Skip to main content
Chinese Journal of Reparative and Reconstructive Surgery logoLink to Chinese Journal of Reparative and Reconstructive Surgery
. 2018 Sep;32(9):1137–1143. [Article in Chinese] doi: 10.7507/1002-1892.201804119

仿生矿化胶原人工骨在兔脊柱后外侧融合中的应用研究

Application of biomimetic mineralized collagen bone graft material in rabbits posterolateral spinal fusion

Tianxi SONG 1, Yanli HU 1, Yun CUI 1, Zhimin HE 1, Jinliang ZHU 1, Xiumei WANG 2, Zhiye QIU 1,2,*
PMCID: PMC8413974  PMID: 30129347

Abstract

Objective

To investigate the bone repair and regeneration abilities of biomimetic mineralized collagen bone graft material and autologous bone marrow in rabbit posterolateral spinal fusion model.

Methods

Twenty-seven 20-week-old male New Zealand white rabbits were used to establish the posterolateral spinal fusion model of L5 and L6 segments by stripping the transverse process and exposing cancellous bone with electric burr. The rabbits were randomly divided into 3 groups, 9 in each group. Groups A, B, and C were implanted 1.5 mL autologous iliac bone, 1.5 mL (30 mm×10 mm×5 mm) biomimetic mineralized collagen bone graft material, and 1.5 mL (30 mm×10 mm×5 mm) biomimetic mineralized collagen bone graft material and autologous bone marrow in each bone defect. At 4, 8, and 12 weeks after operation, the apparent hardness of the bone grafting area was observed by manipulation method, in order to evaluate bone graft fusion effects. Three animals were sacrificed in each group at each time point, the vertebral body specimens were excised and the bone defect repair and fusion were observed by X-ray films, and three-dimensional CT examination was performed to evaluate whether new bone was formed in the body. HE staining was performed at each time point to observe the formation of new bone and the repair and fusion of bone defects.

Results

The manipulation test showed that bone graft fusion was not found in all groups at 4 weeks after operation; 3 (50.0%), 2 (33.3%), and 4 (66.7%) of groups A, B, and C reached bone graft fusion at 8 weeks after operation; 5 (83.3%), 4 (66.7%), and 5 (83.3%) of groups A, B, and C reached bone graft fusion at 12 weeks after operation; the fusion rate of group C was similar to that of group A, and all higher than that of group B. X-ray film observation showed that the fusion rate of group C at 8 and 12 weeks after operation was higher than that of group B, which was similar to group A. Three-dimensional CT observation showed that the degree of bone fusion in group C was better than that in group B, which was close to group A. HE staining observation showed that large area of mature lamellar bone coverage appeared in the bone graft area of groups A, B, and C at 12 weeks after operation, the material was completely degraded, and the marginal boundary of the host bone disappeared and tightly combined.

Conclusion

Biomimetic mineralized collagen bone graft material mixed with autologous bone marrow has good osteoinduction and osteogenesis guidance. Compared with biomimetic mineralized collagen bone graft material, it has better and faster osteogenesis effect, which is close to autologous bone transplantation.

Keywords: Mineralized collagen, bone marrow, spinal fusion, osteoinductivity, rabbit


天然骨具有复杂的分级结构,在超微结构水平上羟基磷灰石(hydroxyapatite,HA)纳米晶粒与胶原分子间呈现有序排列结构,形成矿化胶原复合成分和微结构。其中,胶原在骨组织中主要属于Ⅰ型胶原蛋白,以胶原纤维的形式存在[1]。虽然胶原纤维的抗压性和弹性均较差,HA 结晶脆而易碎,但两者结合后,其性质会发生根本变化,使骨组织既具有坚实的强度,又具备足够的弹性,机械性能和生理功能都得到极大提高,成为人体理想的结构材料[2-3]

基于清华大学材料学院崔福斋教授的生物矿化机制发现以及具有自主知识产权的体外仿生矿化技术,北京奥精医药科技有限公司设计生产了仿生矿化胶原人工骨修复材料 “骼金”[4]。该人工骨修复材料主要成分为 Ⅰ 型胶原蛋白和 HA,具有微观多孔结构,孔隙率>70%,孔径 50~500 μm,与人体松质骨近似。其具备优异的骨传导性,并参与骨代谢,与人体骨骼有类似的重塑过程[5-6]

脊柱后外侧融合也被称为后外侧沟槽脊柱融合,是一种在脊柱后外侧横突和棘突之间的“沟槽”部位放置骨移植物[7],获得脊柱融合的方法,多用于临床脊柱骨修复或再生的组织工程医疗器械产品的临床前研究和开发。本研究通过建立兔脊柱后外侧融合模型,分别植入自体骨、单纯骼金人工骨修复材料和骼金人工骨修复材料复合骨髓,观察和评价新骨长入、融合及材料降解情况,为该仿生矿化胶原人工骨的下一步研究及用于临床脊柱融合提供可靠的理论依据。

1. 材料与方法

1.1. 兔脊柱后外侧融合模型制备及分组

20 周龄普通级雄性新西兰大白兔 27 只,体质量(5.0±0.5)kg,由北京隆安实验动物养殖中心提供。按文献[8-10]方法制备兔脊柱后外侧融合模型。实验动物以复方氯胺酮(0.1 mL/kg)肌肉注射麻醉,腰骶去毛消毒,作后背部正中切口,两侧椎旁正中切开浅层肌肉,充分显露 L5、L6 节段,用电毛刺剥离横突并暴露松质骨。将动物随机分为 3 组,每组 9 只。各组分别于骨缺损处植入 1.5 mL 自体髂骨(自体骨组,A 组)、1.5 mL(30 mm×10 mm×5 mm)单纯骼金人工骨修复材料(单纯材料组,B 组)和 1.5 mL(30 mm×10 mm×5 mm)骼金人工骨修复材料复合兔自体骨髓(按 1∶1 比例混合,材料复合骨髓组,C 组),置于两侧椎弓根床的去皮质横突之间,然后用 2-0 缝合线闭合筋膜切口,3-0 缝合线缝合皮肤,再以 3~4 mm 间隔放置皮肤钉。术后 3 d 肌肉注射青霉素(160 万 U/d)预防感染。

1.2. 观测指标

1.2.1. 大体观察

术后 14 d 内观察动物进食、切口愈合、躯体脊柱活动等情况。术后 4、8、12 周采用手触法观察植骨区表观硬度,即用手轻揉兔 L45、L56 和 L67 的活动程度。如无活动判定为融合,有活动则判定为未融合。

1.2.2. 影像学观察

术后 4、8、12 周每组取 3 只动物,过量麻醉处死后完全剔除软组织、肌肉,切取椎体标本。采用 X 线机(Siemens 公司,德国)观察骨缺损修复和融合情况,植骨区有连续骨小梁长入判定为融合,其他情况判定为未融合;测试条件:距离 100 cm,60 kVp 及 300 mA,曝光 0.03 s。采用 Lightspeed Ultra 16 CT 机(GE 公司,美国)行三维 CT 检查(100 kV,350 mA),在 3 个平面(冠状面、矢状面和轴向视图)使用 Mimics 软件(Materialise 公司,比利时)创建三维模型,观察评价新生骨是否在体内形成。

1.2.3. 组织学观察

术后各时间点 X 线片观察后,将各组标本置于 4% 多聚甲醛固定 24 h,再将标本沿着两侧植骨区的矢状面和冠状面,使用硬组织切片机(Leica 公司,德国)先切成 3~4 mm 薄片,采用 70%、90%、100% 梯度乙醇脱水、10%EDTA 脱钙液脱钙、树脂包埋后,分层切片 5 μm,常规 HE 染色,Olympus x71 光学显微镜(Olympus 公司,日本)100 倍镜下,沿着 4 个垂直交叉方向视野随机摄取图片,观察新生骨形成及骨缺损修复和融合情况。

2. 结果

2.1. 大体观察

实验过程中无动物死亡。术后前 7 d A、B 组各 1 只呈消瘦状态,此后动物的行为活动、精神状况、食欲和食量均恢复正常;动物安全度过围手术期。动物的外观体征、大小便性状、腺体分泌、体质量和体温等在手术前后均无明显变化。

术后 12 周标本大体观察示,各组横突间新生骨与周围骨质彼此结合,B 组骨质界限模糊;A、C 组较难以区分新生骨与周围骨质界限,彼此之间结合牢固。见图 1

图 1.

General observation of specimens of 3 groups at 12 weeks after operation

术后 12 周各组标本大体观察

a. A 组;b. B 组;c. C 组

a. Group A; b. Group B; c. Group C

图 1

植骨区表观硬度观察显示,术后 4 周各组均未发现明显植骨融合情况。术后 8 周时 A、B、C 组分别有 3 只(50.0%,3/6)、2 只(33.3%,2/6)、4 只(66.7%,4/6)达植骨融合,12 周时分别有 5 只(83.3%,5/6)、4 只(66.7%,4/6)、5 只(83.3%,5/6)达植骨融合;各时间点 C 组融合率均与 A 组相似,且高于 B 组。

2.2. 影像学观察

X 线片观察示:术后 4 周各组均未见骨小梁长入,横突间骨质未融合。术后 8、12 周,A 组已有明显的骨小梁长入,横突间骨质界限模糊,形成骨融合;B 组已有明显新生骨生成,材料与新生骨间可以观察到骨融合;C 组材料与新生骨融为一体更明显,两者间界线也更模糊。术后 8 周 A、B、C 组融合率分别为 50.0%(3/6)、33.3(2/6)、50.0%(3/6),12 周分别为 83.3%(5/6)、66.7%(4/6)、83.3%(5/6),C 组融合率均与 A 组相似,且均高于 B 组。见图 2

图 2.

X-ray films observation of each group at different time points after operation

术后各时间点各组 X 线片观察

从左至右依次为术后 4、8、12 周 a. A 组;b. B 组;c. C 组

From left to right for 4, 8, and 12 weeks after operation, respectively a. Group A; b. Group B; c. Group C

图 2

三维 CT 观察示:术后 4、8 周,B 组植骨区域有明显新生骨形成,新生骨与周围骨之间仍有界限;A、C 组植骨部位显示出更多新生骨。12 周各组横突间骨质界限模糊,A、C 组比 B 组有更完全的骨融合,C 组骨融合效果接近 A 组。见图 3

图 3.

Three-dimensional CT observation of each group at different time points after operation

术后各时间点各组三维 CT 观察

从左至右依次为术后 4、8、12 周 a. A 组;b. B 组;c. C 组

From left to right for 4, 8, and 12 weeks after operation, respectively a. Group A; b. Group B; c. Group C

图 3

2.3. 组织学观察

HE 染色示,术后 4 周,A 组主要以类骨质形式出现,有少量新生骨形成;B 骨仍可见未降解的材料,材料空隙间有大量类骨质和胶原结缔组织填充,少量新生骨从边缘长入;C 组新生骨从边缘长入材料,类骨质也填充于材料间隙内。8 周,A 组出现大面积成熟的板层状新生骨,沿新骨规则排列的纺锤状成骨细胞,骨细胞填充于骨陷窝内;B 组材料降解产物少见,主要被大片状成熟骨和类骨质及结缔组织等填充,与 A 组骨修复效果相仿,无明显差异;C 组材料几乎完全降解,由大片新生骨修复填充替代。12 周,各组植骨区域出现大面积成熟板层骨覆盖,材料已完全降解,与宿主骨边缘界限消失且紧密结合在一起。见图 4

图 4.

Histological observation of each group at different time points after operation (HE×100)

术后各时间点各组组织学观察(HE×100)

从左至右依次为术后 4、8、12 周 a. A 组;b. B 组;c. C 组

From left to right for 4, 8, and 12 weeks after operation, respectively a. Group A; b. Group B; c. Group C

图 4

3. 讨论

在骨科临床,不论是四肢长骨缺损还是脊柱融合等情况,自体骨一直是首选的植入材料,然而取自体骨会造成较多临床并发症[1]。对于大尺寸骨缺损,自体骨量往往不足;取自体骨还会造成新伤口,对于老年及一般情况欠佳患者尤其痛苦;取自体骨往往会延长手术时间和增加出血量。同种异体骨也是临床常用植骨材料,但存在免疫排斥反应和较高的疾病传播风险,容易造成延迟愈合、形成假关节,还存在医学伦理学等问题。人工合成骨材料经过数十年发展,目前已研发出许多种类、不同特点的材料,包括聚甲基丙烯酸甲酯骨水泥,HA、磷酸钙生物陶瓷,磷酸钙、硫酸钙骨水泥,可降解聚酯(如聚乳酸、聚己内酯等),不可降解聚合物(如尼龙 66、聚乙烯等),以及多种材料的复合材料等。这些人工合成骨材料开始用于临床,但在生物相容性、生物可降解性、骨传导性等方面存在问题,尚不能很好地满足临床骨缺损修复要求。

仿生矿化胶原人工骨修复材料[4]是一种 Ⅰ 型胶原和 HA 复合的仿生材料,通过体外仿生矿化专利技术模拟天然骨组织的矿化过程,即以胶原分子为模板,引导钙离子、磷离子在胶原分子上和分子间的特定位点形成 HA 晶核,并调控 HA 晶体的 c 轴沿胶原纤维的方向生长,其中的 HA 是弱结晶的纳米级微粒,呈周期性有序排列在胶原纤维之间和表面。该仿生矿化胶原人工骨修复材料具有与人体天然骨基质一致的化学组成和微观结构,从而能够为骨细胞在成骨过程中发挥生理活性提供良好的微环境,有利于引导骨组织再生。仿生矿化胶原人工骨的转化医学产品骼金系列矿化胶原人工骨修复材料已在临床应用近百万例,引导骨再生修复效果接近自体骨。

在近几年临床中,骼金系列矿化胶原人工骨在不同科室被应用于不同适应证,并均取得了很好的临床效果。如 Feng 等[11]将该材料用于拔牙窝位点保留时,在成骨高度方面优于非纳米级 HA/胶原骨(对照组),能够有效地保留拔牙后的牙槽脊高度。Qiu 等[12]和 Yu 等[13]将该材料用于颅骨重建切开钻孔的填充,能够引导颅骨缺损的再生修复。Peng 等[14]使用该材料治疗肱骨近端骨质疏松性骨折,证实其可以加速老年患者肱骨近端骨折愈合,提高疗效,减少并发症的发生。Wang 等[15]、Jiang 等[16]、Wu 等[17]在椎体成型临床观察中发现,矿化胶原改性聚甲基丙烯酸甲酯骨水泥可以有效降低相邻椎体二次骨折的发生,并提高了骨水泥的骨整合能力。Ghate 等[18]将该材料应用于跖骨楔关节塌陷及半脱位患者,证实了其是自体植骨融合内固定术的优良替代方式。Kou 等[19]将该材料用于长骨骨不连的治疗,患者愈合良好。

为了进一步扩大矿化胶原人工骨的适用范围,特别是与其他生物材料复合,以及在发育期患者骨缺损修复领域的应用,人们也开展了相应研究。如 Xia 等[20]为了改善仿生矿化胶原人工骨的临床应用,将纳米纤维肽水凝胶偶联到仿生矿化胶原人工骨,形成模仿细胞外基质的生物活性支架(cnHAC)。Wang 等[21]和 Chen 等[22]研究了矿化胶原在幼羊颅骨修复上,材料的自体骨转化速度与骨再生一致,可以有效替代钛网等不可降解的材料,在小儿颅骨大面积功能重建上有着良好的前景。

本研究中用于兔脊柱后外侧融合的仿生矿化胶原人工骨具有较高孔隙率(>70%)以及适宜细胞爬行和骨组织长入的孔径大小(50~500 μm),是一种良好的支架材料,其仿生的成分和微观结构决定了其良好的组织相容性和生物可降解性,特别适合成骨细胞的黏附、生长、增殖和分化,从而有利于引导骨缺损的再生修复。从术后 12 周影像学和组织学研究结果发现,仿生矿化胶原人工骨复合自体骨髓组较单纯材料组有更好的新骨生成,融合效果和自体骨类似,进一步提示了仿生矿化胶原人工骨有利于诱导骨髓中富含的 BMSCs 成骨活性表达,且材料在引导骨再生过程中能逐渐被新生骨组织爬行替代,具有较强的诱导成骨和引导骨再生作用,效果接近自体骨,是优良的骨组织工程支架材料。

综上述,仿生矿化胶原人工骨材料具有与人体天然骨相似的成分和微观结构,有利于引导骨缺损的再生修复,是良好的人工骨修复材料和骨组织工程支架材料。在脊柱后外侧融合研究中,仿生矿化胶原人工骨复合骨髓具有良好的骨诱导性和成骨引导作用,接近自体骨移植,比单纯矿化胶原材料具有更好、更快的成骨效果。作为填充和修复人体骨缺损的新型仿生可降解生物材料,骼金系列矿化胶原人工骨有望在骨外科、整形外科、口腔科、神经外科等诸多领域的骨缺损修复临床应用中发挥重要作用。

Funding Statement

“十二五”国家科技支撑计划(2012BAI17B02)、北京市科技新星计划(Z161100004916051)

“Twelfth Five-Year” National Science and Technology Support Program (2012BAI17B02); Beijing Novo Program (Z161100004916051)

References

  • 1.王迎军, 杜昶, 赵娜如, 等 仿生人工骨修复材料研究. 华南理工大学学报(自然科学版) 2012;40(10):51–58. [Google Scholar]
  • 2.Cui F Z, Li Y, Ge J Self-assembly of mineralized collagen composites. Materials Science & Engineering R. 2007;57(1):1–27. [Google Scholar]
  • 3.Xu SJ, Qiu ZY, Wu JJ, et al Osteogenic differentiation gene expression profiling of hMSCs on hydroxyapatite and mineralized collagen. Tissue Eng Part A. 2016;22(1-2):170–181. doi: 10.1089/ten.tea.2015.0237. [DOI] [PubMed] [Google Scholar]
  • 4.Qiu ZY, Cui Y, Tao CS, et al Mineralized collagen: rationale, current status, and clinical applications. Materials (Basel) 2015;8(8):4733–4750. doi: 10.3390/ma8084733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Zhang W, Liao SS, Cui FZ Hierarchical self-assembly of nanofibrils in mineralized collagen. Chem Mater. 2003;15(16):3221–3226. [Google Scholar]
  • 6.Du C, Cui FZ, Zhang W, et al Formation of calcium phosphate/collagen composites through mineralization of collagen matrix. J Biomed Mater Res. 2000;50(4):518–527. doi: 10.1002/(sici)1097-4636(20000615)50:4<518::aid-jbm7>3.0.co;2-w. [DOI] [PubMed] [Google Scholar]
  • 7.Boden SD, Schimandle JH, Hutton WC An experimental lumbar intertransverse process spinal fusion model. Radiographic, histologic, and biomechanical healing characteristics. Spine (Phila Pa 1976) 1995;20(4):412–420. doi: 10.1097/00007632-199502001-00003. [DOI] [PubMed] [Google Scholar]
  • 8.Akamaru T, Suh D, Boden SD, et al Simple carrier matrix modifications can enhance delivery of recombinant human bone morphogenetic protein-2 for posterolateral spine fusion. Spine (Phila Pa 1976) 2003;28(5):429–434. doi: 10.1097/01.BRS.0000048644.91330.14. [DOI] [PubMed] [Google Scholar]
  • 9.Liao SS, Guan K, Cui FZ, et al Lumbar spinal fusion with a mineralized collagen matrix and rhBMP-2 in a rabbit model. Spine (Phila Pa 1976) 2003;28(17):1954–1960. doi: 10.1097/01.BRS.0000083240.13332.F6. [DOI] [PubMed] [Google Scholar]
  • 10.Walsh WR, Vizesi F, Cornwall GB, et al Posterolateral spinal fusion in a rabbit model using a collagen-mineral composite bone graft substitute. Eur Spine J. 2009;18(11):1610–1620. doi: 10.1007/s00586-009-1034-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Feng L, Zhang L, Cui Y, et al Clinical evaluations of mineralized collagen in the extraction sites preservation. Regen Biomater. 2016;3(1):41–48. doi: 10.1093/rb/rbv027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Qiu ZY, Zhang YQ, Zhang ZQ, et al Biodegradable mineralized collagen plug for the reconstruction of craniotomy burr-holes: A report of three cases. Transl Neurosci Clin. 2015;1(1):3–9. [Google Scholar]
  • 13.Yu QS, Chen L, Qiu ZY, et al Skull repair materials applied in cranioplasty: History and progress. Transl Neurosci Clin. 2017;3(1):48–57. [Google Scholar]
  • 14.Peng C, Wang HP, Yan JH, et al Locking system strengthened by biomimetic mineralized collagen putty for the treatment of osteoporotic proximal humeral fractures. Regen Biomater. 2017;4(5):289–294. doi: 10.1093/rb/rbx016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Wang X, Kou JM, Yue Y, et al Clinical observations of osteoporotic vertebral compression fractures by using mineralized collagen modified polymethylmethacrylate bone cement. Regenerative Biomaterials. 2017;4(2):105–109. [Google Scholar]
  • 16.Jiang HJ, Xu J, Qiu ZY, et al Mechanical properties and cytocompatibility improvement of vertebroplasty PMMA bone cements by incorporating mineralized collagen. Materials. 2015;8(5):2616–2634. [Google Scholar]
  • 17.Wu J, Xu S, Qiu Z, et al Comparison of human mesenchymal stem cells proliferation and differentiation on poly (methyl methacrylate) bone cements with and without mineralized collagen incorporation. J Biomater Appl. 2016;30(6):722–731. doi: 10.1177/0885328215582112. [DOI] [PubMed] [Google Scholar]
  • 18.Ghate NS, Cui H Mineralized collagen artificial bone repair material products used for fusing the podarthral joints with internal fixation-a case report. Regen Biomater. 2017;4(5):295–298. doi: 10.1093/rb/rbx015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Kou JM, Fu TY, Jia XJ, et al Clinical observations on repair of non-infected bone nonunion by using mineralized collagen graft. J Biomater Tissue Eng. 2014;4(12):1107–1112. [Google Scholar]
  • 20.Xia Y, Peng SS, Xie LZ, et al A novel combination of nano-scaffolds with micro-scaffolds to mimic extracellularmatrices improve osteogenesis. J Biomater Appl. 2014;29(1):59–71. doi: 10.1177/0885328213514467. [DOI] [PubMed] [Google Scholar]
  • 21.Wang S, Yang YD, Zhao ZJ, et al Mineralized collagen-based composite bone materials for cranial bone regeneration in developing sheep. ACS Biomater Sci Eng. 2017;3(6):1092–1099. doi: 10.1021/acsbiomaterials.7b00159. [DOI] [PubMed] [Google Scholar]
  • 22.Chen TY, Zhang YQ, Zuo HC, et al Repairing skull defects in children with nano-hap/collagen composites: A clinical report of thirteen cases. Transl Neurosci Clin. 2016;2(1):31–37. [Google Scholar]

Articles from Chinese Journal of Reparative and Reconstructive Surgery are provided here courtesy of Sichuan University

RESOURCES