen­yl)ethanone, we obtained a ligand containing three hydroxyl groups. The reaction of this ligand with copper nitrate resulted in the hexa­nuclear title complex, whose structure presents an open cube involving three of the six copper cations.

Structural commentary  

The reaction of 1-(2-hy­droxy­phen­yl)ethanone and 1,3-di­amino­propan-2-ol in a 2:1 ratio in ethanol yielded the ligand N,N′-bis­{[1-(2-hy­droxy­phen­yl)ethyl­idene]}-2-hy­droxy­pro­pane-1,3-di­amine (H3 L). The reaction of ligand H3 L with copper nitrate yielded a complex in which the ligand reacted in tri-deprotonated form as L 3−. The coordination complex is formulated as [Cu6 L 3(NO3)2(OH)(H2O)2]·3(EtOH) (I) (Fig. 1). In this hexa­nuclear open-cubane complex, each of the tri-deprotonated ligand acts as a bridge linking one copper(II) cation to two neighbouring CuII cations. The two imino nitro­gen atoms of the ligand are coordinated to two different Cu cations. One of the phenolato O atoms bridges two copper cations, while the second phenolato O atom is coordinated to a third copper cation. The third copper cation is bridged to the central copper cation via the enolato oxygen anion. The tri-deprotonated ligand coordinates in a hepta­dentate mode (μ2-Ophenolate, η 1-Nimino, μ2-Oenolato, η 1-Nimino, η 1-Ophenolato), thus forming four fused chelate rings (two five-membered and two six-membered). Two discrete environments are observed in the structure: CuNO4 and CuNO3. The coordination environments for Cu1, Cu3, Cu5 and Cu6 are best described as square-pyramidal, as shown by the Addison τ parameter calculated from the largest angles (Table 1) around Cu1, Cu3, Cu5 and Cu6: τ = 0.045 (Cu1), τ = 0.007 (Cu3), τ = 0.010 (Cu5), τ = 0.040 (Cu6), (τ = 0 or 1 for perfect square-pyramidal and trigonal–bipyramidal geometries respectively). For Cu6, the basal plane is occupied by one phenolato oxygen anion, one enolate oxygen anion, one water O atom and one azomethine nitro­gen atom, the apical position being occupied by an anion oxygen of an unidentate nitrate group. The donor atoms (O8, N6, O9, O2W) of the basal coordination plane are almost coplanar and the Cu6 cation is displaced toward the apical atom (O201) by 0.0963 (9) Å. The cissoid angles are in the range 86.12 (9)–94.66 (9)° while the transoid angles are 171.23 (9) and 174.18 (9)°. In the basal plane, the Cu6—N6 [1.942 (2) Å] and the Cu6—Oligand distances [1.935 (2) and 1.863 (2) Å] are shorter than the distance of Cu6—O2W [2.028 (2) Å]. The distance between the copper and the nitrato oxygen anion [Cu6—O14B = 2.45 (2) Å] in the apical position is longer than the distances to the atoms in the equatorial plane because of Jahn–Teller distortion, which is typical for copper(II) d 9 atoms (Monfared et al., 2009). This distance is in accordance with reported values for nitrato square-pyramidal copper complexes (Noor et al., 2015).

Figure 1.

Figure 1

A view of the title compound, showing partial atom-numbering scheme. Displacement ellipsoids are plotted at the 30% probability level. H atoms and solvent molecules and atom labels for C atoms have been omitted for clarity.

Table 1. Selected geometric parameters (Å, °).

Cu3—O10 2.0040 (17) Cu2—O2 1.9385 (17)
Cu3—O4 1.8963 (17) Cu2—O3 1.855 (2)
Cu3—O7 2.3648 (17) Cu2—N2 1.941 (2)
Cu1—O10 2.0043 (19) Cu6—O14B 2.45 (2)
Cu1—O4 2.3893 (17) Cu6—O8 1.9350 (18)
Cu1—O1 1.8767 (18) Cu6—O9 1.863 (2)
Cu5—O10 1.9778 (19) Cu6—O2W 2.0273 (19)
Cu5—O1 2.4533 (18) Cu6—N6 1.942 (2)
Cu4—O5 1.9155 (17) N1—C7 1.295 (3)
Cu4—O6 1.8496 (19) N3—C26 1.286 (3)
Cu4—O1W 1.961 (2) N4—C31 1.294 (3)
Cu4—N4 1.934 (2) N2—C12 1.295 (4)
Cu2—O11 1.986 (2) N6—C50 1.294 (3)
       
O4—Cu3—O5 170.39 (8) O3—Cu2—O2 171.60 (8)
N3—Cu3—O10 170.79 (8) N2—Cu2—O11 174.77 (9)
O1—Cu1—O2 170.60 (8) Cu3—O10—Cu1 106.62 (9)
N1—Cu1—O10 167.74 (8) Cu5—O10—Cu3 106.11 (8)
O7—Cu5—O8 171.86 (8) Cu5—O10—Cu1 105.99 (9)
N5—Cu5—O10 171.32 (9) Cu3—O4—Cu1 96.50 (7)
O6—Cu4—O5 173.69 (9) Cu1—O1—Cu5 93.56 (7)
N4—Cu4—O1W 171.10 (9) Cu5—O7—Cu3 96.20 (7)

For Cu1, Cu3 and Cu5, which are situated on the vertices of the Cu3O4 open cube, the basal planes are occupied by one imino nitro­gen atom, one phenolate oxygen anion, one enolato oxygen anion from the same ligand mol­ecule and the O atom of the hy­droxy oxygen anion that connects the three copper cations. The copper cations situated on the corners of the open cube are connected by two μ2-Ophenolato and one μ3-Ohy­droxy atoms. In each case, the apical position is occupied by one phenolate oxygen anion from another ligand. The donor atoms of the basal coordination planes of Cu1, Cu3 and Cu5 centres are situated almost in the same plane and the copper cations are displaced from the corresponding apical positions [−0.1462 (8) Å for Cu1, −0.1253 (8) Å for Cu3 and 0.1122 (8) Å for Cu5). The open cube, defined as cube missing one corner, is distorted, as shown by the Cu—O—Cu [93.56 (8)–106.62 (9)°] and O—Cu—O [72.34 (7)–86.17 (8)°] angles, which deviate severely from the ideal value of 90° expected for a perfect cube. The atoms defining the three sides of the open cube are almost coplanar (Cu1/O1/Cu5/O10, r.m.s. deviation = 0.0864 Å; Cu5/O7/Cu3/O10, r.m.s. deviation = 0.0588 Å; Cu1/O4/Cu3/O10, r.m.s. deviation = 0.0487 Å) and are irregular with edges of different lengths, i.e. for Cu1/O1/Cu5/O10 these are O1—Cu1 = 1.877 (2) Å, O10—Cu1 = 2.004 (2) Å, O1—Cu5 = 2.453 (2) Å and O10—Cu5 = 1.978 (2) Å. Additionally, the dihedral angles values of 78.11 (6), 75.77 (5) and 77.57 (5)° between the sides, two by two, confirm the distortion of the open cube. The bond lengths involving the bridging phenolate oxygen anions and the copper cations are asymmetrical: O1—Cu1 = 1.877 (2) Å and O1—Cu5 = 2. 453 (2) Å; O4—Cu1 = 2.389 (2) Å and O4—Cu3 = 1.896 (2); and O7—Cu5 = 1.889 (2) Å and O7—Cu3 = 2.365 (2) Å. The distances of the μ3-bridging O atom to the copper cations are slightly different: O10—Cu1 = 2.005 (2) Å, O10—Cu5 = 1.978 (2) Å and O10—Cu3 = 2.004 (2) Å. The axial bond lengths are longer than the equatorial bond lengths as a result of the Jahn–Teller distortion [Cu1—O4 = 2.389 (2) Å, Cu3—O7 = 2.365 (2) Å and Cu5—O1 = 2.453 (2) Å]. The three copper cations are placed at the vertices of an almost isosceles triangle with distances values of 3.1801 (4) Å (Cu1—Cu5), 3.1823 (4) Å (Cu3—Cu5) and 3.2140 (5) Å (Cu1—Cu3) and angle values of 60.68 (1)° (Cu1—Cu5—Cu3), 59.69 (1)° (Cu5—Cu1—Cu3) and 59.62 (1)° (Cu1—Cu3—Cu5).

For the Cu2 and Cu4 centres, the coordination environments can be best described as slightly distorted square planar with r.m.s. deviations from planarity of 0.0601 Å for Cu2/O2/N2/O3/O11 and 0.0909 Å for Cu4/N4/O5/O1W/O6. The τ4 (Yang et al., 2007) values of 0.097 (Cu2) and 0.106 (Cu4) are in accordance with slightly distorted square-planar geometries. For each copper(II) centre (Cu2 and Cu4), the coordination plane and the nearest neighbouring phenyl ring of the ligand are almost co-planar, with respective dihedral angles values of 4.014 (8) and 3.423 (5)°. The copper cation Cu2 is coordinated by one enolato oxygen anion (O2), one phenoxo oxygen anion (O3), one azomethine nitro­gen atom (N2) of the ligand, and one oxygen anion (O11) of an unidentate nitrate group. The Cu2—O2 [1.939 (2) Å], Cu2—O3 [1.855 (2) Å] and Cu2—N2 [1.941 (2) Å] distances are in close proximity to values reported for copper(II) complexes with analogous Schiff base ligands (Popov et al., 2012; Chen et al., 2004; Dutta et al., 2020). The Cu2—O11 bond length [1.9856 (2) Å] is comparable to the distance reported for a nitrato copper complex with square-planar geometry (Thiam et al., 2010). The cissoid angle values are in the range 86.37(9)–94.26 (10)°] and the transoid angles are 171.59 (9) and 174.77 (10)°. The Cu4 cation is coordinated by one enolato oxygen anion (O5), one phenoxo oxygen anion (O6), one azomethine nitro­gen atom (N4) of the ligand, and one O atom from a coordinated water mol­ecule. The distances of Cu4 to the coordinated atoms from the ligand [1.916 (2), 1.850 (2) and 1.934 (2) Å] are comparable with those involving Cu2. The Cu4—O1W distance value of 1.961 (2) Å is similar to those reported for square-planar copper(II) complexes (Liang et al., 2010). The cissoid angles are in the range 86.56 (8)–95.34 (9)° and the transoid angles are 171.10 (9) and 173.69 (9)°. The double-bond character of the C—N bonds [overall values 1.286 (3)–1.295 (3) Å] is indicative of the presence of the imino groups in the three ligands.

Supra­molecular features  

In the crystal, intra­molecular and inter­molecular O—H⋯O hydrogen bonds involving the hydroxyl group, the coordinated water mol­ecules and the nitrate and ethanol groups are observed. The complex mol­ecules are inter­connected by inter­molecular hydrogen bonds of type O—H⋯O (Owater—H⋯Oethanol and Owater—H⋯Onitrate) and C—H⋯O (Cphenolate—H⋯Onitrate) (Fig. 2, Table 2). The complex mol­ecules are disposed into zigzagging two-dimensional sheets parallel to the ac plane (Fig. 3). The coordinating water mol­ecules are directed toward the inter­layer region, which is also occupied by the uncoordinated ethanol mol­ecules. Adjacent sheets are linked to one another by hydrogen bonds of type C—H⋯Oethanol or C—H⋯Onitrate) (C11—H11B⋯O4ethanol and C18—H18⋯O13nitrate; Table 3). The series of inter­molecular and intra­molecular hydrogen bonds stabilize and link the components into a three-dimensional network.

Figure 2.

Figure 2

Sheets parallel to the ac plane.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O10—H10⋯O11 0.51 (4) 2.43 (4) 2.854 (3) 142 (6)
O10—H10⋯O2W 0.51 (4) 2.75 (3) 2.910 (3) 103 (4)
O10—H10⋯O1W 0.51 (4) 2.73 (4) 3.155 (3) 143 (6)
O1W—H1WA⋯O1E 0.86 2.26 2.625 (4) 106
O1W—H1WB⋯O13 0.86 2.21 2.876 (4) 135
C11—H11B⋯O4E i 0.97 2.31 3.280 (4) 174
C18—H18⋯O13ii 0.93 2.54 3.328 (4) 143
O4E—H4E⋯N202 0.82 2.66 3.447 (5) 161
O4E—H4E⋯O16B 0.82 2.45 3.13 (2) 141
O4E—H4E⋯O15B 0.82 2.12 2.87 (3) 151

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+1, -z.

Figure 3.

Figure 3

Two views of the zigzagging two-dimensional sheets parallel to the ac plane.

Table 3. Experimental details.

Crystal data
Chemical formula [Cu6(C19H19N2O3)3(NO3)2(OH)(H2O)2]·3C2H6O
M r 1666.59
Crystal system, space group Triclinic, P\overline{1}
Temperature (K) 293
a, b, c (Å) 13.6406 (5), 14.0568 (5), 18.5907 (7)
α, β, γ (°) 83.626 (3), 86.186 (3), 72.288 (3)
V3) 3372.7 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.94
Crystal size (mm) 0.3 × 0.2 × 0.1
 
Data collection
Diffractometer Nonius KappaCCD
Absorption correction Multi-scan (SADABS; Sheldrick, 1996)
Tmin, Tmax 0.967, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 73743, 14284, 12395
R int 0.033
(sin θ/λ)max−1) 0.633
 
Refinement
R[F2 > 2σ(F 2)], wR(F 2), S 0.033, 0.091, 1.04
No. of reflections 14284
No. of parameters 929
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.82, −0.56

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXT2018/2 (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ) and OLEX2 (Dolomanov et al., 2009).

Database survey  

The ligand N,N′-bis­[(1-(2-hy­droxy­phen­yl)ethyl­idene)]-2-hy­droxy­propane-1,3-di­amine has been widely used in coordination chemistry. The current release of the CSD (Version 5.42, November 2021 update; Groom et al., 2016) gave ten hits. Three are complexes of the ligand with NiII cations [KARPOK and KARPUQ (Liu et al., 2012); OMOFUS (Banerjee et al., 2011)]. Three other entries are complexes of CuII cations [KUKTAM (Basak et al., 2009), NADDIJ and NADDOP (Osypiuk et al., 2020)]. In addition, two CoII complexes (OMOFOM and OMOGAZ; Banerjee et al., 2011), one FeII (RIDHUJ; Biswas et al., 2013) and one VV complex (KEWGUQ; Maurya et al., 2013) have been reported. In all of the ten cases, the ligand acts in a penta­dentate mode through the two soft azomethine nitro­gen atoms, the two hard phenolate oxygen anions and the one hard enolate oxygen anion. In seven cases (KARPOK, KARPUQ, OMOFUS, KUKTAM, NADDIJ, NADDOP and OMOGAZ), the complexes are tetra­nuclear while two dinuclear (OMOFOM and RIDHUJ) and one mononuclear (KEWGUQ) complexes have been reported.

Synthesis and crystallization  

Reaction of 1-(2-hy­droxy­phen­yl)ethanone and 2-hy­droxy­propane-1,3-di­amine in a 2:1 ratio in ethanol yielded the ligand N,N -bis­{[1-(2-hy­droxy­phen­yl)ethyl­idene]}-2-hy­droxy­propane-1,3-di­amine (HL 3), which was prepared according to a literature method (Song et al., 2003) with slight modifications. To a solution of 1,3-di­amino­propane-2-ol (0.900 g, 10 mmol) in 25 mL of ethanol was added, dropwise, (2-hy­droxy­phen­yl)ethanone (2.720 g, 20 mmol). The resulting orange mixture was refluxed for 180 min, affording the organic ligand H3 L. The yellow precipitate that appeared on cooling was recovered by filtration and dried in air. Yield 75%, m.p. 479–480 K. FT–IR (KBr, ν, cm−1): 3538 (OH), 3268 (OH), 1605 (C=N), 1538 (C=C), 1528 (C=C), 1455 (C=C), 1247 (C—O), 1043, 760. Analysis calculated for C19H22N2O3: C, 69.92; H, 6.79; N, 8.58. Found: C, 69.90; H, 6.76; N, 8.56%. A solution of Cu(NO3)2·3H2O (0.241 g, 1 mmol) in 5 mL of ethanol was added to a solution of H3 L (0.163 g, 0.5 mmol) in 10 mL of ethanol at room temperature. The initial yellow solution immediately turned dark green and was stirred for 30 min. The mixture was filtered, and the filtrate was kept at 298 K. After one week, light-green crystals suitable for X-ray diffraction were collected and formulated as [Cu6 L 3(NO3)2(OH)(H2O)2]·3EtOH. FT–IR (KBr, ν, cm−1): 1625, 1600, 1540, 1446, 1382, 1304, 1258, 1180, 1120, 1007, 895, 760. Analysis calculated for C63H80Cu6N8O21: C, 45.40; H, 4.84; N, 6.72. Found: C, 45.38; H, 4.82; N, 6.74%.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. Hydroxyl H atoms were located from difference-Fourier maps and refined. Other H atoms (CH, CH2, CH3 groups, hydroxyl groups of ethanol mol­ecules and water mol­ecules) were geometrically optimized (C—H = 0.93–0.98 Å, O—Hhy­droxy = 0.82 Å and O—Hwater = 0.86–0.87 Å) and refined as riding with U iso(H) = 1.2U eq(C) (1.5 for CH3 and OH groups).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021005570/ex2045sup1.cif

e-77-00708-sup1.cif (2.2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021005570/ex2045Isup2.hkl

e-77-00708-Isup2.hkl (1.1MB, hkl)

CCDC reference: 2086932

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

[Cu6(C19H19N2O3)3(NO3)2(OH)(H2O)2]·3C2H6O Z = 2
Mr = 1666.59 F(000) = 1712
Triclinic, P1 Dx = 1.641 Mg m3
a = 13.6406 (5) Å Mo Kα radiation, λ = 0.71073 Å
b = 14.0568 (5) Å Cell parameters from 5100 reflections
c = 18.5907 (7) Å θ = 2.4–28.6°
α = 83.626 (3)° µ = 1.94 mm1
β = 86.186 (3)° T = 293 K
γ = 72.288 (3)° Prismatic, green
V = 3372.7 (2) Å3 0.3 × 0.2 × 0.1 mm

Data collection

KappaCCD diffractometer 12395 reflections with I > 2σ(I)
Detector resolution: 9 pixels mm-1 Rint = 0.033
CCD scans θmax = 26.7°, θmin = 2.8°
Absorption correction: multi-scan h = −17→17
Tmin = 0.967, Tmax = 1.000 k = −17→17
73743 measured reflections l = −23→23
14284 independent reflections

Refinement

Refinement on F2 3 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.033 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0432P)2 + 3.2696P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
14284 reflections Δρmax = 0.82 e Å3
929 parameters Δρmin = −0.56 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cu3 0.26915 (2) 0.40125 (2) 0.15888 (2) 0.03091 (7)
Cu1 0.27776 (2) 0.42624 (2) 0.32790 (2) 0.03074 (7)
Cu5 0.34276 (2) 0.20896 (2) 0.27233 (2) 0.03197 (7)
Cu4 0.45315 (2) 0.20182 (2) 0.10809 (2) 0.03414 (8)
Cu2 0.34537 (2) 0.58294 (2) 0.20408 (2) 0.03620 (8)
O11 0.47163 (16) 0.47175 (15) 0.18459 (13) 0.0555 (6)
N102 0.54911 (19) 0.49292 (17) 0.15507 (13) 0.0430 (5)
O12 0.5566 (2) 0.57631 (18) 0.15453 (17) 0.0771 (8)
O13 0.6141 (2) 0.4241 (2) 0.12800 (19) 0.0958 (11)
Cu6 0.46902 (2) 0.25221 (2) 0.40915 (2) 0.03727 (8)
O14B 0.6475 (14) 0.152 (2) 0.4307 (18) 0.074 (6) 0.43 (8)
N202 0.6961 (3) 0.1605 (3) 0.4849 (2) 0.0743 (9)
O16B 0.7637 (19) 0.203 (3) 0.4682 (15) 0.087 (7) 0.43 (8)
O15B 0.708 (5) 0.102 (5) 0.5418 (17) 0.143 (11) 0.43 (8)
O10 0.35231 (15) 0.34640 (13) 0.24727 (10) 0.0291 (4)
H10 0.384 (2) 0.350 (4) 0.232 (2) 0.073 (17)*
O2 0.34884 (13) 0.52783 (13) 0.30453 (9) 0.0348 (4)
O5 0.37695 (14) 0.34071 (12) 0.09029 (9) 0.0347 (4)
O8 0.45828 (14) 0.16793 (13) 0.33636 (9) 0.0364 (4)
O4 0.17301 (13) 0.47876 (13) 0.22424 (9) 0.0374 (4)
O1 0.22912 (15) 0.31642 (14) 0.35827 (10) 0.0415 (4)
O7 0.24464 (15) 0.24428 (13) 0.19929 (10) 0.0397 (4)
O9 0.46067 (17) 0.34675 (16) 0.47384 (10) 0.0495 (5)
O3 0.33169 (16) 0.62254 (15) 0.10579 (11) 0.0482 (5)
O2W 0.52462 (16) 0.34018 (16) 0.33383 (11) 0.0478 (5)
H2WA 0.483126 0.400782 0.330414 0.072*
H2WB 0.524712 0.321109 0.291044 0.072*
O6 0.52042 (16) 0.06843 (14) 0.13553 (12) 0.0483 (5)
O1W 0.55379 (17) 0.24409 (15) 0.15701 (14) 0.0562 (6)
H1WA 0.552628 0.224827 0.202374 0.084*
H1WB 0.535206 0.308242 0.155417 0.084*
N5 0.34465 (17) 0.06909 (15) 0.28312 (12) 0.0366 (5)
N1 0.23171 (16) 0.48927 (16) 0.41787 (11) 0.0354 (4)
N3 0.19297 (17) 0.47496 (15) 0.07387 (11) 0.0353 (4)
N4 0.35642 (17) 0.17511 (15) 0.04761 (11) 0.0356 (4)
N2 0.22263 (17) 0.68655 (16) 0.23230 (12) 0.0376 (5)
N6 0.40344 (17) 0.17147 (17) 0.47557 (12) 0.0387 (5)
C7 0.18607 (19) 0.4560 (2) 0.47399 (13) 0.0371 (5)
C20 0.07635 (19) 0.52770 (19) 0.21000 (14) 0.0352 (5)
C1 0.1607 (2) 0.31345 (19) 0.41129 (14) 0.0380 (5)
C26 0.1061 (2) 0.54451 (18) 0.07321 (13) 0.0363 (5)
C10 0.2991 (2) 0.6107 (2) 0.34627 (14) 0.0395 (6)
H10A 0.344598 0.652585 0.347556 0.047*
C25 0.0398 (2) 0.5632 (2) 0.13906 (15) 0.0391 (6)
C48 0.4605 (2) 0.07339 (19) 0.37428 (15) 0.0403 (6)
H48 0.530044 0.040509 0.391873 0.048*
C11 0.2003 (2) 0.6723 (2) 0.31042 (14) 0.0413 (6)
H11A 0.148399 0.637664 0.319344 0.050*
H11B 0.174402 0.736740 0.330030 0.050*
C45 0.2881 (2) 0.0286 (2) 0.25189 (14) 0.0402 (6)
C39 0.1788 (2) 0.1953 (2) 0.19148 (13) 0.0387 (6)
C12 0.1539 (2) 0.74659 (19) 0.19013 (15) 0.0406 (6)
C33 0.4114 (2) −0.00413 (19) 0.07486 (14) 0.0369 (5)
C38 0.4955 (2) −0.00899 (19) 0.11758 (14) 0.0393 (6)
C14 0.1755 (2) 0.7628 (2) 0.11249 (15) 0.0432 (6)
C31 0.3412 (2) 0.0897 (2) 0.04257 (14) 0.0388 (6)
C6 0.1395 (2) 0.3760 (2) 0.46934 (14) 0.0389 (6)
C29 0.3363 (2) 0.35247 (19) 0.02049 (13) 0.0385 (6)
H29 0.392788 0.346029 −0.015882 0.046*
C52 0.3861 (2) 0.2683 (2) 0.57706 (14) 0.0425 (6)
C57 0.4333 (2) 0.3393 (2) 0.54279 (15) 0.0430 (6)
C50 0.3630 (2) 0.1919 (2) 0.53911 (14) 0.0407 (6)
C30 0.2873 (2) 0.26973 (19) 0.01504 (14) 0.0403 (6)
H30A 0.220724 0.285068 0.040503 0.048*
H30B 0.277218 0.264110 −0.035304 0.048*
C28 0.2603 (2) 0.45634 (19) 0.00831 (14) 0.0430 (6)
H28A 0.296647 0.506237 −0.000681 0.052*
H28B 0.219496 0.460380 −0.033360 0.052*
C49 0.3854 (2) 0.0910 (2) 0.43897 (15) 0.0420 (6)
H49A 0.315113 0.110708 0.423144 0.050*
H49B 0.396950 0.030161 0.471690 0.050*
C47 0.4357 (2) 0.0077 (2) 0.32343 (16) 0.0447 (6)
H47A 0.493601 −0.016513 0.290148 0.054*
H47B 0.421140 −0.049776 0.350687 0.054*
C34 0.3961 (2) −0.0959 (2) 0.06230 (17) 0.0456 (6)
H34 0.341428 −0.094117 0.034323 0.055*
C9 0.2783 (2) 0.5696 (2) 0.42281 (15) 0.0433 (6)
H9A 0.342047 0.543434 0.448457 0.052*
H9B 0.231806 0.622368 0.448939 0.052*
C44 0.1967 (2) 0.0912 (2) 0.21363 (15) 0.0433 (6)
C19 0.2634 (2) 0.7014 (2) 0.07612 (15) 0.0430 (6)
C37 0.5581 (2) −0.1043 (2) 0.14436 (16) 0.0465 (6)
H37 0.613835 −0.108570 0.172097 0.056*
C40 0.0862 (2) 0.2485 (2) 0.15771 (16) 0.0507 (7)
H40 0.074005 0.316381 0.142863 0.061*
C21 0.0055 (2) 0.5483 (2) 0.26906 (16) 0.0500 (7)
H21 0.027877 0.524611 0.315701 0.060*
C27 0.0697 (3) 0.6096 (2) 0.00429 (16) 0.0498 (7)
H27A 0.027849 0.674821 0.015851 0.075*
H27B 0.029929 0.579511 −0.021464 0.075*
H27C 0.128140 0.615913 −0.025405 0.075*
C35 0.4583 (2) −0.1876 (2) 0.08949 (18) 0.0503 (7)
H35 0.445766 −0.246387 0.080161 0.060*
C56 0.4501 (3) 0.4105 (3) 0.58486 (17) 0.0558 (8)
H56 0.478737 0.458896 0.562606 0.067*
C5 0.0698 (2) 0.3587 (2) 0.52516 (16) 0.0508 (7)
H5 0.056342 0.397695 0.564032 0.061*
C8 0.1792 (3) 0.4997 (2) 0.54539 (15) 0.0510 (7)
H8A 0.197019 0.446278 0.583647 0.076*
H8B 0.110182 0.541525 0.553991 0.076*
H8C 0.225958 0.538942 0.543959 0.076*
C36 0.5394 (3) −0.1909 (2) 0.13075 (17) 0.0514 (7)
H36 0.582000 −0.252565 0.149631 0.062*
C53 0.3612 (3) 0.2718 (3) 0.65203 (17) 0.0572 (8)
H53 0.330892 0.225414 0.675595 0.069*
C2 0.1082 (3) 0.2418 (2) 0.41137 (19) 0.0539 (7)
H2 0.119918 0.201860 0.373136 0.065*
C18 0.2780 (3) 0.7253 (3) 0.00078 (16) 0.0537 (7)
H18 0.334628 0.685543 −0.023813 0.064*
C4 0.0214 (3) 0.2868 (3) 0.5242 (2) 0.0618 (9)
H4 −0.023576 0.276928 0.562031 0.074*
C51 0.2902 (2) 0.1381 (3) 0.57490 (18) 0.0547 (8)
H51A 0.230334 0.185992 0.593733 0.082*
H51B 0.323795 0.091260 0.613790 0.082*
H51C 0.269921 0.102823 0.540051 0.082*
C13 0.0494 (2) 0.8001 (2) 0.22090 (19) 0.0543 (7)
H13A 0.000138 0.817472 0.183404 0.081*
H13B 0.051906 0.859959 0.240006 0.081*
H13C 0.029410 0.756948 0.258935 0.081*
C17 0.2110 (3) 0.8051 (3) −0.03647 (18) 0.0633 (9)
H17 0.222439 0.819080 −0.085837 0.076*
C46 0.3131 (3) −0.0840 (2) 0.25508 (18) 0.0549 (8)
H46A 0.288793 −0.101614 0.212633 0.082*
H46B 0.280145 −0.107984 0.297433 0.082*
H46C 0.386285 −0.114111 0.257190 0.082*
C55 0.4253 (3) 0.4100 (3) 0.65739 (18) 0.0658 (10)
H55 0.439053 0.456522 0.683947 0.079*
C24 −0.0643 (2) 0.6184 (3) 0.13261 (19) 0.0600 (9)
H24 −0.089030 0.642032 0.086524 0.072*
C3 0.0399 (3) 0.2292 (3) 0.4666 (2) 0.0630 (9)
H3 0.005786 0.181409 0.465104 0.076*
C43 0.1199 (3) 0.0485 (3) 0.1994 (2) 0.0666 (10)
H43 0.130776 −0.019621 0.212685 0.080*
C15 0.1093 (3) 0.8438 (2) 0.07133 (19) 0.0606 (8)
H15 0.051529 0.884516 0.094237 0.073*
C22 −0.0961 (3) 0.6029 (3) 0.2594 (2) 0.0684 (10)
H22 −0.141280 0.615301 0.299338 0.082*
C16 0.1263 (3) 0.8651 (3) −0.0012 (2) 0.0701 (10)
H16 0.081091 0.919827 −0.026654 0.084*
C32 0.2496 (3) 0.0849 (3) 0.0041 (2) 0.0599 (8)
H32A 0.214545 0.044365 0.034003 0.090*
H32B 0.272193 0.055764 −0.040759 0.090*
H32C 0.203461 0.151345 −0.005629 0.090*
C41 0.0132 (3) 0.2032 (3) 0.1459 (2) 0.0661 (10)
H41 −0.047657 0.240543 0.123863 0.079*
C54 0.3801 (3) 0.3410 (3) 0.69121 (18) 0.0684 (10)
H54 0.362483 0.341361 0.740396 0.082*
C42 0.0301 (3) 0.1023 (3) 0.1669 (2) 0.0790 (13)
H42 −0.018959 0.071318 0.159012 0.095*
C23 −0.1314 (3) 0.6392 (4) 0.1910 (2) 0.0774 (12)
H23 −0.199653 0.677280 0.184504 0.093*
O1E 0.7184 (3) 0.1473 (3) 0.2304 (2) 0.1102 (12)
H1E 0.696426 0.187818 0.260536 0.165*
C2E 0.7195 (4) 0.0498 (4) 0.2618 (3) 0.0964 (15)
H2EA 0.649987 0.044852 0.267654 0.116*
H2EB 0.750187 0.035764 0.308862 0.116*
C3E 0.7804 (5) −0.0208 (5) 0.2123 (4) 0.133 (2)
H3EA 0.780131 −0.087531 0.229966 0.200*
H3EB 0.849951 −0.017689 0.208977 0.200*
H3EC 0.751412 −0.003753 0.165191 0.200*
O4E 0.8827 (3) 0.1187 (3) 0.6110 (2) 0.1057 (12)
H4E 0.829086 0.136427 0.588792 0.159*
C5E 0.9362 (5) 0.0241 (4) 0.5980 (3) 0.1034 (17)
H5EA 0.937397 0.017419 0.546563 0.124*
H5EB 0.902534 −0.022216 0.623292 0.124*
C6E 1.0416 (6) −0.0011 (5) 0.6222 (4) 0.137 (3)
H6EA 1.080592 −0.065847 0.607859 0.206*
H6EB 1.040758 −0.002482 0.673943 0.206*
H6EC 1.072798 0.048381 0.600560 0.206*
O7E 0.7319 (3) 0.2834 (4) 0.3279 (2) 0.1182 (13)
H7E 0.695981 0.316198 0.359088 0.177*
C8E 0.8232 (9) 0.3177 (8) 0.3102 (4) 0.172 (4)
H8EA 0.836358 0.352431 0.349068 0.207*
H8EB 0.883662 0.261511 0.301851 0.207*
C9E 0.7977 (8) 0.3837 (7) 0.2462 (6) 0.229 (6)
H9EA 0.778579 0.349547 0.209975 0.343*
H9EB 0.856115 0.405052 0.228575 0.343*
H9EC 0.741038 0.441138 0.256569 0.343*
O16A 0.750 (2) 0.216 (2) 0.4779 (17) 0.112 (7) 0.57 (8)
O15A 0.675 (2) 0.138 (2) 0.5466 (7) 0.115 (5) 0.57 (8)
O14A 0.6499 (14) 0.1441 (17) 0.4376 (16) 0.085 (6) 0.57 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu3 0.03783 (16) 0.02639 (14) 0.02544 (14) −0.00612 (12) −0.00082 (11) 0.00037 (11)
Cu1 0.03459 (15) 0.02884 (15) 0.02828 (14) −0.00970 (12) 0.00320 (11) −0.00249 (11)
Cu5 0.03869 (16) 0.02569 (14) 0.03087 (15) −0.01019 (12) −0.00316 (12) 0.00283 (11)
Cu4 0.03985 (16) 0.02640 (14) 0.03622 (16) −0.01025 (12) −0.00088 (12) −0.00257 (12)
Cu2 0.03940 (17) 0.02984 (15) 0.03844 (16) −0.01114 (13) 0.00403 (13) −0.00033 (12)
O11 0.0483 (12) 0.0390 (11) 0.0702 (14) −0.0103 (9) 0.0211 (10) 0.0112 (10)
N102 0.0496 (13) 0.0350 (12) 0.0455 (13) −0.0153 (10) 0.0081 (10) −0.0062 (10)
O12 0.0838 (18) 0.0415 (13) 0.115 (2) −0.0322 (13) −0.0159 (16) −0.0004 (13)
O13 0.085 (2) 0.0660 (17) 0.124 (3) −0.0127 (15) 0.0622 (19) −0.0254 (17)
Cu6 0.03732 (16) 0.04047 (17) 0.03351 (16) −0.01265 (13) −0.00105 (12) 0.00147 (13)
O14B 0.036 (8) 0.096 (13) 0.082 (9) 0.000 (7) −0.007 (6) −0.025 (8)
N202 0.062 (2) 0.079 (2) 0.083 (3) −0.0231 (18) −0.0093 (18) −0.002 (2)
O16B 0.064 (8) 0.143 (18) 0.073 (8) −0.060 (8) −0.008 (5) −0.004 (9)
O15B 0.15 (2) 0.15 (2) 0.148 (16) −0.09 (2) −0.043 (12) 0.053 (12)
O10 0.0297 (8) 0.0275 (8) 0.0283 (8) −0.0077 (7) 0.0015 (7) 0.0012 (6)
O2 0.0359 (9) 0.0329 (9) 0.0366 (9) −0.0124 (7) 0.0012 (7) −0.0030 (7)
O5 0.0433 (10) 0.0277 (8) 0.0313 (8) −0.0088 (7) 0.0034 (7) −0.0034 (7)
O8 0.0381 (9) 0.0327 (9) 0.0360 (9) −0.0093 (7) −0.0032 (7) 0.0037 (7)
O4 0.0376 (9) 0.0372 (9) 0.0304 (8) −0.0004 (7) −0.0027 (7) −0.0036 (7)
O1 0.0538 (11) 0.0369 (10) 0.0358 (9) −0.0192 (8) 0.0127 (8) −0.0045 (7)
O7 0.0506 (11) 0.0328 (9) 0.0392 (9) −0.0189 (8) −0.0118 (8) 0.0062 (7)
O9 0.0616 (13) 0.0546 (12) 0.0377 (10) −0.0262 (10) 0.0034 (9) −0.0053 (9)
O3 0.0530 (12) 0.0456 (11) 0.0401 (10) −0.0093 (9) 0.0065 (9) 0.0002 (8)
O2W 0.0545 (12) 0.0488 (11) 0.0429 (10) −0.0219 (10) 0.0029 (9) −0.0001 (9)
O6 0.0573 (12) 0.0292 (9) 0.0592 (12) −0.0113 (9) −0.0216 (10) −0.0006 (8)
O1W 0.0556 (12) 0.0344 (10) 0.0829 (16) −0.0175 (9) −0.0196 (11) −0.0020 (10)
N5 0.0442 (12) 0.0274 (10) 0.0369 (11) −0.0106 (9) −0.0014 (9) 0.0014 (8)
N1 0.0379 (11) 0.0364 (11) 0.0304 (10) −0.0085 (9) −0.0008 (8) −0.0047 (8)
N3 0.0476 (12) 0.0284 (10) 0.0276 (10) −0.0096 (9) −0.0022 (9) 0.0019 (8)
N4 0.0445 (12) 0.0296 (10) 0.0318 (10) −0.0102 (9) −0.0018 (9) −0.0019 (8)
N2 0.0427 (12) 0.0299 (10) 0.0402 (11) −0.0108 (9) −0.0006 (9) −0.0033 (9)
N6 0.0386 (11) 0.0389 (12) 0.0352 (11) −0.0091 (9) −0.0035 (9) 0.0047 (9)
C7 0.0342 (12) 0.0395 (13) 0.0304 (12) −0.0007 (10) −0.0018 (10) −0.0013 (10)
C20 0.0348 (12) 0.0322 (12) 0.0376 (13) −0.0087 (10) −0.0035 (10) −0.0012 (10)
C1 0.0375 (13) 0.0342 (13) 0.0379 (13) −0.0081 (10) 0.0022 (10) 0.0060 (10)
C26 0.0467 (14) 0.0296 (12) 0.0339 (12) −0.0131 (11) −0.0094 (11) 0.0014 (10)
C10 0.0474 (15) 0.0369 (13) 0.0389 (13) −0.0180 (12) 0.0003 (11) −0.0094 (11)
C25 0.0388 (13) 0.0359 (13) 0.0408 (14) −0.0101 (11) −0.0055 (11) 0.0023 (11)
C48 0.0390 (13) 0.0315 (13) 0.0437 (14) −0.0030 (10) −0.0060 (11) 0.0058 (11)
C11 0.0505 (15) 0.0340 (13) 0.0386 (13) −0.0113 (11) 0.0049 (11) −0.0076 (11)
C45 0.0535 (16) 0.0326 (13) 0.0358 (13) −0.0179 (12) 0.0075 (11) −0.0003 (10)
C39 0.0503 (15) 0.0436 (14) 0.0280 (12) −0.0239 (12) −0.0012 (10) 0.0005 (10)
C12 0.0466 (15) 0.0285 (12) 0.0482 (15) −0.0128 (11) −0.0018 (12) −0.0053 (11)
C33 0.0439 (14) 0.0304 (12) 0.0377 (13) −0.0138 (11) 0.0037 (11) −0.0043 (10)
C38 0.0481 (15) 0.0288 (12) 0.0402 (13) −0.0118 (11) 0.0009 (11) −0.0015 (10)
C14 0.0551 (16) 0.0323 (13) 0.0439 (14) −0.0155 (12) −0.0076 (12) −0.0002 (11)
C31 0.0459 (14) 0.0348 (13) 0.0374 (13) −0.0143 (11) 0.0007 (11) −0.0053 (10)
C6 0.0340 (13) 0.0401 (14) 0.0348 (13) −0.0031 (11) 0.0024 (10) 0.0047 (10)
C29 0.0533 (15) 0.0317 (12) 0.0281 (12) −0.0112 (11) 0.0060 (11) −0.0008 (10)
C52 0.0358 (13) 0.0501 (16) 0.0349 (13) −0.0042 (12) −0.0035 (10) 0.0006 (11)
C57 0.0344 (13) 0.0557 (17) 0.0366 (13) −0.0095 (12) −0.0043 (11) −0.0042 (12)
C50 0.0340 (13) 0.0411 (14) 0.0383 (13) −0.0028 (11) −0.0027 (10) 0.0092 (11)
C30 0.0522 (15) 0.0330 (13) 0.0322 (12) −0.0069 (11) −0.0061 (11) −0.0019 (10)
C28 0.0644 (18) 0.0317 (13) 0.0279 (12) −0.0103 (12) 0.0027 (12) 0.0038 (10)
C49 0.0467 (15) 0.0374 (14) 0.0398 (14) −0.0125 (12) −0.0030 (11) 0.0065 (11)
C47 0.0490 (16) 0.0299 (13) 0.0477 (15) −0.0025 (11) −0.0013 (12) 0.0015 (11)
C34 0.0503 (16) 0.0335 (14) 0.0556 (17) −0.0158 (12) 0.0020 (13) −0.0082 (12)
C9 0.0516 (16) 0.0431 (15) 0.0382 (14) −0.0161 (12) −0.0047 (12) −0.0096 (11)
C44 0.0564 (17) 0.0439 (15) 0.0365 (13) −0.0267 (13) −0.0019 (12) 0.0008 (11)
C19 0.0552 (16) 0.0393 (14) 0.0400 (14) −0.0231 (13) −0.0020 (12) −0.0013 (11)
C37 0.0517 (16) 0.0336 (14) 0.0506 (16) −0.0079 (12) −0.0053 (13) −0.0005 (12)
C40 0.0572 (18) 0.0539 (17) 0.0438 (15) −0.0236 (15) −0.0126 (13) 0.0093 (13)
C21 0.0418 (15) 0.0606 (19) 0.0417 (15) −0.0098 (13) 0.0017 (12) 0.0031 (13)
C27 0.0617 (18) 0.0384 (15) 0.0429 (15) −0.0074 (13) −0.0128 (13) 0.0086 (12)
C35 0.0557 (17) 0.0277 (13) 0.069 (2) −0.0148 (12) 0.0074 (15) −0.0098 (13)
C56 0.0505 (17) 0.074 (2) 0.0495 (17) −0.0266 (16) −0.0019 (14) −0.0121 (15)
C5 0.0443 (16) 0.0526 (17) 0.0445 (15) −0.0036 (13) 0.0123 (12) 0.0031 (13)
C8 0.0582 (18) 0.0596 (18) 0.0302 (13) −0.0099 (15) 0.0014 (12) −0.0072 (12)
C36 0.0610 (19) 0.0292 (13) 0.0584 (18) −0.0076 (13) 0.0040 (15) −0.0004 (12)
C53 0.0567 (19) 0.069 (2) 0.0405 (16) −0.0149 (16) 0.0021 (13) 0.0031 (15)
C2 0.0582 (18) 0.0448 (16) 0.0604 (19) −0.0217 (14) 0.0079 (15) −0.0001 (14)
C18 0.073 (2) 0.0538 (18) 0.0413 (15) −0.0307 (16) 0.0010 (14) −0.0009 (13)
C4 0.0477 (17) 0.0582 (19) 0.069 (2) −0.0117 (15) 0.0221 (16) 0.0105 (17)
C51 0.0522 (17) 0.0555 (18) 0.0509 (17) −0.0146 (14) 0.0097 (14) 0.0066 (14)
C13 0.0498 (17) 0.0438 (16) 0.0611 (19) −0.0030 (13) 0.0000 (14) −0.0024 (14)
C17 0.097 (3) 0.059 (2) 0.0423 (16) −0.037 (2) −0.0127 (17) 0.0060 (15)
C46 0.074 (2) 0.0353 (15) 0.0597 (19) −0.0242 (15) 0.0043 (16) −0.0052 (13)
C55 0.064 (2) 0.096 (3) 0.0469 (18) −0.033 (2) −0.0036 (15) −0.0220 (18)
C24 0.0399 (16) 0.077 (2) 0.0536 (18) −0.0075 (15) −0.0102 (14) 0.0090 (16)
C3 0.0552 (19) 0.0545 (19) 0.082 (2) −0.0274 (16) 0.0138 (17) 0.0050 (17)
C43 0.083 (2) 0.061 (2) 0.071 (2) −0.048 (2) −0.0197 (19) 0.0135 (17)
C15 0.075 (2) 0.0427 (17) 0.0579 (19) −0.0069 (15) −0.0136 (17) −0.0016 (14)
C22 0.0390 (16) 0.094 (3) 0.059 (2) −0.0081 (17) 0.0104 (14) 0.0062 (19)
C16 0.098 (3) 0.0488 (19) 0.058 (2) −0.0136 (19) −0.026 (2) 0.0095 (16)
C32 0.063 (2) 0.0502 (18) 0.072 (2) −0.0216 (16) −0.0243 (17) −0.0025 (16)
C41 0.064 (2) 0.080 (2) 0.063 (2) −0.0385 (19) −0.0237 (17) 0.0187 (18)
C54 0.075 (2) 0.098 (3) 0.0357 (16) −0.030 (2) 0.0003 (15) −0.0097 (17)
C42 0.086 (3) 0.090 (3) 0.083 (3) −0.063 (2) −0.035 (2) 0.023 (2)
C23 0.0350 (16) 0.104 (3) 0.075 (2) −0.0010 (18) −0.0054 (16) 0.012 (2)
O1E 0.116 (3) 0.078 (2) 0.135 (3) −0.0183 (19) −0.056 (2) −0.004 (2)
C2E 0.104 (4) 0.096 (4) 0.085 (3) −0.030 (3) −0.010 (3) 0.017 (3)
C3E 0.089 (4) 0.109 (5) 0.207 (8) −0.025 (3) 0.013 (4) −0.054 (5)
O4E 0.103 (3) 0.088 (2) 0.129 (3) −0.0157 (19) −0.024 (2) −0.052 (2)
C5E 0.136 (5) 0.077 (3) 0.095 (4) −0.026 (3) 0.011 (3) −0.026 (3)
C6E 0.137 (6) 0.127 (5) 0.118 (5) 0.012 (4) −0.026 (4) −0.020 (4)
O7E 0.087 (2) 0.172 (4) 0.103 (3) −0.061 (3) −0.001 (2) 0.016 (3)
C8E 0.264 (12) 0.177 (9) 0.114 (6) −0.123 (9) 0.026 (7) −0.033 (5)
C9E 0.174 (10) 0.172 (10) 0.340 (18) −0.053 (8) 0.032 (11) −0.045 (11)
O16A 0.134 (14) 0.103 (8) 0.126 (13) −0.070 (8) −0.008 (9) −0.025 (8)
O15A 0.131 (10) 0.146 (12) 0.061 (8) −0.043 (10) 0.000 (5) 0.026 (5)
O14A 0.079 (10) 0.071 (7) 0.111 (12) −0.027 (6) −0.028 (7) −0.015 (6)

Geometric parameters (Å, º)

Cu3—O10 2.0040 (17) C7—C8 1.509 (4)
Cu3—O5 1.9346 (17) C20—C25 1.424 (4)
Cu3—O4 1.8963 (17) C20—C21 1.408 (4)
Cu3—O7 2.3648 (17) C1—C6 1.427 (4)
Cu3—N3 1.962 (2) C1—C2 1.402 (4)
Cu1—O10 2.0043 (19) C26—C25 1.471 (4)
Cu1—O2 1.9538 (17) C26—C27 1.508 (3)
Cu1—O4 2.3893 (17) C10—C11 1.514 (4)
Cu1—O1 1.8767 (18) C10—C9 1.518 (4)
Cu1—N1 1.956 (2) C25—C24 1.402 (4)
Cu5—O10 1.9778 (19) C48—C49 1.518 (4)
Cu5—O8 1.9434 (18) C48—C47 1.513 (4)
Cu5—O1 2.4533 (18) C45—C44 1.464 (4)
Cu5—O7 1.8894 (18) C45—C46 1.510 (4)
Cu5—N5 1.946 (2) C39—C44 1.426 (4)
Cu4—O5 1.9155 (17) C39—C40 1.405 (4)
Cu4—O6 1.8496 (19) C12—C14 1.461 (4)
Cu4—O1W 1.961 (2) C12—C13 1.503 (4)
Cu4—N4 1.934 (2) C33—C38 1.419 (4)
Cu2—O11 1.986 (2) C33—C31 1.466 (4)
Cu2—O2 1.9385 (17) C33—C34 1.414 (4)
Cu2—O3 1.855 (2) C38—C37 1.409 (4)
Cu2—N2 1.941 (2) C14—C19 1.425 (4)
O11—N102 1.259 (3) C14—C15 1.403 (4)
N102—O12 1.206 (3) C31—C32 1.503 (4)
N102—O13 1.225 (3) C6—C5 1.411 (4)
Cu6—O14B 2.45 (2) C29—C30 1.523 (4)
Cu6—O8 1.9350 (18) C29—C28 1.515 (4)
Cu6—O9 1.863 (2) C52—C57 1.419 (4)
Cu6—O2W 2.0273 (19) C52—C50 1.467 (4)
Cu6—N6 1.942 (2) C52—C53 1.415 (4)
O14B—N202 1.28 (3) C57—C56 1.414 (4)
N202—O16B 1.25 (2) C50—C51 1.503 (4)
N202—O15B 1.26 (3) C34—C35 1.371 (4)
N202—O16A 1.22 (2) C44—C43 1.409 (4)
N202—O15A 1.196 (14) C19—C18 1.419 (4)
N202—O14A 1.20 (2) C37—C36 1.370 (4)
O2—C10 1.438 (3) C40—C41 1.376 (4)
O5—C29 1.418 (3) C21—C22 1.378 (4)
O8—C48 1.426 (3) C35—C36 1.374 (5)
O4—C20 1.318 (3) C56—C55 1.368 (5)
O1—C1 1.318 (3) C5—C4 1.367 (5)
O7—C39 1.310 (3) C53—C54 1.371 (5)
O9—C57 1.313 (3) C2—C3 1.373 (4)
O3—C19 1.306 (4) C18—C17 1.364 (5)
O6—C38 1.316 (3) C4—C3 1.377 (5)
N5—C45 1.287 (4) C17—C16 1.380 (6)
N5—C47 1.475 (3) C55—C54 1.376 (5)
N1—C7 1.295 (3) C24—C23 1.369 (5)
N1—C9 1.468 (3) C43—C42 1.368 (6)
N3—C26 1.286 (3) C15—C16 1.369 (5)
N3—C28 1.474 (3) C22—C23 1.378 (5)
N4—C31 1.294 (3) C41—C42 1.381 (6)
N4—C30 1.469 (3) O1E—C2E 1.426 (6)
N2—C11 1.468 (3) C2E—C3E 1.456 (8)
N2—C12 1.295 (4) O4E—C5E 1.348 (6)
N6—C50 1.294 (3) C5E—C6E 1.461 (8)
N6—C49 1.472 (4) O7E—C8E 1.473 (9)
C7—C6 1.463 (4) C8E—C9E 1.420 (4)
O10—Cu3—O7 72.48 (7) C12—N2—C11 120.5 (2)
O5—Cu3—O10 95.79 (8) C50—N6—Cu6 127.0 (2)
O5—Cu3—O7 91.62 (7) C50—N6—C49 121.3 (2)
O5—Cu3—N3 85.86 (8) C49—N6—Cu6 110.64 (16)
O4—Cu3—O10 84.02 (8) N1—C7—C6 120.7 (2)
O4—Cu3—O5 170.39 (8) N1—C7—C8 120.6 (3)
O4—Cu3—O7 97.46 (7) C6—C7—C8 118.7 (2)
O4—Cu3—N3 92.84 (8) O4—C20—C25 124.2 (2)
N3—Cu3—O10 170.79 (8) O4—C20—C21 117.6 (2)
N3—Cu3—O7 116.59 (8) C21—C20—C25 118.2 (2)
O10—Cu1—O4 72.34 (6) O1—C1—C6 124.2 (2)
O2—Cu1—O10 92.40 (8) O1—C1—C2 117.4 (3)
O2—Cu1—O4 93.94 (7) C2—C1—C6 118.4 (2)
O2—Cu1—N1 86.00 (8) N3—C26—C25 121.4 (2)
O1—Cu1—O10 86.17 (8) N3—C26—C27 120.4 (2)
O1—Cu1—O2 170.60 (8) C25—C26—C27 118.2 (2)
O1—Cu1—O4 94.47 (8) O2—C10—C11 108.7 (2)
O1—Cu1—N1 93.42 (8) O2—C10—C9 108.7 (2)
N1—Cu1—O10 167.74 (8) C11—C10—C9 111.4 (2)
N1—Cu1—O4 119.88 (8) C20—C25—C26 123.0 (2)
O10—Cu5—O1 72.65 (7) C24—C25—C20 117.7 (3)
O8—Cu5—O10 94.68 (7) C24—C25—C26 119.3 (3)
O8—Cu5—O1 93.29 (7) O8—C48—C49 108.9 (2)
O8—Cu5—N5 86.72 (8) O8—C48—C47 109.7 (2)
O7—Cu5—O10 84.42 (7) C47—C48—C49 112.2 (2)
O7—Cu5—O8 171.86 (8) N2—C11—C10 108.1 (2)
O7—Cu5—O1 94.15 (8) N5—C45—C44 120.5 (2)
O7—Cu5—N5 92.98 (8) N5—C45—C46 120.9 (3)
N5—Cu5—O10 171.32 (9) C44—C45—C46 118.6 (3)
N5—Cu5—O1 115.87 (8) O7—C39—C44 123.9 (3)
O5—Cu4—O1W 87.84 (8) O7—C39—C40 117.7 (2)
O5—Cu4—N4 86.56 (8) C40—C39—C44 118.4 (2)
O6—Cu4—O5 173.69 (9) N2—C12—C14 121.1 (3)
O6—Cu4—O1W 90.97 (9) N2—C12—C13 119.9 (3)
O6—Cu4—N4 95.34 (9) C14—C12—C13 119.0 (3)
N4—Cu4—O1W 171.10 (9) C38—C33—C31 123.9 (2)
O2—Cu2—O11 88.40 (8) C34—C33—C38 117.4 (2)
O2—Cu2—N2 86.37 (8) C34—C33—C31 118.7 (2)
O3—Cu2—O11 90.92 (9) O6—C38—C33 125.7 (2)
O3—Cu2—O2 171.60 (8) O6—C38—C37 116.1 (3)
O3—Cu2—N2 94.27 (9) C37—C38—C33 118.1 (2)
N2—Cu2—O11 174.77 (9) C19—C14—C12 122.9 (3)
N102—O11—Cu2 118.74 (17) C15—C14—C12 119.4 (3)
O12—N102—O11 120.6 (3) C15—C14—C19 117.7 (3)
O12—N102—O13 123.8 (3) N4—C31—C33 121.2 (2)
O13—N102—O11 115.7 (2) N4—C31—C32 120.4 (3)
O8—Cu6—O14B 91.3 (6) C33—C31—C32 118.5 (2)
O8—Cu6—O2W 90.96 (8) C1—C6—C7 123.7 (2)
O8—Cu6—N6 86.12 (9) C5—C6—C7 118.7 (3)
O9—Cu6—O14B 97.2 (6) C5—C6—C1 117.6 (3)
O9—Cu6—O8 171.27 (9) O5—C29—C30 108.9 (2)
O9—Cu6—O2W 87.48 (9) O5—C29—C28 108.9 (2)
O9—Cu6—N6 94.66 (9) C28—C29—C30 112.4 (2)
O2W—Cu6—O14B 87.7 (8) C57—C52—C50 123.6 (2)
N6—Cu6—O14B 97.4 (8) C53—C52—C57 117.5 (3)
N6—Cu6—O2W 174.23 (9) C53—C52—C50 119.0 (3)
N202—O14B—Cu6 122.5 (12) O9—C57—C52 125.2 (3)
O16B—N202—O14B 113.4 (19) O9—C57—C56 116.4 (3)
O16B—N202—O15B 117.3 (19) C56—C57—C52 118.4 (3)
O15B—N202—O14B 123.7 (19) N6—C50—C52 121.0 (2)
O15A—N202—O16A 114 (2) N6—C50—C51 120.1 (3)
O15A—N202—O14A 119.3 (16) C52—C50—C51 118.9 (3)
O14A—N202—O16A 125 (2) N4—C30—C29 108.1 (2)
Cu3—O10—Cu1 106.62 (9) N3—C28—C29 107.97 (19)
Cu5—O10—Cu3 106.11 (8) N6—C49—C48 107.0 (2)
Cu5—O10—Cu1 105.99 (9) N5—C47—C48 107.5 (2)
Cu2—O2—Cu1 115.44 (9) C35—C34—C33 123.0 (3)
C10—O2—Cu1 107.68 (14) N1—C9—C10 107.8 (2)
C10—O2—Cu2 106.34 (14) C39—C44—C45 123.6 (2)
Cu4—O5—Cu3 119.32 (8) C43—C44—C45 119.2 (3)
C29—O5—Cu3 109.95 (15) C43—C44—C39 117.2 (3)
C29—O5—Cu4 106.28 (14) O3—C19—C14 125.6 (2)
Cu6—O8—Cu5 120.77 (9) O3—C19—C18 116.2 (3)
C48—O8—Cu5 108.23 (15) C18—C19—C14 118.1 (3)
C48—O8—Cu6 106.02 (15) C36—C37—C38 122.0 (3)
Cu3—O4—Cu1 96.50 (7) C41—C40—C39 122.0 (3)
C20—O4—Cu3 124.71 (16) C22—C21—C20 121.5 (3)
C20—O4—Cu1 137.80 (16) C34—C35—C36 118.9 (3)
Cu1—O1—Cu5 93.56 (7) C55—C56—C57 121.8 (3)
C1—O1—Cu1 125.52 (17) C4—C5—C6 122.4 (3)
C1—O1—Cu5 140.83 (16) C37—C36—C35 120.6 (3)
Cu5—O7—Cu3 96.20 (7) C54—C53—C52 122.5 (3)
C39—O7—Cu3 138.45 (17) C3—C2—C1 121.5 (3)
C39—O7—Cu5 124.21 (16) C17—C18—C19 121.6 (3)
C57—O9—Cu6 125.90 (19) C5—C4—C3 119.5 (3)
C19—O3—Cu2 126.46 (18) C18—C17—C16 120.3 (3)
C38—O6—Cu4 125.81 (18) C56—C55—C54 120.3 (3)
C45—N5—Cu5 128.00 (19) C23—C24—C25 123.1 (3)
C45—N5—C47 121.5 (2) C2—C3—C4 120.6 (3)
C47—N5—Cu5 109.65 (17) C42—C43—C44 123.1 (3)
C7—N1—Cu1 127.63 (19) C16—C15—C14 122.6 (3)
C7—N1—C9 120.5 (2) C23—C22—C21 120.6 (3)
C9—N1—Cu1 110.30 (16) C15—C16—C17 119.7 (3)
C26—N3—Cu3 127.41 (18) C40—C41—C42 120.0 (3)
C26—N3—C28 121.8 (2) C53—C54—C55 119.6 (3)
C28—N3—Cu3 109.53 (16) C43—C42—C41 119.3 (3)
C31—N4—Cu4 127.25 (19) C24—C23—C22 118.9 (3)
C31—N4—C30 121.8 (2) O1E—C2E—C3E 106.6 (5)
C30—N4—Cu4 110.24 (16) O4E—C5E—C6E 110.7 (5)
C11—N2—Cu2 110.48 (17) C9E—C8E—O7E 104.3 (9)
C12—N2—Cu2 127.20 (19)
Cu3—O5—C29—C30 −83.1 (2) N2—Cu2—O3—C19 5.5 (2)
Cu3—O5—C29—C28 39.9 (2) N2—C12—C14—C19 12.4 (4)
Cu3—O4—C20—C25 −25.9 (3) N2—C12—C14—C15 −165.9 (3)
Cu3—O4—C20—C21 155.9 (2) N6—Cu6—O9—C57 9.4 (2)
Cu3—O7—C39—C44 167.82 (19) C7—N1—C9—C10 −165.0 (2)
Cu3—O7—C39—C40 −10.6 (4) C7—C6—C5—C4 178.6 (3)
Cu3—N3—C26—C25 −13.9 (4) C20—C25—C24—C23 −0.1 (5)
Cu3—N3—C26—C27 165.9 (2) C20—C21—C22—C23 −0.2 (6)
Cu3—N3—C28—C29 30.0 (3) C1—C6—C5—C4 −1.5 (4)
Cu1—O2—C10—C11 −78.1 (2) C1—C2—C3—C4 −0.4 (5)
Cu1—O2—C10—C9 43.3 (2) C26—N3—C28—C29 −162.2 (2)
Cu1—O4—C20—C25 168.43 (19) C26—C25—C24—C23 180.0 (4)
Cu1—O4—C20—C21 −9.8 (4) C25—C20—C21—C22 −1.2 (5)
Cu1—O1—C1—C6 −23.0 (4) C25—C24—C23—C22 −1.3 (7)
Cu1—O1—C1—C2 159.2 (2) C11—N2—C12—C14 179.0 (2)
Cu1—N1—C7—C6 −15.7 (3) C11—N2—C12—C13 −1.6 (4)
Cu1—N1—C7—C8 164.7 (2) C11—C10—C9—N1 72.4 (3)
Cu1—N1—C9—C10 28.2 (3) C45—N5—C47—C48 −159.8 (2)
Cu5—O8—C48—C49 −82.9 (2) C45—C44—C43—C42 177.0 (4)
Cu5—O8—C48—C47 40.2 (2) C39—C44—C43—C42 −1.1 (6)
Cu5—O1—C1—C6 152.5 (2) C39—C40—C41—C42 −0.6 (6)
Cu5—O1—C1—C2 −25.3 (4) C12—N2—C11—C10 −171.9 (2)
Cu5—O7—C39—C44 −27.5 (4) C12—C14—C19—O3 2.8 (4)
Cu5—O7—C39—C40 154.0 (2) C12—C14—C19—C18 −178.7 (3)
Cu5—N5—C45—C44 −13.1 (4) C12—C14—C15—C16 178.2 (3)
Cu5—N5—C45—C46 168.1 (2) C33—C38—C37—C36 −0.5 (4)
Cu5—N5—C47—C48 29.9 (3) C33—C34—C35—C36 −0.1 (5)
Cu4—O5—C29—C30 47.4 (2) C38—C33—C31—N4 4.6 (4)
Cu4—O5—C29—C28 170.32 (17) C38—C33—C31—C32 −174.6 (3)
Cu4—O6—C38—C33 −1.1 (4) C38—C33—C34—C35 0.1 (4)
Cu4—O6—C38—C37 179.6 (2) C38—C37—C36—C35 0.5 (5)
Cu4—N4—C31—C33 −10.9 (4) C14—C19—C18—C17 0.5 (4)
Cu4—N4—C31—C32 168.2 (2) C14—C15—C16—C17 0.6 (6)
Cu4—N4—C30—C29 17.8 (2) C31—N4—C30—C29 −171.1 (2)
Cu2—O11—N102—O12 17.8 (4) C31—C33—C38—O6 1.8 (4)
Cu2—O11—N102—O13 −162.3 (3) C31—C33—C38—C37 −178.9 (3)
Cu2—O2—C10—C11 46.2 (2) C31—C33—C34—C35 179.3 (3)
Cu2—O2—C10—C9 167.61 (17) C6—C1—C2—C3 −1.8 (5)
Cu2—O3—C19—C14 −11.2 (4) C6—C5—C4—C3 −0.6 (5)
Cu2—O3—C19—C18 170.3 (2) C52—C57—C56—C55 2.2 (5)
Cu2—N2—C11—C10 22.4 (2) C52—C53—C54—C55 −0.3 (6)
Cu2—N2—C12—C14 −17.9 (4) C57—C52—C50—N6 14.5 (4)
Cu2—N2—C12—C13 161.5 (2) C57—C52—C50—C51 −164.8 (3)
O11—Cu2—O3—C19 −175.2 (2) C57—C52—C53—C54 0.7 (5)
Cu6—O14B—N202—O16B −108 (3) C57—C56—C55—C54 −1.9 (6)
Cu6—O14B—N202—O15B 99 (4) C50—N6—C49—C48 −168.5 (2)
Cu6—O8—C48—C49 48.0 (2) C50—C52—C57—O9 0.9 (4)
Cu6—O8—C48—C47 171.09 (17) C50—C52—C57—C56 178.9 (3)
Cu6—O9—C57—C52 −13.1 (4) C50—C52—C53—C54 −179.8 (3)
Cu6—O9—C57—C56 168.9 (2) C30—N4—C31—C33 179.5 (2)
Cu6—N6—C50—C52 −16.4 (4) C30—N4—C31—C32 −1.4 (4)
Cu6—N6—C50—C51 162.9 (2) C30—C29—C28—N3 74.9 (3)
Cu6—N6—C49—C48 22.4 (2) C28—N3—C26—C25 −179.5 (2)
O14B—Cu6—O9—C57 −88.6 (8) C28—N3—C26—C27 0.4 (4)
O10—Cu3—O4—Cu1 5.17 (7) C28—C29—C30—N4 −163.9 (2)
O10—Cu3—O4—C20 −165.2 (2) C49—N6—C50—C52 176.4 (2)
O10—Cu1—O1—Cu5 8.93 (7) C49—N6—C50—C51 −4.3 (4)
O10—Cu1—O1—C1 −173.9 (2) C49—C48—C47—N5 74.7 (3)
O10—Cu5—O7—Cu3 6.37 (8) C47—N5—C45—C44 178.6 (2)
O10—Cu5—O7—C39 −163.5 (2) C47—N5—C45—C46 −0.3 (4)
O2—C10—C11—N2 −45.5 (3) C47—C48—C49—N6 −168.3 (2)
O2—C10—C9—N1 −47.3 (3) C34—C33—C38—O6 −179.1 (3)
O5—C29—C30—N4 −43.1 (3) C34—C33—C38—C37 0.2 (4)
O5—C29—C28—N3 −45.9 (3) C34—C33—C31—N4 −174.5 (3)
O8—C48—C49—N6 −46.7 (3) C34—C33—C31—C32 6.3 (4)
O8—C48—C47—N5 −46.5 (3) C34—C35—C36—C37 −0.2 (5)
O4—Cu1—O1—Cu5 80.85 (7) C9—N1—C7—C6 180.0 (2)
O4—Cu1—O1—C1 −102.0 (2) C9—N1—C7—C8 0.4 (4)
O4—C20—C25—C26 3.0 (4) C9—C10—C11—N2 −165.2 (2)
O4—C20—C25—C24 −176.9 (3) C44—C39—C40—C41 0.3 (5)
O4—C20—C21—C22 177.1 (3) C44—C43—C42—C41 0.8 (7)
O1—Cu5—O7—Cu3 78.46 (7) C19—C14—C15—C16 −0.1 (5)
O1—Cu5—O7—C39 −91.4 (2) C19—C18—C17—C16 0.0 (5)
O1—C1—C6—C7 4.7 (4) C40—C39—C44—C45 −177.4 (3)
O1—C1—C6—C5 −175.2 (2) C40—C39—C44—C43 0.5 (4)
O1—C1—C2—C3 176.2 (3) C40—C41—C42—C43 0.1 (7)
O7—Cu3—O4—Cu1 76.57 (7) C21—C20—C25—C26 −178.8 (3)
O7—Cu3—O4—C20 −93.8 (2) C21—C20—C25—C24 1.3 (4)
O7—C39—C44—C45 4.1 (4) C21—C22—C23—C24 1.4 (7)
O7—C39—C44—C43 −177.9 (3) C27—C26—C25—C20 −162.0 (3)
O7—C39—C40—C41 178.9 (3) C27—C26—C25—C24 18.0 (4)
O9—C57—C56—C55 −179.6 (3) C56—C55—C54—C53 0.8 (6)
O3—C19—C18—C17 179.1 (3) C5—C4—C3—C2 1.6 (5)
O2W—Cu6—O9—C57 −175.9 (2) C8—C7—C6—C1 −165.0 (3)
O6—C38—C37—C36 178.8 (3) C8—C7—C6—C5 14.9 (4)
O1W—Cu4—O6—C38 −177.0 (2) C53—C52—C57—O9 −179.6 (3)
N5—Cu5—O7—Cu3 −165.33 (8) C53—C52—C57—C56 −1.6 (4)
N5—Cu5—O7—C39 24.8 (2) C53—C52—C50—N6 −165.0 (3)
N5—C45—C44—C39 17.2 (4) C53—C52—C50—C51 15.7 (4)
N5—C45—C44—C43 −160.8 (3) C2—C1—C6—C7 −177.5 (3)
N1—Cu1—O1—Cu5 −158.80 (8) C2—C1—C6—C5 2.6 (4)
N1—Cu1—O1—C1 18.4 (2) C18—C17—C16—C15 −0.5 (6)
N1—C7—C6—C1 15.4 (4) C13—C12—C14—C19 −167.0 (3)
N1—C7—C6—C5 −164.7 (2) C13—C12—C14—C15 14.7 (4)
N3—Cu3—O4—Cu1 −166.14 (8) C46—C45—C44—C39 −164.0 (3)
N3—Cu3—O4—C20 23.5 (2) C46—C45—C44—C43 18.1 (4)
N3—C26—C25—C20 17.9 (4) C15—C14—C19—O3 −178.9 (3)
N3—C26—C25—C24 −162.2 (3) C15—C14—C19—C18 −0.4 (4)
N4—Cu4—O6—C38 −3.3 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O10—H10···O11 0.51 (4) 2.43 (4) 2.854 (3) 142 (6)
O10—H10···O2W 0.51 (4) 2.75 (3) 2.910 (3) 103 (4)
O10—H10···O1W 0.51 (4) 2.73 (4) 3.155 (3) 143 (6)
O1W—H1WA···O1E 0.86 2.26 2.625 (4) 106
O1W—H1WB···O13 0.86 2.21 2.876 (4) 135
C11—H11B···O4Ei 0.97 2.31 3.280 (4) 174
C18—H18···O13ii 0.93 2.54 3.328 (4) 143
O4E—H4E···N202 0.82 2.66 3.447 (5) 161
O4E—H4E···O16B 0.82 2.45 3.13 (2) 141
O4E—H4E···O15B 0.82 2.12 2.87 (3) 151

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+1, −z.

Funding Statement

This work was funded by Sonatel Foundation.

References

  1. Banerjee, S., Nandy, M., Sen, S., Mandal, S., Rosair, G. M., Slawin, A. M. Z., Gómez García, C. J., Clemente-Juan, J. M., Zangrando, E., Guidolin, N. & Mitra, S. (2011). Dalton Trans. 40, 1652–1661. [DOI] [PubMed]
  2. Basak, S., Sen, S., Rosair, G., Desplanches, C., Garribba, E. & Mitra, S. (2009). Aust. J. Chem. 62, 366–375.
  3. Biswas, R., Diaz, C., Bauzá, A., Frontera, A. & Ghosh, A. (2013). Dalton Trans. 42, 12274–12283. [DOI] [PubMed]
  4. Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Masison, Wisconsin, USA.
  5. Bonanno, N. M., Lough, A. J. & Lemaire, M. T. (2018). Inorg. Chem. 57, 4837–4840. [DOI] [PubMed]
  6. Chen, G., Sun, Y.-X., Sun, M. & Qi, W. (2004). Acta Cryst. E60, m1550–m1551.
  7. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  8. Dutta, N., Haldar, S., Majumder, A., Vijaykumar, G., Carrella, L. & Bera, M. (2020). Inorg. Chem. Commun. 121, 108208.
  9. Gamez, P., Aubel, P. G., Driessen, W. L. & Reedijk, J. (2001). Chem. Soc. Rev. 30, 376–385.
  10. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  11. Grundmeier, A. & Dau, H. (2012). BBA-Bioenergetics 1817, 88–105. [DOI] [PubMed]
  12. Gungor, E. & Kara, H. (2015). J. Struct. Chem. 56, 1646–1652.
  13. Haldar, S., Dutta, N., Vijaykumar, G., Das, A., Carrella, L., Oliver, A. & Bera, M. (2019). Polyhedron, 172, 58–66.
  14. Liang, Q., Chen, X., Zhang, H. & Zou, Z. (2010). Acta Cryst. E66, m40. [DOI] [PMC free article] [PubMed]
  15. Liu, S., Wang, S., Cao, F., Fu, H., Li, D. & Dou, J. (2012). RSC Adv. 2, 1310–1313.
  16. Mamour, S., Mayoro, D., Elhadj Ibrahima, T., Mohamed, G., Aliou Hamady, B. & Ellena, J. (2018). Acta Cryst. E74, 642–645. [DOI] [PMC free article] [PubMed]
  17. Maurya, M. R., Bisht, M., Chaudhary, N., Avecilla, F., Kumar, U. & Hsu, H.-F. (2013). Polyhedron, 54, 180–188.
  18. Mikuriya, M., Kudo, S., Matsumoto, C., Kurahashi, S., Tomohara, S., Koyama, Y., Yoshioka, D. & Mitsuhashi, R. (2018). Chem. Pap. 72, 853–862.
  19. Monfared, H. H., Sanchiz, J., Kalantari, Z. & Janiak, C. (2009). Inorg. Chim. Acta, 362, 3791–3795.
  20. Musie, G. T., Li, X. & Powell, D. R. (2003). Inorg. Chim. Acta, 348, 69–74.
  21. Noor, S., Kumar, S., Sabir, S., Seidel, R. W. & Goddard, R. (2015). Acta Cryst. E71, m205–m206. [DOI] [PMC free article] [PubMed]
  22. Osypiuk, D., Cristóvão, B. & Bartyzel, A. (2020). Crystals, 10, 1004.
  23. Popov, L. D., Levchenkov, S. I., Shcherbakov, I. N., Lukov, V. V., Suponitsky, K. Y. & Kogan, V. A. (2012). Inorg. Chem. Commun. 17, 1–4.
  24. Sall, O., Tamboura, F. B., Sy, A., Barry, A. H., Thiam, E. I., Gaye, M. & Ellena, J. (2019). Acta Cryst. E75, 1069–1075. [DOI] [PMC free article] [PubMed]
  25. Sarı, M., Atakol, O., Svoboda, I. & Fuess, H. (2006). Acta Cryst. E62, m563–m565. [DOI] [PubMed]
  26. Sarr, M., Diop, M., Thiam, I. E., Gaye, M., Barry, A. H., Alvarez, N. & Ellena, J. (2018b). Eur. J. Chem. 9, 67–73.
  27. Sarr, M., Diop, M., Thiam, E. I., Gaye, M., Barry, A. H., Orton, J. B. & Coles, S. J. (2018a). Acta Cryst. E74, 1862–1866. [DOI] [PMC free article] [PubMed]
  28. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  29. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  30. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  31. Shit, S., Nandy, M., Rosair, G., Salah El Fallah, M., Ribas, J., Garribba, E. & Mitra, S. (2013). Polyhedron, 52, 963–969.
  32. Song, Y., Gamez, P., Roubeau, O., Lutz, M., Spek, A. L. & Reedijk, J. (2003). Eur. J. Inorg. Chem. pp. 2924–2928.
  33. Song, Y., Massera, C., Roubeau, O., Gamez, P., Lanfredi, A. M. M. & Reedijk, J. (2004). Inorg. Chem. 43, 6842–6847. [DOI] [PubMed]
  34. Thiam, I. E., Retailleau, P., Navaza, A. & Gaye, M. (2010). Acta Cryst. E66, m136. [DOI] [PMC free article] [PubMed]
  35. Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. [DOI] [PubMed]
  36. Yang, X.-Y., Li, Y. & Pullarkat, S. A. (2014). Inorg. Chem. 53, 10232–10239. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021005570/ex2045sup1.cif

e-77-00708-sup1.cif (2.2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021005570/ex2045Isup2.hkl

e-77-00708-Isup2.hkl (1.1MB, hkl)

CCDC reference: 2086932

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES