Skip to main content
Micromachines logoLink to Micromachines
. 2021 Jul 27;12(8):887. doi: 10.3390/mi12080887

Entropy Generation Analysis and Radiated Heat Transfer in MHD (Al2O3-Cu/Water) Hybrid Nanofluid Flow

Nabeela Parveen 1, Muhammad Awais 1, Saeed Ehsan Awan 2, Wasim Ullah Khan 3,*, Yigang He 3,*, Muhammad Yousaf Malik 4
Editors: Jin-yuan Qian, Lanju Mei
PMCID: PMC8399512  PMID: 34442509

Abstract

This research concerns the heat transfer and entropy generation analysis in the MHD axisymmetric flow of Al2O3-Cu/H2O hybrid nanofluid. The magnetic induction effect is considered for large magnetic Reynolds number. The influences of thermal radiations, viscous dissipation and convective temperature conditions over flow are studied. The problem is modeled using boundary layer theory, Maxwell’s equations and Fourier’s conduction law along with defined physical factors. Similarity transformations are utilized for model simplification which is analytically solved with the homotopy analysis method. The h-curves up to 20th order for solutions establishes the stability and convergence of the adopted computational method. Rheological impacts of involved parameters on flow variables and entropy generation number are demonstrated via graphs and tables. The study reveals that entropy in system of hybrid nanofluid affected by magnetic induction declines for β while it enhances for Bi, R and λ. Moreover, heat transfer rate elevates for large Bi with convective conditions at surface.

Keywords: hybrid nanofluid, entropy generation, induced magnetic field, convective boundary conditions, thermal radiations, stretching disk

1. Introduction

MHD boundary layer flows of electrically conducting fluids and heat transfer caused by a stretching sheet have gained immense importance due to their ample applications and significant bearings on several engineering and technological processes. Major applications include heat exchangers, metals’ spinning, and power generators, spinning of fiber, aerodynamic extrusion of plastic sheets, polymer industries, and condensation process of metallic sheets inside cooling glass. The quality of the resulting product greatly depends on the stretching process as well as its rate of cooling. Boundary-layer flow combined with heat transfer and followed by a stretching sheet was primarily proposed by Sakiadis [1]. Crane [2] also investigated flow caused by stretching sheets of plastic material. Boundary layer equations describing air motion due to a plate were solved analytically. Rates of flow and heat transfer were analyzed in terms of coefficients of friction and thermal conductivity, respectively. Since then, many attempts have been made in regard to their application in different areas. The analysis of viscous dissipation, thermal radiations and convective wall conditions in fluid flow has its importance in view of its broad coverage including chemical, mechanical, and aerospace engineering, paper production, continuous casting, stretching of plastic films, cooling of electronic chips and crystal growing etc. Khan et al. [3] explored analysis of heat and mass transfer in three-dimensional nanofluids flowing on a linear stretching sheet under convective wall conditions and thermal radiations. It was deduced that heat and mass transfer rates enhance with the stretching parameter. Gireesha et al. [4] investigated the influence of non-linear radiation on MHD boundary layer dynamics of a Jeffrey nanofluid past a non-linear porous stretching plate. Three-dimensional flow of fluid was considered. It was found that magnetic field diminishes the fluid velocity while it enhances temperature. Hayat et al. [5] analyzed the influence of magnetic induction on dynamics of second-grade nanofluid due to stretching sheet with convective wall conditions. The viscoelastic parameter was observed to upsurge the fluid parameter. Rafiq et al. [6] exposed the effects of non-linear thermal radiation towards boundary layer dusty fluid dynamics close to a rotating isothermally heated blunt-nosed object similar to a hemisphere. It was determined that skin friction coefficient shows an asymptotic trend while heat transfer coefficient increases significantly corresponding to large radiation parameter. Khan et al. [7] analytically studied a mixed convection hybrid nanofluid consisting of Al2O3 and Ag nanoparticles affected by induced magnetic field in order to analyze entropy generation under viscous dissipation and heat generation effects. They observed that viscous dissipation dominantly increases flow and heat transfer rate due to the no-slip surface condition. Few other attempts in this regime are cited here [8,9,10,11,12,13,14].

Technological developments and increasing demand of optical and electronic equipment required an improved cooling performance of the products which is acquired by utilizing heat transfer fluids with the improvements in their thermo physical characteristics. In order to obtain modified results, there have been plenty of endeavors by researchers to synthesize these fluids for an efficient heat transfer rate using the composition of several fluids as well as the dispersion of metallic particles of different sizes and shapes etc. Recently, an upsurge of embedding thermal resistive and conductive nano-particles, initially introduced by Choi [15], has been implemented to enhance thermal characteristics of working fluids. Liquids containing suspended nanoparticles, named as nanofluids, were experimentally guaranteed to possess their higher thermal conductivities than that of base fluids and may enable the operation of cooling systems for practical use in many fields such as in micro-electromechanical systems, pharmaceutical procedures, heat transfer, hybrid-powered engines and in field of nanotechnology. Dynamics of a magneto convective Casson nanofluid caused by Stefen blowing with bio active mixers was theoretically inspected by Puneeth et al. [16]. Awais et al. [17] theoretically exposed the rheological behavior of copper-water nanofluid peristaltic flowthrough generalized compliant walls in order to inspect influence of Hall and slip with temperature dependent viscosity. It was deduced that first and second order velocity slip parameters significantly increase flow velocity whereas rate of heat transfer is maximum in the vicinity of channel boundaries. An experimental study on the rheological characteristics of nanofluids manufactured by dispersing multi-walled carbon nanotubes in liquid paraffin was carried out by Liu et al. [18]. It was revealed that velocity components enlarge for velocity slip parameters while temperature-dependent viscosity has shown an impact of increasing temperature. In order to characterize the solar energy storage, improvement in thermal capacity of binary nitrate eutectic salt-silica nanofluid was studied by Hu et al. [19]. Relevant literature in the regime of nanofluids under several aspects can be found in [20,21,22]. Regardless of the noteworthy consequences of researchers’ endeavors, authentic applications require transaction in dissimilar characteristics of nanofluids and therefore hybrid nanofluids were synthesized by embedding special nanoparticles in base fluid. Such fluids possess improved physical and chemical properties in a homogeneous phase. Waini et al. [23] inspected MHD flow dynamics and heat transport of a hybrid nanofluid over a porous stretching/shrinking wedge. A drop of the heat transport rate was determined with the rise in radiation parameter. The temporal stability analysis was presented to evaluate the dual solutions’ stability, and it was revealed that one of the dual stables is reliable physically. Parveen et al. [24] utilized computational intelligence techniques in order to analyze heat transfer rate and pressure rise behavior in hybrid nanofluid dynamics influenced by magnetic induction effects past an endoscope. It was shown that coefficient of heat transfer accelerates toward Br and χ. Accuracy and stability of experimental data were established by employing neural network algorithm and very reliable results were obtained. Radhika et al. [25] explained the effects of magnetic field and melting heat transfer in the dynamics of dusty fluid suspended with hybrid nanoparticles. It was revealed that thermal gradient enhances for high values of magnetic parameter and Prandtl number. Reddy et al. [26] carried out theoretical analysis for heat transfer in dusty fluid dynamics suspended with hybrid nanoparticles by taking the Cattaneo-Christov heat flux model. Khan et al. [27] studied sustainability based performance evaluation of hybrid nanofluid assisted machining. Their theoretical study showed that a very small portion of nanoparticles affect the cost of each industrial product and the study was in complete accordance with the industrial applications of nanofluids. Literature in this area is shown in the references [28,29,30,31]. Moreover, the shape factor can approximately portray the difference of shape among non-spherical and spherical nanoparticles. In general, the nanoparticles possess polyhedral shapes, and their surface is made up of various planes. Thermophysical properties of nanoparticles directly depend on shape of nanoparticles. Therefore, flow and heat transport rates are examined in terms of coefficient of skin friction and Nusselt number for the nanoparticles of platelets shape with s = 5.7 in this analysis.

Entropy generation analysis is one of the vital factors in fluid mechanics. Performance of thermal devices directly depends upon the available amount of work which degrades by flow irreversibility and causes more disorder. Therefore, the study of dynamics behind entropy production becomes necessary in order to optimize thermal efficiencies of devices. Dogonchi et al. [32] inspected entropy generation behavior in natural convective hybrid nanofluid rheology by considering the effects of applied magnetic field past a porous cavity with wavy walls embedded in three circular cylinders. Sahoo et al. [33] carried out the analysis of entropy optimization, with dissipative heat transfer, in mixed convective MHD Casson nanofluid dynamics under the influences of Hall current and thermal radiation. Results showed that entropy generation amplifies significantly for diffusive variable, Brinkman number, and concentration ratio parameter whereas Bejan number decreases for all these parameters. In this regard, some investigations on entropy generation analysis for different flows and geometries under various physical aspects are reviewed (see articles [34,35,36]). Moreover, use of an analytical technique for the solution of the mathematical model is aimed by using homotopy analysis method (HAM). HAM, intended by Shi Jun Liao in 1992, depends on the fundamental concept of topology and differential geometry, homotopy. Being an analytical technique, HAMs are able to solve algebraic, ordinary/partial differential and differential-integral, and linear/non-linear equations in terms of series sum. It provides a broader way for selection of its arguments like initial guess, linear operator and convergence control parameter, which can be highly effective to control convergence rate of the solutions. This characteristic of HAM makes it preferable toother analytical techniques.

The objectives of this study are to theoretically analyze entropy generation and rate of heat transfer in steady flow of (Al2O3-Cu/H2O) hybrid nanofluid induced due to radially stretching disk by imposing convective-type thermal conditions. Flow is axisymmetric in which all the flow variables are independent of angular dimension. The influence of induced magnetic field is taken into account. Flow is considered in the presence of viscous dissipation and thermal radiation effects. The complete mechanism of the present study is explored in terms of a workflow diagram in Figure 1.

Figure 1.

Figure 1

Workflow chart.

2. Modeling and Problem

Steady, boundary layer flow of viscous (Al2O3-Cu/H2O) hybrid nanofluid induced due to stretching disk in radial directions is assumed. The volume concentration of Al2O3 and Cu nanomaterials is taken to be 0.05%. The stretching velocity of the disk surface is Uw(r) = ar where a represents positive constant. The surface of disk is convectively heated by fluid having temperature T and held in plane z = 0 while hybrid nanofluid is flowing in the region z > 0 as shown in Figure 2. Moreover, a scheme for manufacturing of nanofluid and hybrid nanofluid for the nanoparticles in the present study is presented in Figure 3.

Figure 2.

Figure 2

Schematic representation.

Figure 3.

Figure 3

Preparation scheme of nanofluid and hybrid nanofluids.

The constitutive governing model along with induced magnetic field, thermal radiations and viscous dissipation effects under boundary layer approximation is:

 ur+ur+wz=0, (1)
 H1r+H1r+H3z=0, (2)
u ur+wuzμ^4πρfH1 H1r+H3H1z=μ^4πρfHe dHedr+μhnfρhnf2uz2, (3)
u H1r+wH1zH1 urH3uz=μe2H1z2, (4)
u Tr+wTz=αhnf2Tz2+μhnfρcphnfuz21ρcphnfqrz, (5)

Radial, axial and azimuthal components of the induced magnetic field vector are, H1, H2 and H3, respectively. Corresponding boundary conditions are:

u=Uwr=ar,κhnfTz=hTwT, w=0, H1z=0, H2=H3=0, at z=0,u=w=0, TT, H1=Her=H0r, as z. (6)

In Equation (5), expression for qr by using Roseland approximation and Taylor series expansion of T4 about T can be expressed as:

qr=4σ3kT4z=16σT33kTz, (7)

Now, using similarity transformation:

ur,z=arfη,w(r,z)=2aυffη,η=aυfz,H1=H0rgη,H3=2aυfgη,θη=TTTwT. (8)

For the above transformations, Equations (1) and (2) are identically satisfied while Equations (3)–(5) within boundary conditions (6) and Equation (7) gives:

fΦ1Φ2{f22ffβ(g22gg1)}=0, (9)
λg+2fg2fg=0, (10)
(Φ4+43R)θ+2Φ3Pr.fθ+PrEcΦ1f2=0 (11)

.

The transformed boundary conditions are:

fη=gη=0,fη=1,gη=0, θη=BiΦ41θ0, at η=0,fη0,gη1,θη0,as η. (12)

where prime represents differentiation with respect to

Moreover, expressions for thermophysical properties are:

Φ1=1φ12.51φ22.5,Φ2=1φ21φ1+φ1ρs1ρf+φ2ρs2ρf,Φ3=1φ21φ1+φ1ρcps1ρcpf+φ2ρcps2ρcpf,Φ4=κs2+s1κbfs1φ2κbfκs2κs2+s1κbf+φ2κbfκs2κs1+s1κfs1φ1κfκs1κs1+s1κf+φ1κfκs1, (13)

Moreover, all the thermophysical characteristics of nanoparticles and base fluid are mentioned in Table 1 while expressions for dimensionless parameters are:

Pr=μcpfκf,λ=μeυf,β=μ^4πρfH0a2,Ec=Uw2cpfTwT, R=4σT3kκf, Bi=hκfυfa, (14)

Table 1.

Experimental values of various thermophysical properties for base fluid and nanoparticles [27].

Properties\Constituents H2O Al2O3 Cu
Density, ρ (Kg/m3) 997 3970 8933
Specific heat, Cp (J/kg K) 4179 765 385
Thermal conductivity, κ (W/m K) 0.613 40 401

Expressions for coefficient of skin friction Cf and local Nusselt number Nu are:

 Cf=τwρfUw2,Nu=rqwκfTwT. (15)

In the above expressions, τw and qw symbolize shear stress and heat flux for wall, respectively. The dimensionless form by substituting Equation (8) is:

Rer12Cf=1Φ1f0,Rer12Nu=Φ4+43Rθ0, (16)

where, Rer=Uwrυf indicates local Reynolds number.

By adopting the second law of thermodynamics, volumetric entropy generation rate in existence of radiative and dissipative factors can be expressed as:

S˙Gen=Φ4+43RκfT2Ty2+μfΦ1Tuy2+μfΦ1Tμ^4πρfH1y2.  (17)

The expression for characteristic entropy generation rate is:

S˙0=κfT2L2TwT2. (18)

Utilizing similarity transformation with Equation (18) in Equation (17), we have:

NS=S˙GenS˙0=Φ4+43RReL.θ2+ε.Pr.Ec.ReLΦ1f2+ε.Pr.Ec.ReL.βΦ1g2. (19)

where, Ns is non-dimensional form of entropy generation number, ReL=aL2υf and ε=TTwT demonstrate local Reynolds number and temperature ratio parameter, respectively.

3. Homotopy Analysis Method and Convergence of Solutions

The dimensionless governing model mentioned in Equations (9)–(11) and subjected boundary conditions of Equation (12) for boundary layer flow of hybrid nanofluid over the stretching disk is analytically solved by employing the homotopy analysis method [7,37,38,39]. For flow variables, initial guesses are:

f0η=1expη,g0η=η, θ0η=Bi1+Biexpη. (20)

Expressions for linear operators are:

T1η=fηfη, T2η=gη+gη, T3η=θη. (21)

and

T1A1+A2eηA3eη=T2A4+A5η+A6eη=T3A7+A8η=0. (22)

where, A1–A8 represents constants in general solutions.

3.1. Convergence-Control Parameters

Suppose an h is auxiliary parameter in the frame of HAM which directly affects the convergence of solutions. Let ξ0,1 be an embedding parameter, then the problem for zeroth order deformation is constructed as:

1ξT1fη,ξf0η=ξhR1fη,ξ,gη,ξ,θη,ξ, (23)
1ξT2gη,ξg0η=ξhR2fη,ξ,gη,ξ,θη,ξ, (24)
1ξT3θη,ξθ0η=ξhR3fη,ξ,gη,ξ,θη,ξ. (25)

Furthermore,

at η=η1=0, fη1,ξ=gη1,ξ=0, fη1,ξ=1, gη1,ξ=0, θη1,ξ=BiA41θη1,ξ.At η=η2,fη2,ξ0,gη2,ξ1, θη2,ξ0 (26)

.

Using the aforementioned quantities, the mth order solution series is constructed as:

T1fmη,ξςmfm1η,ξ=hSm1η,ξ, (27)
T2gmη,ξςmgm1η,ξ=hSm2η,ξ, (28)
T3θmη,ξςmθm1η,ξ=hSm3η,ξ. (29)

In the above equations,

ςm=0m11m>1

Subjected boundary conditions are:

At η=η1=0, fmη1,ξ=gmη1,ξ=0, fmη1,ξ=0, gmη1,ξ=0, θmη1,ξ=0,At η=η2,fmη20,gmη20, θmη20 (30)

.

Then, we can write:

fmη,ξ=Fmη,ξ+A1+A2eηA3eη,gmη,ξ=Gmη,ξ+A4+A5η+A6eη,θmη,ξ=Θmη,ξ+A7+A8η. (31)

3.2. Convergence of Solutions

For stability and convergence of analytical solutions, h-curves for, f0 g0 and θ0 are prepared upto 20th order solutions by plotting the interval of convergence and are shown in Figure 4, Figure 5 and Figure 6. Convergence control parameter h is able to control and adjust convergence region of HAM solutions. It is observed from convergence analysis that valid convergence region is Rh = [−0.4, 0.2]. For f0, Rh = [−0.35, 0.2] for g0, and Rh = [−0.35, 0.15] for θ0. Moreover, testing various values of h from corresponding regions, the error is minimum at h = −0.1 which guarantees that calculated solutions are very accurate with a negligible error and become more accurate for higher-order solutions.

Figure 4.

Figure 4

h-curves for solution of f0.

Figure 5.

Figure 5

h-curves for solution of g0.

Figure 6.

Figure 6

h-curves for the solution of θ0.

4. Discussion of Results

Analytical solutions for the Al2O3-Cu/water hybrid nanofluid flow obtained by HAM are discussed in this section. Figure 7 and Figure 8 plot the variation in magnetic parameter β and the reciprocal of magnetic Prandtl number λ for the velocity profile. The graph indicates that rise in values of β enhances fη due to more dominant induction effects than magnetic diffusion and the flow rate increases. A drop in fη is noticed for λ because magnetic diffusivity rises with rise in λ. This effect causes enhancement of frictional force and the velocity boundary layer thickness reduces.

Figure 7.

Figure 7

β verses velocity profile.

Figure 8.

Figure 8

λ verses velocity profile.

The behavior of induced magnetic field profile against parameters β and λ is explored in Figure 9 and Figure 10, respectively. Graphs demonstrate that with augmentation in β, magnetic effects become strong as due to fast advection process, therefore increasing flow rate amplifies magnetic induction profile. Consecutively, gη is a decreasing function of λ which is mainly due to enhancing magnetic diffusivity with high values of λ. It is noteworthy that the influences of parameters on fη and gη are more prominent at the interface and very little variation is shown near stretching disk due to the no slip boundary condition.

Figure 9.

Figure 9

β verses induced magnetic field profile.

Figure 10.

Figure 10

λ verses induced magnetic field profile.

Figure 11, Figure 12, Figure 13 and Figure 14 are plotted in order to express the variation in temperature against magnetic parameter, reciprocal of magnetic Prandtl number, radiation parameter and Biot number. Results reveal that θ(η) decreases with increment in β which is caused by increasing heat transfer rate near the disk in existence of induced magnetic field due to adding the flow mechanism as explored in Figure 11. The impact of radiation parameter in Figure 12 depicts the dual behavior of the θ(η) profile which is depressed close to the disk and elevated away from it showing dominant effects at free stream. Since the disk is convectively heated and these effects trim down away from its surface, temperature enhances at the disk surface due to rising intensity of convective heating in Figure 13.

Figure 11.

Figure 11

β verses temperature profile.

Figure 12.

Figure 12

λ verses temperature profile.

Figure 13.

Figure 13

Bi verses temperature profile.

Figure 14.

Figure 14

R verses temperature profile.

An opposite trend is observed in the free stream region due to the fact that additional heat released to the coolant at the surface. The impact of λ on temperature of hybrid nanofluid is exposed in Figure 14 which signifies that temperature rises against λ. The reason is high diffusivity and a small flow rate due to low magnetic induction for large magnitude of λ. Moreover, variation in θ(η) directly associated with values of parameters Bi, R and Ec which are taken to be small with Pr = 6.8 in this study.

The most persuasive part of this section is entropy generation analysis. The variation in entropy generation number Ns against emerging parameters is pointed out graphically in Figure 15, Figure 16, Figure 17 and Figure 18. Impact of magnetic parameter in Figure 15 demonstrates that rise in β decreases entropy production as strong effects of magnetic field close to the disk reduce the frictional effects and rise in heat transfer rate. It is of true significance physically since the rate of fluid flow enhances instantly and heat transfer rate increases. The number slightly increases in the free stream region due to decreasing fluid flow. Figure 16 expresses an enhancement in Ns as values of reciprocal of magnetic Prandtl number rises. This is because of the fact that as λ enhances, reduction in viscosity occurs while magnetic diffusivity accelerates, which produce disorder in the system. In Figure 17, entropy generation number is plotted against Bi which illustrates that for somewhat large values of parameter Bi, Ns have high magnitude due to strong influences of thermal convection and maximum radial gradient. Additionally, thermal radiation effects on Ns in Figure 18 displays it as an increasing function of R due to increasing emitting radiations which boosts frictional irreversibility that encourage entropy generation. Furthermore, variations in entropy generation number are drawn for small values of radiation parameter R, Eckert number Ec and Biot number Bi which are directly related to entropy production. Also, extensive behavior for Ns against parameters is observed at the interface due to large velocity and temperature gradients caused by no slip at the surface and convective wall conditions but it is rarely affected by these parameters away from it.

Figure 15.

Figure 15

β verses entropy generation number.

Figure 16.

Figure 16

λ verses entropy generation number.

Figure 17.

Figure 17

Bi verses entropy generation number.

Figure 18.

Figure 18

R verses entropy generation number.

Moreover, empirical formulas for the thermophysical properties of nanofluid and hybrid nanofluid are displayed in Table 2.

Table 2.

Formulas for thermophysical properties of nanofluid and hybrid nanofluid [40].

Properties Nanofluid Hybrid Nanofluid
Density ρnf=ρf1φ+φρsρf ρhnf=ρf1φ21φ1+φ1ρs1ρf+φ2ρs2
Heat Capacity ρcpnf=ρcpf1-φ+φρcpsρcpf ρcphnf=ρcpf1φ21φ1+φ1ρcps1ρcpf+φ2ρcps2
Viscosity μnf=μf1φ2.5 μhnf=μf1φ12.51φ22.5
Thermal Conductivity κnfκf=κs+s1κfs1φκfκsκs+s1κf+φκfκs κhnfκbf=κs2+s1κbfs1φ2κbfκs2κs2+s1κbf+φ2κbfκs2,whereκbfκf=κs1+s1κfs1φ1κfκs1κs1+s1κf+φ1κfκs1

The impacts of involving parameters on skin friction coefficient and heat transfer rate through Table 3 and Table 4 as well as bar graphs in Figure 19, Figure 20, Figure 21, Figure 22, Figure 23, Figure 24 and Figure 25 are explained in this section. Observations conclude that the surface velocity gradient is depressed as values of magnetic parameter β rises but enhances with elevation in λ. Moreover, an expansion in Nusselt number is noticed for rising values of the reciprocal of magnetic Prandtl number, Biot number, radiation parameter, and Eckert number whereas it is a decreasing function of magnetic parameter.

Table 3.

Behavior of skin friction coefficient for Al2O3-Cu/H2Oagainst several parameters.

β λ −Cf
0.0 5.0 0.003467
0.5 0.002900
1.0 0.002331
1.5 0.001759
0.5 5.0 0.002900
10 0.003185
15 0.003280
20 0.003327

Table 4.

Behavior of Nusselt number for Al2O3-Cu/H2O against several parameters.

β λ Bi R Ec Nu
0.0 5.0 1.5 2.5 0.2 0.026143
0.5 0.026134
1.0 0.026125
1.5 0.026117
0.5 5.0 0.026134
10 0.026138
15 0.026140
20 0.026140
5.0 0.1 0.001173
0.5 0.011475
1.0 0.021485
1.5 0.026134
1.5 0.5 0.004934
1.0 0.00952
2.0 0.022197
2.5 0.026134
2.5 0.2 0.031758
0.4 0.033282
0.6 0.034806
0.8 0.034915

Figure 19.

Figure 19

β verses Cf.

Figure 20.

Figure 20

λ verses Cf.

Figure 21.

Figure 21

β verses Nu.

Figure 22.

Figure 22

λ verses Nu.

Figure 23.

Figure 23

Ec verses Nu.

Figure 24.

Figure 24

R verses Nu.

Figure 25.

Figure 25

Bi verses Nu.

5. Concluding Remarks

A theoretical discussion of MHD viscous flow of Al2O3-Cu/H2O hybrid nanofluid due to stretching of the disk is carried out. Some noteworthy influences of important emerging parameters on flow profiles and entropy generation are as follows:

  1. fη and gη profiles are increasing functions of magnetic parameter while an opposite behavior is seen for enhancing values of λ.

  2. Increment in β results in an enhancement in temperature, whereas it reduces against λ.

  3. An increasing behavior for the temperature of the fluid is observed against rising values of parameters Bi and R at the surface. An opposite trend is depicted in the ambient region with a point of inflection in the field.

  4. Entropy generation number enhances for enhancement in values of parameters Bi, R and λ but diminishes against β.

  5. Flow profiles and entropy generation number are large near the surface of the disk and then decrease asymptotically far away from it. Also, these are more sensitive to fluctuate at the interface for several involved parameters.

  6. At the interface, fluid temperature is significantly different from ambient temperature. Thus, convection at the wall corresponding to high values of convective heat coefficient leads to increased rate of heat transfer at the interface.

  7. Values of skin friction and heat transfer coefficient can be optimized by choosing suitable values of involved parameters regarding different physical problems.

Acknowledgments

All authors sincerely thank the editor and the referees for the useful suggestions regarding improvement of our work. M. Y. Malik present his appreciations to the Deanship of Scientific Research at King Khalid University, Abha, 61413, Saudi Arabia for support through R.G.P-1-223-42.

Nomenclature

Nomenclature Greek Symbols
a Constant β Magnetic parameter
Bi Biot number η Dimensionless similarity variable
cf Skin friction coefficient φ Nanoparticles volume fraction
Ec Eckert number κ Thermal conductivity
H 0 Uniform magnetic field ρ Density
h Convective heat transfer coefficient ρcp Heat capacity
k Mean absorption coefficient μ^ Magnetic permeability
Nu Nusselt number μe Magnetic diffusivity
Pr Prandtl number μ Dynamic viscosity
qr Radiative heat flux υ Kinematic viscosity
qw Heat transfer at wall σ Stefan-Boltzmann constant
R Radiation parameter θ Dimensionless temperature
Re Reynolds number τw Wall shear stress
s Nanoparticles shape factor ε Temperature ratio parameter
T Fluid temperature Subscripts
Tw Surface temperature hnf Hybrid nanofluid
T Ambient temperature f Base fluid
u, w Velocity components in r-, z- directions. w Surface condition
Uw Stretching velocity Ambient condition
U Ambient velocity s1,s2 Shape factors of Copper and
Alumina

Author Contributions

Conceptualization, N.P.; Data curation, N.P.; Formal analysis, M.A. and M.Y.M.; Investigation, S.E.A.; Methodology, W.U.K.; Project administration, Y.H.; Resources, W.U.K. and Y.H.; Software, S.E.A. All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported by theNational Natural Science Foundation of Chinaunder Grant No.51977153,51977161,51577046, State Key Program ofNational Natural Science Foundation of Chinaunder Grant No.51637004,National Key Research and Development Plan (China)“important scientific instruments and equipment development” Grant No.2016YFF010220,Equipment research project in advance (China)Grant No.41402040301, Wuhan Science and Technology Plan Project Grant No 20201G01.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The data presented in this study is available in article.

Conflicts of Interest

Authors have no conflict of interest.

Footnotes

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  • 1.Sakiadis B.C. Boundary layer phenomenon. J. AIChE. 1961;7:26–28. doi: 10.1002/aic.690070108. [DOI] [Google Scholar]
  • 2.Crane L.J. Flow past a stretching plate. Z. Angew. Math. Phys. 1970;21:645–647. doi: 10.1007/BF01587695. [DOI] [Google Scholar]
  • 3.Khan A.S., Nie Y., Shah Z., Dawar A., Khan W., Islam S. Three-Dimensional Nanofluid Flow with Heat and Mass Transfer Analysis over a Linear Stretching Surface with Convective Boundary Conditions. Appl. Sci. 2018;8:2244. doi: 10.3390/app8112244. [DOI] [Google Scholar]
  • 4.Gireesha B.J., Umeshaiah M., Prasannakumara B.C., Shashikumar N.S., Archana N. Impact of nonlinear thermal radiation on magnetohydrodynamic three dimensional boundary layer flow of Jeffrey nanofluid over a nonlinearly permeable stretching sheet. Phys. A Stat. Mech. Appl. 2020;549:124051 [Google Scholar]
  • 5.Hayat T., Khan W.A., Abbas S.Z., Nadeem S., Ahmad S. Impact of induced magnetic field on second-grade nanofluid flow past a convectively heated stretching sheet. Appl. Nanosci. 2020;10:3001–3009. doi: 10.1007/s13204-019-01215-x. [DOI] [Google Scholar]
  • 6.Rafiq M., Siddiqa S., Begum N., Al-Mdallal Q., Hossain M., Gorla R.S.R. Non-linear radiation effect on dusty fluid flow near a rotating blunt-nosed body. Proc. Inst. Mech. Eng. Part E J. Process. Mech. Eng. 2021 doi: 10.1177/09544089211016207. [DOI] [Google Scholar]
  • 7.Khan W., Awais M., Parveen N., Ali A., Awan S., Malik M., He Y. Analytical Assessment of (Al2O3–Ag/H2O) Hybrid Nanofluid Influenced by Induced Magnetic Field for Second Law Analysis with Mixed Convection, Viscous Dissipation and Heat Generation. Coatings. 2021;11:498. doi: 10.3390/coatings11050498. [DOI] [Google Scholar]
  • 8.Adeniyan A., Mabood F., Okoya S. Effect of heat radiating and generating second-grade mixed convection flow over a vertical slender cylinder with variable physical properties. Int. Commun. Heat Mass Transf. 2021;121:105110. doi: 10.1016/j.icheatmasstransfer.2021.105110. [DOI] [Google Scholar]
  • 9.Iyyappan G., Singh A.K. MHD flows on irregular boundary over a diverging channel with viscous dissipation effect. Int. J. Numer. Methods Heat Fluid Flow. 2021;31:2112–2127. doi: 10.1108/hff-06-2020-0368. [DOI] [Google Scholar]
  • 10.Amjad M., Zehra I., Nadeem S., Abbas N., Saleem A., Issakhov A. Influence of Lorentz force and induced magnetic field effects on Casson micropolar nanofluid flow over a permeable curved stretching/shrinking surface under the stagnation region. Surf. Interfaces. 2020;21:100766. doi: 10.1016/j.surfin.2020.100766. [DOI] [Google Scholar]
  • 11.Xenos M.A., Petropoulou E.N., Siokis A., Mahabaleshwar U.S. Solving the Nonlinear Boundary Layer Flow Equations with Pressure Gradient and Radiation. Symmetry. 2020;12:710. doi: 10.3390/sym12050710. [DOI] [Google Scholar]
  • 12.Singh A.K., Roy S. Analysis of mixed convection in water boundary layer flows over a moving vertical plate with variable viscosity and Prandtl number. Int. J. Numer. Methods Heat Fluid Flow. 2019;29:602–616. doi: 10.1108/HFF-06-2017-0254. [DOI] [Google Scholar]
  • 13.Bilal M., Nazeer M. Numerical analysis for the non-Newtonian flow over stratified stretching/shrinking inclined sheet with the aligned magnetic field and nonlinear convection. Arch. Appl. Mech. 2021;91:949–964. doi: 10.1007/s00419-020-01798-w. [DOI] [Google Scholar]
  • 14.Agrawal P., Dadheech P.K., Jat R., Bohra M., Nisar K.S., Khan I. Lie similarity analysis of MHD flow past a stretching surface embedded in porous medium along with imposed heat source/sink and variable viscosity. J. Mater. Res. Technol. 2020;9:10045–10053. doi: 10.1016/j.jmrt.2020.07.023. [DOI] [Google Scholar]
  • 15.Choi S.U.S., Eastman J.A. Enhancing Thermal Conductivity of Fluids with Nano Particles. Volume 66. Argonne National Laboratory; Lemont, IL, USA: 1995. pp. 99–105. [Google Scholar]
  • 16.Puneeth V., Manjunatha S., Gireesha B.J., Gorla R.S.R. Magneto convective flow of Casson nanofluid due to Stefan blowing in the presence of bio-active mixers. Proc. Inst. Mech. Eng. Part N J. Nanomater. Nanoeng. Nanosyst. 2021;48:1137–1149. doi: 10.1177/23977914211016692. [DOI] [Google Scholar]
  • 17.Awais M., Kumam P., Parveen N., Ali A., Shah Z., Thounthong P. Slip and Hall Effects on Peristaltic Rheology of Copper-Water Nanomaterial through Generalized Complaint Walls With Variable Viscosity. Front. Phys. 2020;7:7. doi: 10.3389/fphy.2019.00249. [DOI] [Google Scholar]
  • 18.Liu X., Mohammed H.I., Ashkezari A.Z., Shahsavar A., Hussein A.K., Rostami S. An experimental investigation on the rheological behavior of nanofluids made by suspending multi-walled carbon nanotubes in liquid paraffin. J. Mol. Liq. 2020;300:112269. doi: 10.1016/j.molliq.2019.112269. [DOI] [Google Scholar]
  • 19.Hu Y., He Y., Zhang Z., Wen D. Enhanced heat capacity of binary nitrate eutectic salt-silica nanofluid for solar energy storage. Sol. Energy Mater. Sol. Cells. 2019;192:94–102. doi: 10.1016/j.solmat.2018.12.019. [DOI] [Google Scholar]
  • 20.Li F., Muhammad N., Abohamzeh E., Hakeem A.A., Hajizadeh M.R., Li Z., Bach Q.-V. Finned unit solidification with use of nanoparticles improved PCM. J. Mol. Liq. 2020;314:113659. doi: 10.1016/j.molliq.2020.113659. [DOI] [Google Scholar]
  • 21.Bazdar H., Toghraie D., Pourfattah F., Akbari O.A., Nguyen H., Asadi A. Numerical investigation of turbulent flow and heat transfer of nanofluid inside a wavy microchannel with different wavelengths. J. Therm. Anal. Calorim. 2020;139:2365–2380. doi: 10.1007/s10973-019-08637-3. [DOI] [Google Scholar]
  • 22.Tarakaramu N., Narayana P.S., Venkateswarlu B. Numerical simulation of variable thermal conductivity on 3D flow of nanofluid over a stretching sheet. Nonlinear Eng. 2020;9:233–243. doi: 10.1515/nleng-2020-0011. [DOI] [Google Scholar]
  • 23.Waini I., Ishak A., Pop I. MHD flow and heat transfer of a hybrid nanofluid past a permeable stretching/shrinking wedge. Appl. Math. Mech. 2020;41:507–520. doi: 10.1007/s10483-020-2584-7. [DOI] [Google Scholar]
  • 24.Parveen N., Awais M., Mumraz S., Ali A., Malik M.Y. An estimation of pressure rise and heat transfer rate for hybrid nanofluid with endoscopic effects and induced magnetic field: Computational intelligence application. Eur. Phys. J. Plus. 2020;135:1–41. doi: 10.1140/epjp/s13360-020-00874-y. [DOI] [Google Scholar]
  • 25.Radhika M., Gowda R.J.P., Naveenkumar R., Siddabasappa, Prasannakumara B.C. Heat transfer in dusty fluid with suspended hybrid nanoparticles over a melting surface. Heat Transfer. 2021;50:2150–2167. doi: 10.1002/htj.21972. [DOI] [Google Scholar]
  • 26.Reddy M.G., Rani M.V.V.N.L.S., Kumar K.G., Prasannakumar B.C., Lokesh H.J. Hybrid dusty fluid flow through a Cattaneo–Christov heat flux model. Phys. A Stat. Mech. Its Appl. 2020;551:123975 [Google Scholar]
  • 27.Khan A.M., Jamil M., Mia M., He N., Zhao W., Gong L. Sustainability-based performance evaluation of hybrid nanofluid assisted machining. J. Clean. Prod. 2020;257:120541. doi: 10.1016/j.jclepro.2020.120541. [DOI] [Google Scholar]
  • 28.LLund A., Omar Z., Khan I., Sherif E.S.M. Dual solutions and stability analysis of a hybrid nanofluid over a stretching/shrinking sheet executing MHD flow. Symmetry. 2020;12:276. doi: 10.3390/sym12020276. [DOI] [Google Scholar]
  • 29.Qureshi I.H., Awais M., Awan S.E., Abrar M.N., Raja M.A.Z., Alharbi S.O., Khan I. Influence of radially magnetic field properties in a peristaltic flow with internal heat generation: Numerical treatment. Case Stud. Therm. Eng. 2021;26:101019. doi: 10.1016/j.csite.2021.101019. [DOI] [Google Scholar]
  • 30.Ellahi R., Hussain F., Abbas S.A., Sarafraz M.M., Goodarzi M., Shadloo M.S. Study of Two-Phase Newtonian Nanofluid Flow Hybrid with Hafnium Particles under the Effects of Slip. Inventions. 2020;5:6. doi: 10.3390/inventions5010006. [DOI] [Google Scholar]
  • 31.Venkateswarlu B., Narayana P.V.S. Cu-Al2O3/H2O hybrid nanofluid flow past a porous stretching sheet due to temperatue-dependent viscosity and viscous dissipation. Heat Transf. 2021;50:432–449. doi: 10.1002/htj.21884. [DOI] [Google Scholar]
  • 32.Dogonchi A., Tayebi T., Karimi N., Chamkha A.J., Alhumade H. Thermal-natural convection and entropy production behavior of hybrid nanoliquid flow under the effects of magnetic field through a porous wavy cavity embodies three circular cylinders. J. Taiwan Inst. Chem. Eng. 2021;124:162–173. doi: 10.1016/j.jtice.2021.04.033. [DOI] [Google Scholar]
  • 33.Sahoo A., Nandkeolyar R. Entropy generation and dissipative heat transfer analysis of mixed convective hydromagnetic flow of a Casson nanofluid with thermal radiation and Hall current. Sci. Rep. 2021;11:1–31. doi: 10.1038/s41598-021-83124-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Shoaib M., Raja M.A.Z., Khan M.A.R., Farhat I., Awan S.E. Neuro-Computing Networks for Entropy Generation under the Influence of MHD and Thermal Radiation. Surf. Interfaces. 2021;25:101243 [Google Scholar]
  • 35.Abrar M.N., Sagheer M., Hussain S. Entropy analysis of Hall current and thermal radiation influenced by cilia with single- and multi-walled carbon nanotubes. Bull. Mater. Sci. 2019;42:250. doi: 10.1007/s12034-019-1822-4. [DOI] [Google Scholar]
  • 36.Wang J., Muhammad R., Khan M.I., Khan W.A., Abbas S.Z. Entropy optimized MHD nanomaterial flow subject to variable thicked surface. Comput. Methods Programs Biomed. 2020;189:105311. doi: 10.1016/j.cmpb.2019.105311. [DOI] [PubMed] [Google Scholar]
  • 37.Dehghan M., Shirilord A. The use of homotopy analysis method for solving generalized Sylvester matrix equation with applications. Eng. Comput. 2021:1–18. doi: 10.1007/s00366-020-01219-0. [DOI] [Google Scholar]
  • 38.Odibat Z. An improved optimal homotopy analysis algorithm for nonlinear differential equations. J. Math. Anal. Appl. 2020;488:124089. doi: 10.1016/j.jmaa.2020.124089. [DOI] [Google Scholar]
  • 39.Naik P.A., Zu J., Ghoreishi M. Estimating the approximate analytical solution of HIV viral dynamic model by using homotopy analysis method. Chaos Solitons Fractals. 2020;131:109500. doi: 10.1016/j.chaos.2019.109500. [DOI] [Google Scholar]
  • 40.Iqbal Z., Azhar E., Maraj E.N. Utilization of the computational technique to improve the thermophysical performance in the transportation of an electrically conducting Al2O3-Ag/H2O hybrid nanofluid. Eur. Phys. J. Plus. 2017;132:544. doi: 10.1140/epjp/i2017-11806-0. [DOI] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

The data presented in this study is available in article.


Articles from Micromachines are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

RESOURCES