Skip to main content
Microbiology Resource Announcements logoLink to Microbiology Resource Announcements
. 2021 Jan 7;10(1):e01230-20. doi: 10.1128/MRA.01230-20

Draft Genome Sequence of the Termite-Associated “Cuckoo Fungus,” Athelia (Fibularhizoctonia) sp. TMB Strain TB5

Zachary Konkel a, Kelsey Scott b, Jason C Slot a,b,
Editor: Christina A Cuomoc
PMCID: PMC8407714  PMID: 33414338

Atheliales is a diverse order of crust-forming Basidiomycota fungi. Here, we report the draft genome of the “cuckoo fungus,” Athelia (Fibularhizoctonia) sp. strain TMB (Atheliales), which forms termite-egg-mimicking sclerotia for which termites care. We further compare its repertoire of psilocybin gene homologs to homologs previously reported for Fibularhizoctonia psychrophila.

ABSTRACT

Atheliales is a diverse order of crust-forming Basidiomycota fungi. Here, we report the draft genome of the “cuckoo fungus,” Athelia (Fibularhizoctonia) sp. TMB strain TB5 (Atheliales), which forms termite-egg-mimicking sclerotia that termites tend. We further compare its repertoire of psilocybin gene homologs to homologs previously reported for Fibularhizoctonia psychrophila.

ANNOUNCEMENT

Atheliales (Agaricomycetes, Basidiomycota) is an ecologically diverse (14) order of resupinate fungi. Two Atheliales genomes were previously reported, namely, Fibularhizoctonia psychrophila CBS 109695, associated with carrot spoilage (2, 5), and Piloderma olivaceum F 1598, an ectomycorrhizal tree associate (4). F. psychrophila has close homologs of genes in the Agaricales (Agaricomycetes) psilocybin gene cluster (6).

Athelia (Fibularhizoctonia) sp. TMB (Atheliales) produces sclerotia (termite balls [TMB]) that chemically and structurally mimic Reticulitermes sp. eggs and receive care in over 70% of colonies of some Reticulitermes species (79). Although this is sometimes considered parasitism (9), reciprocal benefits of the symbiosis are being investigated (7, 10). The F. psychrophila genome previously reported is not termite associated (4).

Athelia sp. TMB TB5 sclerotia were obtained in July 2017 from a Reticulitermes flavipes colony at the Denison Bioreserve (Granville, OH, USA). Sclerotia were cultured in potato dextrose broth at room temperature for 14 days with shaking. Tissue was filtered through Miracloth, flash-frozen with liquid nitrogen, and pulverized with a mortar and pestle. Genomic DNA was immediately extracted using the DNeasy plant minikit (Qiagen). Short-read DNA libraries were prepared using the NEBNext Ultra DNA library preparation kit and were sequenced with a 150-bp paired-end format on a NovaSeq 6000 system (Illumina). Long reads were generated by fragmenting genomic DNA with a Covaris g-TUBE, preparing libraries using the SQK-LSK108 ligation sequencing kit, and sequencing the libraries on a MinION system (Oxford Nanopore Technologies) using an R9.4 flow cell. Sequencing generated 62,281,267 Illumina reads with an average coverage of 230.98× and 228,721 MinION reads with a mean length of 3,983.38 bp, a median length of 1,834 bp, and a mean coverage of 10.94×. Coverage was calculated by mapping reads to the assembly with Bowtie 2 v2.4.1-2 (11) and minimap2 v2.2.17 (12).

Illumina reads were trimmed using Trimmomatic v0.36 (13) with the following parameters: PE-phred33, ILLUMINACLIP TruSeq3-PE.fa:2:30:10:11, HEADCROP 10, CROP 145, SLIDINGWINDOW 50:25, and MINLEN 100. MinION reads were base called with Guppy v3.0.3 (Oxford Nanopore Technologies). Hybrid assembly was conducted using SPAdes v3.12.0 (14) with auto coverage cutoff and kmers 21, 33, 55, 77, 99, and 121. Repeat elements were identified de novo using default parameters with RepeatModeler v1.0.11 (15) and the Dfam v3.0 repeat library (16). Genes were predicted using SNAP v2006-07-28 (17), AUGUSTUS v3.3.3 (18), GlimmerHMM v3.0.4 (19), and GeneMark-ES v4.35 (20) via the Funannotate v1.7.4 pipeline (21). We referenced the Laccaria bicolor benchmarking universal single-copy ortholog (BUSCO) data set (22), F. psychrophila expressed sequence tag (EST) and transcript data (4), and protein data from 11 Agaricomycetes MycoCosm records (Joint Genome Institute [JGI]), i.e., F. psychrophila CBS 109695, P. olivaceum F 1598 (https://mycocosm.jgi.doe.gov/Pilcr1), Coniophora olivacea MUCL 20566 (https://mycocosm.jgi.doe.gov/Conol1), Coniophora puteana (https://mycocosm.jgi.doe.gov/Conpu1), Paxillus involutus ATCC 200175 (https://mycocosm.jgi.doe.gov/Paxin1), Pisolithus microcarpus 441 (https://mycocosm.jgi.doe.gov/Pismi1), Pisolithus tinctorius Marx 270 (https://mycocosm.jgi.doe.gov/Pisti1), Rhizopogon vesiculosus Smith (https://mycocosm.jgi.doe.gov/Rhives1), Scleroderma citrinum Foug A (https://mycocosm.jgi.doe.gov/Sclci1), Serpula himantioides MUCL 38935 (https://mycocosm.jgi.doe.gov/Serla_varsha1), and Suillus brevipes Sb2 v2.0 (https://mycocosm.jgi.doe.gov/Suibr2). Gene prediction was finalized using OrthoFiller v1.1.1 (23) with default parameters referencing nine Agaricomycetes species, i.e., Armillaria gallica 21-2 (https://mycocosm.jgi.doe.gov/Armga1), C. olivacea MUCL 20566, F. psychrophila CBS 109695, Galerina marginata (https://mycocosm.jgi.doe.gov/Galma1), Laccaria bicolor v2.0 (https://mycocosm.jgi.doe.gov/Lacbi2), P. croceum F 1598, Plicaturopsis crispa (https://mycocosm.jgi.doe.gov/Plicr1/Plicr1.home.html), Psilocybe serbica (https://mycocosm.jgi.doe.gov/Psiser1), and S. brevipes Sb2 v2.0.

Average amino acid identity (AAI) between F. psychrophila and Athelia sp. TMB TB5 was calculated from the BLASTp (24) identity of all 1,727 single-copy orthologs predicted using OrthoFinder v2.3.8 (25) with P. olivaceum, F. psychrophila, and Athelia sp. TMB TB5 and default parameters. Sequences similar to Psilocybe cubensis psilocybin gene sequences (26) were obtained via BLASTp searches against NCBI and JGI fungal proteomes. Core psilocybin Pfam (27) domains were extracted from BLAST hits with greater than 50% Pfam coverage (hmmsearch v3.1b2 [hmmer.org]). Protein domains were aligned (MAFFT v7.467 [28] with --auto specified), trimmed (trimAl v1.4.rev15 [29], -automated1 specified in iteration 1 and -gt 0.25 specified in iteration 2), and used to construct maximum likelihood phylogenies (1,000 bootstraps; IQ-TREE v2.0.3 [30]). Close homologs of psilocybin proteins were those located in the largest clade that included only the psilocybin cluster (6) and Atheliales sequences.

Athelia sp. TMB TB5 has a mean AAI of 82.58% (median, 93.95%) with F. psychrophila across 1,727 single-copy orthologs, consistent with substantial divergence time. Multiple copies of psilocybin decarboxylase, hydroxylase, and kinase in Athelia sp. TMB TB5 (Table 1) indicate their broader distribution in Atheliales, but a psilocybin cluster was not found.

TABLE 1.

Summary statistics and psilocybin homolog counts for sequenced Atheliales species

Parameter Data for:
Athelia sp. TMB TB5 Fibularhizoctonia psychrophila CBS 109695 (4) Piloderma croceum F 1598 (5)
Genome size (bp) 79,838,449 95,125,689 59,326,866
No. of contigs 1,682 1,918 715
N50 (bp) 133,022 289,599 529,349
Contig L50 165 98 33
GC content (%) 51.76 51.67 46.28
Complete BUSCOs (%) 97.60 98.00 97.30
No. of predicted genes 22,782 32,946 21,576
Mean gene length (bp) 1,834.04 1,467.99 1,451.82
Proportion of assembly covered by annotation (%) 52.79 50.84 52.82
No. of genes in orthogroups 20,595 29,040 16,266
No. of psilocybin decarboxylase (PsiD) close homologs 2 2 0
No. of psilocybin hydroxylase (PsiH) close homologs 15 28 0
No. of psilocybin kinase (PsiK) close homologs 8 6 0
No. of psilocybin methyltransferase (PsiM) close homologs 0 1 1

Data availability.

The assembly and annotation of Athelia sp. TMB strain TB5 were deposited in GenBank under accession number JACXVL000000000, with SRA accession numbers PRJNA641386, SRR12880626 (MinION read library), and SRR12880627 (Illumina read library).

ACKNOWLEDGMENTS

This work was supported by grant DEB-1638999 to J.C.S. from the National Science Foundation. Computational work was performed using the resources of the Ohio Supercomputer Center.

We thank Vinod Vijayakumar for isolation of Athelia sp. TMB strain TB5 and Rachelle Adams and George Keeney for assistance with locating environmental samples.

REFERENCES

  • 1.Yurchenko EO, Golubkov VV. 2003. The morphology, biology, and geography of a necrotrophic basidiomycete Athelia arachnoidea in Belarus. Mycol Prog 2:275–284. doi: 10.1007/s11557-006-0065-0. [DOI] [Google Scholar]
  • 2.de Vries RP, de Lange ES, Wösten HAB, Stalpers JA. 2008. Control and possible applications of a novel carrot-spoilage basidiomycete, Fibulorhizoctonia psychrophila. Antonie Van Leeuwenhoek 93:407–413. doi: 10.1007/s10482-007-9218-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Larsen MJ, Jurgensen MF, Harvey AE. 1981. Athelia epiphylla associated with colonization of subalpine fir foliage under psychrophilic conditions. Mycologia 73:1195–1202. doi: 10.1080/00275514.1981.12021456. [DOI] [Google Scholar]
  • 4.Kohler A, Kuo A, Nagy LG, Morin E, Barry KW, Buscot F, Canbäck B, Choi C, Cichocki N, Clum A, Colpaert J, Copeland A, Costa MD, Doré J, Floudas D, Gay G, Girlanda M, Henrissat B, Herrmann S, Hess J, Högberg N, Johansson T, Khouja H-R, LaButti K, Lahrmann U, Levasseur A, Lindquist EA, Lipzen A, Marmeisse R, Martino E, Murat C, Ngan CY, Nehls U, Plett JM, Pringle A, Ohm RA, Perotto S, Peter M, Riley R, Rineau F, Ruytinx J, Salamov A, Shah F, Sun H, Tarkka M, Tritt A, Veneault-Fourrey C, Zuccaro A, Mycorrhizal Genomics Initiative Consortium , Tunlid A, Grigoriev IV, Hibbett DS, Martin F. 2015. Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat Genet 47:410–415. doi: 10.1038/ng.3223. [DOI] [PubMed] [Google Scholar]
  • 5.Nagy LG, Riley R, Tritt A, Adam C, Daum C, Floudas D, Sun H, Yadav JS, Pangilinan J, Larsson KH, Matsuura K, Barry K, Labutti K, Kuo R, Ohm RA, Bhattacharya SS, Shirouzu T, Yoshinaga Y, Martin FM, Grigoriev IV, Hibbett DS. 2016. Comparative genomics of early-diverging mushroom-forming fungi provides insights into the origins of lignocellulose decay capabilities. Mol Biol Evol 33:959–970. doi: 10.1093/molbev/msv337. [DOI] [PubMed] [Google Scholar]
  • 6.Reynolds HT, Vijayakumar V, Gluck‐Thaler E, Korotkin HB, Matheny PB, Slot JC. 2018. Horizontal gene cluster transfer increased hallucinogenic mushroom diversity. Evol Lett 2:88–101. doi: 10.1002/evl3.42. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Matsuura K, Tanaka C, Nishida T. 2000. Symbiosis of a termite and a sclerotium-forming fungus: sclerotia mimic termite eggs. Ecol Res 15:405–414. doi: 10.1046/j.1440-1703.2000.00361.x. [DOI] [Google Scholar]
  • 8.Matsuura K. 2005. Distribution of termite egg-mimicking fungi (“termite balls”) in Reticulitermes spp. (Isoptera: Rhinotermitidae) nests in Japan and the United States. Appl Entomol Zool 40:53–61. doi: 10.1303/aez.2005.53. [DOI] [Google Scholar]
  • 9.Matsuura K, Yashiro T, Shimizu K, Tatsumi S, Tamura T. 2009. Cuckoo fungus mimics termite eggs by producing the cellulose-digesting enzyme β-glucosidase. Curr Biol 19:30–36. doi: 10.1016/j.cub.2008.11.030. [DOI] [PubMed] [Google Scholar]
  • 10.Matsuura K, Matsunaga T. 2015. Antifungal activity of a termite queen pheromone against egg-mimicking termite ball fungi. Ecol Res 30:93–100. doi: 10.1007/s11284-014-1213-7. [DOI] [Google Scholar]
  • 11.Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. doi: 10.1038/nmeth.1923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Li H. 2018. minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34:3094–3100. doi: 10.1093/bioinformatics/bty191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. doi: 10.1093/bioinformatics/btu170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. doi: 10.1089/cmb.2012.0021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Flynn JM, Hubley R, Goubert C, Rosen J, Clark AG, Feschotte C, Smit AF. 2020. RepeatModeler2 for automated genomic discovery of transposable element families. Proc Natl Acad Sci U S A 117:9451–9457. doi: 10.1073/pnas.1921046117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Wheeler TJ, Clements J, Eddy SR, Hubley R, Jones TA, Jurka J, Smit AFA, Finn RD. 2013. Dfam: a database of repetitive DNA based on profile hidden Markov models. Nucleic Acids Res 41:D70–D82. doi: 10.1093/nar/gks1265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Korf I. 2004. Gene finding in novel genomes. BMC Bioinformatics 5:59. doi: 10.1186/1471-2105-5-59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Stanke M, Steinkamp R, Waack S, Morgenstern B. 2004. AUGUSTUS: a web server for gene finding in eukaryotes. Nucleic Acids Res 32:W309–W312. doi: 10.1093/nar/gkh379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Majoros WH, Pertea M, Salzberg SL. 2004. TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders. Bioinformatics 20:2878–2879. doi: 10.1093/bioinformatics/bth315. [DOI] [PubMed] [Google Scholar]
  • 20.Lukashin AV, Borodovsky M. 1998. GeneMark.hmm: new solutions for gene finding. Nucleic Acids Res 26:1107–1115. doi: 10.1093/nar/26.4.1107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Palmer J. 2015. Funannotate. https://github.com/nextgenusfs/funannotate.
  • 22.Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31:3210–3212. doi: 10.1093/bioinformatics/btv351. [DOI] [PubMed] [Google Scholar]
  • 23.Dunne MP, Kelly S. 2017. OrthoFiller: utilising data from multiple species to improve the completeness of genome annotations. BMC Genomics 18:390. doi: 10.1186/s12864-017-3771-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J Mol Biol 215:403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  • 25.Emms DM, Kelly S. 2015. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol 16:157. doi: 10.1186/s13059-015-0721-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Fricke J, Blei F, Hoffmeister D. 2017. Enzymatic synthesis of psilocybin. Angew Chem Int Ed Engl 56:12352–12355. doi: 10.1002/anie.201705489. [DOI] [PubMed] [Google Scholar]
  • 27.El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, Qureshi M, Richardson LJ, Salazar GA, Smart A, Sonnhammer ELL, Hirsh L, Paladin L, Piovesan D, Tosatto SCE, Finn RD. 2019. The Pfam protein families database in 2019. Nucleic Acids Res 47:D427–D432. doi: 10.1093/nar/gky995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Katoh K, Misawa K, Kuma K, Miyata T. 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066. doi: 10.1093/nar/gkf436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25:1972–1973. doi: 10.1093/bioinformatics/btp348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, Lanfear R. 2020. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 37:1530–1534. doi: 10.1093/molbev/msaa015. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

The assembly and annotation of Athelia sp. TMB strain TB5 were deposited in GenBank under accession number JACXVL000000000, with SRA accession numbers PRJNA641386, SRR12880626 (MinION read library), and SRR12880627 (Illumina read library).


Articles from Microbiology Resource Announcements are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES