Abstract
Paclitaxel is an essential drug in the chemotherapy of ovarian, non-small cell lung, breast, gastric, endometrial, and pancreatic cancers. However, it frequently causes peripheral neuropathy as a dose-limiting factor. Animal models of paclitaxel-induced peripheral neuropathy (PIPN) have been established. The mechanisms of PIPN development have been elucidated, and many drugs and agents have been proven to have neuroprotective effects in basic studies. In addition, some of these drugs have been validated in clinical studies for their inhibitory PIPN effects. This review summarizes the basic and clinical evidence for therapeutic or prophylactic effects for PIPN. In pre-clinical research, many reports exist of neuropathy inhibitors that target oxidative stress, inflammatory response, ion channels, transient receptor potential (TRP) channels, cannabinoid receptors, and the monoamine nervous system. Alternatively, very few drugs have demonstrated PIPN efficacy in clinical trials. Thus, enhancing translational research to translate pre-clinical research into clinical research is important.
Keywords: paclitaxel, peripheral neuropathy, preclinical data, clinical evidence, adverse effects
1. Introduction
Paclitaxel and albumin-bound paclitaxel are important drugs in the treatment of ovarian [1,2], non-small cell lung [3,4], breast [5,6,7], gastric [8,9], endometrial [10], and pancreatic [11] cancers. However, they cause peripheral neuropathy as an adverse event. In paclitaxel-induced peripheral neuropathy (PIPN), many patients develop sensory abnormalities (e.g., numbness, pain, and burning sensation in the hands and feet) [12]. PIPN is a dose-limiting factor that causes difficulty in continuing cancer chemotherapy [13]. However, no evidence-based prophylactic agents for PIPN were noted [14]. Since the late 1990s, many studies on the mechanism and therapeutic or prophylactic agents using PIPN animal models have been reported [15,16,17]. In addition, the mechanisms of PIPN development have been gradually clarified [18]. This study reviewed the preclinical and clinical evidence of therapeutic or prophylactic agents for PIPN.
2. Methods
2.1. Preclinical Evidence
All articles found in PubMed with the search term “paclitaxel neuropathy or paclitaxel neurotoxicity” were surveyed. The last search date was 30 April 2021. Clinical studies and reports that did not include information on therapeutic agents were excluded from the analysis. Articles referring to the effects of local rather than systemic administration and articles published before 2015 were also excluded. Information on the name and dosage of the drugs that showed statistically significant improvement, mechanism of action, and the animal species in which they were used were extracted in the surveyed papers.
2.2. Clinical Evidence
The articles found in PubMed with the search term “paclitaxel neuropathy or paclitaxel neurotoxicity” limited to “Randomized Controlled Trial” and “Meta-Analysis” were analyzed. The last search date was 30 April 2021. Reports other than trials about peripheral neuropathy were excluded. Moreover, information such as the investigational drug and its dosage, chemotherapy received by the patient, study design, number of patients, and results were collected.
3. Results
3.1. Therapeutic Agents in Preclinical Evidence
In PubMed, 2667 articles were found when using the search term “paclitaxel neuropathy or paclitaxel neurotoxicity”. Of these, 150 articles reported on drugs that inhibit PIPN in animal studies. The following is a summary of the drugs that had therapeutic PIPN effects in these basic studies (Table 1).
Table 1.
Therapeutic Targets | Therapeutic Agents | Dose | Animals | Symptoms that Showed Improvement | Mechanisms | References |
---|---|---|---|---|---|---|
Oxidative stress and mitochondrial disfunction | Anakinra, IL-1β antagonist | 50–100 mg/kg, i.p. | Rats | Pain threshold | Reductions of MDA, MPO and IL-1β and increase in GSH in paws | [19] |
Antimycin A | 0.2–0.6 mg/kg, i.p. | Rats | Mechanical hypersensitivity | Inhibition of mitochondrial complex III | [20] | |
Curcumin | 100–200 mg/kg, p.o. | Rats | Histological changes in spinal cord and sciatic nerve | Reduction of NF-κB, TNF-α, IL-6, iNOS and GFAP, p53, caspase-3, Apaf-1, LC3A, LC3B and beclin-1, and increase in Nrf2, HO-1, NQO1, Bcl-2, and Bcl-xL. | [21] | |
Divya-Peedantak-Kwath, a herbal decoction | 69–615 mg/kg, p.o. | Mice | Thermal hyperalgesia, mechanical allodynia and hyperalgesia, and axonal degeneration | Suppression of oxidative stress and inflammation | [22] | |
Duloxetine | 10–30 mg/kg, i.p. | Mice | Mechanical hyperalgesia and thermal nociception | Inhibiting PARP and p53 activation and regulating Bcl-2 family to reverse oxidative stress and apoptosis | [23] | |
Evodiamine | 5 mg/kg | Rats | Mechanical hypersensitivity and thermal hypersensitivity | Downregulation of inflammatory and chemoattractant cytokines (IL-1β, IL-6, TNF-α, and MCP-1), oxidative stress, and mitochondrial dysfunction in DRG. | [24] | |
Flavonol | 25–200 mg/kg, s.c. | Mice | Tactile allodynia, cold allodynia and thermal hyperalgesia | Inhibitions of TNF-α, IL-1β and free radicals | [25] | |
Ghrelin | 300 nmol/kg, i.p. | Mice | Mechanical sensitivity, thermal sensitivity, DRG damage (ATF-3 positive cells), and density of IENF | Decreases in plasma oxidative and nitrosative stress and increases in UCP2, SOD2, and PGC-1α | [26] | |
GKT137831, a NOX4 inhibitor | 1 mg/kg, i.p. | Rats | Mechanical sensitivity and thermal sensitivity | Decreases of proinflammatory cytokines (IL-1β, IL-6, and TNF-α) in the DRG | [27] | |
Lacosamide | 30 mg/kg, p.o. | Rats | Thermal hyperalgesia and cold allodynia | Upregulation of total antioxidant capacity and NGF, and downregulation of NF-kB p65, TNF-α, active caspase-3, Notch1 receptor, p-p38, and IL-6/p-JAK2/p-STAT3 | [28] | |
Melatonin | 5–50 mg/kg, p.o. | Rats | Mechanical sensitivity | Reduction of mitochondrial damage | [29] | |
Nicotinamide riboside | 200 mg/kg, p.o. | Rats | Tactile hypersensitivity | N.A. | [30] | |
Phenyl-N-tert-butylnitrone | 100 mg/kg, i.p. | Mice | Mechanical hypersensitivity | N.A. | [31] | |
Pregabalin | 30 mg/kg, p.o. | Rats | Thermal hyperalgesia and cold allodynia | Upregulation of total antioxidant capacity and NGF, and downregulation of NF-kB p65, TNF-α, active caspase-3, Notch1 receptor, p-p38, and IL-6/p-JAK2/p-STAT3 | [28] | |
Rosuvastatin | 10 mg/kg, i.p. | Mice | Thermal hyperalgesia, cold hyperalgesia, and mechanical allodynia | Downregulations of IL-1β, oxidative stress | [32] | |
Rotenone | 1–5 mg/kg, i.p. | Rats | Mechanical hypersensitivity | Inhibition of mitochondrial complex I | [20] | |
Tempol, a mimetic of SOD | 20 mg/kg, i.p. | Rats | Mechanical sensitivity and thermal sensitivity | Decreases of proinflammatory cytokines such as IL-1β, IL-6 and TNF-α in the DRG | [27] | |
Trimethoxy flavones | 25–200 mg/kg, s.c. | Mice | Tactile allodynia, cold allodynia, and thermal hyperalgesia | Inhibitions of TNF-α, IL-1β and free radicals | [33] | |
Umbelliprenin, a prenylated coumarin | 12.5–25 mg/kg, i.p. | Mice | Thermal hyperalgesia | Decrease in serum IL-6 levels and oxidative stress | [34] | |
Vitamin C | 500 mg/kg, i.p. | Rats | Mechanical sensitivity and thermal sensitivity | Decreases of proinflammatory cytokines (IL-1β, IL-6 and TNF-α) in the DRG | [27] | |
Inflammatory | 3-Hydroxyflavone | 25–75 mg/kg, i.p. | Rats | Tactile allodynia, cold allodynia, thermal hyperalgesia, and heat-hyperalgesia | Suppressions of TNF-α, IL-1β, IL-6, CGRP, and substance P in the spinal cord, and inhibition of the receptor of substance P | [35] |
AMD3100, a CXCR4 antagonist | 8 mg/kg, i.p. | Mice | Mechanical allodynia | N.A. | [36] | |
Anakinra, IL-1β antagonist | 50–100 mg/kg, i.p. | Rats | Pain threshold | Reductions of MDA, MPO and IL-1β and increase in GSH in paws | [19] | |
Anti-HMGB1-neutralizing antibody | 1 mg/kg, i.p. | Mice | Mechanical allodynia | N.A. | [36] | |
Berberine | 5–20 mg/kg, i.p. | Mice | Thermal hyperalgesia | N.A. | [37] | |
Choline-fenofibrate | 6–24 mg/kg, i.p., 15–60 mg/kg, p.o. | Mice | Mechanical hyperalgesia, cold hyperalgesia, and sensory nerve compound action potential amplitude | Regulation of PPAR-⍺ expression and decrease neuroinflammation in DRG | [38] | |
Curcumin | 100–200 mg/kg, p.o. | Rats | Histological changes in the spinal cord and sciatic nerve | Reductions of NF-κB, TNF-α, IL-6, iNOS and GFAP, p53, caspase-3, Apaf-1, LC3A, LC3B and beclin-1, and increase in Nrf2, HO-1, NQO1, Bcl-2, and Bcl-xL. | [21] | |
Divya-Peedantak-Kwath, a herbal decoction | 69–615 mg/kg, p.o. | Mice | Thermal hyperalgesia, mechanical allodynia and hyperalgesia, and axonal degeneration | Suppressions of oxidative stress and inflammation | [22] | |
Duloxetine | 30 mg/kg/day, i.p. | Mice | Mechanical hyperalgesia, thermal hyperalgesia, and loss of IENF | Decreases in NF-κB, p-p38, IL-6, and TNF-α in DRG | [39] | |
ESI-09, a Epac inhibitor | 20 mg/kg, p.o. | Mice | Mechanical allodynia and number of IENF | Suppression of spinal cord astrocyte activation | [40] | |
Etanercept | 2 mg/kg, i.p. | Rats | Mechanical hypersensitivity and cold hypersensitivity | Blocking of TNF-α signaling | [41] | |
Evodiamine | 5 mg/kg | Rats | Mechanical hypersensitivity and thermal hypersensitivity | Downregulation of inflammatory and chemoattractant cytokines (IL-1β, IL-6, TNF-α, and MCP-1), oxidative stress, and mitochondrial dysfunction in DRG. | [24] | |
Fenofibrate | Diet with 0.2% or 0.4% fenofibrate | Mice | Mechanical allodynia, cold allodynia, SNAP amplitude, and intra-epidermal nerve fibers density | Regulation of PPAR-α expression and reduction in neuroinflammation | [42] | |
Fenofibrate | 100–150 mg/kg, i.p., 300–600 mg/kg, p.o. | Mice | Mechanical hyperalgesia, cold hyperalgesia, and sensory nerve compound action potential amplitude | Regulation of PPAR-⍺ expression and decrease neuroinflammation in DRG | [38] | |
Fenofibric acid | 6–24 mg/kg, i.p., 30–90 mg/kg, p.o. | Mice | Mechanical hyperalgesia, cold hyperalgesia, and sensory nerve compound action potential amplitude | Regulation of PPAR-⍺ expression and decrease neuroinflammation in DRG | [38] | |
Flavonol | 25–200 mg/kg, s.c. | Mice | Tactile allodynia, cold allodynia, and thermal hyperalgesia | Inhibitions of TNF-α, IL-1β and free radicals | [25] | |
FPS-ZM1, a RAGE antagonist | 1 mg/kg, i.p. | Mice | Mechanical allodynia | N.A. | [36] | |
GKT137831, a NOX4 inhibitor | 1 mg/kg, i.p. | Rats | Mechanical sensitivity and thermal sensitivity | Decreases of proinflammatory cytokines (IL-1β, IL-6, and TNF-α) in the DRG | [27] | |
Human intravenous immunoglobulin | 1 g/kg, i.v. | Rats | Mechanical allodynia, loss of IENF, and distal axonal degeneration | Suppression of the axonopathy with macrophage infiltration | [43] | |
Icariin | 100 mg/kg, p.o. | Rats | Mechanical allodynia | Downregulations of TNF-α, IL-1β, IL-6 and astrocyte activation in spinal cord via SIRT1 activation | [44] | |
IL-1 receptor antagonist | 3 mg/kg, i.p. | Rats | Mechanical hypersensitivity and cold hypersensitivity | N.A. | [41] | |
JTC-801 | 0.01–0.05 mg/kg, i.v. | Rats | Mechanical allodynia | Decreases in PI3K, p-Akt, and inflammatory cytokines in the DRG | [45] | |
Lacosamide | 30 mg/kg, p.o. | Rats | Thermal hyperalgesia and cold allodynia | Upregulation of total antioxidant capacity and NGF, and downregulation of NF-kB p65, TNF-α, active caspase-3, Notch1 receptor, p-p38, and IL-6/p-JAK2/p-STAT3 | [28] | |
Losartan | 20–100 mg/kg, i.p. | Rats | Mechanical hyperalgesia | Decrease in inflammatory cytokines including IL-1β and TNF-α in the DRG | [46] | |
Losartan | 100 mg/kg, p.o. | Rats | Mechanical allodynia | Attenuations of neuroinflammatory changes and expression of pro-resolving markers (arginase 1 and IL-10) indicating a possible shift in macrophage polarization | [47] | |
Low-molecular-weight heparin, a rage antagonist | 2.5 mg/kg. i.p. | Mice | Mechanical allodynia | N.A. | [36] | |
LPS-R, a TLR4 antagonist | 0.5 mg/kg, i.p. | Mice | Mechanical allodynia | N.A. | [36] | |
MDA7, a CB₂ agonist | 15 mg/kg, i.p. | Rats | Mechanical allodynia | Downregulations of IRF8, P2X4, CaMKIIα, p-CREB, FosB, BDNF, GluR1 and NR2B, and increase in the expression of K+-Cl- cotransporter | [48] | |
MJN110, a MAGL inhibitor | 4–40 mg/kg, i.p. | Mice | Mechanical allodynia | Downregulations of MCP-1, CCL2 and p-p38 in DRG as well as MCP-1 in the spinal dorsal horn | [49] | |
Polaprezinc | 3 mg/kg, p.o. | Rats | Mechanical allodynia | Suppression of macrophage migration into DRG | [50] | |
Pregabalin | 30 mg/kg, p.o. | Rats | Thermal hyperalgesia and cold allodynia | Upregulation of total antioxidant capacity and NGF, and downregulation of NF-kB p65, TNF-α, active caspase-3, Notch1 receptor, p-p38, and IL-6/p-JAK2/p-STAT3 | [28] | |
Rapamycin | 5 mg/kg, i.p. | Rats | Mechanical hypersensitivity and thermal hypersensitivity | Decreases of IL-1β, IL-6, TNF-α, substance P and CGRP in DRG. | [51] | |
Reparixin | 8 mg/hr/kg using micro–osmotic pumps | Rats | Mechanical allodynia and cold allodynia | Inhibition of IL-8/CXCR1/2 pathway and suppressions of p-FAK, p-JAK2/p-STAT3, and PI3K-p-cortactin activation | [52] | |
Rosuvastatin | 10 mg/kg, i.p. | Mice | Thermal hyperalgesia, cold hyperalgesia, and mechanical allodynia | Downregulations of IL-1β and oxidative stress | [32] | |
S504393, a CCR2 antagonist | 5 mg/kg, i.p. | Rats | Mechanical hypersensitivity and cold hypersensitivity | N.A. | [41] | |
Siwei Jianbu decoction | 5–10 g/kg, i.g. | Mice | Mechanical hyperalgesia and thermal nociception | Inhibiting the JNK, ERK1/2 phosphorylation, NF-κB, TNF-α, IL-1β, and IL-6. | [53] | |
TAK242, a TLR4 antagonist | 1–3 mg/kg, i.p. | Rats | Mechanical hypersensitivity | Antagonism of TLR4 | [54] | |
TAK242, a TLR4 antagonist | 3 mg/kg, i.p. | Mice | Mechanical allodynia | N.A. | [55] | |
Tempol, a mimetic of SOD | 20 mg/kg, i.p. | Rats | Mechanical sensitivity and thermal sensitivity | Decreases of proinflammatory cytokines (IL-1β, IL-6 and TNF-α) in the DRG | [27] | |
Thrombomodulin alfa | 1–3 mg/kg, i.p. | Mice | Mechanical allodynia | N.A. | [36] | |
Trimethoxy flavones | 25–200 mg/kg, s.c. | Mice | Tactile allodynia, cold allodynia, and thermal hyperalgesia | Inhibitions of TNF-α, IL-1β and free radicals | [33] | |
Umbelliprenin, a prenylated coumarin | 12.5–25 mg/kg, i.p. | Mice | Thermal hyperalgesia | Decreases in serum IL-6 levels and oxidative stress | [34] | |
Vitamin C | 500 mg/kg, i.p. | Rats | Mechanical sensitivity and thermal sensitivity | Decreases of proinflammatory cytokines (IL-1β, IL-6 and TNF-α) in the DRG | [27] | |
β-caryophyllene, a CB2 agonist | 25 mg/kg, p.o. | Mice | Mechanical allodynia | Through CB2-activation in the CNS and posterior inhibition of p38 MAPK/NF-κB activation and cytokine release | [56] | |
K channel | 3-Carboxyphenyl isothiocyanate | 1.33–13.31 µmol/kg, s.c. | Mice | Cold hypersensitivity | Release H2S activating Kv7 channel | [57] |
Allyl isothiocyanate | 1.33–13.31 µmol/kg, s.c. | Mice | Cold hypersensitivity | Release H2S activating Kv7 channel | [57] | |
Phenyl isothiocyanate | 4.43–13.31 µmol/kg, s.c. | Mice | Cold hypersensitivity | Release H2S activating Kv7 channel | [57] | |
Retigabine | 10 mg/kg, i.p. | Rats | Mechanical allodynia, IENF density, and morphological alteration of mitochondria in peripheral nerve | Specific KCNQ/Kv7 channel opener | [58] | |
Sodium hydrosulfide hydrate | 13.31–38 µmol/kg, s.c. | Mice | Cold hypersensitivity | Release H2S activating Kv7 channel | [57] | |
Ca channel | ML218, a T-type calcium channel blocker | 1–10 mg/kg, i.p. | Rats | Mechanical hypersensitivity | Inhibition of Cav3.2 | [54] |
RQ-00311651, a T-type calcium channel blocker | 10–40 mg/kg, i.p. | Mice and rats | Mechanical hyperalgesia | Block of Cav3.1/Cav3.2 T channels | [59] | |
TRP channel | AMG9810 | 30 mg/kg, p.o. | Rats | Mechanical allodynia, hyperalgesia, and thermal hyperalgesia | TRPV1 antagonism | [60] |
Capsazepine | 30 mg/kg, s.c. | Rats | Thermal hyperalgesia | TRPV1 antagonism | [61] | |
HC-067047, a TRPV4 antagonist | 10 mg/kg, i.p. | Mice | Mechanical hyperalgesia | TRPV4 antagonism | [62] | |
Quercetin | 20–60 mg/kg, i.p. | Rats and mice | Heat hyperalgesia and mechanical allodynia | Suppression of PKCε and TRPV1 in the spinal cords and DRG | [63] | |
Ruthenium red | 3 mg/kg, s.c. | Rats | Thermal hyperalgesia | TRP antagonism | [61] | |
SB-366791, a TRPV1 antagonist | 0.5 mg/kg, i.p. | Mice | Visceral nociception, mechanical hypersensitivity and heat hypersensitivity | TRPA1 antagonism | [55] | |
Tabernaemontana catharinensis ethyl acetate fraction | 100 mg/kg, p.o. | Mice | Mechanical allodynia | TRPA1 antagonism | [64] | |
Glutamate | Memantine | 1–5 mg/kg | Rats | Mechanical hypersensitivity | Antagonism of NMDA receptor | [65] |
Valproate | 200 mg/kg, i.p. | Rats | Mechanical allodynia | Suppressions HDAC2 upregulation, glutamate accumulation, and the corresponding changes in EAAT2/VGLUT/synaptophysin expression and HDAC2/YY1 interaction | [66] | |
PDE | Cilostazol | Diet containing 0.3% cilostazol | Mice | Mechanical hyperalgesia and Schwann cell dedifferentiation within the sciatic nerve | Differentiation of Schwann cells via a mechanism involving cAMP/Epac signaling | [67] |
Minoxidil | 25–50 mg/kg, i.p. | Mice | Mechanical hyperalgesia, thermal sensitivity, and damages of sciatic nerve | Suppression of neuroinflammation (macrophage and microglia) recruitments and remodeling of intracellular calcium homeostasis in DRG | [68] | |
Cannabinoid receptor | Cannabidiol | 1–20 mg/kg, i.p. | Mice | Mechanical sensitivity | N.A. | [69] |
Cannabidiol | 2.5–25 mg/kg, i.p., p.o. | Mice | Mechanical allodynia | N.A. | [70] | |
JZL184, a MAGL inhibitor | 4–40 mg/kg, i.p. | Mice | Mechanical allodynia | N.A. | [49] | |
KLS-13019 | 2.5–25 mg/kg, i.p. | Mice | Mechanical allodynia | N.A. | [70] | |
MDA7, a CB₂ agonist | 15 mg/kg, i.p. | Rats | Mechanical allodynia | Downregulations of IRF8, P2X4, CaMKIIα, p-CREB, FosB, BDNF, GluR1 and NR2B, and increase in the expression of K+-Cl- cotransporter | [48] | |
MJN110, a MAGL inhibitor | 4–40 mg/kg, i.p. | Mice | Mechanical allodynia | Downregulations of monocyte chemoattractant protein-1 (MCP-1 and CCL2) and p-p38 MAPK in dorsal root ganglia as well as MCP-1 in the spinal dorsal horn | [49] | |
URB597, a centrally penetrant FAAH inhibitor | 1 mg/kg, i.p. | Mice | Mechanical hypersensitivity and cold hypersensitivity | Inhibition of FAAH, the major enzyme catalyzing the degradation of anandamide, an endocannabinoid, and other fatty acid amides | [71] | |
URB937, a peripherally restricted FAAH inhibitor | 1 mg/kg, i.p. | Mice | Mechanical hypersensitivity and cold hypersensitivity | Inhibition of FAAH, the major enzyme catalyzing the degradation of anandamide, an endocannabinoid, and other fatty acid amides | [71] | |
β-caryophyllene, a CB2 agonist | 25 mg/kg, p.o. | Mice | Mechanical allodynia | CB2-activation in the CNS and posterior inhibition of p38 MAPK/NF-κB activation and cytokine release | [56] | |
Δ9-THC | 2.5–20 mg/kg, i.p. | Mice | Mechanical sensitivity | N.A. | [69] | |
Opioid receptor | Morphine | 3–6 mg/kg, p.o. | Mice | Mechanical allodynia | N.A. | [72] |
Oxycodone | 24 mg/kg/day, p.o. | Mice | Mechanical allodynia | N.A. | [72] | |
Monoamines | SR-17018 | 1–48 mg/kg/day, p.o. | Mice | Mechanical allodynia | N.A. | [72] |
Bee venom acupuncture | 1 mg/kg, s.c. | Rats | Mechanical hyperalgesia | Via spinal α₂-adrenergic receptor | [73] | |
Bee venom acupuncture | 0.25–2.5 mg/kg, i.p. | Mice | Cold allodynia and mechanical allodynia | Via the spinal noradrenergic and serotonergic mechanism | [74] | |
Quetiapine | 10–15 mg/kg, p.o. | Mice | Heat hyperalgesia, mechanical allodynia, and cold allodynia | Via α2-adrenoceptors | [75] | |
Reboxetine | 10 mg/kg, i.p. | Rats | Mechanical allodynia and cold hyperalgesia | α2-AR mediated antinociception at the spinal cord | [76] | |
Venlafaxine | 40–60 mg/kg, s.c. | Mice | Cold allodynia and mechanical allodynia | Via the spinal noradrenergic and serotonergic mechanism | [74] | |
Acetylcholine receptor | Nicotine | 0.6–0.9 mg/kg, i.p. or 24 mg/kg, s.c. | Mice | Mechanical allodynia and density of IENF | Via α7 nicotinic acetylcholine receptor | [77] |
Pirenzepine | 10 mg/kg, s.c. | Mice | Mechanical sensitivity and thermal sensitivity | Muscarinic ACh type 1 receptor (M1R) antagonism | [78] | |
R-47, an α7 nAChR silent agonist | 5–10 mg/kg, i.p. | Mice | Mechanical hypersensitivity, loss of IENF and morphological changes of microglia | N.A. | [79] | |
α-Conotoxin RgIA4 | 80 μg/kg, s.c. | Rats | Mechanical allodynia | N.A. | [80] | |
cAMP/PKA | ESI-09, a Epac inhibitor | 20 mg/kg, p.o. | Mice | Mechanical allodynia and number of IENF | Suppression of spinal cord astrocyte activation | [40] |
PKC | HOE140, a kinin B2 antagonist | 50 nmol/kg, i.p. | Mice | Mechanical hyperalgesia | inactivation of PKCε | [62] |
DALBK, a kinin B1 antagonist | 150 nmol/kg, i.p. | Mice | Mechanical hyperalgesia | inactivation of PKCε | [62] | |
Tamoxifen | 30 mg/kg, p.o. | Mice | Mechanical allodynia cold allodynia | Inhibition of PKC/ERK pathway | [81] | |
MAPK | Duloxetine | 30 mg/kg/day, i.p. | Mice | Mechanical hyperalgesia, thermal hyperalgesia, and loss of IENF | Decreases in NF-κB, p-p38, IL-6, and TNF-α in DRG | [39] |
Duloxetine | 10–30 mg/kg, p.o. | Mice | Mechanical allodynia and cold allodynia | Inhibiting ERK1/2 phosphorylation in spinal cord | [82] | |
Gabapentin | 30–100 mg/kg, p.o. | Mice | Mechanical allodynia and cold allodynia | Inhibiting ERK1/2 phosphorylation in spinal cord | [82] | |
Lacosamide | 30 mg/kg, p.o. | Rats | Thermal hyperalgesia and cold allodynia | Upregulation of total antioxidant capacity and NGF, and downregulation of NF-kB p65, TNF-α, active caspase-3, Notch1 receptor, p-p38, and IL-6/p-JAK2/p-STAT3 | [28] | |
MJN110, a MAGL inhibitor | 4–40 mg/kg, i.p. | Mice | Mechanical allodynia | Downregulations of MCP-1, CCL2 and p-p38 in DRG as well as MCP-1 in the spinal dorsal horn | [49] | |
PD0325901 | 30 mg/kg, p.o. | Mice | Mechanical allodynia and cold allodynia | Inhibiting ERK1/2 phosphorylation in spinal cord | [82] | |
Pregabalin | 30 mg/kg, p.o. | Rats | Thermal hyperalgesia and cold allodynia | Upregulation of total antioxidant capacity and NGF, and downregulation of NF-kB p65, TNF-α, active caspase-3, Notch1 receptor, p-p38, and IL-6/p-JAK2/p-STAT3 | [28] | |
Siwei Jianbu decoction | 5–10 g/kg, p.o. | Mice | Mechanical hyperalgesia and thermal nociception | Inhibiting the JNK, ERK1/2 phosphorylation, NF-κB, TNF-α, IL-1β, and IL-6 | [53] | |
Tamoxifen | 30 mg/kg, p.o. | Mice | Mechanical allodynia cold allodynia | Inhibition of PKC/ERK pathway | [81] | |
Trametinib | 0.5 mg/kg | Mice | Mechanical and cold allodynia | Inhibition of the MEK/ERK pathway | [83] | |
β-caryophyllene, a CB2 agonist | 25 mg/kg, p.o. | Mice | Mechanical allodynia | Through CB2-activation in the CNS and posterior inhibition of p38 MAPK/NF-κB activation and cytokine release | [56] | |
OATP1B2 | Nilotinib | 100 mg/kg, p.o. | Mice | Mechanical allodynia | Inhibition of paclitaxel intake to neuron via OATP1B2 inhibition | [84] |
mTOR | Rapamaycin | 5 mg/kg, i.p. | Rats | Mechanical hypersensitivity and thermal hypersensitivity | Decreases of IL-1β, IL-6, TNF-α, substance P and CGRP in DRG. | [51] |
Others | AM9053, a NAAA inhibitor | 1–10 mg/kg, i.p. | Mice | Mechanical allodynia | N.A. | [85] |
Aucubin | 15–50 mg/kg, i.p. | Mice | Mechanical allodynia | N.A. | [86] | |
Aucubin | 50 mg/kg, i.p. | Mice | Mechanical allodynia | Inhibition of ER stress in peripheral Schwann cells | [87] | |
Bogijetong decoction, a herbal drug formulation | 400 mg/kg, p.o. | Rats | Heat sensitivity | Improvement of morphological abnormalities in the sciatic nerve axons and DRG tissue | [88] | |
DALBK, a kinin B1 antagonist | 150 nmol/kg, i.p. | Mice | Mechanical allodynia | Antagonism of kinin B1 receptor | [89] | |
FR173657, a kinin B2 antagonist | 100 nmol/kg, i.p. | Mice | Mechanical allodynia | Antagonism of kinin B2 receptor | [89] | |
Gelsemium sempervirens | 1 mL, i.p. | Rats | Mechanical allodynia, mechanical hyperalgesia, cold allodynia, and density of IENF | N.A. | [90] | |
HOE140, a kinin B2 antagonist | 100 nmol/kg, i.p. | Mice | Mechanical allodynia | Antagonism of kinin B2 receptor | [89] | |
Iridoids isolated from Viticis Fructus | 15 mg/kg | Mice | Mechanical allodynia | N.A. | [91] | |
Lepidium meyenii | 0.5–10 mg/kg, p.o. | Rats | Cold hypersensitivity | N.A. | [92] | |
Metformin | 200 mg/kg, i.p. | Mice | Mechanical hypersensitivity | Activation of AMPK | [93] | |
Narciclasine | 1 mg/kg, p.o. | Mice | Mechanical hypersensitivity | Activation of AMPK | [93] | |
Neoline | 10 mg/kg/day, s.c. | Mice | Mechanical hyperalgesia | N.A. | [94] | |
Nicotinamide riboside | 200 mg/kg, p.o. | Rats | Mechanical hyperalgesia and cold hyperalgesia | N.A. | [95] | |
NO-711, a GAT-1 inhibitor | 3 mg/kg, i.p. | Mice | Thermal hyperalgesia and cold allodynia | Inhibition of GAT-1 | [96] | |
Processed aconite root | 1 g/kg/day, s.c. | Mice | Mechanical hyperalgesia | N.A. | [94] | |
Recombinant human soluble thrombomodulin | 3–10 mg/kg, i.p. | Rats | Mechanical hyperalgesia | Inactivation of HMGB1 | [97] | |
Rikkunshito | 0.3–1 mg/kg, p.o. | Mice | Mechanical hyperalgesia | Suppression of p-NF-κB in spinal cord | [98] | |
Salicylidene salicylhydrazide | 50–75 mg/kg, i.p. | Mice | Mechanical allodynia and cold allodynia | N.A. | [99] | |
Sargassum glaucescens from the Persian Gulf | 100–200 mg/kg, i.p. | Mice | Cold allodynia | N.A. | [100] | |
SLAB51, a probiotic formulation | 1.5 g (200 billion of bacteria) in 10 mL of drinking water | Mice | Mechanical allodynia and hyperalgesia | Increases in the expression of opioid and cannabinoid receptors in spinal cord, reduction in nerve fiber damage in the paws and modulation of the serum proinflammatory cytokines concentration | [101] | |
SSR240612, a kinin B1 antagonist | 150 nmol/kg, i.p. | Mice | Mechanical allodynia | Antagonism of kinin B1 receptor | [89] | |
Staurosporine | 0.1 mg/kg, i.p. | Mice | Mechanical allodynia | Inhibitory of PI3K signaling pathway | [102] | |
Telmisartan | 5–10 mg/kg, i.p. | Mice | Mechanical hyperalgesia and thermal hyperalgesia | Inhibition of CYP2J isoforms and reductions of EpOME in DRGs and plasma | [103] | |
Terfenadine | 1–2 mg/kg | Mice | Mechanical hyperalgesia | Inhibition of CYP2J isoforms | [103] | |
Wortmannin | 0.6 mg/kg, i.p. | Mice | Mechanical allodynia | Inhibitory of PI3K signaling pathway | [102] |
Abbreviations: Ach, acetylcholine; AMPK, AMP-activated protein kinase; Apaf-1, apoptosis protease-activating factor 1; ATF-3, activating transcription factor 3; Bcl-2, B-cell lymphoma 2; Bcl-xL, B-cell lymphoma-extra-large; BDNF, brain derived neurotrophic factor; CaMKIIα, calmodulin-dependent protein kinase IIα; CCL2, C-C motif chemokine ligand 2; CCR2, C-C motif chemokine receptor 2; CGRP, calcitonin gene-related peptide; CREB, cAMP response element binding protein; CXCR, C-X-C motif chemokine receptor; CYP2J, Cytochrome P450 2J; DRG, dorsal root ganglia; EAAT2, excitatory amino acid transporter 2; Epac, exchange protein directly activated by cAMP; EpOME, epoxyoctadecamonoenoic acids; ER, endoplasmic reticulum; ERK, extracellular signal-regulated kinase; FAAH, fatty-acid amide hydrolase; FosB, FBJ murine osteosarcoma viral oncogene homolog B; GAT-1, gamma-aminobutyric acid (GABA) transporter 1; GFAP, glial fibrillary acidic protein; GluR1, glutamate ionotropic receptor AMPA type subunit 1; GSH, glutathione; HDAC2, histone deacetylase 2; HMGB1, high mobility group box 1; HO-1, heme oxygenase 1; i.p., intraperitoneal; i.v., intravenous; IENF, intra-epidermal nerve fibers; IL-10, interleukin-10; IL-1β, interleukin-1 beta; IL-6, interleukin-6; IL-8, interleukin-8; iNOS, inducible nitric oxide synthase; IRF8, interferon regulatory factor 8; JNK, c-Jun N-terminal kinase; MAGL, monoacylglycerol lipase; MAPK, mitogen-activated protein kinase; MCP-1, monocyte chemotactic protein 1; MDA, malondialdehyde; MEK, mitogen-activated protein kinase kinases; MPO, myeloperoxidase; NAAA, N-acylethanolamine-hydrolyzing acid amidase; nAChR, nicotinic acetylcholine receptor; NF-κB, nuclear factor kappa-B; NGF, nerve growth factor; NMDA, N-methyl-D-aspartate; NOX4, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4; NQO1, NAD(P)H dehydrogenase [quinone] 1; NR2B, N-methyl D-aspartate (NMDA) receptor subtype 2B; Nrf2, nuclear factor-erythroid 2-related factor 2; OATP1B2, organic anion-transporting polypeptide 1b2; p.o., per os; p-Akt, phospho-protein kinase B; PARP, poly ADP-ribose polymerase; p-CREB, phospho-cAMP response element binding protein; p-FAK, phospho-fokal adhesion kinase; PGC-1α, peroxisome proliferatoractivated receptor γ coactivator-1; PI3K, phosphatidylinositol-3 kinase; p-JAK2, phospho-janus kinase 2; PKC, protein kinase C; p-NF-κB, phospho-nuclear factor kappa-B; p-p38, phospho-p38; PPAR-α, peroxisome proliferator-activated receptor-α; p-STAT3, phospho-signal transducer and activator of transcription 3; RAGE, receptor for advanced glycation endproducts; s.c., subcutaneous; SIRT1, sirtuin-1; SNAP, sensory nerve action potential; SNCV, sensory nerve conduction velocity; SOD, superoxide dismutase; TLR4, Toll-like receptor 4; TNF-α, tumor necrosis factor-α; TRP, transient receptor potential; TRPA1, transient receptor potential ankyrin 1; TRPV1, transient receptor potential vanilloid 1; TRPV4, transient receptor potential vanilloid 4; UCP2, uncoupling protein 2; VGLUT, vesicular glutamate transporter 3; YY1, Yin-Yang 1.
3.1.1. Antioxidants and Mitochondria-Protective Agents
Many previous preclinical reports support that oxidative stress and mitochondrial dysfunction play a role in PIPN [31,104,105,106]. Vitamin C, rotenone, tempol, and curcumin which are widely known for their antioxidant effects, have been reported to alleviate PIPN in rodents [20,21,27]. Among the approved drugs, duloxetine, lacosamide, pregabalin, and rosuvastatin have also been reported to reverse PIPN via their antioxidant effects [23,28,32]. Moreover, many agents, which have antioxidant effects, inhibit PIPN in preclinical studies [19,22,24,25,26,29,30,31,33,34].
3.1.2. Anti-Inflammatory Agents
Inflammatory cytokines (e.g., interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α)) and chemokines (e.g., chemokine (C-X-C motif) ligand (CXCL) family) were elevated in the peripheral sites, spinal cord, and of paclitaxel-treated animals, and many agents reduced the peripheral neuropathy symptoms via their anti-inflammatory effects [19,21,22,24,25,27,28,32,33,34,35,36,37,38,39,41,42,44,45,46,47,49,50,51,52,53,54,56]. Activations of astrocytes and microglia were also observed in the spinal dorsal horn after paclitaxel administrations, and many agents including minocycline attenuated PIPN via the inhibition of these spinal changes and prevented neurological damage [40,43,44,48].
3.1.3. Ion Channel Inhibitors and Activators
Some activators of potassium channels, especially Kv7, have been shown to suppress PIPN [57,58]. Focusing on calcium channels, T-type calcium channel blockers have been reported to alleviate PIPN symptoms [54,59].
3.1.4. Transient Receptor Potential (TRP) Modulators
Temperature-sensitive cation channels (e.g., transient receptor potential vanilloid 4 (TRPV4), transient receptor potential vanilloid 1 (TRPV1), and transient receptor potential ankyrin 1 (TRPA1)) have been reported to be involved in PIPN [61,107,108,109]. Many drugs have also been reported to improve PIPN by downregulating or inhibiting TRP channels [55,60,61,62,63,64].
3.1.5. Cannabinoid Receptor Agonists
Many studies have shown that cannabinoid receptor agonists and related substances can suppress PIPN symptoms [48,49,56,69,70,71]. In particular, some reports exist that selective CB2 agonists have an ability to suppress PIPN [48,56].
3.1.6. Modulators of Monoamine Nervous System
Monoamines, including noradrenaline and serotonin, play an important role in the descending pain inhibitory system [110]. Some drugs and agents (e.g., quetiapine, reboxetine, venlafaxine, and bee venom) also showed analgesic effects by modulating the monoamine nervous system in the PIPN animal models [73,74,75,76].
3.1.7. Others
In addition to the aforementioned, many other drugs have been identified to reduce PIPN via several therapeutic targets, such as glutamate nerve systems [65,66], phosphodiesterase (PDE) [67,68], opioid receptors [72], acetylcholine receptor [77,78,79,80], cAMP/protein kinase A (PKA) signal [40], protein kinase C (PKC) [62,81], mitogen-activated protein kinase (MAPK) [28,39,49,53,56,81,82,83], organic anion-transporting polypeptide 1b2 (OATP1B2) [84], mammalian target of rapamycin (mTOR) [51], and others [85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103], at the pre-clinical research level.
3.2. Therapeutic Agents in Clinical Evidence
In PubMed, 1175 articles were found when using the search term “paclitaxel neuropathy or paclitaxel neurotoxicity” limited to “Randomized Controlled Trial” and “Meta-Analysis”. After excluding reports other than about PIPN, the authors found 19 reports considered to be clinically important. A summarized list of the representative randomized controlled trials and meta-analyses on prophylactic and therapeutic agents for PIPN is shown below in Table 2.
Table 2.
Investigational Drug | Dose (Preventive or Curative) |
Chemotherapy | Study Design | Patient Number | Summary | References |
---|---|---|---|---|---|---|
Acetyl-L-carnitine | 3000 mg daily, p.o. (preventive) |
Taxanes | Randomized, double-blind, placebo-controlled, multicenter study | 409 | Significant reduction in NTX scores (worsening of peripheral neuropathy) >2 years | [111] |
Amifostine | 910 mg/m2, i.v., before the paclitaxel administration (preventive) |
Carboplatin/paclitaxel | Randomized, controlled study | 38 | Significant improvements in paresthesia and sensory motor impairment. | [112] |
910 mg/m2, i.v., before the paclitaxel administration (preventive) |
Paclitaxel | Randomized, controlled study | 37 | No significant difference in any of the measures of neurotoxicity. | [113] | |
Duloxetine | 40 mg daily, p.o. (20 mg/day for the first week) (curative) |
Oxaliplatin, paclitaxel, vincristine, or bortezomib | Randomized, open-label, crossover study (vs vitamin B12) | 34 | Significant improvements in numbness and pain | [114] |
60 mg/day, p.o., (30 mg/day for the first week) (curative) |
Taxane or platinum | Randomized, double-blind, placebo-controlled, crossover study | 231 | In all patients, RRs (95% CI) of experiencing 30% and 50% pain reduction were 1.96 (1.15–3.35) and 2.43 (1.11–5.30), respectively In taxane-treated patients, RRs (95% CI) of experiencing 30% and 50% pain reduction were 0.97 (0.41–2.32) and 1.22 (0.35–4.18), respectively (not significant) |
[115] | |
Gabapentin | 900 mg daily, p.o., (preventive) |
Paclitaxel | Randomized, double-blind, placebo-controlled study | 40 | Significant improvements in the incidence of grades 2–3 neuropathy and NCV changes | [116] |
Glutamate | 1500 mg daily, p.o., (preventive) |
Paclitaxel | Randomized, double-blind, placebo-controlled study | 43 | No significant difference in the frequency of signs or symptoms between the two groups | [117] |
Glutathione | 1.5 g/m2, i.v., immediately before chemotherapy (preventive) |
Carboplatin/ paclitaxel |
Randomized, double-blind, placebo-controlled study | 185 | No significant differences in acute pain score and EORTC QLQ-CIPN20 scores compared to the placebo group | [118] |
Minocycline | 200 mg daily, p.o., (preventive) |
Paclitaxel | Randomized, double-blind, placebo-controlled, multicenter study | 47 | Significant improvements in acute pain score No significant differences in sensory neuropathy score of the EORTC QLQ-CIPN20 compared to the placebo group |
[119] |
N-acetyl cysteine | 1200 mg daily or twice daily, p.o., (preventive) |
Paclitaxel | Randomized, controlled, open label study | 75 | Significant improvements in incidence of grades 2–3 neuropathy, mTNS, and QOL scores Significant increase in serum NGF and decrease in serum MDA |
[120] |
Omega-3 fatty acid | 1920 mg daily, p.o., (preventive) |
Paclitaxel or oxaliplatin | Meta-analysis | 116 (two trials) |
Significant improvements in the incidence of peripheral neuropathy and SNAP amplitudes | [121] |
1920 mg daily, p.o., (preventive) |
Paclitaxel | Randomized, double-blind, placebo-controlled study | 57 | Significant improvements in neuropathy incidence | [122] | |
Oral nutritional supplement containing EPA | p.o., (preventive) |
Paclitaxel or cisplatin/carboplatin | Randomized, controlled study | 92 | Significant improvement in neuropathy | [123] |
PARP inhibitors (olaparib or veliparib) | N.A. | Paclitaxel | Meta-analysis | 843 (five trials) |
Did not reduce the risk of chemotherapy-induced peripheral neuropathy | [124] |
Pregabalin | 150 mg daily, p.o., (curative) |
Paclitaxel or docetaxel | Randomized, double-blind, controlled study (vs duloxetine group) | 82 | Improvements in NCI-CTCAE grade and PNQ scores were more significant with pregabalin in comparison to duloxetine | [125] |
150 mg daily, p.o., (preventive) |
Paclitaxel | Randomized, double-blind, placebo-controlled, multicenter study | 46 | No significant differences in acute pain score and EORTC QLQ-CIPN20 scores compared to the placebo group | [126] | |
Recombinant human LIF | 2 or 4 µg/kg, s.c., (preventive) |
Carboplatin/ paclitaxel |
Randomized, double-blind, placebo-controlled study | 117 | No significant difference in CPNE or any of the individual neurologic testing variables | [127] |
Vitamin E | 600 mg daily, p.o., (preventive) |
Paclitaxel | Randomized, controlled study | 32 | Significant improvements in the incidence of neuropathy and PNP scores | [128] |
600 mg daily, p.o., (preventive) |
Cisplatin or paclitaxel | Randomized, controlled study | 31 | Significant improvements in incidence and neuropathy scores | [129] |
Abbreviations: 95% CI, 95% confidence interval; CPNE, composite peripheral nerve electrophysiology; EORTC QLQ-CIPN20, European Organisation for Research and Treatment of Cancer, Quality of Life-Chemotherapy-Induced Peripheral Neuropathy 20; EPA, eicosapentaenoic acid; LIF, leukemia inhibitory factor; MDA, malondialdehyde; mTNS, modified total neuropathy score; NCI-CTCAE, National Cancer Institute-Common Terminology Criteria for Adverse Events; NCV, nerve conduction velocity; NGF, nerve growth factor; NTX score, neurotoxicity score; PARP, poly ADP-ribose polymerase; PNP score, peripheral neuropathy score; PNQ, patient neurotoxicity questionnaire; QOL, quality of life; RR, relative risk; SNAP, sensory nerve action potential.
Duloxetine was tested in a randomized, double-blind, placebo-controlled, crossover trial, for its ability to treat neuropathy in patients with taxane or platinum [115]. In this study, relative risks (RRs) (95% confidence interval (95% CI)) of experiencing 30% and 50% pain reduction were 1.96 (1.15–3.35) and 2.43 (1.11–5.30), respectively. However, in a subanalysis in taxane-treated patients, RRs (95% CI) of experiencing 30% and 50% pain reduction were 0.97 (0.41–2.32) and 1.22 (0.35–4.18), respectively (not significant). Duloxetine significantly improved numbness and pain compared with vitamin B12 in a randomized, open-label, crossover study of patients who received chemotherapy including other anticancer drugs, as well as paclitaxel [114].
Pregabalin significantly improved the grade and score of taxane-related neuropathy compared with duloxetine in a randomized, double-blind, controlled study [125]. Moreover, pregabalin did not improve treatment-related pain and neuropathy scores related to paclitaxel in a randomized, double-blind, placebo-controlled, multicenter study [126]. Gabapentin was reported to significantly reduce the incidence of grade ≥2 PIPN and changes in nerve conduction velocity (NCV) in a randomized, double-blind, placebo-controlled study [122].
Omega-3 fatty acids significantly improved the incidence of peripheral neuropathy associated with paclitaxel administration in a randomized, double-blind, placebo-controlled study [122]. In a meta-analysis that included not only paclitaxel-treated patients but also oxaliplatin-treated patients, the suppressive effects of omega-3 fatty acids on neuropathy were significant [121]. Vitamin E significantly improved the incidence and scores of neuropathies in both a randomized, controlled study of patients with paclitaxel [128] and patients with paclitaxel or cisplatin [129]. Amifostine significantly improved paresthesia and sensory motor impairment in a randomized controlled study of paclitaxel/carboplatin-treated patients [112]. However, it did not significantly improve neuropathy in a randomized controlled study of paclitaxel-treated patients [113]. Additionally, minocycline, N-acetylcysteine, and eicosapentenoic acid (EPA) have been reported to improve peripheral neuropathy associated with paclitaxel [119,120,123]. Moreover, glutamate, glutathione, poly ADP-ribose polymerase (PARP) inhibitors, and human leukemia inhibitory factor (LIF) did not show any significant effect on PIPN in randomized controlled trials or meta-analyses [117,118,124,127]. Long-term administration of acetyl-L-carnitine significantly worsened taxane-related peripheral neuropathy in a randomized, double-blind, placebo-controlled, multicenter study [111].
As described above, few drugs have shown clear therapeutic PIPN effects in clinical trials. Thus, according to the clinical practice guideline updated by the American Society of Clinical Oncology in 2020, no agents have yet to be recommended for preventing chemotherapy-induced peripheral neuropathy and only duloxetine may be used as a treatment for neuropathy [14].
4. Discussion
The PIPN mechanism has been recently elucidated in basic studies, and many drugs and agents targeting this mechanism have been explored and identified for PIPN therapy or prophylaxis [18]. In particular, many inhibitors of neuropathy targeting oxidative stress, inflammatory response, ion channels, TRP channels, cannabinoid receptor, and monoamine nervous system have been identified as candidates for inhibiting PIPN in animal research. In particular, more reports of inhibitors targeting peripheral and central inflammatory responses, TRP channels, and cannabinoid receptors were noted compared with pre-clinical research reports on oxaliplatin-induced peripheral neuropathy [130]. Targeting these may be useful in the search for PIPN-specific therapeutics.
Alternatively, very few drugs have shown the efficacy for PIPN in clinical trials. The American Society of Clinical Oncology’s clinical practice guideline states that only duloxetine can be used for the treatment of chemotherapy-induced peripheral neuropathy [14]. In a randomized double-blind placebo-controlled crossover study, duloxetine has been reported to improve neuropathic pain caused by taxanes and platinum [115]. However, a subanalysis of that study also showed a weak inhibitory effect of duloxetine on taxanes in neuropathic pain [115]. Thus, few evidence-based treatments for PIPN were noted.
Most clinical studies examined the preventive rather than curative effects on PIPN. Meanwhile, pre-clinical studies have explored many therapeutic targets for PIPN. Of these, agents on the therapeutic targets that inhibit pain or sensory abnormalities, such as K channel, Ca channel, TRP channels, glutamate, cannabinoid receptors, opioid receptors, and monoamine nervous system, may have curative effects on PIPN that has already developed. More information on the clinical studies of these agents will make it possible to approach PIPN from both a preventive and curative perspective.
While many drugs have been reported in pre-clinical research as having the potential to inhibit the PIPN, few drugs have developed sufficient evidence in clinical studies. The valley of death between basic studies and clinical applications is caused by many issues, including the difference between clinical symptoms and animal assessment methods, the cost and time of conducting clinical research, safety considerations in clinical application, and the lack of collaboration between basic and clinical researchers. Thus, promoting translational research, that is, to bridge pre-clinical research to clinical research is important.
Abbreviations
95% CI | 95% confidence interval |
Ach | acetylcholine |
AMPK | AMP-activated protein kinase |
Apaf-1 | apoptosis protease-activating factor 1 |
ATF-3 | activating transcription factor 3 |
Bcl-2 | B-cell lymphoma 2 |
Bcl-xL | B-cell lymphoma-extra large |
BDNF | brain derived neurotrophic factor |
CaMKIIα | calmodulin-dependent protein kinase IIα |
CCL2 | C-C motif chemokine ligand 2 |
CCR2 | C-C motif chemokine receptor 2 |
CGRP | calcitonin gene-related peptide |
CPNE | composite peripheral nerve electrophysiology |
CREB | cAMP response element binding protein |
CXCL | C-X-C motif chemokine ligand |
CXCR | C-X-C motif chemokine receptor |
CYP2J | Cytochrome P450 2J |
DRG | dorsal root ganglia |
EAAT2 | excitatory amino acid transporter 2 |
EORTC QLQ-CIPN20 | European Organisation for Research and Treatment of Cancer: Quality of Life-Chemotherapy-Induced Peripheral Neuropathy 20 |
EPA | eicosapentaenoic acid |
Epac | exchange protein directly activated by cAMP |
EpOME | epoxyoctadecamonoenoic acids |
ER | endoplasmic reticulum |
ERK | extracellular signal-regulated kinase |
FAAH | fatty-acid amide hydrolase |
FosB | FBJ murine osteosarcoma viral oncogene homolog B |
GAT-1 | gamma-aminobutyric acid (GABA) transporter 1 |
GFAP | glial fibrillary acidic protein |
GluR1 | glutamate ionotropic receptor AMPA type subunit 1 |
GSH | glutathione |
HDAC2 | histone deacetylase 2 |
HMGB1 | high mobility group box 1 |
HO-1 | heme oxygenase 1 |
i.p. | intraperitoneal |
i.v. | intravenous |
IENF | intra-epidermal nerve fibres |
IL-10 | interleukin-10 |
IL-1β | interleukin-1 beta |
IL-6 | interleukin-6 |
IL-8 | interleukin-8 |
iNOS | inducible nitric oxide synthase |
IRF8 | interferon regulatory factor 8 |
JNK | c-Jun N-terminal kinase |
LIF | leukaemia inhibitory factor |
MAGL | monoacylglycerol lipase |
MAPK | mitogen-activated protein kinase |
MCP-1 | monocyte chemotactic protein 1 |
MDA | malondialdehyde |
MEK | mitogen-activated protein kinase kinases |
MPO | myeloperoxidase |
mTNS | modified total neuropathy score |
mTOR | mammalian target of rapamycin |
NAAA | N-acylethanolamine-hydrolyzing acid amidase |
nAChR | nicotinic acetylcholine receptor |
NCI-CTCAE | National Cancer Institute-Common Terminology Criteria for Adverse Events |
NCV | nerve conduction velocity |
NF-κB | nuclear factor kappa-B |
NGF | nerve growth factor |
NMDA | N-methyl-D-aspartate |
NOX4 | nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 |
NQO1 | NAD(P)H dehydrogenase [quinone] 1 |
NR2B | N-methyl D-aspartate (NMDA) receptor subtype 2B |
Nrf2 | nuclear factor-erythroid 2-related factor 2 |
NTX score | neurotoxicity score |
OATP1B2 | organic anion-transporting polypeptide 1b2 |
p.o. | per os |
p-Akt | phospho-protein kinase B |
PARP | poly ADP-ribose polymerase |
p-CREB | phospho-cAMP response element binding protein |
PDE | phosphodiesterase |
p-FAK | phspho-fokal adhesion kinase |
PGC-1α | peroxisome proliferatoractivated receptor γ coactivator-1 |
PI3K | phosphatidylinositol-3 kinase |
PIPN | paclitaxel-induced peripheral neuropathy |
p-JAK2 | phospho-janus kinase 2 |
PKA | protein kinase A |
PKC | protein kinase C |
p-NF-κB | phospho-nuclear factor kappa-B |
PNP score | peripheral neuropathy score |
PNQ | patient neurotoxicity questionnaire |
p-p38 | phospho-p38 |
PPAR-α | peroxisome proliferator-activated receptor-α |
p-STAT3 | phospho-signal transducer and activator of transcription 3 |
QOL | quality of life |
RAGE | receptor for advanced glycation endproducts |
RR | relative risk |
s.c. | subcutaneous |
SIRT1 | sirtuin-1 |
SNAP | sensory nerve action potential |
SNCV | sensory nerve conduction velocity |
SOD | superoxide dismutase |
TLR4 | Toll-like receptor 4 |
TNF-α | tumour necrosis factor-α |
TRP | transient receptor potential |
TRPA1 | transient receptor potential ankyrin 1 |
TRPV1 | transient receptor potential vanilloid 1 |
TRPV4 | transient receptor potential vanilloid 4 |
UCP2 | uncoupling protein 2 |
VGLUT | vesicular glutamate transporter 3 |
YY1 | Yin-Yang 1 |
Author Contributions
Conceptualization, T.K.; methodology, T.K., D.K., N.E., and T.S.; investigation, T.K., M.I., K.M. (Kohei Mori), K.M. (Keisuke Mine), and H.K.; writing—original draft preparation, T.K.; writing—review and editing, D.K., S.U., M.U., and N.E.; project administration, T.S.; funding acquisition, T.K. All authors have read and agreed to the published version of the manuscript.
Funding
This work was partly supported by JSPS KAKENHI (JP20K07198) and Fukuoka Public Health Promotion Organization Cancer Research Fund.
Institutional Review Board Statement
Not applicable.
Informed Consent Statement
Not applicable.
Data Availability Statement
No new data were created or analyzed in this study. Data sharing is not applicable to this article.
Conflicts of Interest
The authors declare that they have no conflict of interest to this work.
Footnotes
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.
References
- 1.Ozols R.F., Bundy B.N., Greer B.E., Fowler J.M., Clarke-Pearson D., Burger R.A., Mannel R.S., DeGeest K., Hartenbach E.M., Baergen R. Phase III Trial of Carboplatin and Paclitaxel Compared with Cisplatin and Paclitaxel in Patients with Optimally Resected Stage III Ovarian Cancer: A Gynecologic Oncology Group Study. J. Clin. Oncol. 2003;21:3194–3200. doi: 10.1200/JCO.2003.02.153. [DOI] [PubMed] [Google Scholar]
- 2.Du Bois A., Lück H.-J., Meier W., Adams H.-P., Möbus V., Costa S., Bauknecht T., Richter B., Warm M., Schröder W., et al. A Randomized Clinical Trial of Cisplatin/Paclitaxel Versus Carboplatin/Paclitaxel as First-Line Treatment of Ovarian Cancer. J. Natl. Cancer Inst. 2003;95:1320–1329. doi: 10.1093/jnci/djg036. [DOI] [PubMed] [Google Scholar]
- 3.Ohe Y., Ohashi Y., Kubota K., Tamura T., Nakagawa K., Negoro S., Nishiwaki Y., Saijo N., Ariyoshi Y., Fukuoka M. Randomized phase III study of cisplatin plus irinotecan versus carboplatin plus paclitaxel, cisplatin plus gemcitabine, and cisplatin plus vinorelbine for advanced non-small-cell lung cancer: Four-Arm Cooperative Study in Japan. Ann. Oncol. 2006;18:317–323. doi: 10.1093/annonc/mdl377. [DOI] [PubMed] [Google Scholar]
- 4.Socinski M.A., Bondarenko I., Karaseva N.A., Makhson A.M., Vynnychenko I., Okamoto I., Hon J.K., Hirsh V., Bhar P., Zhang H., et al. Weekly nab-Paclitaxel in Combination With Carboplatin Versus Solvent-Based Paclitaxel Plus Carboplatin as First-Line Therapy in Patients With Advanced Non–Small-Cell Lung Cancer: Final Results of a Phase III Trial. J. Clin. Oncol. 2012;30:2055–2062. doi: 10.1200/JCO.2011.39.5848. [DOI] [PubMed] [Google Scholar]
- 5.Sparano J.A., Wang M., Martino S., Jones V., Perez E.A., Saphner T., Wolff A., Sledge G.W., Wood W.C., Davidson N.E. Weekly Paclitaxel in the Adjuvant Treatment of Breast Cancer. N. Engl. J. Med. 2008;358:1663–1671. doi: 10.1056/NEJMoa0707056. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Seidman A.D., Berry D., Cirrincione C., Harris L., Muss H., Marcom P.K., Gipson G., Burstein H., Lake D., Shapiro C.L., et al. Randomized Phase III Trial of Weekly Compared with Every-3-Weeks Paclitaxel for Metastatic Breast Cancer, With Trastuzumab for all HER-2 Overexpressors and Random Assignment to Trastuzumab or Not in HER-2 Nonoverexpressors: Final Results of Cancer and Leukemia Group B Protocol. J. Clin. Oncol. 2008;26:1642–1649. doi: 10.1200/jco.2007.11.6699. [DOI] [PubMed] [Google Scholar]
- 7.Gradishar W.J., Tjulandin S., Davidson N., Shaw H., Desai N., Bhar P., Hawkins M., O’Shaughnessy J. Phase III Trial of Nanoparticle Albumin-Bound Paclitaxel Compared with Polyethylated Castor Oil–Based Paclitaxel in Women with Breast Cancer. J. Clin. Oncol. 2005;23:7794–7803. doi: 10.1200/JCO.2005.04.937. [DOI] [PubMed] [Google Scholar]
- 8.Wilke H., Muro K., Van Cutsem E., Oh S.-C., Bodoky G., Shimada Y., Hironaka S., Sugimoto N., Lipatov O., Kim T.-Y., et al. Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): A double-blind, randomised phase 3 trial. Lancet Oncol. 2014;15:1224–1235. doi: 10.1016/S1470-2045(14)70420-6. [DOI] [PubMed] [Google Scholar]
- 9.Shitara K., Takashima A., Fujitani K., Koeda K., Hara H., Nakayama N., Hironaka S., Nishikawa K., Makari Y., Amagai K., et al. Nab-paclitaxel versus solvent-based paclitaxel in patients with previously treated advanced gastric cancer (ABSOLUTE): An open-label, randomised, non-inferiority, phase 3 trial. Lancet Gastroenterol. Hepatol. 2017;2:277–287. doi: 10.1016/S2468-1253(16)30219-9. [DOI] [PubMed] [Google Scholar]
- 10.Akram T., Maseelall P., Fanning J. Carboplatin and paclitaxel for the treatment of advanced or recurrent endometrial cancer. Am. J. Obstet. Gynecol. 2005;192:1365–1367. doi: 10.1016/j.ajog.2004.12.032. [DOI] [PubMed] [Google Scholar]
- 11.Von Hoff D.D., Ervin T., Arena F.P., Chiorean E.G., Infante J., Moore M., Seay T., Tjulandin S.A., Ma W.W., Saleh M.N., et al. Increased Survival in Pancreatic Cancer with nab-Paclitaxel plus Gemcitabine. N. Engl. J. Med. 2013;369:1691–1703. doi: 10.1056/NEJMoa1304369. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Kuroi K., Shimozuma K. Neurotoxicity of taxanes: Symptoms and quality of life assessment. Breast Cancer. 2004;11:92–99. doi: 10.1007/BF02968010. [DOI] [PubMed] [Google Scholar]
- 13.Peltier A., Russell J.W. Advances in Understanding Drug-Induced Neuropathies. Drug Saf. 2006;29:23–30. doi: 10.2165/00002018-200629010-00002. [DOI] [PubMed] [Google Scholar]
- 14.Loprinzi C.L., Lacchetti C., Bleeker J., Cavaletti G., Chauhan C., Hertz D.L., Kelley M.R., Lavino A., Lustberg M.B., Paice J.A., et al. Prevention and Management of Chemotherapy-Induced Peripheral Neuropathy in Survivors of Adult Cancers: ASCO Guideline Update. J. Clin. Oncol. 2020;38:3325–3348. doi: 10.1200/JCO.20.01399. [DOI] [PubMed] [Google Scholar]
- 15.Cavaletti G., Tredici G., Braga M., Tazzari S. Experimental Peripheral Neuropathy Induced in Adult Rats by Repeated Intraperitoneal Administration of Taxol. Exp. Neurol. 1995;133:64–72. doi: 10.1006/exnr.1995.1008. [DOI] [PubMed] [Google Scholar]
- 16.Mimura Y., Kato H., Eguchi K., Ogawa T. Schedule dependency of paclitaxel-induced neuropathy in mice: A morphological study. NeuroToxicology. 2000;21:513–520. [PubMed] [Google Scholar]
- 17.Smith S.B., Crager E.S., Mogil J.S. Paclitaxel-induced neuropathic hypersensitivity in mice: Responses in 10 inbred mouse strains. Life Sci. 2004;74:2593–2604. doi: 10.1016/j.lfs.2004.01.002. [DOI] [PubMed] [Google Scholar]
- 18.Yamamoto S., Egashira N. Drug Repositioning for the Prevention and Treatment of Chemotherapy-Induced Peripheral Neuropathy: A Mechanism- and Screening-Based Strategy. Front. Pharmacol. 2021;11 doi: 10.3389/fphar.2020.607780. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Kuyrukluyildiz U., Kupeli I., Bedir Z., Ozmen O., Onk D., Süleyman B., Mammadov R., Suleyman H., Kuyrukluyıldız U. The Effect of Anakinra on Paclitaxel-Induced Peripheral Neuropathic Pain in Rats. Turk. J. Anesthesia Reanim. 2017;44:287–294. doi: 10.5152/TJAR.2016.02212. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Griffiths L., Flatters S.J. Pharmacological Modulation of the Mitochondrial Electron Transport Chain in Paclitaxel-Induced Painful Peripheral Neuropathy. J. Pain. 2015;16:981–994. doi: 10.1016/j.jpain.2015.06.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Yardım A., Kandemir F.M., Çomaklı S., Özdemir S., Caglayan C., Kucukler S., Çelik H. Protective Effects of Curcumin Against Paclitaxel-Induced Spinal Cord and Sciatic Nerve Injuries in Rats. Neurochem. Res. 2021;46:379–395. doi: 10.1007/s11064-020-03174-0. [DOI] [PubMed] [Google Scholar]
- 22.Balkrishna A., Sakat S.S., Karumuri S., Singh H., Tomer M., Kumar A., Sharma N., Nain P., Haldar S., Varshney A. Herbal Decoction Divya-Peedantak-Kwath Alleviates Allodynia and Hyperalgesia in Mice Model of Chemotherapy-Induced Peripheral Neuropathy via Modulation in Cytokine Response. Front. Pharmacol. 2020;11:566490. doi: 10.3389/fphar.2020.566490. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Lu Y., Zhang P., Zhang Q., Yang C., Qian Y., Suo J., Tao X., Zhu J. Duloxetine Attenuates Paclitaxel-Induced Peripheral Nerve Injury by Inhibiting p53-Related Pathways. J. Pharmacol. Exp. Ther. 2020;373:453–462. doi: 10.1124/jpet.120.265082. [DOI] [PubMed] [Google Scholar]
- 24.Wu P., Chen Y. Evodiamine ameliorates paclitaxel-induced neuropathic pain by inhibiting inflammation and maintaining mitochondrial anti-oxidant functions. Hum. Cell. 2019;32:251–259. doi: 10.1007/s13577-019-00238-4. [DOI] [PubMed] [Google Scholar]
- 25.Sayeli V., Nadipelly J., Kadhirvelu P., Cheriyan B.V., Shanmugasundaram J., Subramanian V. Effect of flavonol and its dimethoxy derivatives on paclitaxel-induced peripheral neuropathy in mice. J. Basic Clin. Physiol. Pharmacol. 2018;29:525–535. doi: 10.1515/jbcpp-2016-0127. [DOI] [PubMed] [Google Scholar]
- 26.Ishii N., Tsubouchi H., Miura A., Yanagi S., Ueno H., Shiomi K., Nakazato M. Ghrelin alleviates paclitaxel-induced peripheral neuropathy by reducing oxidative stress and enhancing mitochondrial anti-oxidant functions in mice. Eur. J. Pharmacol. 2018;819:35–42. doi: 10.1016/j.ejphar.2017.11.024. [DOI] [PubMed] [Google Scholar]
- 27.Miao H., Xu J., Xu D., Ma X., Zhao X., Liu L. Nociceptive Behavior Induced by Chemotherapeutic Paclitaxel and Beneficial Role of Antioxidative Pathways. Physiol. Res. 2018:491–500. doi: 10.33549/physiolres.933939. [DOI] [PubMed] [Google Scholar]
- 28.Al-Massri K.F., Ahmed L.A., El-Abhar H.S. Pregabalin and lacosamide ameliorate paclitaxel-induced peripheral neuropathy via inhibition of JAK/STAT signaling pathway and Notch-1 receptor. Neurochem. Int. 2018;120:164–171. doi: 10.1016/j.neuint.2018.08.007. [DOI] [PubMed] [Google Scholar]
- 29.Galley H.F., McCormick B., Wilson K.L., Lowes D., Colvin L., Torsney C. Melatonin limits paclitaxel-induced mitochondrial dysfunction in vitro and protects against paclitaxel-induced neuropathic pain in the rat. J. Pineal Res. 2017;63:e12444. doi: 10.1111/jpi.12444. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Hamity M., White S.R., Walder R.Y., Schmidt M., Brenner C., Hammond D.L. Nicotinamide riboside, a form of vitamin B3 and NAD+ precursor, relieves the nociceptive and aversive dimensions of paclitaxel-induced peripheral neuropathy in female rats. Pain. 2017;158:962–972. doi: 10.1097/j.pain.0000000000000862. [DOI] [PubMed] [Google Scholar]
- 31.Shim H.S., Bae C., Wang J., Lee K.-H., Hankerd K.M., Kim H.K., Chung J.M., La J.-H. Peripheral and central oxidative stress in chemotherapy-induced neuropathic pain. Mol. Pain. 2019;15 doi: 10.1177/1744806919840098. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Miranda H.F., Sierralta F., Aranda N., Poblete P., Castillo R.L., Noriega V., Prieto J.C. Antinociception induced by rosuvastatin in murine neuropathic pain. Pharmacol. Rep. 2018;70:503–508. doi: 10.1016/j.pharep.2017.11.012. [DOI] [PubMed] [Google Scholar]
- 33.Nadipelly J., Sayeli V., Kadhirvelu P., Shanmugasundaram J., Cheriyan B.V., Subramanian V. Effect of certain trimethoxy flavones on paclitaxel - induced peripheral neuropathy in mice. Integr. Med. Res. 2018;7:159–167. doi: 10.1016/j.imr.2018.03.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Shahraki J., Rezaee R., Kenar S.M., Nezhad S.S., Bagheri G., Jahantigh H., Tsarouhas K., Hashemzaei M. Umbelliprenin relieves paclitaxel-induced neuropathy. J. Pharm. Pharmacol. 2020;72:1822–1829. doi: 10.1111/jphp.13365. [DOI] [PubMed] [Google Scholar]
- 35.Ullah R., Ali G., Subhan F., Naveed M., Khan A., Khan J., Halim S.A., Ahmad N., Zakiullah , Al-Harrasi A. Attenuation of nociceptive and paclitaxel-induced neuropathic pain by targeting inflammatory, CGRP and substance P signaling using 3-Hydroxyflavone. Neurochem. Int. 2021;144:104981. doi: 10.1016/j.neuint.2021.104981. [DOI] [PubMed] [Google Scholar]
- 36.Sekiguchi F., Domoto R., Nakashima K., Yamasoba D., Yamanishi H., Tsubota M., Wake H., Nishibori M., Kawabata A. Paclitaxel-induced HMGB1 release from macrophages and its implication for peripheral neuropathy in mice: Evidence for a neuroimmune crosstalk. J. Neuropharmacol. 2018;141:201–213. doi: 10.1016/j.neuropharm.2018.08.040. [DOI] [PubMed] [Google Scholar]
- 37.Rezaee R., Monemi A., SadeghiBonjar M.A., Hashemzaei M. Berberine Alleviates Paclitaxel-Induced Neuropathy. J. Pharmacopuncture. 2019;22:90–94. doi: 10.3831/KPI.2019.22.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.Caillaud M., Patel N.H., White A., Wood M., Contreras K.M., Toma W., Alkhlaif Y., Roberts J.L., Tran T.H., Jackson A.B., et al. Targeting Peroxisome Proliferator-Activated Receptor-α (PPAR- α) to reduce paclitaxel-induced peripheral neuropathy. Brain Behav. Immun. 2021;93:172–185. doi: 10.1016/j.bbi.2021.01.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Meng J., Zhang Q., Yang C., Xiao L., Xue Z., Zhu J. Duloxetine, a Balanced Serotonin-Norepinephrine Reuptake Inhibitor, Improves Painful Chemotherapy-Induced Peripheral Neuropathy by Inhibiting Activation of p38 MAPK and NF-κB. Front. Pharmacol. 2019;10 doi: 10.3389/fphar.2019.00365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Singhmar P., Huo X., Li Y., Dougherty P.M., Mei F., Cheng X., Heijnen C.J., Kavelaars A. Orally active Epac inhibitor reverses mechanical allodynia and loss of intraepidermal nerve fibers in a mouse model of chemotherapy-induced peripheral neuropathy. Pain. 2018;159:884–893. doi: 10.1097/j.pain.0000000000001160. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41.Al-Mazidi S., Alotaibi M., Nedjadi T., Chaudhary A., Alzoghaibi M., Djouhri L. Blocking of cytokines signalling attenuates evoked and spontaneous neuropathic pain behaviours in the paclitaxel rat model of chemotherapy-induced neuropathy. Eur. J. Pain. 2017;22:810–821. doi: 10.1002/ejp.1169. [DOI] [PubMed] [Google Scholar]
- 42.Caillaud M., Patel N.H., Toma W., White A., Thompson D., Mann J., Tran T.H., Roberts J.L., Poklis J.L., Bigbee J.W., et al. A Fenofibrate Diet Prevents Paclitaxel-Induced Peripheral Neuropathy in Mice. Cancers. 2020;13:69. doi: 10.3390/cancers13010069. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43.Meregalli C., Monza L., Chiorazzi A., Scali C., Guarnieri C., Fumagalli G., Alberti P., Pozzi E., Canta A., Ballarini E., et al. Human Intravenous Immunoglobulin Alleviates Neuropathic Symptoms in a Rat Model of Paclitaxel-Induced Peripheral Neurotoxicity. Int. J. Mol. Sci. 2021;22:1058. doi: 10.3390/ijms22031058. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.Gui Y., Zhang J., Chen L., Duan S., Tang J., Xu W., Li A. Icariin, a flavonoid with anti-cancer effects, alleviated paclitaxel-induced neuropathic pain in a SIRT1-dependent manner. Mol. Pain. 2018;14 doi: 10.1177/1744806918768970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.Huang J., Chen D., Yan F., Wu S., Kang S., Xing W., Zeng W., Xie J. JTC-801 alleviates mechanical allodynia in paclitaxel-induced neuropathic pain through the PI3K/Akt pathway. Eur. J. Pharmacol. 2020;883:173306. doi: 10.1016/j.ejphar.2020.173306. [DOI] [PubMed] [Google Scholar]
- 46.Kim E., Hwang S.-H., Kim H.-K., Abdi S., Kim H.K. Losartan, an Angiotensin II Type 1 Receptor Antagonist, Alleviates Mechanical Hyperalgesia in a Rat Model of Chemotherapy-Induced Neuropathic Pain by Inhibiting Inflammatory Cytokines in the Dorsal Root Ganglia. Mol. Neurobiol. 2019;56:7408–7419. doi: 10.1007/s12035-019-1616-0. [DOI] [PubMed] [Google Scholar]
- 47.Kalynovska N., Diallo M., Sotakova-Kasparova D., Palecek J. Losartan attenuates neuroinflammation and neuropathic pain in paclitaxel-induced peripheral neuropathy. J. Cell. Mol. Med. 2020;24:7949–7958. doi: 10.1111/jcmm.15427. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.Wu J., Hocevar M., Bie B., Foss J.F., Naguib M. Cannabinoid Type 2 Receptor System Modulates Paclitaxel-Induced Microglial Dysregulation and Central Sensitization in Rats. J. Pain. 2019;20:501–514. doi: 10.1016/j.jpain.2018.10.007. [DOI] [PubMed] [Google Scholar]
- 49.Curry Z., Wilkerson J.L., Bagdas D., Kyte S.L., Patel N., Donvito G., Mustafa M.A., Poklis J.L., Niphakis M.J., Hsu K.-L., et al. Monoacylglycerol Lipase Inhibitors Reverse Paclitaxel-Induced Nociceptive Behavior and Proinflammatory Markers in a Mouse Model of Chemotherapy-Induced Neuropathy. J. Pharmacol. Exp. Ther. 2018;366:169–183. doi: 10.1124/jpet.117.245704. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50.Tsutsumi K., Kaname T., Shiraishi H., Kawashiri T., Egashira N. Polaprezinc reduces paclitaxel-induced peripheral neuropathy in rats without affecting anti-tumor activity. J. Pharmacol. Sci. 2016;131:146–149. doi: 10.1016/j.jphs.2016.04.019. [DOI] [PubMed] [Google Scholar]
- 51.Zhang X., Jiang N., Li J., Zhang D., Lv X. Rapamycin alleviates proinflammatory cytokines and nociceptive behavior induced by chemotherapeutic paclitaxel. Neurol. Res. 2018;41:52–59. doi: 10.1080/01616412.2018.1531199. [DOI] [PubMed] [Google Scholar]
- 52.Laura B., Elisabetta B., Adelchi R.P., Roberto R., Loredana C., Andrea A., Michele D., Castelli V., Antonio G., Marcello A., et al. CXCR1/2 pathways in paclitaxel-induced neuropathic pain. Oncotarget. 2017;8:23188–23201. doi: 10.18632/oncotarget.15533. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53.Suo J., Wang M., Zhang P., Lu Y., Xu R., Zhang L., Qiu S., Zhang Q., Qian Y., Meng J., et al. Siwei Jianbu decoction improves painful paclitaxel-induced peripheral neuropathy in mouse model by modulating the NF-κB and MAPK signaling pathways. Regen. Med. Res. 2020;8:2. doi: 10.1051/rmr/200001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54.Li Y., Tatsui C.E., Rhines L.D., North R.Y., Harrison D.S., Cassidy R., Johansson C.A., Kosturakis A.K., Edwards D.D., Zhang H., et al. Dorsal root ganglion neurons become hyperexcitable and increase expression of voltage-gated T-type calcium channels (Cav3.2) in paclitaxel-induced peripheral neuropathy. Pain. 2016;158:417–429. doi: 10.1097/j.pain.0000000000000774. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 55.Rossato M.F., Rigo F.K., Oliveira S.M., Guerra G.P., Silva C.R., Cunha T.M., Gomez M.V., Ferreira J., Trevisan G. Participation of transient receptor potential vanilloid 1 in paclitaxel-induced acute visceral and peripheral nociception in rodents. Eur. J. Pharmacol. 2018;828:42–51. doi: 10.1016/j.ejphar.2018.03.033. [DOI] [PubMed] [Google Scholar]
- 56.Segat G.C., Manjavachi M.N., Matias D.O., Passos G.F., Freitas C.S., da Costa R., Calixto J.B. Antiallodynic effect of β-caryophyllene on paclitaxel-induced peripheral neuropathy in mice. J. Neuropharmacol. 2017;125:207–219. doi: 10.1016/j.neuropharm.2017.07.015. [DOI] [PubMed] [Google Scholar]
- 57.Mannelli L.D.C., Lucarini E., Micheli L., Mosca I., Ambrosino P., Soldovieri M.V., Martelli A., Testai L., Taglialatela M., Calderone V., et al. Effects of natural and synthetic isothiocyanate-based H2S-releasers against chemotherapy-induced neuropathic pain: Role of Kv7 potassium channels. J. Neuropharmacol. 2017;121:49–59. doi: 10.1016/j.neuropharm.2017.04.029. [DOI] [PubMed] [Google Scholar]
- 58.Li L., Li J., Zuo Y., Dang D., Frost J.A., Yang Q. Activation of KCNQ Channels Prevents Paclitaxel-Induced Peripheral Neuropathy and Associated Neuropathic Pain. J. Pain. 2018;20:528–539. doi: 10.1016/j.jpain.2018.11.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 59.Sekiguchi F., Kawara Y., Tsubota M., Kawakami E., Ozaki T., Kawaishi Y., Tomita S., Kanaoka D., Yoshida S., Ohkubo T., et al. Therapeutic potential of RQ-00311651, a novel T-type Ca2+ channel blocker, in distinct rodent models for neuropathic and visceral pain. Pain. 2016;157:1655–1665. doi: 10.1097/j.pain.0000000000000565. [DOI] [PubMed] [Google Scholar]
- 60.Kamata Y., Kambe T., Chiba T., Yamamoto K., Kawakami K., Abe K., Taguchi K. Paclitaxel Induces Upregulation of Transient Receptor Potential Vanilloid 1 Expression in the Rat Spinal Cord. Int. J. Mol. Sci. 2020;21:4341. doi: 10.3390/ijms21124341. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 61.Hara T., Chiba T., Abe K., Makabe A., Ikeno S., Kawakami K., Utsunomiya I., Hama T., Taguchi K. Effect of paclitaxel on transient receptor potential vanilloid 1 in rat dorsal root ganglion. Pain. 2013;154:882–889. doi: 10.1016/j.pain.2013.02.023. [DOI] [PubMed] [Google Scholar]
- 62.Costa R., Bicca M.A., Manjavachi M.N., Segat G.C., Dias F.C., Fernandes E.S., Calixto J.B. Kinin Receptors Sensitize TRPV4 Channel and Induce Mechanical Hyperalgesia: Relevance to Paclitaxel-Induced Peripheral Neuropathy in Mice. Mol. Neurobiol. 2017;55:2150–2161. doi: 10.1007/s12035-017-0475-9. [DOI] [PubMed] [Google Scholar]
- 63.Gao W., Zan Y., Wang Z.-J.J., Hu X.-Y., Huang F. Quercetin ameliorates paclitaxel-induced neuropathic pain by stabilizing mast cells, and subsequently blocking PKCε-dependent activation of TRPV. Acta Pharmacol. Sin. 2016;37:1166–1177. doi: 10.1038/aps.2016.58. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 64.Brum E.D.S., Becker G., Fialho M.F.P., Casoti R., Trevisan G., Oliveira S.M. TRPA1 involvement in analgesia induced by Tabernaemontana catharinensis ethyl acetate fraction in mice. Phytomedicine. 2018;54:248–258. doi: 10.1016/j.phymed.2018.09.201. [DOI] [PubMed] [Google Scholar]
- 65.Xie J.-D., Chen S.-R., Chen H., Zeng W.-A., Pan H.-L. Presynaptic N-Methyl-d-aspartate (NMDA) Receptor Activity Is Increased Through Protein Kinase C in Paclitaxel-induced Neuropathic Pain. J. Biol. Chem. 2016;291:19364–19373. doi: 10.1074/jbc.M116.732347. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 66.Wang X.-M., Gu P., Saligan L., Iadarola M., Wong S.S.C., Ti L.K., Cheung C.W. Dysregulation of EAAT2 and VGLUT2 Spinal Glutamate Transports via Histone Deacetylase 2 (HDAC2) Contributes to Paclitaxel-induced Painful Neuropathy. Mol. Cancer Ther. 2020;19:2196–2209. doi: 10.1158/1535-7163.MCT-20-0006. [DOI] [PubMed] [Google Scholar]
- 67.Koyanagi M., Imai S., Iwamitsu Y., Matsumoto M., Saigo M., Moriya A., Ogihara T., Nakazato Y., Yonezawa A., Nakagawa S., et al. Cilostazol is an effective causal therapy for preventing paclitaxel-induced peripheral neuropathy by suppression of Schwann cell dedifferentiation. J. Neuropharmacol. 2021;188:108514. doi: 10.1016/j.neuropharm.2021.108514. [DOI] [PubMed] [Google Scholar]
- 68.Chen Y.-F., Chen L.-H., Yeh Y.-M., Wu P.-Y., Chen Y.-F., Chang L.-Y., Chang J.-Y., Shen M.-R. Minoxidil is a potential neuroprotective drug for paclitaxel-induced peripheral neuropathy. Sci. Rep. 2017;7:45366. doi: 10.1038/srep45366. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 69.King K.M., Myers A.M., Soroka-Monzo A.J., Tuma R.F., Tallarida R.J., Walker A.E., Ward S.J. Single and combined effects of Δ9 -tetrahydrocannabinol and cannabidiol in a mouse model of chemotherapy-induced neuropathic pain. Br. J. Pharmacol. 2017;174:2832–2841. doi: 10.1111/bph.13887. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 70.Foss J.D., Farkas D.J., Huynh L.M., Kinney W.A., Brenneman D.E., Ward S.J. Behavioural and pharmacological effects of cannabidiol (CBD) and the cannabidiol analogue KLS-13019 in mouse models of pain and reinforcement. Br. J. Pharmacol. 2021 doi: 10.1111/bph.15486. [DOI] [PubMed] [Google Scholar]
- 71.Slivicki R.A., Xu Z., Mali S., Hohmann A.G. Brain permeant and impermeant inhibitors of fatty-acid amide hydrolase suppress the development and maintenance of paclitaxel-induced neuropathic pain without producing tolerance or physical dependence in vivo and synergize with paclitaxel to reduce tumor cell line viability in vitro. Pharmacol. Res. 2019;142:267–282. doi: 10.1016/j.phrs.2019.02.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 72.Pantouli F., Grim T.W., Schmid C.L., Acevedo-Canabal A., Kennedy N.M., Cameron M.D., Bannister T.D., Bohn L.M. Comparison of morphine, oxycodone and the biased MOR agonist SR-17018 for tolerance and efficacy in mouse models of pain. J. Neuropharmacol. 2020;185:108439. doi: 10.1016/j.neuropharm.2020.108439. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 73.Choi J., Jeon C., Lee J.H., Jang J.U., Quan F.S., Lee K., Kim W., Kim S.K. Suppressive Effects of Bee Venom Acupuncture on Paclitaxel-Induced Neuropathic Pain in Rats: Mediation by Spinal α2-Adrenergic Receptor. Toxins. 2017;9:351. doi: 10.3390/toxins9110351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 74.Li D., Yoo J.H., Kim S.K. Long-Lasting and Additive Analgesic Effects of Combined Treatment of Bee Venom Acupuncture and Venlafaxine on Paclitaxel-Induced Allodynia in Mice. Toxins. 2020;12:620. doi: 10.3390/toxins12100620. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 75.Abed A., Khoshnoud M.J., Taghian M., Aliasgharzadeh M., Mesdaghinia A. Quetiapine reverse paclitaxel-induced neuropathic pain in mice: Role of Alpha2- adrenergic receptors. Iran J. Basic Med. Sci. 2017;20:1182–1188. doi: 10.22038/IJBMS.2017.9500. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 76.Costa-Pereira J.T., Ribeiro J., Martins I., Tavares I. Role of Spinal Cord α2-Adrenoreceptors in Noradrenergic Inhibition of Nociceptive Transmission During Chemotherapy-Induced Peripheral Neuropathy. Front. Neurosci. 2020;13:1413. doi: 10.3389/fnins.2019.01413. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 77.Kyte S.L., Toma W., Bagdas D., Meade J.A., Schurman L.D., Lichtman A.H., Chen Z.-J., Del Fabbro E., Fang X., Bigbee J.W., et al. Nicotine Prevents and Reverses Paclitaxel-Induced Mechanical Allodynia in a Mouse Model of CIPN. J. Pharmacol. Exp. Ther. 2017;364:110–119. doi: 10.1124/jpet.117.243972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 78.Calcutt N.A., Smith D.R., Frizzi K., Sabbir M.G., Chowdhury S.K.R., Mixcoatl-Zecuatl T., Saleh A., Muttalib N., Van Der Ploeg R., Ochoa J., et al. Selective antagonism of muscarinic receptors is neuroprotective in peripheral neuropathy. J. Clin. Investig. 2017;127:608–622. doi: 10.1172/JCI88321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 79.Toma W., Kyte S.L., Bagdas D., Jackson A., Meade J.A., Rahman F., Chen Z.-J., Del Fabbro E., Cantwell L., Kulkarni A., et al. The α7 nicotinic receptor silent agonist R-47 prevents and reverses paclitaxel-induced peripheral neuropathy in mice without tolerance or altering nicotine reward and withdrawal. Exp. Neurol. 2019;320:113010. doi: 10.1016/j.expneurol.2019.113010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 80.Huynh P., Giuvelis D., Christensen S., Tucker K.L., McIntosh J.M. RgIA4 Accelerates Recovery from Paclitaxel-Induced Neuropathic Pain in Rats. Mar. Drugs. 2019;18:12. doi: 10.3390/md18010012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 81.Tsubaki M., Takeda T., Matsumoto M., Kato N., Yasuhara S., Koumoto Y.-I., Imano M., Satou T., Nishida S. Tamoxifen suppresses paclitaxel-, vincristine-, and bortezomib-induced neuropathy via inhibition of the protein kinase C/extracellular signal-regulated kinase pathway. Tumor Biol. 2018;40 doi: 10.1177/1010428318808670. [DOI] [PubMed] [Google Scholar]
- 82.Kato N., Tateishi K., Tsubaki M., Takeda T., Matsumoto M., Tsurushima K., Ishizaka T., Nishida S. Gabapentin and Duloxetine Prevent Oxaliplatin- and Paclitaxel-Induced Peripheral Neuropathy by Inhibiting Extracellular Signal-Regulated Kinase 1/2 (ERK1/2) Phosphorylation in Spinal Cords of Mice. Pharmaceuticals. 2020;14:30. doi: 10.3390/ph14010030. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 83.Tsubaki M., Takeda T., Matsumoto M., Kato N., Asano R.T., Imano M., Satou T., Nishida S. Trametinib suppresses chemotherapy-induced cold and mechanical allodynia via inhibition of extracellular-regulated protein kinase 1/2 activation. Am. J. Cancer Res. 2018;8:1239–1248. [PMC free article] [PubMed] [Google Scholar]
- 84.Leblanc A.F., Sprowl J., Alberti P., Chiorazzi A., Arnold W.D., Gibson A.A., Hong K.W., Pioso M.S., Chen M., Huang K.M., et al. OATP1B2 deficiency protects against paclitaxel-induced neurotoxicity. J. Clin. Investig. 2018;128:816–825. doi: 10.1172/JCI96160. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 85.Toma W., Caillaud M., Patel N.H., Tran T.H., Donvito G., Roberts J., Bagdas D., Jackson A., Lichtman A., Gewirtz D.A., et al. N-acylethanolamine-hydrolysing acid amidase: A new potential target to treat paclitaxel-induced neuropathy. Eur. J. Pain. 2021;25:1367–1380. doi: 10.1002/ejp.1758. [DOI] [PubMed] [Google Scholar]
- 86.Andoh T., Kato M., Kitamura R., Mizoguchi S., Uta D., Toume K., Komatsu K., Kuraishi Y. Prophylactic administration of an extract from Plantaginis Semen and its major component aucubin inhibits mechanical allodynia caused by paclitaxel in mice. J. Tradit. Complement. Med. 2016;6:305–308. doi: 10.1016/j.jtcme.2015.12.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 87.Andoh T., Uta D., Kato M., Toume K., Komatsu K., Kuraishi Y. Prophylactic Administration of Aucubin Inhibits Paclitaxel-Induced Mechanical Allodynia via the Inhibition of Endoplasmic Reticulum Stress in Peripheral Schwann Cells. Biol. Pharm. Bull. 2017;40:473–478. doi: 10.1248/bpb.b16-00899. [DOI] [PubMed] [Google Scholar]
- 88.Ahn S.H., Chang I.A., Kim K.-J., Kim C.-J., Namgung U., Cho C.-S. Bogijetong decoction and its active herbal components protect the peripheral nerve from damage caused by taxol or nerve crush. BMC Complement. Altern. Med. 2016;16:402. doi: 10.1186/s12906-016-1391-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 89.Brusco I., Silva C.R., Trevisan G., Gewehr C.D.C.V., Rigo F.K., Tamiozzo L.L.R., Rossato M.F., Tonello R., Dalmolin G.D., Cabrini D.D.A., et al. Potentiation of Paclitaxel-Induced Pain Syndrome in Mice by Angiotensin I Converting Enzyme Inhibition and Involvement of Kinins. Mol. Neurobiol. 2016;54:7824–7837. doi: 10.1007/s12035-016-0275-7. [DOI] [PubMed] [Google Scholar]
- 90.Vitet L., Patte-Mensah C., Boujedaini N., Mensah-Nyagan A.-G., Meyer L. Beneficial effects of Gelsemium-based treatment against paclitaxel-induced painful symptoms. Neurol. Sci. 2018;39:2183–2196. doi: 10.1007/s10072-018-3575-z. [DOI] [PubMed] [Google Scholar]
- 91.Yu H., Toume K., Kurokawa Y., Andoh T., Komatsu K. Iridoids isolated from Viticis Fructus inhibit paclitaxel-induced mechanical allodynia in mice. J. Nat. Med. 2020;75:48–55. doi: 10.1007/s11418-020-01441-6. [DOI] [PubMed] [Google Scholar]
- 92.Tenci B., Mannelli L.D.C., Maresca M., Micheli L., Pieraccini G., Mulinacci N., Ghelardini C. Effects of a water extract of Lepidium meyenii root in different models of persistent pain in rats. Z. Nat. C. 2017;72:449–457. doi: 10.1515/znc-2016-0251. [DOI] [PubMed] [Google Scholar]
- 93.Inyang K.E., McDougal T.A., Ramirez E.D., Williams M., Laumet G., Kavelaars A., Heijnen C.J., Burton M., Dussor G., Price T.J. Alleviation of paclitaxel-induced mechanical hypersensitivity and hyperalgesic priming with AMPK activators in male and female mice. Neurobiol. Pain. 2019;6:100037. doi: 10.1016/j.ynpai.2019.100037. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 94.Tanimura Y., Yoshida M., Ishiuchi K., Ohsawa M., Makino T. Neoline is the active ingredient of processed aconite root against murine peripheral neuropathic pain model, and its pharmacokinetics in rats. J. Ethnopharmacol. 2019;241:111859. doi: 10.1016/j.jep.2019.111859. [DOI] [PubMed] [Google Scholar]
- 95.Hamity M.V., White S.R., Blum C., Gibson-Corley K.N., Hammond D. Nicotinamide riboside relieves paclitaxel-induced peripheral neuropathy and enhances suppression of tumor growth in tumor-bearing rats. Pain. 2020;161:2364–2375. doi: 10.1097/j.pain.0000000000001924. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 96.Masocha W., Parvathy S.S. Preventative and therapeutic effects of a GABA transporter 1 inhibitor administered systemically in a mouse model of paclitaxel-induced neuropathic pain. PeerJ. 2016;4:e2798. doi: 10.7717/peerj.2798. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 97.Nishida T., Tsubota M., Kawaishi Y., Yamanishi H., Kamitani N., Sekiguchi F., Ishikura H., Liu K., Nishibori M., Kawabata A. Involvement of high mobility group box 1 in the development and maintenance of chemotherapy-induced peripheral neuropathy in rats. Toxicology. 2016;365:48–58. doi: 10.1016/j.tox.2016.07.016. [DOI] [PubMed] [Google Scholar]
- 98.Kamei J., Hayashi S., Sakai A., Nakanishi Y., Kai M., Ikegami M., Ikeda H. Rikkunshito prevents paclitaxel-induced peripheral neuropathy through the suppression of the nuclear factor kappa B (NFκB) phosphorylation in spinal cord of mice. PLoS ONE. 2017;12:e0171819. doi: 10.1371/journal.pone.0171819. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 99.Rukh L., Ali G., Ullah R., Islam N.U., Shahid M. Efficacy assessment of salicylidene salicylhydrazide in chemotherapy associated peripheral neuropathy. Eur. J. Pharmacol. 2020;888:173481. doi: 10.1016/j.ejphar.2020.173481. [DOI] [PubMed] [Google Scholar]
- 100.Vaseghi G., Yegdaneh A., Saeedi A., Shahmiveh T. The effect of Sargassum glaucescens from the Persian gulf on neuropathy pain induced by paclitaxel in mice. Adv. Biomed. Res. 2020;9:79. doi: 10.4103/abr.abr_183_20. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 101.Cuozzo M., Castelli V., Avagliano C., Cimini A., D’Angelo M., Cristiano C., Russo R. Effects of Chronic Oral Probiotic Treatment in Paclitaxel-Induced Neuropathic Pain. Biomedicines. 2021;9:346. doi: 10.3390/biomedicines9040346. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 102.Adamek P., Heles M., Palecek J. Mechanical allodynia and enhanced responses to capsaicin are mediated by PI3K in a paclitaxel model of peripheral neuropathy. J. Neuropharmacol. 2018;146:163–174. doi: 10.1016/j.neuropharm.2018.11.027. [DOI] [PubMed] [Google Scholar]
- 103.Sisignano M., Angioni C., Park C.-K., Dos Santos S.M., Jordan H., Kuzikov M., Liu D., Zinn S., Hohman S.W., Schreiber Y., et al. Targeting CYP2J to reduce paclitaxel-induced peripheral neuropathic pain. Proc. Natl. Acad. Sci. USA. 2016;113:12544–12549. doi: 10.1073/pnas.1613246113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 104.Duggett N.A., Griffiths L., McKenna O.E., de Santis V., Yongsanguanchai N., Mokori E.B., Flatters S.J. Oxidative stress in the development, maintenance and resolution of paclitaxel-induced painful neuropathy. Neuroscience. 2016;333:13–26. doi: 10.1016/j.neuroscience.2016.06.050. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 105.Xiao W., Zheng H., Zheng F., Nuydens R., Meert T., Bennett G. Mitochondrial abnormality in sensory, but not motor, axons in paclitaxel-evoked painful peripheral neuropathy in the rat. Neuroscience. 2011;199:461–469. doi: 10.1016/j.neuroscience.2011.10.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 106.Flatters S.J., Bennett G.J. Studies of peripheral sensory nerves in paclitaxel-induced painful peripheral neuropathy: Evidence for mitochondrial dysfunction. Pain. 2006;122:245–257. doi: 10.1016/j.pain.2006.01.037. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 107.Alessandri-Haber N., Dina O.A., Yeh J.J., Parada C.A., Reichling D.B., Levine J.D., Baden T., Hedwig B. Transient Receptor Potential Vanilloid 4 Is Essential in Chemotherapy-Induced Neuropathic Pain in the Rat. J. Neurosci. 2004;24:4444–4452. doi: 10.1523/JNEUROSCI.0242-04.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 108.Chen Y., Yang C., Wang Z. Proteinase-activated receptor 2 sensitizes transient receptor potential vanilloid 1, transient receptor potential vanilloid 4, and transient receptor potential ankyrin 1 in paclitaxel-induced neuropathic pain. Neuroscience. 2011;193:440–451. doi: 10.1016/j.neuroscience.2011.06.085. [DOI] [PubMed] [Google Scholar]
- 109.Boehmerle W., Huehnchen P., Lee S.L.L., Harms C., Endres M. TRPV4 inhibition prevents paclitaxel-induced neurotoxicity in preclinical models. Exp. Neurol. 2018;306:64–75. doi: 10.1016/j.expneurol.2018.04.014. [DOI] [PubMed] [Google Scholar]
- 110.Yoshimura M., Furue H. Mechanisms for the Anti-nociceptive Actions of the Descending Noradrenergic and Serotonergic Systems in the Spinal Cord. J. Pharmacol. Sci. 2006;101:107–117. doi: 10.1254/jphs.CRJ06008X. [DOI] [PubMed] [Google Scholar]
- 111.Hershman D.L., Unger J.M., Crew K.D., Till C., Greenlee H., Minasian L.M., Moinpour C.M., Lew D.L., Fehrenbacher L., Wade J.L., et al. Two-Year Trends of Taxane-Induced Neuropathy in Women Enrolled in a Randomized Trial of Acetyl-L-Carnitine (SWOG S0715) J. Natl. Cancer Inst. 2018;110:669–676. doi: 10.1093/jnci/djx259. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 112.Kanat O., Evrensel T., Baran I., Coskun H., Zarifoglu M., Turan O.F., Kurt E., Demiray M., Gönüllü G., Manavoglu O. Protective Effect of Amifostine Against Toxicity of Paclitaxel and Carboplatin in Non-small Cell Lung Cancer: A Single Center Randomized Study. Med. Oncol. 2003;20:237–246. doi: 10.1385/MO:20:3:237. [DOI] [PubMed] [Google Scholar]
- 113.Gelmon K., Eisenhauer E., Bryce C., Tolcher A., Mayer L., Tomlinson E., Zee B., Blackstein M., Tomiak E., Yau J., et al. Randomized Phase II Study of High-Dose Paclitaxel with or Without Amifostine in Patients with Metastatic Breast Cancer. J. Clin. Oncol. 1999;17:3038–3047. doi: 10.1200/JCO.1999.17.10.3038. [DOI] [PubMed] [Google Scholar]
- 114.Hirayama Y., Ishitani K., Sato Y., Iyama S., Takada K., Murase K., Kuroda H., Nagamachi Y., Konuma Y., Fujimi A., et al. Effect of duloxetine in Japanese patients with chemotherapy-induced peripheral neuropathy: A pilot randomized trial. Int. J. Clin. Oncol. 2015;20:866–871. doi: 10.1007/s10147-015-0810-y. [DOI] [PubMed] [Google Scholar]
- 115.Smith E.M.L., Pang H., Cirrincione C., Fleishman S., Paskett E.D., Ahles T., Bressler L.R., Fadul C.E., Knox C., Le-Lindqwister N., et al. Effect of Duloxetine on Pain, Function, and Quality of Life Among Patients with Chemotherapy-Induced Painful Peripheral Neuropathy. JAMA. 2013;309:1359–1367. doi: 10.1001/jama.2013.2813. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 116.Aghili M., Zare M., Mousavi N., Ghalehtaki R., Sotoudeh S., Kalaghchi B., Akrami S., Esmati E. Efficacy of gabapentin for the prevention of paclitaxel induced peripheral neuropathy: A randomized placebo controlled clinical trial. Breast J. 2019;25:226–231. doi: 10.1111/tbj.13196. [DOI] [PubMed] [Google Scholar]
- 117.Loven D., Levavi H., Sabach G., Zart R., Andras M., Fishman A., Karmon Y., Levi T., Dabby R., Gadoth N. Long-term glutamate supplementation failed to protect against peripheral neurotoxicity of paclitaxel. Eur. J. Cancer Care. 2009;18:78–83. doi: 10.1111/j.1365-2354.2008.00996.x. [DOI] [PubMed] [Google Scholar]
- 118.Leal A., Qin R., Ms P.J.A., Haluska P., Behrens R.J., Tiber C.H., Watanaboonyakhet P., Weiss M., Adams P.T., Ms T.J.D., et al. North Central Cancer Treatment Group/Alliance trial N08CA-the use of glutathione for prevention of paclitaxel/carboplatin-induced peripheral neuropathy: A phase 3 randomized, double-blind, placebo-controlled study. Cancer. 2014;120:1890–1897. doi: 10.1002/cncr.28654. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 119.Pachman D.R., Dockter T., Zekan P.J., Fruth B., Ruddy K.J., Ta L.E., Lafky J.M., Dentchev T., Le-Lindqwister N.A., Sikov W.M., et al. A pilot study of minocycline for the prevention of paclitaxel-associated neuropathy: ACCRU study RU221408I. Support. Care Cancer. 2017;25:3407–3416. doi: 10.1007/s00520-017-3760-2. [DOI] [PubMed] [Google Scholar]
- 120.Khalefa H.G., Shawki M.A., Aboelhassan R., El Wakeel L.M. Evaluation of the effect of N-acetylcysteine on the prevention and amelioration of paclitaxel-induced peripheral neuropathy in breast cancer patients: A randomized controlled study. Breast Cancer Res. Treat. 2020;183:117–125. doi: 10.1007/s10549-020-05762-8. [DOI] [PubMed] [Google Scholar]
- 121.Zhang A.C., De Silva M.E.H., MacIsaac R.J., Roberts L., Kamel J., Craig J.P., Busija L., E Downie L. Omega-3 polyunsaturated fatty acid oral supplements for improving peripheral nerve health: A systematic review and meta-analysis. Nutr. Rev. 2019;78:323–341. doi: 10.1093/nutrit/nuz054. [DOI] [PubMed] [Google Scholar]
- 122.Ghoreishi Z., Esfahani A., Djazayeri A., Djalali M., Golestan B., Ayromlou H., Hashemzade S., Jafarabadi M.A., Montazeri V., Keshavarz S.A., et al. Omega-3 fatty acids are protective against paclitaxel-induced peripheral neuropathy: A randomized double-blind placebo controlled trial. BMC Cancer. 2012;12:355. doi: 10.1186/1471-2407-12-355. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 123.Sánchez-Lara K., Turcott J.G., Juárez-Hernández E., Nuñez-Valencia C., Villanueva G., Guevara P., De la Torre-Vallejo M., Mohar A., Arrieta O. Effects of an oral nutritional supplement containing eicosapentaenoic acid on nutritional and clinical outcomes in patients with advanced non-small cell lung cancer: Randomised trial. Clin. Nutr. 2014;33:1017–1023. doi: 10.1016/j.clnu.2014.03.006. [DOI] [PubMed] [Google Scholar]
- 124.Balko R., Hurley R., Jatoi A. Poly (ADP-Ribose) Polymerase Inhibition for Chemotherapy-Induced Peripheral Neuropathy: A Meta-Analysis of Placebo-Controlled Trials. J. Palliat. Med. 2019;22:977–980. doi: 10.1089/jpm.2018.0572. [DOI] [PubMed] [Google Scholar]
- 125.Salehifar E., Janbabaei G., Hendouei N., Alipour A., Tabrizi N., Avan R. Comparison of the Efficacy and Safety of Pregabalin and Duloxetine in Taxane-Induced Sensory Neuropathy: A Randomized Controlled Trial. Clin. Drug Investig. 2020;40:249–257. doi: 10.1007/s40261-019-00882-6. [DOI] [PubMed] [Google Scholar]
- 126.Shinde S.S., Seisler D., Soori G., Atherton P.J., Pachman D.R., Lafky J., Ruddy K.J., Loprinzi C.L. Can pregabalin prevent paclitaxel-associated neuropathy?—An ACCRU pilot trial. Support. Care Cancer. 2015;24:547–553. doi: 10.1007/s00520-015-2807-5. [DOI] [PubMed] [Google Scholar]
- 127.Davis I.D., Kiers L., MacGregor L., Quinn M., Arezzo J., Green M., Rosenthal M., Chia M., Michael M., Bartley P., et al. A Randomized, Double-Blinded, Placebo-Controlled Phase II Trial of Recombinant Human Leukemia Inhibitory Factor (rhuLIF, Emfilermin, AM424) to Prevent Chemotherapy-Induced Peripheral Neuropathy. Clin. Cancer Res. 2005;11:1890–1898. doi: 10.1158/1078-0432.CCR-04-1655. [DOI] [PubMed] [Google Scholar]
- 128.Argyriou A.A., Chroni E., Koutras A., Iconomou G., Papapetropoulos S., Polychronopoulos P., Kalofonos H. Preventing Paclitaxel-Induced Peripheral Neuropathy: A Phase II Trial of Vitamin E Supplementation. J. Pain Symptom Manag. 2006;32:237–244. doi: 10.1016/j.jpainsymman.2006.03.013. [DOI] [PubMed] [Google Scholar]
- 129.Argyriou A.A., Chroni E., Koutras A., Ellul J., Papapetropoulos S., Katsoulas G., Iconomou G., Kalofonos H. Vitamin E for prophylaxis against chemotherapy-induced neuropathy: A randomized controlled trial. Neurology. 2005;64:26–31. doi: 10.1212/01.WNL.0000148609.35718.7D. [DOI] [PubMed] [Google Scholar]
- 130.Kawashiri T., Mine K., Kobayashi D., Inoue M., Ushio S., Uchida M., Egashira N., Shimazoe T. Therapeutic Agents for Oxaliplatin-Induced Peripheral Neuropathy; Experimental and Clinical Evidence. Int. J. Mol. Sci. 2021;22:1393. doi: 10.3390/ijms22031393. [DOI] [PMC free article] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Data Availability Statement
No new data were created or analyzed in this study. Data sharing is not applicable to this article.