Skip to main content
Microbiology Resource Announcements logoLink to Microbiology Resource Announcements
. 2021 Sep 2;10(35):e00545-21. doi: 10.1128/MRA.00545-21

Genome Assemblies across the Diverse Evolutionary Spectrum of Leishmania Protozoan Parasites

Wesley C Warren a, Natalia S Akopyants b, Deborah E Dobson b, Christiane Hertz-Fowler c, Lon-Fye Lye b, Peter J Myler d,e,f,g, Gowthaman Ramasamy d, Achchuthan Shanmugasundram c, Fatima Silva-Franco c, Sascha Steinbiss h, Chad Tomlinson i, Richard K Wilson j, Stephen M Beverley b,
Editor: Vincent Brunok
PMCID: PMC8411921  PMID: 34472979

ABSTRACT

We report the high-quality draft assemblies and gene annotations for 13 species and/or strains of the protozoan parasite genera Leishmania, Endotrypanum, and Crithidia, which span the phylogenetic diversity of the subfamily Leishmaniinae within the kinetoplastid order of the phylum Euglenazoa. These resources will support studies on the origins of parasitism.

ANNOUNCEMENT

Leishmania species are widespread parasites of mammals transmitted by biting insects. Over 1.7 billion people worldwide are at risk, with hundreds of millions of people infected (14). The genus comprises more than 50 species, which are primarily zoonotic but in humans cause disease ranging from mild cutaneous lesions to more disseminated forms to fatal visceralizing disease (5). While parasitism by Leishmania has been intensively studied, the species-specific factors that enable mammalian or insect host infections are less well understood. To provide a broad phylogenetic snapshot, we selected a spectrum of species and strains across the subfamily Leishmaniinae (5), targeting lineages within the subgenera Leishmania, Viannia, and Mundinia, as well as the allied genus Endotrypanum and the outgroup Crithidia fasciculata (Table 1). The WU Institutional Biosafety Committee reviewed and approved the parasite work reported here (01-015).

TABLE 1.

Description of Leishmania species and strains, including assembly parameters and links

Genus or subgenus Species Strain WHO code Source Provenance BioProject accession no.a Sequencing platforms Assembler No. of contigs N50 (bp) Assembly size (bp) % GC No. of pseudochromosomes No. of protein-coding genes Reference for other assembly
L. Leishmania L. major SD75.1 (clone) MHOM/SN/74/SD Human, cutaneous D. Sacks, Bethesda, MD PRJNA50303 454, Illumina Newbler 891 95,380 31,727,271 59.3 36 8,818
LV39 (clone 5) MHOM/Sv/59/P Human, cutaneous R. Titus, Boston, MA PRJNA50301 454, Illumina Newbler 1,667 71,452 31,961,985 59.5 36 8,971
L. gerbilli LEM452 MRHO/CN/60/GERBILLI Gerbil P. Bastien, J.-P. Dedet, Montpellier, France PRJNA192717 454, Illumina AllPaths 1,248 57,008 30,822,621 59.6 36 8,599
L. turanica LEM423 MRHO/SU/65/VL Gerbil P. Bastien, J.-P. Dedet, Montpellier, France PRJNA192712 454, Illumina AllPaths 1,669 39,210 30,876,294 59.5 36 8,608
L. arabica LEM1108 MPSA/SA/83/JISH220 Psammomys sp. P. Bastien, J.-P. Dedet, Montpellier, France PRJNA192710 454, Illumina AllPaths 1,530 52,119 30,774,332 59.2 36 8,646
L. tropica L590 MHOM/IL/1990/P283 Human, cutaneous C. Jaffe, Jerusalem, Israel PRJNA169676 454, Illumina AllPaths 1,938 32,739 31,326,083 59.6 36 8,824 12
L. aethiopica L147 MHOM/ET/1972/L100 Human, diffuse cutaneous, relapsing C. Jaffe, Jerusalem, Israel PRJNA169673 454, Illumina AllPaths 1,758 38,498 31,026,739 60.1 36 8,722
L. Viannia L. braziliensis M2903 MHOM/BR/75/M2903 Human, cutaneous J. Shaw, Brazil PRJNA165955 454, Illumina Newbler 3,934 61,918 32,590,753 57.4 35 9,269
L. panamensis L13 MHOM/COL/81/L13 Human, mucosal N. Saravia, Cali, Colombia PRJNA165959 454, Illumina AllPaths 3,163 22,576 31,108,242 57.4 35 8,665
L. Mundinia L. enriettii LEM3045 MCAV/BR/95/CUR3 Cavia porcellus (guinea pig) P. Bastien, J.-P. Dedet, Montpellier, France PRJNA192711 454, Illumina AllPaths 1,171 102,666 30,427,298 59.3 36 8,731 14
L. martiniquensis LEM2494 MHOM/MQ/92/MAR1 Human, diffuse cutaneous, HIV P. Bastien, J.-P. Dedet, Montpellier, France PRJNA192703 454, Illumina AllPaths 628 147,290 30,528,357 59.6 36 8,483 14
Endotrypanum Endotrypanum monterogei LV88 None Choloepus hoffmanni (sloth) Michael Chance, Liverpool, UK PRJNA165953 454, Illumina Newbler 3,517 33,059 32,086,870 52.5 36 8,285 13
Crithidia Crithidia fasciculata Cf-C1 (clone) None Mosquito Larry Simpson, Los Angeles, CA PRJNA165885 454, Illumina, PacBio HGAP 494 778,443 41,297,378 57.0 30 9,619 8
a

Each BioProject link contains links to the current assembly, primary data sets, and other relevant information.

Parasites were cultivated in M199 or Schneider’s medium (6) and grown to late log phase before harvesting, lysis, and DNA purification by phenol-chloroform extraction and/or banding in CsCl gradients (to remove mitochondrial maxi- or minicircle DNA). Sequencing libraries were generated using the Illumina paired-end DNA sample preparation kit (PE-102-1001) according to the manufacturer’s directions. Fragment libraries of 3 and 8 kb were prepared using protocols for 454 sequencing (Roche Life Sciences). Sequencing was performed on either a 454 GS FLX Titanium (average read length, 305 bp; Roche 454 Life Sciences) or Illumina Genome Analyzer IIx (GAIIx) and HiSeq 2000 instruments (paired-end 100-bp format), except for Crithidia, which additionally utilized long reads generated on an RS II instrument (P5/C3 chemistry; Pacific Biosciences) (7). The total sequence genome coverage on the Illumina GAIIx and HiSeq 2000 instruments was on average 105× with tiered library insert sizes (50× fragments; 45 × 3 kb, 10 × 8 kb, and 0.05 × 40 kb). For all Illumina sequences, we used the read processing steps within the AllPaths-LG (8) software prior to de novo assembly, which incorporates read error correction methods described by Pevzner et al. (9). Genome assemblies were conducted with default parameters using Newbler v2.0.1 (10) for 454 reads, AllPaths-LG (8) for Illumina reads, and HGAP v3 (11) for long reads (Table 1). Contigs and scaffolds were organized into pseudochromosomes using ABACAS2 (https://github.com/satta/ABACAS2), a successor to ABACAS (12), by alignment with the Leishmania major Friedlin genome sequence, with the exception of Leishmania braziliensis M2903 and Leishmania panamensis, which were aligned to the L. braziliensis M2904 genome. The estimated haploid genome sizes ranged from 30.4 to 41.3 megabases (13).

Gene annotations were performed using the comprehensive Companion tool, which incorporates a variety of de novo prediction criteria, as well as information from closely related genomes when available (14). The number of protein-coding genes predicted ranged from 8,285 to 9,619, typical of other Leishmania species (13). Full annotations, as well as a variety of tools for the visualization or analysis of these genomes, are available from TriTrypDB (www.tritrypdb.org).

Data availability.

The assemblies have been deposited in the NCBI GenBank repository under the BioProject accession numbers in Table 1, including links to the primary data and annotations (PRJNA50303, PRJNA50301, PRJNA192717, PRJNA192712, PRJNA192710, PRJNA169676, PRJNA169673, PRJNA165955, PRJNA165959, PRJNA192711, PRJNA192703, PRJNA165953, and PRJNA165885). The chromosome builds are available through the TriTrypDB portal (http://tritrypdb.org/tritrypdb).

ACKNOWLEDGMENTS

NIH grant AI29646 to S.M.B. provided support for N.S.A., D.E.D., and L.-F.L.; NIH-NHGRI grant HG00307907 to R.K.W. supported W.C.W. and C.T.; and AI103858 to P.J.M. supported G.R. Funding to C.H.-F. from Wellcome Trust grants WT099198MA and WT108443MA provided support for F.S.-F., A.S., and S.S.

We thank Patrick Minx for assembly curation. We thank the colleagues listed in Table 1 for generously providing the strains and Brian Brunk, David Roos, Thomas Otto, and Matt Berriman for discussions.

This research was funded in whole, or in part, by the Wellcome Trust (WT099198MA and WT108443MA). For the purpose of open access, the author has applied a CC BY public copyright license to any author accepted manuscript version arising from this submission.

Contributor Information

Stephen M. Beverley, Email: stephen.beverley@wustl.edu.

Vincent Bruno, University of Maryland School of Medicine.

REFERENCES

  • 1.Pigott DM, Bhatt S, Golding N, Duda KA, Battle KE, Brady OJ, Messina JP, Balard Y, Bastien P, Pratlong F, Brownstein JS, Freifeld CC, Mekaru SR, Gething PW, George DB, Myers MF, Reithinger R, Hay SI. 2014. Global distribution maps of the leishmaniases. Elife 3:e02851. doi: 10.7554/eLife.02851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Alvar J, Velez ID, Bern C, Herrero M, Desjeux P, Cano J, Jannin J, den Boer M, WHO Leishmaniasis Control Team . 2012. Leishmaniasis worldwide and global estimates of its incidence. PLoS One 7:e35671. doi: 10.1371/journal.pone.0035671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Banuls AL, Bastien P, Pomares C, Arevalo J, Fisa R, Hide M. 2011. Clinical pleiomorphism in human leishmaniases, with special mention of asymptomatic infection. Clin Microbiol Infect 17:1451–1461. doi: 10.1111/j.1469-0691.2011.03640.x. [DOI] [PubMed] [Google Scholar]
  • 4.Singh OP, Hasker E, Sacks D, Boelaert M, Sundar S. 2014. Asymptomatic Leishmania infection: a new challenge for Leishmania control. Clin Infect Dis 58:1424–1429. doi: 10.1093/cid/ciu102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Espinosa OA, Serrano MG, Camargo EP, Teixeira MMG, Shaw JJ. 2018. An appraisal of the taxonomy and nomenclature of trypanosomatids presently classified as Leishmania and Endotrypanum. Parasitology 145:430–442. doi: 10.1017/S0031182016002092. [DOI] [PubMed] [Google Scholar]
  • 6.Lye L-F, Owens K, Shi H, Murta SMF, Vieira AC, Turco SJ, Tschudi C, Ullu E, Beverley SM. 2010. Retention and loss of RNA interference pathways in trypanosomatid protozoans. PLoS Pathog 6:e1001161. doi: 10.1371/journal.ppat.1001161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Filosa JN, Berry CT, Ruthel G, Beverley SM, Warren WC, Tomlinson C, Myler PJ, Dudkin EA, Povelones ML, Povelones M. 2019. Dramatic changes in gene expression in different forms of Crithidia fasciculata reveal potential mechanisms for insect-specific adhesion in kinetoplastid parasites. PLoS Negl Trop Dis 13:e0007570. doi: 10.1371/journal.pntd.0007570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Gnerre S, Maccallum I, Przybylski D, Ribeiro FJ, Burton JN, Walker BJ, Sharpe T, Hall G, Shea TP, Sykes S, Berlin AM, Aird D, Costello M, Daza R, Williams L, Nicol R, Gnirke A, Nusbaum C, Lander ES, Jaffe DB. 2011. High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc Natl Acad Sci USA 108:1513–1518. doi: 10.1073/pnas.1017351108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Pevzner PA, Tang H, Waterman MS. 2001. An Eulerian path approach to DNA fragment assembly. Proc Natl Acad Sci USA 98:9748–9753. doi: 10.1073/pnas.171285098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen Y-J, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer MLI, Jarvie TP, Jirage KB, Kim J-B, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, et al. 2005. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380. doi: 10.1038/nature03959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Chaisson MJP, Huddleston J, Dennis MY, Sudmant PH, Malig M, Hormozdiari F, Antonacci F, Surti U, Sandstrom R, Boitano M, Landolin JM, Stamatoyannopoulos JA, Hunkapiller MW, Korlach J, Eichler EE. 2015. Resolving the complexity of the human genome using single-molecule sequencing. Nature 517:608–611. doi: 10.1038/nature13907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Assefa S, Keane TM, Otto TD, Newbold C, Berriman M. 2009. ABACAS: algorithm-based automatic contiguation of assembled sequences. Bioinformatics 25:1968–1969. doi: 10.1093/bioinformatics/btp347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Ivens AC, Peacock CS, Worthey EA, Murphy L, Aggarwal G, Berriman M, Sisk E, Rajandream M-A, Adlem E, Aert R, Anupama A, Apostolou Z, Attipoe P, Bason N, Bauser C, Beck A, Beverley SM, Bianchettin G, Borzym K, Bothe G, Bruschi CV, Collins M, Cadag E, Ciarloni L, Clayton C, Coulson RMR, Cronin A, Cruz AK, Davies RM, De Gaudenzi J, Dobson DE, Duesterhoeft A, Fazelina G, Fosker N, Frasch AC, Fraser A, Fuchs M, Gabel C, Goble A, Goffeau A, Harris D, Hertz-Fowler C, Hilbert H, Horn D, Huang Y, Klages S, Knights A, Kube M, Larke N, Litvin L, et al. 2005. The genome of the kinetoplastid parasite, Leishmania major. Science 309:436–442. doi: 10.1126/science.1112680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Steinbiss S, Silva-Franco F, Brunk B, Foth B, Hertz-Fowler C, Berriman M, Otto TD. 2016. Companion: a Web server for annotation and analysis of parasite genomes. Nucleic Acids Res 44:W29–W34. doi: 10.1093/nar/gkw292. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

The assemblies have been deposited in the NCBI GenBank repository under the BioProject accession numbers in Table 1, including links to the primary data and annotations (PRJNA50303, PRJNA50301, PRJNA192717, PRJNA192712, PRJNA192710, PRJNA169676, PRJNA169673, PRJNA165955, PRJNA165959, PRJNA192711, PRJNA192703, PRJNA165953, and PRJNA165885). The chromosome builds are available through the TriTrypDB portal (http://tritrypdb.org/tritrypdb).


Articles from Microbiology Resource Announcements are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES