Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Aug 10;77(Pt 9):930–934. doi: 10.1107/S2056989021007994

Crystal structure and Hirshfeld surface analysis of (Z)-2-amino-4-(2,6-di­chloro­phen­yl)-5-(1-hy­droxy­ethyl­idene)-6-oxo-1-phenyl-1,4,5,6-tetra­hydro­pyridine-3-carbo­nitrile

Farid N Naghiyev a, Anastasiya V Pavlova b, Victor N Khrustalev b,c, Mehmet Akkurt d, Ali N Khalilov a,e, Anzurat A Akobirshoeva f,*, İbrahim G Mamedov a
PMCID: PMC8423002  PMID: 34584764

The mol­ecular conformation of the title compound is stabilized by an intra­molecular O—H⋯O hydrogen bond, forming an S(6) ring motif. Inter­molecular N—H⋯N and C—H⋯N hydrogen bonds, as well as N—H⋯π and C—H⋯π inter­actions create a three-dimensional network in the crystal.

Keywords: crystal structure, pyridine ring, hydrogen bonds, ring motifs, Hirshfeld surface analysis

Abstract

The mol­ecular conformation of the title compound, C20H15Cl2N3O2, is stabilized by an intra­molecular O—H⋯O hydrogen bond, forming an S(6) ring motif. The central pyridine ring is almost planar [maximum deviation = 0.074 (3) Å]. It subtends dihedral angles of 86.10 (15) and 87.17 (14)°, respectively, with the phenyl and di­chloro­phenyl rings, which are at an angle of 21.28 (15)° to each other. The =C(—OH)CH3 group is coplanar. In the crystal, mol­ecules are linked by inter­molecular N—H⋯N and C—H⋯N hydrogen bonds, and N—H⋯π and C—H⋯π inter­actions, forming a three-dimensional network. The most important contributions to the crystal packing are from H⋯H (33.1%), C⋯H/H⋯C (22.5%), Cl⋯H/H⋯Cl (14.1%), O⋯H/H⋯O (11.9%) and N⋯H/H⋯N (9.7%) inter­actions.

Chemical context  

The development of effective methods for the construction of small-sized mol­ecules bearing a nitro­gen heterocycle is a very important proposition in organic synthesis and catalysis (Abdel-Hafiz et al., 2012; Gurbanov et al., 2018; Zubkov et al., 2018). As members of this family, pyridine derivatives play a key role in flavor chemistry, crystal engineering, and the development of biologically active compounds (Adams & De Kimpe, 2006; Mahmoudi et al., 2019; Mamedov et al., 2020). The pyridine core is a key bioactive fragment of diverse natural products (niacin, pyridoxine, nicotine, NADP+) and series of derivatives constitute promising drugs in medicinal chemistry (Mohsin & Ahmad, 2018).graphic file with name e-77-00930-scheme1.jpg

In this study, in the framework of our ongoing structural studies (Naghiyev et al., 2020, 2021a ,b ), we report the crystal structure and Hirshfeld surface analysis of the title compound, (Z)-2-amino-4-(2,6-di­chloro­phen­yl)-5-(1-hy­droxy­ethyl­idene)-6-oxo-1-phenyl-1,4,5,6-tetra­hydro­pyridine-3-carbo­nitrile, prev­iously mistakenly reported in the E isomeric form (Maharramov et al., 2018). This compound was also previously mentioned as transient inter­mediate but neither isolated nor characterized (Naghiyeva et al., 2019).

Structural commentary  

The title compound crystallizes in the monoclinic space group P21/c with Z = 4, in which the asymmetric unit comprises one mol­ecule. In the mol­ecule (Fig. 1), the central pyridine ring (N1/C2–C6) is almost planar with a maximum deviation of 0.074 (3) Å for C4. The phenyl (C7–C12) and di­chloro­phenyl (C14–C19) rings are at an angle of 21.28 (15)°. They form dihedral angles of 86.10 (15) and 87.17 (14)°, respectively, with the central pyridine ring. The =C(—OH)CH3 group is nearly coplanar with the pyridine ring with C2—C3—C1—O2 and C4—C3—C1—C13 torsion angles of only 5.5 (5) and 3.3 (5)°, respectively. A strong intra­molecular O2—H2⋯O1 hydrogen bond (Fig. 1, Table 1) stabilizes the mol­ecular conformation of the title mol­ecule, creating an S(6) ring motif (Bernstein et al., 1995).

Figure 1.

Figure 1

The mol­ecular structure of the title compound showing the atom-numbering scheme and displacement ellipsoids at the 50% probability level.

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the C7–C12 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1 0.86 (4) 1.72 (4) 2.514 (3) 153 (4)
N3—H3A⋯N2i 0.86 (4) 2.22 (4) 3.032 (4) 159 (3)
C16—H16⋯N2ii 0.95 2.62 3.308 (4) 129
N3—H3BCg2 0.88 (4) 2.88 (4) 3.581 (3) 138 (3)
C9—H9⋯Cg2iii 0.95 2.70 3.564 (4) 151

Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+2, -y+1, -z+2; (iii) x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}.

Supra­molecular features and Hirshfeld surface analysis  

Inter­molecular N3—H3A⋯N2 hydrogen bonds, which form an Inline graphic(12) ring motif between pairs of mol­ecules along the b-axis direction and an Inline graphic(16) ring motif between pairs of mol­ecules along the a-axis direction, together with N3—H3BCg2 and C9—H9⋯Cg2 inter­actions (Fig. 2, Tables 1 and 2; Cg2 is the centroid of the C7–C12 phenyl ring) create a three-dimensional network in the crystal (Figs. 2 and 3).

Figure 2.

Figure 2

A general view of the intra- and inter­molecular O—H⋯O, N—H⋯N hydrogen bonding and N—H⋯π and C—H⋯π inter­actions in the title compound. Symmetry codes: (a) 1 − x, 1 − y, 2 − z; (b) 2 − x, 1 − y, 2 − z; (c) x, Inline graphic − y, Inline graphic + z.

Table 2. Inter­atomic contacts of the title compound (Å).

Contact Distance Symmetry operation
Cl1⋯Cl1 3.6744 (14) 2 − x, 1 − y, 1 − z
H4⋯C20 2.77 1 − x, 1 − y, 1 − z
O1⋯H9 2.54 x, {1\over 2} − y, −{1\over 2} + z
N2⋯H13C 2.81 x, y, 1 + z
H3A⋯N2 2.22 (4) 1 − x, 1 − y, 2 − z
H16⋯N2 2.62 2 − x, 1 − y, 2 − z
H11⋯H13B 2.54 −1 + x, y, z
H17⋯H3B 2.54 1 + x, y, z
H12⋯C18 2.93 −1 + x, y, −1 + z

Figure 3.

Figure 3

A view down the a axis of the crystal packing of the title compound based on the inter­molecular inter­actions shown in Fig. 2.

The Hirshfeld surfaces were calculated and the two-dimensional fingerprint plots generated using Crystal Explorer 17.5 (Turner et al., 2017). The use of various hues and intensities to represent short and long contacts, as well as the relative intensity of the connections, allows Hirshfeld surfaces to depict inter­molecular inter­actions. Fig. 4 shows the three-dimensional Hirshfeld surfaces of the title compound plotted over d norm (normalized contact distance) in the range of −0.4290 to 1.5192 a.u. The red patches that appear around N2 are caused by the inter­molecular N3—H3A⋯N2 and C16—H16⋯N2 inter­actions, which are important in the packing of the title mol­ecule. Bright red dots near N2 and amine hydrogen atoms H3A and H3B highlight their functions as hydrogen-bonding acceptors and donors, respectively; these also appear as blue and red areas on the Hirshfeld surface mapped over electrostatic potential (Spackman et al., 2008) in Fig. 5, corresponding to positive and negative potentials. Positive electrostatic potential (hydrogen-bond donors) is shown in blue, whereas negative electrostatic potential is indicated in red (hydrogen-bond acceptors).

Figure 4.

Figure 4

Hirshfeld surface of the title compound mapped with d norm.

Figure 5.

Figure 5

View of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory. Hydrogen-bond donors and acceptors are shown as blue and red regions, respectively, around the atoms, corresponding to positive and negative potentials.

In Fig. 6, the overall two-dimensional fingerprint plot for the title compound and those delineated into H⋯H, C⋯H/H⋯C, Cl⋯H/H⋯Cl, O⋯H/H⋯O and N⋯H/H⋯N contacts, as well as their relative contributions to the Hirshfeld surface, are presented, while details of the various contacts are given in Table 2. The percentage contributions to the Hirshfeld surfaces from the various inter­atomic contacts are as follows: H⋯H (33.1%; Fig. 6 b), C⋯H/H⋯C (22.5%; Fig. 6 c), Cl⋯H/H⋯Cl (14.1%; Fig. 6 d), O⋯H/H⋯O (11.9%; Fig. 6 e) and N⋯H/H⋯N (9.7%; Fig. 6 f). Other Cl⋯C/C⋯Cl, C⋯C, Cl⋯O/O⋯Cl, Cl⋯N/N⋯Cl, N⋯C/C⋯N, O⋯N/N⋯O, Cl⋯Cl, O⋯C/C⋯O and N⋯N contacts contribute less than 2.1% to Hirshfeld surface mapping and have little directional influence on mol­ecular packing (Table 3).

Figure 6.

Figure 6

The two-dimensional fingerprint plots of the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) Cl⋯H/H⋯Cl, (e) O⋯H/H⋯O and (f) N⋯H/H⋯N inter­actions [d e and d i represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].

Table 3. Percentage contributions of inter­atomic contacts to the Hirshfeld surface for the title compound.

Contact Percentage contribution
H⋯H 33.1
C⋯H/H⋯C 22.5
Cl⋯H/H⋯Cl 14.1
O⋯H/H⋯O 11.9
N⋯H/H⋯N 9.7
Cl⋯C/C⋯Cl 2.1
C⋯C 1.4
Cl⋯O/O⋯Cl 1.2
Cl⋯N/N⋯Cl 1.1
N⋯C/C⋯N 1.0
O⋯N/N⋯O 0.6
Cl⋯Cl 0.6
O⋯C/C⋯O 0.5
N⋯N 0.1

Database survey  

A search of the Cambridge Structural Database (CSD, Version 5.39, update of August 2018; Groom et al., 2016) using Conquest (Bruno et al., 2002) for the tetra­hydro­pyridine unit revealed 1339 hits. Some inter­esting structures related to the title compound based on their tetra­hydro­pyridine moieties include: ethyl 4-hy­droxy-2,6-diphenyl-5-(phenyl­sulfan­yl)pyri­dine-3-carboxyl­ate (refcode SETWOE: Suresh et al., 2007), ethyl 2,6-bis­(4-fluoro­phen­yl)-4-hy­droxy-5-(4-methyl­phenyl­sulfan­yl)pyridine-3-carboxyl­ate (SETWUK: Suresh et al., 2007), 2,6-di­amino-4-chloro­pyrimidin-1-ium 2-carb­oxy-3-nitro­benzoate (JEBRAM: Mohana et al., 2017) and 2,6-di­amino-4-chloro­pyrimidin-1-ium 4-methyl­benzene-1-sulfonate monohydrate (JEBREQ: Mohana et al., 2017).

The polysubstituted pyridines, SETWOE (space group: P21/c) and SETWUK (space group: P21/n), adopt nearly planar structures. The crystal structure of SETWOE is stabil­ized by inter­molecular C—H⋯O and C—H⋯π inter­actions. The C—H⋯O hydrogen bonds generate rings with R2 2 (14) and R2 2 (20) motifs. The crystal structure of SETWUK is stabilized by inter­molecular C—H⋯F and C—H⋯π inter­actions. The C—H⋯F bond generates a linear chain with a C(14) motif. In addition, in SETWOE and SETWUK, intra­molecular O—H⋯O inter­actions are found, which generate an S(6) graph-set motif. No significant ar­yl–aryl or π–π inter­actions exist in these structures. All this bears some resemblance to the title compound.

In both the related salts, JEBRAM (space group: P Inline graphic) and JEBREQ (space group: P Inline graphic) , the N atom in the 1-position of the pyrimidine ring is protonated. In JEBRAM, the protonated N atom and the amino group of the pyrimidinium cation inter­act with the carboxyl­ate group of the anion through N—H⋯O hydrogen bonds, forming a heterosynthon with an R2 2 (8) ring motif. In the hydrated salt JEBREQ, the presence of the water mol­ecule prevents the formation of the familiar Inline graphic(8) ring motif. Instead, an expanded ring [i.e. R 3 2(8)] is formed involving the sulfonate group, the pyrimidinium cation and the water mol­ecule. Both salts form a supra­molecular homosynthon [Inline graphic(8) ring motif] through N—H⋯N hydrogen bonds. The mol­ecular structures are further stabilized by π–π stacking, and C=O⋯π, C—H⋯O and C—H⋯Cl inter­actions. None of these are found in the crystal packing of the title compound. It appears that the protonation state of the pyrimidine ring influences the inter­molecular inter­actions within the crystal lattices to a substantial extent.

Synthesis and crystallization  

The title compound was synthesized using our previously reported procedure (Maharramov et al., 2018), and colorless prisms were obtained upon recrystallization from its methanol solution.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 4. The positional parameters of the H atoms of the hy­droxy and amine groups were determined from difference electron-density maps and were refined freely [O2—H2 = 0.86 (4) Å, N3—H3A = 0.86 (4) Å and N3—H3B = 0.88 (4) Å]. Their isotropic displacement parameters were refined using a riding model with U iso(H) set to either 1.2U eq(N) for the NH2 group or 1.5U eq(O) for the OH group. The C-bound H atoms were positioned geometrically (C—H = 0.95–1.00 Å) and allowed to ride on their parent atoms, with U iso(H) = 1.5U eq(C) for the methyl group and U iso(H) = 1.2U eq(C) for aromatic and methine H atoms.

Table 4. Experimental details.

Crystal data
Chemical formula C20H15Cl2N3O2
M r 400.25
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 9.662 (1), 27.010 (3), 7.4782 (8)
β (°) 111.571 (2)
V3) 1814.9 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.38
Crystal size (mm) 0.24 × 0.21 × 0.02
 
Data collection
Diffractometer Bruker D8 QUEST PHOTON-III CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
Tmin, Tmax 0.864, 0.986
No. of measured, independent and observed [I > 2σ(I)] reflections 27440, 4180, 2631
R int 0.099
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F 2)], wR(F 2), S 0.053, 0.126, 1.01
No. of reflections 4180
No. of parameters 255
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.50, −0.37

Computer programs: APEX3 (Bruker, 2018), SAINT (Bruker, 2013), SHELXT2014/5 (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2020).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021007994/yz2010sup1.cif

e-77-00930-sup1.cif (815.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021007994/yz2010Isup2.hkl

e-77-00930-Isup2.hkl (333.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021007994/yz2010Isup3.cml

CCDC reference: 2101203

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Authors’ contributions are as follows. Conceptualization, FNN and IGM; methodology, FNN and IGM; investigation, FNN, AVP and AAA; writing (original draft), MA and ANK; writing (review and editing of the manuscript), MA and ANK; visualization, MA, FNN and IGM; funding acquisition, VNK and FNN; resources, AAA, VNK and FNN; supervision, IGM and MA.

supplementary crystallographic information

Crystal data

C20H15Cl2N3O2 F(000) = 824
Mr = 400.25 Dx = 1.465 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 9.662 (1) Å Cell parameters from 2887 reflections
b = 27.010 (3) Å θ = 2.3–25.6°
c = 7.4782 (8) Å µ = 0.38 mm1
β = 111.571 (2)° T = 100 K
V = 1814.9 (3) Å3 Plate, colourless
Z = 4 0.24 × 0.21 × 0.02 mm

Data collection

Bruker D8 QUEST PHOTON-III CCD diffractometer 2631 reflections with I > 2σ(I)
φ and ω scans Rint = 0.099
Absorption correction: multi-scan (SADABS; Krause et al., 2015) θmax = 27.5°, θmin = 2.3°
Tmin = 0.864, Tmax = 0.986 h = −12→12
27440 measured reflections k = −35→35
4180 independent reflections l = −9→9

Refinement

Refinement on F2 Secondary atom site location: dual
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.053 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0387P)2 + 2.0157P] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max < 0.001
4180 reflections Δρmax = 0.50 e Å3
255 parameters Δρmin = −0.37 e Å3
0 restraints Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: dual Extinction coefficient: 0.0024 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.86090 (9) 0.51416 (3) 0.60657 (12) 0.0256 (2)
Cl2 0.73128 (9) 0.32459 (3) 0.75788 (12) 0.0262 (2)
O1 0.3936 (2) 0.32320 (9) 0.2910 (3) 0.0280 (5)
O2 0.5668 (3) 0.34472 (9) 0.1210 (3) 0.0286 (6)
H2 0.502 (4) 0.3295 (15) 0.155 (6) 0.043*
N1 0.3832 (3) 0.36887 (10) 0.5389 (4) 0.0190 (6)
N2 0.6028 (3) 0.51570 (10) 0.8819 (4) 0.0213 (6)
N3 0.3468 (3) 0.41829 (11) 0.7719 (4) 0.0216 (6)
H3A 0.376 (4) 0.4411 (13) 0.857 (5) 0.026*
H3B 0.275 (4) 0.3976 (13) 0.763 (5) 0.026*
C1 0.6193 (3) 0.38087 (12) 0.2516 (4) 0.0222 (7)
C2 0.4484 (3) 0.35814 (12) 0.4048 (4) 0.0215 (7)
C3 0.5700 (3) 0.38792 (12) 0.3994 (4) 0.0190 (7)
C4 0.6393 (3) 0.42841 (12) 0.5454 (4) 0.0185 (7)
H4 0.6402 0.4592 0.4717 0.022*
C5 0.5438 (3) 0.43903 (11) 0.6633 (4) 0.0178 (6)
C6 0.4288 (3) 0.40975 (12) 0.6622 (4) 0.0190 (6)
C7 0.2636 (3) 0.33754 (11) 0.5457 (4) 0.0182 (6)
C8 0.2954 (3) 0.29874 (12) 0.6757 (4) 0.0225 (7)
H8 0.3954 0.2923 0.7572 0.027*
C9 0.1808 (4) 0.26931 (12) 0.6866 (5) 0.0247 (7)
H9 0.2018 0.2428 0.7762 0.030*
C10 0.0355 (4) 0.27893 (12) 0.5655 (5) 0.0254 (7)
H10 −0.0431 0.2588 0.5722 0.030*
C11 0.0039 (3) 0.31762 (12) 0.4351 (5) 0.0233 (7)
H11 −0.0959 0.3239 0.3526 0.028*
C12 0.1182 (3) 0.34720 (12) 0.4251 (4) 0.0219 (7)
H12 0.0970 0.3739 0.3362 0.026*
C13 0.7339 (4) 0.41270 (13) 0.2175 (5) 0.0262 (7)
H13A 0.7588 0.3988 0.1121 0.039*
H13B 0.8235 0.4139 0.3346 0.039*
H13C 0.6943 0.4462 0.1834 0.039*
C14 0.8003 (3) 0.41904 (12) 0.6829 (4) 0.0168 (6)
C15 0.9070 (3) 0.45717 (12) 0.7254 (4) 0.0206 (7)
C16 1.0502 (3) 0.45270 (13) 0.8591 (5) 0.0237 (7)
H16 1.1177 0.4797 0.8851 0.028*
C17 1.0934 (3) 0.40785 (13) 0.9546 (4) 0.0252 (7)
H17 1.1915 0.4041 1.0469 0.030*
C18 0.9949 (3) 0.36865 (13) 0.9164 (5) 0.0238 (7)
H18 1.0255 0.3378 0.9793 0.029*
C19 0.8510 (3) 0.37491 (12) 0.7852 (4) 0.0194 (7)
C20 0.5773 (3) 0.48144 (12) 0.7841 (4) 0.0190 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0223 (4) 0.0243 (4) 0.0291 (4) −0.0013 (3) 0.0083 (3) 0.0025 (4)
Cl2 0.0236 (4) 0.0258 (4) 0.0260 (4) −0.0006 (3) 0.0056 (3) 0.0049 (4)
O1 0.0271 (12) 0.0342 (14) 0.0240 (12) −0.0085 (11) 0.0108 (10) −0.0124 (11)
O2 0.0296 (13) 0.0394 (15) 0.0171 (12) −0.0043 (11) 0.0091 (10) −0.0072 (11)
N1 0.0169 (13) 0.0243 (15) 0.0161 (13) −0.0028 (11) 0.0063 (10) −0.0035 (11)
N2 0.0213 (14) 0.0210 (14) 0.0200 (14) −0.0026 (11) 0.0058 (11) −0.0030 (12)
N3 0.0199 (14) 0.0270 (15) 0.0196 (14) −0.0071 (12) 0.0095 (11) −0.0081 (12)
C1 0.0210 (16) 0.0286 (18) 0.0135 (15) 0.0038 (13) 0.0022 (12) −0.0012 (14)
C2 0.0200 (15) 0.0275 (18) 0.0160 (15) 0.0009 (13) 0.0053 (12) −0.0023 (14)
C3 0.0174 (15) 0.0225 (17) 0.0152 (15) −0.0002 (12) 0.0038 (12) −0.0001 (13)
C4 0.0157 (15) 0.0228 (17) 0.0166 (15) 0.0014 (12) 0.0055 (12) −0.0020 (13)
C5 0.0172 (15) 0.0207 (16) 0.0139 (15) 0.0005 (12) 0.0037 (12) −0.0014 (13)
C6 0.0162 (14) 0.0237 (17) 0.0135 (15) 0.0036 (12) 0.0012 (12) −0.0002 (13)
C7 0.0175 (15) 0.0185 (16) 0.0184 (15) −0.0037 (12) 0.0062 (12) −0.0048 (13)
C8 0.0201 (16) 0.0264 (18) 0.0174 (16) 0.0015 (13) 0.0026 (13) −0.0003 (14)
C9 0.0275 (17) 0.0219 (17) 0.0254 (18) 0.0030 (14) 0.0106 (14) 0.0049 (14)
C10 0.0228 (16) 0.0245 (18) 0.0310 (19) −0.0028 (14) 0.0124 (14) −0.0042 (15)
C11 0.0177 (15) 0.0259 (18) 0.0223 (17) 0.0019 (13) 0.0024 (13) 0.0013 (14)
C12 0.0230 (16) 0.0224 (17) 0.0177 (16) 0.0031 (13) 0.0044 (13) 0.0001 (13)
C13 0.0264 (17) 0.033 (2) 0.0206 (17) 0.0037 (15) 0.0107 (14) 0.0041 (15)
C14 0.0152 (14) 0.0241 (16) 0.0126 (14) 0.0025 (12) 0.0070 (11) −0.0011 (12)
C15 0.0200 (15) 0.0254 (17) 0.0179 (16) 0.0040 (13) 0.0088 (13) 0.0024 (14)
C16 0.0185 (15) 0.0315 (19) 0.0222 (17) −0.0020 (13) 0.0089 (13) −0.0035 (14)
C17 0.0162 (15) 0.042 (2) 0.0173 (16) 0.0027 (14) 0.0063 (13) −0.0010 (15)
C18 0.0219 (16) 0.0307 (19) 0.0196 (16) 0.0047 (14) 0.0087 (13) 0.0047 (14)
C19 0.0174 (15) 0.0266 (17) 0.0150 (15) −0.0009 (13) 0.0066 (12) −0.0022 (13)
C20 0.0110 (14) 0.0270 (18) 0.0193 (16) 0.0044 (12) 0.0058 (12) 0.0062 (14)

Geometric parameters (Å, º)

Cl1—C15 1.751 (3) C7—C12 1.387 (4)
Cl2—C19 1.747 (3) C8—C9 1.390 (4)
O1—C2 1.250 (4) C8—H8 0.9500
O2—C1 1.342 (4) C9—C10 1.387 (4)
O2—H2 0.86 (4) C9—H9 0.9500
N1—C2 1.397 (4) C10—C11 1.385 (5)
N1—C6 1.401 (4) C10—H10 0.9500
N1—C7 1.448 (4) C11—C12 1.387 (4)
N2—C20 1.149 (4) C11—H11 0.9500
N3—C6 1.354 (4) C12—H12 0.9500
N3—H3A 0.86 (4) C13—H13A 0.9800
N3—H3B 0.88 (4) C13—H13B 0.9800
C1—C3 1.368 (4) C13—H13C 0.9800
C1—C13 1.496 (4) C14—C19 1.404 (4)
C2—C3 1.437 (4) C14—C15 1.408 (4)
C3—C4 1.516 (4) C15—C16 1.382 (4)
C4—C5 1.519 (4) C16—C17 1.390 (5)
C4—C14 1.538 (4) C16—H16 0.9500
C4—H4 1.0000 C17—C18 1.382 (5)
C5—C6 1.361 (4) C17—H17 0.9500
C5—C20 1.421 (4) C18—C19 1.386 (4)
C7—C8 1.385 (4) C18—H18 0.9500
C1—O2—H2 105 (3) C8—C9—H9 120.3
C2—N1—C6 121.3 (3) C11—C10—C9 120.6 (3)
C2—N1—C7 118.7 (2) C11—C10—H10 119.7
C6—N1—C7 120.0 (2) C9—C10—H10 119.7
C6—N3—H3A 118 (2) C10—C11—C12 120.0 (3)
C6—N3—H3B 118 (2) C10—C11—H11 120.0
H3A—N3—H3B 123 (3) C12—C11—H11 120.0
O2—C1—C3 122.6 (3) C11—C12—C7 119.5 (3)
O2—C1—C13 113.5 (3) C11—C12—H12 120.2
C3—C1—C13 123.8 (3) C7—C12—H12 120.2
O1—C2—N1 117.1 (3) C1—C13—H13A 109.5
O1—C2—C3 123.3 (3) C1—C13—H13B 109.5
N1—C2—C3 119.6 (3) H13A—C13—H13B 109.5
C1—C3—C2 118.4 (3) C1—C13—H13C 109.5
C1—C3—C4 119.4 (3) H13A—C13—H13C 109.5
C2—C3—C4 122.1 (3) H13B—C13—H13C 109.5
C3—C4—C5 110.7 (2) C19—C14—C15 114.7 (3)
C3—C4—C14 115.6 (2) C19—C14—C4 124.6 (3)
C5—C4—C14 108.9 (2) C15—C14—C4 120.5 (3)
C3—C4—H4 107.1 C16—C15—C14 123.7 (3)
C5—C4—H4 107.1 C16—C15—Cl1 116.4 (3)
C14—C4—H4 107.1 C14—C15—Cl1 120.0 (2)
C6—C5—C20 117.8 (3) C15—C16—C17 118.7 (3)
C6—C5—C4 123.7 (3) C15—C16—H16 120.7
C20—C5—C4 118.4 (3) C17—C16—H16 120.7
N3—C6—C5 123.7 (3) C18—C17—C16 120.5 (3)
N3—C6—N1 114.8 (3) C18—C17—H17 119.8
C5—C6—N1 121.4 (3) C16—C17—H17 119.8
C8—C7—C12 120.6 (3) C17—C18—C19 119.2 (3)
C8—C7—N1 119.5 (3) C17—C18—H18 120.4
C12—C7—N1 119.9 (3) C19—C18—H18 120.4
C7—C8—C9 119.9 (3) C18—C19—C14 123.2 (3)
C7—C8—H8 120.1 C18—C19—Cl2 115.9 (3)
C9—C8—H8 120.1 C14—C19—Cl2 120.9 (2)
C10—C9—C8 119.5 (3) N2—C20—C5 179.2 (3)
C10—C9—H9 120.3
C6—N1—C2—O1 −174.8 (3) C6—N1—C7—C8 −86.5 (4)
C7—N1—C2—O1 3.5 (4) C2—N1—C7—C12 −86.2 (4)
C6—N1—C2—C3 3.4 (4) C6—N1—C7—C12 92.2 (3)
C7—N1—C2—C3 −178.2 (3) C12—C7—C8—C9 −0.4 (5)
O2—C1—C3—C2 −5.5 (5) N1—C7—C8—C9 178.3 (3)
C13—C1—C3—C2 173.5 (3) C7—C8—C9—C10 0.5 (5)
O2—C1—C3—C4 177.7 (3) C8—C9—C10—C11 −0.3 (5)
C13—C1—C3—C4 −3.3 (5) C9—C10—C11—C12 −0.1 (5)
O1—C2—C3—C1 6.4 (5) C10—C11—C12—C7 0.3 (5)
N1—C2—C3—C1 −171.7 (3) C8—C7—C12—C11 0.0 (5)
O1—C2—C3—C4 −176.9 (3) N1—C7—C12—C11 −178.7 (3)
N1—C2—C3—C4 5.0 (4) C3—C4—C14—C19 −48.4 (4)
C1—C3—C4—C5 165.1 (3) C5—C4—C14—C19 76.9 (4)
C2—C3—C4—C5 −11.6 (4) C3—C4—C14—C15 136.5 (3)
C1—C3—C4—C14 −70.5 (4) C5—C4—C14—C15 −98.2 (3)
C2—C3—C4—C14 112.8 (3) C19—C14—C15—C16 −1.0 (4)
C3—C4—C5—C6 11.6 (4) C4—C14—C15—C16 174.6 (3)
C14—C4—C5—C6 −116.5 (3) C19—C14—C15—Cl1 179.1 (2)
C3—C4—C5—C20 −169.4 (3) C4—C14—C15—Cl1 −5.3 (4)
C14—C4—C5—C20 62.5 (4) C14—C15—C16—C17 1.4 (5)
C20—C5—C6—N3 −1.3 (5) Cl1—C15—C16—C17 −178.7 (2)
C4—C5—C6—N3 177.7 (3) C15—C16—C17—C18 0.0 (5)
C20—C5—C6—N1 176.3 (3) C16—C17—C18—C19 −1.7 (5)
C4—C5—C6—N1 −4.7 (5) C17—C18—C19—C14 2.2 (5)
C2—N1—C6—N3 174.1 (3) C17—C18—C19—Cl2 −176.1 (2)
C7—N1—C6—N3 −4.2 (4) C15—C14—C19—C18 −0.8 (4)
C2—N1—C6—C5 −3.6 (4) C4—C14—C19—C18 −176.2 (3)
C7—N1—C6—C5 178.0 (3) C15—C14—C19—Cl2 177.3 (2)
C2—N1—C7—C8 95.1 (3) C4—C14—C19—Cl2 1.9 (4)

Hydrogen-bond geometry (Å, º)

Cg2 is the centroid of the C7–C12 phenyl ring.

D—H···A D—H H···A D···A D—H···A
O2—H2···O1 0.86 (4) 1.72 (4) 2.514 (3) 153 (4)
N3—H3A···N2i 0.86 (4) 2.22 (4) 3.032 (4) 159 (3)
C16—H16···N2ii 0.95 2.62 3.308 (4) 129
N3—H3B···Cg2 0.88 (4) 2.88 (4) 3.581 (3) 138 (3)
C9—H9···Cg2iii 0.95 2.70 3.564 (4) 151

Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x+2, −y+1, −z+2; (iii) x, −y−1/2, z−1/2.

Funding Statement

This work was funded by Baki Dövlet Universiteti; RUDN University Strategic Academic Leadership Program.

References

  1. Abdel-Hafiz, I. S., Ramiz, M. M. M. & Elian, M. A. (2012). J. Chem. Sci. 124, 647–655.
  2. Adams, A. & De Kimpe, N. (2006). Chem. Rev. 106, 2299–2319. [DOI] [PubMed]
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  4. Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Bruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. [DOI] [PubMed]
  7. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  8. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  9. Gurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Inorg. Chim. Acta, 471, 130–136.
  10. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  11. Maharramov, A. M., Naghiyev, F. N., Asgerova, A. R., Guseynov, E. Z. & Mamedov, I. G. (2018). Azerbaijan Chem. J. 4, 33–38.
  12. Mahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108–117.
  13. Mamedov, I., Naghiyev, F., Maharramov, A., Uwangue, O., Farewell, A., Sunnerhagen, P. & Erdelyi, M. (2020). Mendeleev Commun. 30, 498–499.
  14. Mohana, M., Thomas Muthiah, P. & Butcher, R. J. (2017). Acta Cryst. C73, 536–540. [DOI] [PubMed]
  15. Mohsin, N. & Ahmad, M. (2018). Turk. J. Chem. 42, 1191–1216.
  16. Naghiyev, F. N., Cisterna, J., Khalilov, A. N., Maharramov, A. M., Askerov, R. K., Asadov, K. A., Mamedov, I. G., Salmanli, K. S., Cárdenas, A. & Brito, I. (2020). Molecules, 25, 2235–2248. [DOI] [PMC free article] [PubMed]
  17. Naghiyev, F. N., Grishina, M. M., Khrustalev, V. N., Khalilov, A. N., Akkurt, M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021a). Acta Cryst. E77, 195–199. [DOI] [PMC free article] [PubMed]
  18. Naghiyev, F. N., Maharramov, A. M., Asadov, K. A. & Mamedov, I. G. (2019). Russ. J. Org. Chem. 55, 388–391.
  19. Naghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Khalilov, A. N., Akobirshoeva, A. A. & Mamedov, İ. G. (2021b). Acta Cryst. E77, 512–515. [DOI] [PMC free article] [PubMed]
  20. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  21. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  22. Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.
  23. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  24. Suresh, J., Suresh Kumar, R., Perumal, S., Mostad, A. & Natarajan, S. (2007). Acta Cryst. C63, o141–o144. [DOI] [PubMed]
  25. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net.
  26. Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021007994/yz2010sup1.cif

e-77-00930-sup1.cif (815.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021007994/yz2010Isup2.hkl

e-77-00930-Isup2.hkl (333.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021007994/yz2010Isup3.cml

CCDC reference: 2101203

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES