Abstract
Thermal comfort has become one of the most important factors to be considered for the working efficiency and health of occupants in an indoor space. In addition, it is considered in the design of heating, ventilation, and air-conditioning systems for the management of building energy. In this study, the key factors influencing thermal comfort are briefly discussed, such as air temperature, air velocity, radiant temperature, relative humidity, insulation of clothes, and metabolic rate. These factors act in a complex manner, affecting people and causing physical and psychological changes. Also, human physical changes have a significant impact on the human body, including skin temperature, heart rate variability, and electroencephalogram measurements, and are modified by the surrounding thermal environment. In this article, the factors influencing thermal comfort and biosignals of humans are discussed, and recent related studies are introduced.
Keywords: Thermal comfort, Thermal sensation, Biosignal, Skin temperature, Heart rate variability, Electroencephalogram
Acknowledgments
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1A5A118153) and Human Resources Program in Energy Technology of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resources from the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20194030202410).
Footnotes
Yeonghun Kim is in master course of Mechanical Engineering, Chosun University. His interest includes thermal comfort under various thermal environment and the performance improvement in the HVAC system. Besides, the biosignals of human are also his interesting area.
Yunchan Shin is a Ph.D. candidate of Mechanical Engineering, Chosun University. His interest includes the performance improvement of solar collector, thermal comfort in automobile air-conditioning system, and the performance improvement in the HVAC system, and etc.
Honghyun Cho is a Professor of Mechanical Engineering, Chosun University. He received Ph.D. from Korea University in 2005. His interest includes the heat pump system with renewable energy, alternative refrigerant HVAC system, and biosignals of human under thermal enviroment, etc.
References
- [1].ASHRAE 55-2017 . Standards 55-2017 Thermal Environmental Conditions for Human Occupancy. GA, USA: The American Society of Heating, Refrigerating and Air-Conditioning Engineers, Peach-tree Corners; 2017. [Google Scholar]
- [2].Kilic M, Akyol S M. Experimental investigation of thermal comfort and air quality in an automobile cabin during the cooling period. Heat and Mass Transfer. 2012;48:1375–1384. doi: 10.1007/s00231-012-0988-8. [DOI] [Google Scholar]
- [3].ASHRAE . Description 2017 ASHRAE Handbook — Fundamentals. GA, USA: The American Society of Heating, Refrigerating and Air-Conditioning Engineers, Peachtree Corners; 2017. [Google Scholar]
- [4].Fanger P O. Thermal Comfort. New York: McGraw-Hill Book Company; 1973. [Google Scholar]
- [5].ISO 7730:2005 . Ergonomics of the Thermal Environment — Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria. Geneva, Switzerland: International Organization for Standardization; 2005. [Google Scholar]
- [6].Sung W T, Hsiao S J, Shih J A. Construction of indoor thermal comfort environmental monitoring system based on the IoT architecture. J. Sensors. 2019;2019:2639787. doi: 10.1155/2019/2639787. [DOI] [Google Scholar]
- [7].M. Simion, L. Socaciu and P. Unguresan, Factors which influence the thermal comfort inside of vehicles, Energy Procedia, Elsevier, Ltd (2016) 472–480.
- [8].Shimazaki Y, Yoshida A, Yamamoto T. Thermal responses and perceptions under distinct ambient temperature and wind conditions. J. Therm. Biol. 2015;49–50:1–8. doi: 10.1016/j.jtherbio.2015.01.005. [DOI] [PubMed] [Google Scholar]
- [9].Lan L, Pan L, Lian Z, Huang H, Lin Y. Experimental study on thermal comfort of sleeping people at different air temperatures. Build. Environ. 2014;73:24–31. doi: 10.1016/j.buildenv.2013.11.024. [DOI] [Google Scholar]
- [10].Wu Q, Liu J, Zhang L, Zhang J, Jiang L. Study on thermal sensation and thermal comfort in environment with moderate temperature ramps. Build. Environ. 2020;171:106640. doi: 10.1016/j.buildenv.2019.106640. [DOI] [Google Scholar]
- [1].Korukçu M Ö, Kilic M. The usage of IR thermography for the temperature measurements inside an automobile cabin. Int. Commun., Heat Mass Transf. 2009;36:872–877. doi: 10.1016/j.icheatmasstransfer.2009.04.010. [DOI] [Google Scholar]
- [12].Kilic M, Kaynakli O. An experimental investigation on interior thermal conditions and human body temperatures during cooling period in automobile. Heat Mass Transf. Und Stoffuebertragung. 2011;47:407–418. doi: 10.1007/s00231-010-0737-9. [DOI] [Google Scholar]
- [13].Ciuha U, Tobita K, McDonnell A C, Mekjavic I B. The effect of thermal transience on the perception of thermal comfort. Physiol. Behav. 2019;210:112623. doi: 10.1016/j.physbeh.2019.112623. [DOI] [PubMed] [Google Scholar]
- [14].Guéritée J, Tipton M J. The relationship between radiant heat, air temperature and thermal comfort at rest and exercise. Physiol. Behav. 2015;139:378–385. doi: 10.1016/j.physbeh.2014.11.064. [DOI] [PubMed] [Google Scholar]
- [15].Tian X, Zhang S, Lin Z, Li Y, Cheng Y, Liao C. Experimental investigation of thermal comfort with stratum ventilation using a pulsating air supply. Build. Environ. 2019;165:106416. doi: 10.1016/j.buildenv.2019.106416. [DOI] [Google Scholar]
- [16].Putra J C P. A study of thermal comfort and occupant satisfaction in office room. Procedia Eng. 2017;170:240–247. doi: 10.1016/j.proeng.2017.03.057. [DOI] [Google Scholar]
- [17].Maher D, Hana A, Sammouda H. Numerical approximation of air flow, temperature distribution and thermal comfort in buildings. Sci. African. 2020;8:e00353. doi: 10.1016/j.sciaf.2020.e00353. [DOI] [Google Scholar]
- [18].Kiliç M, Sevilgen G. The effects of using different type of inlet vents on the thermal characteristics of the automobile cabin and the human body during cooling period. Int. J. Adv. Manuf. Technol. 2012;60:799–809. doi: 10.1007/s00170-011-3594-x. [DOI] [Google Scholar]
- [19].Sevilgen G, Kilic M. Investigation of transient cooling of an automobile cabin with a virtual manikin under solar radiation. Therm. Sci. 2013;17:397–406. doi: 10.2298/TSCI120623150S. [DOI] [Google Scholar]
- [20].Du X, Li B, Liu H, Wu Y, Cheng T. The appropriate airflow rate for a nozzle in commercial aircraft cabins based on thermal comfort experiments. Build. Environ. 2017;112:132–143. doi: 10.1016/j.buildenv.2016.11.018. [DOI] [Google Scholar]
- [21].Lee K, Zhang T, Jiang Z, Chen Q. Comparison of airflow and contaminant distributions in rooms with traditional displacement ventilation and under-floor air distribution systems. ASHRAE Trans. 2009;115(2):306–321. [Google Scholar]
- [22].ISO 7726:1998 . Ergonomics of the Thermal Environment — Instruments for Measuring Physical Quantities. Geneva, Switzerland: International Organization for Standardization; 1998. [Google Scholar]
- [23].Liu Y, Wang L, Liu J, Di Y. A study of human skin and surface temperatures in stable and unstable thermal environments. J. Therm. Biol. 2013;38:440–448. doi: 10.1016/j.jtherbio.2013.06.006. [DOI] [Google Scholar]
- [24].Atmaca I, Kaynakli O, Yigit A. Effects of radiant temperature on thermal comfort. Build. Environ. 2007;42:3210–3220. doi: 10.1016/j.buildenv.2006.08.009. [DOI] [Google Scholar]
- [25].d’Ambrosio Alfano F R, Dell’Isola M, Palella B I, Riccio G, Russi A. On the measurement of the mean radiant temperature and its influence on the indoor thermal environment assessment. Build. Environ. 2013;63:79–88. doi: 10.1016/j.buildenv.2013.01.026. [DOI] [Google Scholar]
- [26].Marino C, Nucara A, Pietrafesa M. Thermal comfort in indoor environment: effect of the solar radiation on the radiant temperature asymmetry. Sol. Energy. 2017;144:295–309. doi: 10.1016/j.solener.2017.01.014. [DOI] [Google Scholar]
- [27].Yang R, Zhang H, You S, Zheng W, Zheng X, Ye T. Study on the thermal comfort index of solar radiation conditions in winter. Build. Environ. 2020;167:106456. doi: 10.1016/j.buildenv.2019.106456. [DOI] [Google Scholar]
- [28].Chung J D, Hong H, Yoo H. Analysis on the impact of mean radiant temperature for the thermal comfort of underfloor air distribution systems. Energy Build. 2010;42:2353–2359. doi: 10.1016/j.enbuild.2010.07.030. [DOI] [Google Scholar]
- [29].Q. Dong, S. Li and C. Han, Numerical and experimental study of the effect of solar radiation on thermal comfort in a radiant heating system, J. Build. Eng., (32) (2020) 101497.
- [30].Kilic M, Sevilgen G. Modelling airflow, heat transfer and moisture transport around a standing human body by computational fluid dynamics. Int. Commun. Heat Mass Transf. 2008;35:1159–1164. doi: 10.1016/j.icheatmasstransfer.2008.05.006. [DOI] [Google Scholar]
- [31].Sevilgen G, Kilic M. Numerical analysis of air flow, heat transfer, moisture transport and thermal comfort in a room heated by two-panel radiators. Energy Build. 2011;43:137–146. doi: 10.1016/j.enbuild.2010.08.034. [DOI] [Google Scholar]
- [32].Wolkoff P. Indoor air humidity, air quality, and health-an overview. Int. J. Hyg. Environ. Health. 2018;221:376–390. doi: 10.1016/j.ijheh.2018.01.015. [DOI] [PubMed] [Google Scholar]
- [33].Jing S, Li B, Tan M, Liu H. Impact of relative humidity on thermal comfort in a warm environment. Indoor Built Environ. 2013;22:598–607. doi: 10.1177/1420326X12447614. [DOI] [Google Scholar]
- [34].Kim M-H, Kim J-M. A study on the variation of physiology signals based on EEG with humidity. Trans. Korean Inst. Electr. Eng. 2013;62:50–55. doi: 10.5370/KIEEP.2013.62.1.050. [DOI] [Google Scholar]
- [35].Djamila H, Chu C-M, Kumaresan S. Effect of humidity on thermal comfort in the humid tropics. J. Build. Constr. Plan. Res. 2014;2:109–117. [Google Scholar]
- [36].de Dear R J, Leow K G, Foo S C. Thermal comfort in the humid tropics: field experiments in air conditioned and naturally ventilated buildings in Singapore. Int. J. Biometeorol. 1991;34:259–265. doi: 10.1007/BF01041840. [DOI] [Google Scholar]
- [37].Feriadi H, Wong N H. Thermal comfort for naturally ventilated houses in Indonesia. Energy Build. 2004;36:614–626. doi: 10.1016/j.enbuild.2004.01.011. [DOI] [Google Scholar]
- [38].Nicol F. Adaptive thermal comfort standards in the hot-humid tropics. Energy Build. 2004;36:628–637. doi: 10.1016/j.enbuild.2004.01.016. [DOI] [Google Scholar]
- [39].Eludoyin O M, Adelekan I O, Webster R, Eludoyin A O. Air temperature, relative humidity, climate regionalization and thermal comfort of Nigeria. Int. J. Climatol. 2014;34:2000–2018. doi: 10.1002/joc.3817. [DOI] [Google Scholar]
- [40].Zain Z M, Taib M N, Baki S M S. Hot and humid climate: prospect for thermal comfort in residential building. Desalination. 2007;209:261–268. doi: 10.1016/j.desal.2007.04.036. [DOI] [Google Scholar]
- [41].Johansson E, Yahia M W, Arroyo I, Bengs C. Outdoor thermal comfort in public space in warm-humid Guayaquil. Ecuador Int. J. Biometeorol. 2018;62:387–399. doi: 10.1007/s00484-017-1329-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [42].Lu S, Pang B, Qi Y, Fang K. Field study of thermal comfort in non-air-conditioned buildings in a tropical island climate. Appl. Ergon. 2018;66:89–97. doi: 10.1016/j.apergo.2017.08.008. [DOI] [PubMed] [Google Scholar]
- [43].Buonocore C, De Vecchi R, Scalco V, Lamberts R. Influence of relative air humidity and movement on human thermal perception in classrooms in a hot and humid climate. Build. Environ. 2018;146:98–106. doi: 10.1016/j.buildenv.2018.09.036. [DOI] [Google Scholar]
- [44].Oǧulata R T. The effect of thermal insulation of clothing on human thermal comfort. Fibres Text. East. Eur. 2007;15:67–72. [Google Scholar]
- [45].Wang Z, Cao B, Ji W, Zhu Y. Study on clothing insulation distribution between half-bodies and its effects on thermal comfort in cold environments. Energy Build. 2020;211:109796. doi: 10.1016/j.enbuild.2020.109796. [DOI] [Google Scholar]
- [46].Nam I, Yang J, Lee D, Park E, Sohn J R. A study on the thermal comfort and clothing insulation characteristics of preschool children in Korea. Build. Environ. 2015;92:724–733. doi: 10.1016/j.buildenv.2015.05.041. [DOI] [Google Scholar]
- [47].Jiao Y, Yu H, Wang T, An Y, Yu Y. The relationship between thermal environments and clothing insulation for elderly individuals in Shanghai. China, J. Therm. Biol. 2017;70:28–36. doi: 10.1016/j.jtherbio.2017.07.002. [DOI] [PubMed] [Google Scholar]
- [48].Havenith G, Holmér I, Parsons K. Personal factors in thermal comfort assessment: clothing properties and metabolic heat production. Energy Build. 2002;34:581–591. doi: 10.1016/S0378-7788(02)00008-7. [DOI] [Google Scholar]
- [49].Zhang Y, Liu J, Zheng Z, Fang Z, Zhang X, Gao Y, Xie Y. Analysis of thermal comfort during movement in a semi-open transition space. Energy Build. 2020;225:110312. doi: 10.1016/j.enbuild.2020.110312. [DOI] [Google Scholar]
- [50].Zhang Y, Zhou X, Zheng Z, Oladokun M O, Fang Z. Experimental investigation into the effects of different metabolic rates of body movement on thermal comfort. Build. Environ. 2020;168:106489. doi: 10.1016/j.buildenv.2019.106489. [DOI] [Google Scholar]
- [51].Luo M, Zhou X, Zhu Y, Sundell J. Revisiting an overlooked parameter in thermal comfort studies, the metabolic rate. Energy Build. 2016;118:152–159. doi: 10.1016/j.enbuild.2016.02.041. [DOI] [Google Scholar]
- [52].Y. Nishi, Chapter 2: measurement of thermal balance of man, Bioeng. Therm. Physiol. Comf. (1981) 29–39.
- [53].Du Bois D, Du Bois E F. A formula to estimate approximate surface area, if height and weight are known. Arch. Internet Med. 1916;5(5):863–871. doi: 10.1001/archinte.1916.00080130010002. [DOI] [PubMed] [Google Scholar]
- [54].Yang C, Yin T, Fu M. Study on the allowable fluctuation ranges of human metabolic rate and thermal environment parameters under the condition of thermal comfort. Build. Environ. 2016;103:155–164. doi: 10.1016/j.buildenv.2016.04.008. [DOI] [Google Scholar]
- [55].E. V. S. S. Osilla and J. L. Marsidi, Physiology, temperature regulation, StatPearls (2020). [PubMed]
- [56].A. Das and R. Alagirusamy, Neurophysiological processes in clothing comfort, Sci. Cloth. Comf. (2010) 31–53.
- [57].Bulcao C F, Frank S M, Raja S N, Tran K M, Goldstein D S. Relative contribution of core and skin temperatures to thermal comfort in humans. J. Therm. Biol. 2000;25:147–150. doi: 10.1016/S0306-4565(99)00039-X. [DOI] [Google Scholar]
- [58].Yao Y, Lian Z, Liu W, Shen Q. Experimental study on skin temperature and thermal comfort of the human body in a recumbent posture under uniform thermal environments. Indoor Built. Environ. 2007;16:505–518. doi: 10.1177/1420326X07084291. [DOI] [Google Scholar]
- [59].Liu W, Lian Z, Deng Q, Liu Y. Evaluation of calculation methods of mean skin temperature for use in thermal comfort study. Build. Environ. 2011;46:478–488. doi: 10.1016/j.buildenv.2010.08.011. [DOI] [Google Scholar]
- [60].Yang Y, Li B, Liu H, Tan M, Yao R. A study of adaptive thermal comfort in a well-controlled climate chamber. Appl. Therm. Eng. 2015;76:283–291. doi: 10.1016/j.applthermaleng.2014.11.004. [DOI] [Google Scholar]
- [61].Tejedor B, Casals M, Gangolells M, Macarulla M, Forcada N. Human comfort modelling for elderly people by infrared thermography: evaluating the thermoregulation system responses in an indoor environment during winter. Build. Environ. 2020;186:107354. doi: 10.1016/j.buildenv.2020.107354. [DOI] [Google Scholar]
- [62].Chen C P, Hwang R L, Chang S Y, Lu Y T. Effects of temperature steps on human skin physiology and thermal sensation response. Build. Environ. 2011;46:2387–2397. doi: 10.1016/j.buildenv.2011.05.021. [DOI] [Google Scholar]
- [63].Ghahramani A, Castro G, Becerik-Gerber B, Yu X. Infrared thermography of human face for monitoring thermoregulation performance and estimating personal thermal comfort. Build. Environ. 2016;109:1–11. doi: 10.1016/j.buildenv.2016.09.005. [DOI] [Google Scholar]
- [64].Choi J H, Loftness V. Investigation of human body skin temperatures as a bio-signal to indicate overall thermal sensations. Build. Environ. 2012;58:258–269. doi: 10.1016/j.buildenv.2012.07.003. [DOI] [Google Scholar]
- [65].Mitchell D, Wyndham C H. Comparison of weighting formulas for calculating mean skin temperature. J. Appl. Physiol. 1969;26:616–622. doi: 10.1152/jappl.1969.26.5.616. [DOI] [PubMed] [Google Scholar]
- [66].Choi J K, Miki K, Sagawa S, Shiraki K. Evaluation of mean skin temperature formulas by infrared thermography. Int. J. Biometeorol. 1997;41:68–75. doi: 10.1007/s004840050056. [DOI] [PubMed] [Google Scholar]
- [67].Burton A C. Human calorimetry. J. Nutr. 1935;9:261–280. doi: 10.1093/jn/9.3.261. [DOI] [Google Scholar]
- [68].Ji W, Cao B, Geng Y, Zhu Y, Lin B. Study on human skin temperature and thermal evaluation in step change conditions: from non-neutrality to neutrality. Energy Build. 2017;156:29–39. doi: 10.1016/j.enbuild.2017.09.037. [DOI] [Google Scholar]
- [69].Lee H M, Cho C K, Yun M H. Development of a temperature control procedure for a room air-conditioner using the concept of just noticeable difference (JND) in thermal sensation. Int. J. Ind. Ergon. 1998;22(3):207–16. doi: 10.1016/S0169-8141(97)00009-7. [DOI] [Google Scholar]
- [70].He M, Lian Z, Chen P. Evaluation on the performance of quilts based on young people’s sleep quality and thermal comfort in winter. Energy Build. 2019;183:174–183. doi: 10.1016/j.enbuild.2018.10.040. [DOI] [Google Scholar]
- [71].Ramanathan N L. A new weighting system for mean surface temperature of the human body. J. Appl. Physiol. 1964;19:531–533. doi: 10.1152/jappl.1964.19.3.531. [DOI] [PubMed] [Google Scholar]
- [72].Zhang Z, Zhang Y, Jin L. Thermal comfort of rural residents in a hot-humid area. Build. Res. Inf. 2017;45:209–221. doi: 10.1080/09613218.2017.1246003. [DOI] [Google Scholar]
- [73].Wang Y, Liu Y, Song C, Liu J. Appropriate indoor operative temperature and bedding micro climate temperature that satisfies the requirements of sleep thermal comfort. Build. Environ. 2015;92:20–29. doi: 10.1016/j.buildenv.2015.04.015. [DOI] [Google Scholar]
- [74].Zhang Y, Chen H, Wang J, Meng Q. Thermal comfort of people in the hot and humid area of China-impacts of season, climate, and thermal history. Indoor Air. 2016;26:820–830. doi: 10.1111/ina.12256. [DOI] [PubMed] [Google Scholar]
- [75].Jeffries O, Goldsmith M, Waldron M. L-Menthol mouth rinse or ice slurry ingestion during the latter stages of exercise in the heat provide a novel stimulus to enhance performance despite elevation in mean body temperature. Eur. J. Appl. Physiol. 2018;118:2435–2442. doi: 10.1007/s00421-018-3970-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [76].Song W, Wang F, Wei F. Hybrid cooling clothing to improve thermal comfort of office workers in a hot indoor environment. Build. Environ. 2016;100:92–101. doi: 10.1016/j.buildenv.2016.02.009. [DOI] [Google Scholar]
- [77].ISO 9886:1992 . Evaluation of Thermal Strain by Physiological Measurements. Geneva, Switzerland: International Organization for Standardization; 1992. [Google Scholar]
- [78].Soebarto V, Zhang H, Schiavon S. A thermal comfort environmental chamber study of older and younger people. Build. Environ. 2019;155:1–14. doi: 10.1016/j.buildenv.2019.03.032. [DOI] [Google Scholar]
- [79].Berkulo M A R, Bol S, Levels K, Lamberts R P, Daanen H A M, Noakes T D. Ad-libitum drinking and performance during a 40-km cycling time trial in the heat. Eur. J. Sport Sci. 2016;16:213–220. doi: 10.1080/17461391.2015.1009495. [DOI] [PubMed] [Google Scholar]
- [80].Ouyang H. Clothes Hygiene. Beijing, China: People’s Military Medicine Press; 1985. [Google Scholar]
- [81].Houdas Y, Ring E F J. Human Body Temperature. Boston, MA, USA: Springer; 1982. [Google Scholar]
- [82].Hardy E F, Dubois J D. The technic of measuring radiation and convection. J. Nutr. 1938;15:461–475. doi: 10.1093/jn/15.5.461. [DOI] [Google Scholar]
- [83].Lan L, Xia L, Tang J, Wyon D P, Liu H. Mean skin temperature estimated from 3 measuring points can predict sleeping thermal sensation. Build. Environ. 2019;162:106292. doi: 10.1016/j.buildenv.2019.106292. [DOI] [Google Scholar]
- [84].Nagano K, Takaki A, Hirakawa M, Tochihara Y. Effects of ambient temperature steps on thermal comfort requirements. Int. J. Biometeorol. 2005;50:33–39. doi: 10.1007/s00484-005-0265-3. [DOI] [PubMed] [Google Scholar]
- [85].Zhou X, Xiong J, Lian Z. Predication of skin temperature and thermal comfort under two-way transient environments. J. Therm. Biol. 2017;70:15–20. doi: 10.1016/j.jtherbio.2017.08.001. [DOI] [PubMed] [Google Scholar]
- [86].Fang Z, Liu H, Li B, Tan M, Olaide O M. Experimental investigation on thermal comfort model between local thermal sensation and overall thermal sensation. Energy Build. 2018;158:1286–1295. doi: 10.1016/j.enbuild.2017.10.099. [DOI] [Google Scholar]
- [87].Xiong J, Lian Z, Zhou X, You J, Lin Y. Effects of temperature steps on human health and thermal comfort. Build. Environ. 2015;94:144–154. doi: 10.1016/j.buildenv.2015.07.032. [DOI] [Google Scholar]
- [88].Xiong J, Zhou X, Lian Z, You J, Lin Y. Thermal perception and skin temperature in different transient thermal environments in summer. Energy Build. 2016;128:155–163. doi: 10.1016/j.enbuild.2016.06.085. [DOI] [Google Scholar]
- [89].Xiong J, Lian Z, Zhou X, You J, Lin Y. Potential indicators for the effect of temperature steps on human health and thermal comfort. Energy Build. 2016;113:87–98. doi: 10.1016/j.enbuild.2015.12.031. [DOI] [Google Scholar]
- [90].Jin Q, Duanmu L. Experimental study of thermal sensation and physiological response during step changes in non-uniform indoor environment. Sci. Technol. Built Environ. 2016;22:237–247. doi: 10.1080/23744731.2016.1124714. [DOI] [Google Scholar]
- [91].Gagge A P, Nishi Y. Compr. Physiol. Hoboken, NJ, USA: John Wiley and Sons, Inc.; 2011. Heat exchange between human skin surface and thermal environment; pp. 69–92. [Google Scholar]
- [92].Fang Z, Liu H, Li B, Du X, Baldwin A. Investigation of the effects of temperature for supplied air from a personal nozzle system on thermal comfort of air travelers. Build. Environ. 2017;126:82–97. doi: 10.1016/j.buildenv.2017.09.020. [DOI] [Google Scholar]
- [93].Zhao M, Gao C, Li J, Wang F. Effects of two cooling garments on post-exercise thermal comfort of female subjects in the heat. Fibers Polym. 2015;16:1403–1409. doi: 10.1007/s12221-015-1403-0. [DOI] [Google Scholar]
- [94].Nadel E R, Mitchell J W, Stolwijk J A J. Differential thermal sensitivity in the human skin. Pflügers Arch. Eur. J. Physiol. 1973;340:71–76. doi: 10.1007/BF00592198. [DOI] [PubMed] [Google Scholar]
- [95].Crawshaw L I, Nadel E R, Stolwijk J A J, Stamford B A. Effect of local cooling on sweating rate and cold sensation. Pflügers Arch. Eur. J. Physiol. 1975;354:19–27. doi: 10.1007/BF00584500. [DOI] [PubMed] [Google Scholar]
- [96].Liu W, Lian Z, Deng Q. Use of mean skin temperature in evaluation of individual thermal comfort for a person in a sleeping posture under steady thermal environment. Indoor Built Environ. 2015;24:489–499. doi: 10.1177/1420326X14527975. [DOI] [Google Scholar]
- [97].Wei P, Zhou B, Tan M, Li F, Lu J, Dong Z, Xu M, Wang G, Xiao Y. Study on thermal comfort under non-uniform thermal environment condition in domestic kitchen. Procedia Eng. 2017;205:2041–2048. doi: 10.1016/j.proeng.2017.10.084. [DOI] [Google Scholar]
- [98].Song C, Liu Y, Zhou X, Wang X, Li J, Liu J. Temperature field of bed climate and thermal comfort assessment based on local thermal sensations. Build. Environ. 2016;95:381–390. doi: 10.1016/j.buildenv.2015.09.023. [DOI] [Google Scholar]
- [99].Stolwijk J A, Hardy J D. Partitional calorimetric studies of responses of man to thermal transients. J. Appl. Physiol. 1966;21:967–977. doi: 10.1152/jappl.1966.21.3.967. [DOI] [PubMed] [Google Scholar]
- [100].ISO 9920:1992 . Ergonomics-Estimation of the Thermal Insulation and Evaporative Resistance of a Clothing Ensemble. Geneva, Switzerland: International Organization for Standardization; 1992. [Google Scholar]
- [101].Lan L, Lian Z, Liu W, Liu Y. Investigation of gender difference in thermal comfort for Chinese people. Eur. J. Appl. Physiol. 2008;102:471–480. doi: 10.1007/s00421-007-0609-2. [DOI] [PubMed] [Google Scholar]
- [102].Jian Y, Chang X, Wu Y, Gao M, Tian Y. Study on dynamic change of skin temperatures in actual air-conditioned environment and its effects on air conditioning off behavior. Procedia Eng. 2017;205:3389–3396. doi: 10.1016/j.proeng.2017.09.846. [DOI] [Google Scholar]
- [103].Zhou X, Lai D, Chen Q. Experimental investigation of thermal comfort in a passenger car under driving conditions. Build. Environ. 2019;149:109–119. doi: 10.1016/j.buildenv.2018.12.022. [DOI] [Google Scholar]
- [104].Liu K, Nie T, Liu W, Liu Y, Lai D. A machine learning approach to predict outdoor thermal comfort using local skin temperatures. Sustain. Cities Soc. 2020;59:102216. doi: 10.1016/j.scs.2020.102216. [DOI] [Google Scholar]
- [105].K. Katić, R. Li and W. Zeiler, Machine learning algorithms applied to a prediction of personal overall thermal comfort using skin temperatures and occupants’ heating behavior, Appl. Ergon., 85 (2020). [DOI] [PubMed]
- [106].Khan M, Pretty C G, Amies A C, Elliott R, Shaw G M, Chase J G. Investigating the effects of temperature on photoplethysmography. IFAC-PapersOnLine. 2015;28:360–365. doi: 10.1016/j.ifacol.2015.10.166. [DOI] [Google Scholar]
- [107].Lucangelo U, Blanch L. Applied physiology in intensive care medicine. Intensive Care Medicine. 2004;30(4):576–579. doi: 10.1007/s00134-004-2194-8. [DOI] [PubMed] [Google Scholar]
- [108].Mendelson Y. Pulse oximetry: theory and applications for noninvasive monitoring. Clin Chem. 1992;38:1601–1607. doi: 10.1093/clinchem/38.9.1601. [DOI] [PubMed] [Google Scholar]
- [109].Wang L, Lin Y, Wang J. A RR interval based automated apnea detection approach using residual network. Comput. Methods Programs Biomed. 2019;176:93–104. doi: 10.1016/j.cmpb.2019.05.002. [DOI] [PubMed] [Google Scholar]
- [110].Orphanidou C. Derivation of respiration rate from ambulatory ECG and PPG using ensemble empirical mode decomposition: comparison and fusion. Comput. Biol. Med. 2017;81:45–54. doi: 10.1016/j.compbiomed.2016.12.005. [DOI] [PubMed] [Google Scholar]
- [111].Yao Y, Lian Z, Liu W, Jiang C, Liu Y, Lu H. Heart rate variation and electroencephalograph — the potential physiological factors for thermal comfort study. Indoor Air. 2009;19:93–101. doi: 10.1111/j.1600-0668.2008.00565.x. [DOI] [PubMed] [Google Scholar]
- [112].Task Force of the European Society of Cardiology and the North American Society of Pacing Electrophysiology Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation. 1996;93(5):1043–1065. doi: 10.1161/01.CIR.93.5.1043. [DOI] [PubMed] [Google Scholar]
- [113].Rickards C A, Ryan K L, Convertino V A. Characterization of common measures of heart period variability in healthy human subjects: implications for patient monitoring. J. Clin. Monit. Comput. 2010;24:61–70. doi: 10.1007/s10877-009-9210-z. [DOI] [PubMed] [Google Scholar]
- [114].Zhu H, Wang H, Liu Z, Li D, Kou G, Li C. Experimental study on the human thermal comfort based on the heart rate variability (HRV) analysis under different environments. Sci. Total Environ. 2018;616–617:1124–1133. doi: 10.1016/j.scitotenv.2017.10.208. [DOI] [PubMed] [Google Scholar]
- [115].Choi J H, Loftness V, Lee D W. Investigation of the possibility of the use of heart rate as a human factor for thermal sensation models. Build. Environ. 2012;50:165–175. doi: 10.1016/j.buildenv.2011.10.009. [DOI] [Google Scholar]
- [116].Jung W, Jazizadeh F. Vision-based thermal comfort quantification for HVAC control. Build. Environ. 2018;142:513–523. doi: 10.1016/j.buildenv.2018.05.018. [DOI] [Google Scholar]
- [117].Nkurikiyeyezu K N, Suzuki Y, Lopez G F. Heart rate variability as a predictive biomarker of thermal comfort. J. Ambient Intell. Humaniz. Comput. 2018;9:1465–1477. doi: 10.1007/s12652-017-0567-4. [DOI] [Google Scholar]
- [118].Chaudhuri T, Soh Y C, Li H, Xie L. Machine learning driven personal comfort prediction by wearable sensing of pulse rate and skin temperature. Build. Environ. 2020;170:106615. doi: 10.1016/j.buildenv.2019.106615. [DOI] [Google Scholar]
- [119].Liu S, Schiavon S, Das H P, Jin M, Spanos C J. Personal thermal comfort models with wearable sensors. Build. Environ. 2019;162:106281. doi: 10.1016/j.buildenv.2019.106281. [DOI] [Google Scholar]
- [120].Niu J, Hong B, Geng Y, Mi J, He J. Summertime physiological and thermal responses among activity levels in campus outdoor spaces in a humid subtropical city. Sci. Total Environ. 2020;728:138757. doi: 10.1016/j.scitotenv.2020.138757. [DOI] [PubMed] [Google Scholar]
- [121].Lee H, Choi Y, Chun C. The effect of indoor air temperature on occupants’ attention ability based on the electroencephalogram analysis. 10th Int. Conf. Heal. Build. 2012;2012(3):2083–2088. [Google Scholar]
- [122].Horiba Y, Kamijo M, Hosoya S, Takatera M, Sadoyama T, Shimizu Y. Availability of evaluating thermal comfortable feeling by using EEG analysis. KANSEI Engineering International. 2000;1(2):9–14. doi: 10.5057/kei.1.2_9. [DOI] [Google Scholar]
- [123].Kim M, Chong S C, Chun C, Choi Y. Effect of thermal sensation on emotional responses as measured through brain waves. Build. Environ. 2017;118:32–39. doi: 10.1016/j.buildenv.2017.03.023. [DOI] [Google Scholar]
- [124].Wu M, Li H, Qi H. Using electroencephalogram to continuously discriminate feelings of personal thermal comfort between uncomfortably hot and comfortable environments. Indoor Air. 2020;30:534–543. doi: 10.1111/ina.12644. [DOI] [PubMed] [Google Scholar]
- [125].Son Y J, Chun C. Research on electroencephalogram to measure thermal pleasure in thermal alliesthesia in temperature step-change environment. Indoor Air. 2018;28:916–923. doi: 10.1111/ina.12491. [DOI] [PubMed] [Google Scholar]
- [126].Angelova R A, Georgieva E, Markov D G, Kehayova N, Simova I, Stankov P, Velichkova R. The application of brain activity as a method for assessment of the human thermophysiological comfort and performance in cold indoor environment. IOP Conf. Ser. Mater. Sci. Eng. 2019;618:012043. doi: 10.1088/1757-899X/618/1/012043. [DOI] [Google Scholar]
- [127].Shan X, Yang E H, Zhou J, Chang V W C. Human-building interaction under various indoor temperatures through neural-signal electroencephalogram (EEG) methods. Build. Environ. 2018;129:46–53. doi: 10.1016/j.buildenv.2017.12.004. [DOI] [Google Scholar]
- [128].Lv B, Su C, Yang L, Wu T. Effects of stimulus mode and ambient temperature on cerebral responses to local thermal stimulation: an EEG study. Int. J. Psychophysiol. 2017;113:17–22. doi: 10.1016/j.ijpsycho.2017.01.003. [DOI] [PubMed] [Google Scholar]
- [129].Kum J-S, Kim D-G, Kim H-C. A study of physiology signal change by air conditioner temperature change. J. Fisheries and Marine Sciences Education. 2007;19(3):502–509. [Google Scholar]
- [130].Zhang F, Haddad S, Nakisa B, Rastgoo M N, Candido C, Tjondronegoro D, de Dear R. The effects of higher temperature setpoints during summer on office workers’ cognitive load and thermal comfort. Build. Environ. 2017;123:176–188. doi: 10.1016/j.buildenv.2017.06.048. [DOI] [Google Scholar]
- [131].Yao Y, Lian Z, Liu W, Shen Q. Experimental study on physiological responses and thermal comfort under various ambient temperatures. Physiol. Behav. 2008;93:310–321. doi: 10.1016/j.physbeh.2007.09.012. [DOI] [PubMed] [Google Scholar]
- [132].Lan L, Lian Z W, Lin Y B. Comfortably cool bedroom environment during the initial phase of the sleeping period delays the onset of sleep in summer. Build. Environ. 2016;103:36–43. doi: 10.1016/j.buildenv.2016.03.030. [DOI] [Google Scholar]
- [133].Shin Y, Im G, Yu K, Cho H. Experimental study on the change in driver’s physiological signals in automobile HVAC system under full load condition. Appl. Therm. Eng. 2017;112:1213–1222. doi: 10.1016/j.applthermaleng.2016.10.193. [DOI] [Google Scholar]
- [134].Kim M S, Kum J S, Park J I, Kim D G. Research on the thermal comfort heating mode considering psychological and physiological response of automobile drivers. Korean J. Air-Conditioning and Refrigerating Engineers. 2018;30(3):149–157. doi: 10.6110/KJACR.2018.30.3.149. [DOI] [Google Scholar]
