Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Aug 17;77(Pt 9):939–943. doi: 10.1107/S2056989021008355

Synthesis, crystal structure and magnetic properties of poly[[diaqua{μ6-2-[bis­(carboxyl­atometh­yl)amino]­terephthalato}­dicobalt(II)] 1.6-hydrate]

Jie Ma a,*, Wen-Zhi Zhang a, Yong Liu a, Wen-Tao Yi a
PMCID: PMC8423006  PMID: 34584766

The title compound, {[Co2(C12H7NO8)(H2O)2]·1.6H2O}n, features tetra­nuclear CoII units bridged by κ 3 O:O:O′- and κ 3 O:O,O′-carboxyl­ate groups from deprotonated 2-aminodi­acetic terephthalic acid, which are joined into CoII ribbons via syn–anti carboxyl­ate bridges. The parallel-aligned adtp4− ligands with an alternately reversed arrangement further link adjacent CoII ribbons into (010) layers, which are assembled into a three-dimensional supra­molecular architecture via inter­molecular hydrogen bonds.

Keywords: crystal structure, 2-aminodi­acetic terephthalic acid, tetra­nuclear CoII units, layered structure

Abstract

The asymmetric unit of the polymeric title compound {[Co2(C12H7NO8)(H2O)2]·1.6H2O}n comprises two CoII ions, which are coordinated by fully deprotonated 2-aminodi­acetic terephthalic acid (adtp4–) and terminal water mol­ecules in distorted octa­hedral N1O5 and O6 coordination environments. The title compound features tetra­nuclear CoII units bridged by κ 3 O:O:O′- and κ 3 O:O,O′-carboxyl­ate groups, which are joined into ribbons via syn–anti carboxyl­ate bridges. The parallel adtp4– ligands with an alternately reversed arrangement further link adjacent CoII ribbons into (010) layers, which are assembled into a three-dimensional supra­molecular network via inter­molecular hydrogen bonds. The disordered water solvent mol­ecules are situated in channels parallel to [100]. Magnetic measurements and analyses reveal that the title compound displays anti­ferromagnetic behaviour. The purity of the title compound was characterized by X-ray powder diffraction.

Chemical context  

Over the last two decades, coordination polymers (CPs) have become one of the most attractive fields in chemistry because of their fascinating structures and promising applications as solid functional materials in adsorption and separation (Gan et al., 2020; Yang et al., 2020; Qian et al., 2020; Islamoglu et al., 2020), catalysis (Bavykina et al., 2020), sensing (Allendorf et al., 2020), luminescence (Rice et al., 2020) and magnetism (Thorarinsdottir & Harris, 2020; Wang et al., 2019b ). Multi­carb­oxy­lic acids have been employed to synthesize compounds comprising of various dimensional structures such as chains, layers and three-dimensional frameworks. Immense efforts have been devoted to the construction of CPs for successful predictions and the rational design of definite structures; many significant advances in the construction of CPs have occurred by employing well-defined rigid multi­carb­oxy­lic acids (Padial et al., 2020; Li et al., 2020b ; Wang et al., 2019a ; Shen et al., 2017; Pang et al., 2017). However, using semi-rigid or flexible ligands, predictions are still tricky and confusing owing to the diversity of ligand configurations, the formation of various polynuclear metal units and the influence of weak inter­atomic inter­actions.

Our previous studies have focused on the construction of CPs based on semi-rigid multi­carb­oxy­lic acids with the aminodi­acetate moiety such as 2-aminodi­acetic terephthalic acid (H4adtp) (Liu et al., 2009). The ortho-carboxyl­ate group of H4adtp can be regarded as three carb­oxy­lic arms attached to one amino nitro­gen atom. The three arms can chelate and/or bridge metal ions through their carboxyl­ate groups into polynuclear metal units or chains. The residual phenyl carboxyl­ate group can cross-link the polynuclear metal units or chains into layers or three-dimensional frameworks. In previous work, we have reported the supra­molecular hydrogen-bonded pillar-layered structure of [Mn(H2adtp)(H2O)]n where the three arms connect MnII ions into layers with MnII chains and H2adtp ligands joined by hydrogen bonding act as pillars (Ma et al., 2015). Herein we report the layer structure of the title compound, {[Co2(C12H7NO8)(H2O)2]·1.6H2O}n (I), based on fully deprotonated H4adtp as one of the ligands. The crystal structure, power X-ray diffraction pattern and magnetism of (I) were also studied in detail.graphic file with name e-77-00939-scheme1.jpg

Structural commentary  

The asymmetric unit of (I) comprises two CoII ions, one adtp4– ligand, two terminal water ligands and 1.6 disordered solvent water mol­ecules. Regarding the adtp4– ligand, one carboxyl­ate group (C12, O7, O8) of the aminodi­acetate moiety adopts a κ 3-O:O:O′ coordination mode and the other one (C10, O5, O6) employs a synanti bidentate bridging fashion, whereas the carboxyl­ate group in the ortho-position (C1, O1, O2) coordinates in a κ 3-O:O,O′ mode and that in the meta-position (C8, O3, O4) binds to one CoII ion in monodentate fashion (see Scheme). As shown in Fig. 1, Co1 and Co2 are both six-coordinated and located in distorted octa­hedral environments with an N1O5 coordination set for Co1 and an O6 set for Co2. The adip4– ligand chelates Co1 with the amino nitro­gen atom (N1) and carboxyl­ate oxygen atoms (O1, O5 and O7) from the aminodi­acetate moiety and its ortho-positioned carbox­ylate group. The residual cis-related sites are occupied by one meta-positioned carboxyl­ate oxygen atom (O4ii) and one aminodi­acetate oxygen atom (O7i) from two other adip4– ligands (for symmetry codes refer to Table 1). The ortho-positioned carboxyl­ate group (O1iii and O2iii) from another adip4– ligand chelates Co2, two cis-related positions of which are occupied by two aminodi­acetate oxygen atoms (O8iv and O6) from two different adip4– ligands. The remaining two cis-related sites of Co2 are occupied by two terminal water ligands (O9 and O10). The length of the Co—N bond is 2.241 (3) Å and the Co—O distances are between 1.992 (3) and 2.362 (3) Å, which are all in the expected ranges. As shown in Fig. 2, two inversion-related adtp4– ligands bridge two pairs of CoII ions (Co1, Co1ii, Co2i and Co2iii) into a tetra­nuclear unit with their κ 3 O:O:O′-carboxyl­ate groups from the aminodi­acetate moieties and ortho-positioned κ 3 O:O,O′-carboxyl­ate groups (Li et al., 2020a ; Zhang et al., 2019a ,b ; Liu et al., 2018), wherein two equivalent μ 2-oxygen atoms (O7 and O7i) from κ 3 O:O:O′-carboxyl­ate groups doubly bridge Co1 and Co1ii into a dinuclear unit. The dinuclear unit is further joined with two equivalent Co2i and Co2iii atoms via κ 3 O:O:O′-carboxyl­ate groups and μ 2-oxygen bridges (O1 and O1i) from κ 3 O:O,O′-carboxyl­ate groups. Adjacent tetra­nuclear units are linked into a ribbon via double synanti bridging carboxyl­ate groups from the aminodi­acetate moieties. The closest Co1⋯Co2 and Co1⋯Co1 distances in the ribbon are 3.7074 (8) and 3.5762 (8) Å, respectively. Parallel-aligned adtp4– ligands with an alternately reversed arrangement bind adjacent CoII ribbons into a layer extending parallel to (010) (Fig. 3).

Figure 1.

Figure 1

Coordination environments of the CoII ions in (I) with displacement ellipsoids drawn at the 50% probability level; H atoms and the disordered lattice water molecules have been omitted for clarity. Symmetry codes refer to Table 1.

Table 1. Selected bond lengths (Å).

Co1—O5 2.049 (3) Co2—O2iii 2.161 (2)
Co1—O7 2.033 (3) Co2—O9 2.057 (3)
Co1—O7i 2.362 (3) Co2—O8iv 2.065 (3)
Co1—O4ii 1.992 (3) Co2—O6 2.038 (3)
Co1—O1 2.083 (3) Co2—O1iii 2.212 (2)
Co1—N1 2.241 (3) Co2—O10 2.126 (3)

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y, z+1; (iii) -x, -y+1, -z+1; (iv) x-1, y, z.

Figure 2.

Figure 2

Tetra­nuclear CoII units and a CoII ribbon in (I). Phenyl and meta-positioned carboxyl­ate groups and the disordered lattice water molecules have been omitted for clarity. [Symmetry codes: (i) 1 + x, y, z; (ii) 1 − x, 1 − y, 1 − z; (iii) −x, 1 − y, 1 − z; (iv) −1 + x, y, z; (v) −1 − x, 1 − y, 1 − z.]

Figure 3.

Figure 3

A view along [010], emphasizing the layered arrangement in the crystal structure of (I).

Supra­molecular features  

The (010) layers of (I) are assembled into a three-dimensional supra­molecular network via inter­molecular hydrogen bonds O9—H9A⋯O3v and O9—H9B⋯O2vi (Table 2, Fig. 4). The positionally and occupationally disordered solvent water mol­ecules (O11–O14) are situated in channels extending parallel to [100].

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O9—H9A⋯O3v 0.87 1.93 2.701 (4) 146
O9—H9B⋯O2vi 0.87 2.00 2.809 (4) 153
O10—H10A⋯O12 0.89 1.98 2.849 (10) 164
O10—H10B⋯O5 0.92 2.02 2.798 (4) 141

Symmetry codes: (v) -x, -y, -z; (vi) x-1, y-1, z.

Figure 4.

Figure 4

The three-dimensional supra­molecular network of (I) constructed via inter­molecular hydrogen bonds. The disordered water solvent mol­ecules are located in channels parallel to [100].

Magnetic properties  

The variable-temperature magnetic susceptibilities (χ M) of (I) were measured in the range 2–300 K under 1000 Oe. The χ M, χ M −1 and χ M T versus T plots are shown in Fig. 5. The value of χ M T at 300 K is 5.43 cm3 K mol−1, which is much larger than the expected spin-only value (3.75 cm3 K mol−1) of two isolated CoII ions with g = 2.0, S = 3/2, which may be due to the contribution of the incompletely quenched orbital magnetic moment. As the temperature decreases, the χ M T value decreases slowly between 300 and 50 K and then it descends more steeply to the minimum value of 0.51 cm3 K mol−1 at 2 K. The curve clearly indicates that the dominant anti­ferromagnetic coupling is operating. The temperature dependence of χ M −1 follows the Curie–Weiss law, and the linear fit by the equation 1/χ M = (T − θ)/C gives C = 5.76 cm−3 K mol−1 and θ = −21.99 K, which is consistent with an anti­ferromagnetic behaviour.

Figure 5.

Figure 5

χM and χ M T versus. T curves for compound (I). Inset: χ M −1 versus T plot. The red solid line represents the best-fit curve.

Database survey  

A search of the Cambridge Structural Database (CSD version 5.42, May 2021 update; Groom et al., 2016) for complexes with 2-aminodi­acetic terephthalic acid gave 19 hits, of which three are CoII complexes including the title compound (Refcode: CUFDIS). The other two CoII complexes are discrete coordination mol­ecules (Liu et al., 2012). Three other complexes with layer structures based on 2-aminodi­acetic terephthalic acid without another organic ligand have also been reported, viz. MUMBON, an MnII complex (Ma et al., 2015), NEVJIJ, a CdII complex (Ma et al., 2013), and NEVJUV, a ZnII complex (Ma et al., 2013). NEVJUV has similar cell parameters to the title compound, but similar tetra­nuclear metal units are not found in NEVJUV because the ZnII atoms have lower coordination numbers and the carboxyl­ate oxygen atoms do not bridge the ZnII atoms as in the title compound. To the best of our knowledge, similar tetra­nuclear metal units have not been reported so far. Besides, one CoII coordination polymer (CCDC reference: 2063370; Ma et al., 2021), {[Co2(adtp)(H2O)6]·5H2O}n, has been synthesized, which consists of parallel stacked zigzag chains in which CoII cations are linked together through μ3-adtp4− anions.

Synthesis and crystallization  

H4adtp was prepared using a similar protocol to that reported in the literature (Xu et al., 2006). The other chemicals were purchased from commercial sources and used without further purification. A solution of 0.2 mmol (0.0594 g) H4adtp in 5.0 ml of H2O was adjusted to a pH of 6.1 by adding a 1.0 M KHCO3 solution drop by drop. The above solution was mixed with 0.5 mmol (0.1455 g) of Co(NO3)2·6H2O and 5.0 ml of CH3CN, then transferred into a 25.0 ml Teflon-lined stainless steel autoclave. The autoclave was sealed, heated to 393 K and held at that temperature for 72 h. The autoclave was allowed to cool to 303 K within 24 h. Plate-like pink crystals of (I) were collected in 66% yield based on H4adtp. Analysis calculated (%) for C12Co2N1O11.6H14.2 (M r = 475.90): C 30.29, H 3.01, N, 2.94; found: C 30.18, H 3.15, N 3.06. Selected IR data (KBr pellet, cm−1): 3389 (s), 1631 (s), 1570 (m), 1405 (s), 1373 (s), 1319 (b), 1111 (b), 780 (b), 712 (b).

The phase purity of compound (I) was confirmed by powder X-ray diffraction analysis (PXRD; Fig. S1 in the supporting information). The peak positions of the experimental PXRD patterns are in good agreement with those simulated on basis of the present single-crystal X-ray data, indicating that a pure phase was obtained.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. The solvent water mol­ecules (O11, O12, O13 and O14) were found to be disordered and were refined isotropically with site occupancies of 0.5, 0.5, 0.35 and 0.25, respectively. The hydrogen atoms of the non-disordered water mol­ecules (O9, O10) were found in an difference density map and refined as riding, with U iso(H) = 1.5 U eq(O). Other hydrogen atoms were placed at geometrically calculated positions and treated as riding, with Csp 2—H = 0.93 Å, Csp 3—H = 0.97 Å and U iso(H) = 1.2 U eq(C). H atoms of O11, O12, O13 and O14 are not included in the model but were taken into account in the overall formula.

Table 3. Experimental details.

Crystal data
Chemical formula [Co2(C12H7NO8)(H2O)2]·1.6H2O
M r 475.90
Crystal system, space group Triclinic, P\overline{1}
Temperature (K) 293
a, b, c (Å) 9.0064 (9), 9.2340 (8), 9.8426 (9)
α, β, γ (°) 93.859 (3), 105.571 (4), 99.483 (5)
V3) 772.37 (13)
Z 2
Radiation type Mo Kα
μ (mm−1) 2.22
Crystal size (mm) 0.30 × 0.25 × 0.05
 
Data collection
Diffractometer Rigaku Saturn70 (4x4 bin mode)
Absorption correction Multi-scan (CrystalClear; Rigaku, 2008)
Tmin, Tmax 0.908, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 5012, 2619, 2245
R int 0.022
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F 2)], wR(F 2), S 0.035, 0.084, 1.04
No. of reflections 2619
No. of parameters 244
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.80, −0.41

Computer programs: CrystalClear (Rigaku, 2008), SHELXS (Sheldrick, 2008), SHELXL (Sheldrick, 2015), OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021008355/wm5615sup1.cif

e-77-00939-sup1.cif (98.7KB, cif)

Supporting information file. DOI: 10.1107/S2056989021008355/wm5615Isup3.cdx

Figure S1 The simulated and experimental PXRD patterns for compound (I). DOI: 10.1107/S2056989021008355/wm5615sup4.tif

CCDC reference: 2063394

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

[Co2(C12H7NO8)(H2O)2]·(H2O)1.6 Z = 2
Mr = 475.90 F(000) = 480
Triclinic, P1 Dx = 2.046 Mg m3
a = 9.0064 (9) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.2340 (8) Å Cell parameters from 1889 reflections
c = 9.8426 (9) Å θ = 2.3–27.5°
α = 93.859 (3)° µ = 2.22 mm1
β = 105.571 (4)° T = 293 K
γ = 99.483 (5)° Plate, clear light red
V = 772.37 (13) Å3 0.30 × 0.25 × 0.05 mm

Data collection

Rigaku Saturn70 (4x4 bin mode) diffractometer 2619 independent reflections
Radiation source: fine-focus sealed tube 2245 reflections with I > 2σ(I)
Graphite Monochromator monochromator Rint = 0.022
Detector resolution: 28.5714 pixels mm-1 θmax = 25.0°, θmin = 3.0°
CCD_Profile_fitting scans h = −10→10
Absorption correction: multi-scan (CrystalClear; Rigaku, 2008) k = −10→10
Tmin = 0.908, Tmax = 1.000 l = −11→11
5012 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.035 H-atom parameters constrained
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.035P)2 + 1.7231P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
2619 reflections Δρmax = 0.80 e Å3
244 parameters Δρmin = −0.41 e Å3
0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Co1 0.29415 (6) 0.45959 (5) 0.48240 (5) 0.01675 (15)
O5 0.0863 (3) 0.3198 (3) 0.4645 (3) 0.0269 (6)
C1 0.2786 (4) 0.7012 (4) 0.3125 (4) 0.0166 (8)
O7 0.4739 (3) 0.3593 (3) 0.4646 (3) 0.0194 (6)
C2 0.2925 (4) 0.6185 (4) 0.1820 (4) 0.0163 (8)
Co2 −0.25268 (6) 0.14862 (5) 0.47212 (5) 0.01611 (15)
O2 0.3336 (3) 0.8376 (3) 0.3404 (3) 0.0213 (6)
C3 0.3371 (5) 0.7042 (4) 0.0822 (4) 0.0209 (8)
H3 0.362867 0.806555 0.103109 0.025*
C4 0.3438 (5) 0.6402 (4) −0.0464 (4) 0.0208 (8)
H4 0.376198 0.698823 −0.110146 0.025*
C5 0.3021 (4) 0.4882 (4) −0.0798 (4) 0.0170 (8)
C6 0.2603 (4) 0.4025 (4) 0.0199 (4) 0.0185 (8)
H6 0.232662 0.300415 −0.002608 0.022*
O9 −0.3388 (3) −0.0735 (3) 0.4106 (3) 0.0273 (6)
H9A −0.294396 −0.105535 0.348644 0.041*
H9B −0.438376 −0.087425 0.364194 0.041*
C7 0.2586 (4) 0.4641 (4) 0.1514 (4) 0.0166 (8)
C8 0.2993 (4) 0.4154 (4) −0.2221 (4) 0.0203 (8)
O8 0.5342 (3) 0.1757 (3) 0.3424 (3) 0.0214 (6)
C9 0.0396 (4) 0.3315 (4) 0.2165 (4) 0.0203 (8)
H9C −0.000542 0.253614 0.137501 0.024*
H9D −0.004209 0.417680 0.188115 0.024*
C10 −0.0098 (4) 0.2809 (4) 0.3444 (4) 0.0194 (8)
O4 0.3328 (3) 0.5005 (3) −0.3085 (3) 0.0283 (7)
C13 0.2808 (4) 0.2309 (4) 0.2585 (4) 0.0195 (8)
H13A 0.285691 0.196842 0.164707 0.023*
H13B 0.212473 0.154326 0.287781 0.023*
C12 0.4434 (4) 0.2572 (4) 0.3616 (4) 0.0177 (8)
O3 0.2624 (4) 0.2777 (3) −0.2452 (3) 0.0328 (7)
O6 −0.1453 (3) 0.2040 (3) 0.3200 (3) 0.0242 (6)
O1 0.2057 (3) 0.6374 (3) 0.3941 (3) 0.0194 (6)
O10 −0.0424 (3) 0.0957 (3) 0.6003 (3) 0.0286 (6)
H10A −0.052816 0.076051 0.685363 0.043*
H10B 0.017174 0.187022 0.599944 0.043*
N1 0.2142 (3) 0.3688 (3) 0.2523 (3) 0.0153 (6)
O11 0.3252 (12) 0.0275 (10) 0.9277 (10) 0.069 (2)* 0.5
O12 −0.0171 (11) 0.0705 (10) 0.8922 (10) 0.074 (2)* 0.5
O13 0.2365 (15) 0.0205 (11) 0.9190 (11) 0.047 (3)* 0.35
O14 0.100 (3) 0.029 (3) 0.899 (3) 0.104 (7)* 0.25

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.0195 (3) 0.0195 (3) 0.0122 (3) 0.0038 (2) 0.0062 (2) 0.00157 (19)
O5 0.0250 (16) 0.0349 (16) 0.0172 (14) −0.0055 (13) 0.0071 (12) 0.0012 (12)
C1 0.0154 (19) 0.0204 (19) 0.0136 (18) 0.0037 (15) 0.0040 (15) 0.0008 (14)
O7 0.0190 (14) 0.0198 (13) 0.0172 (13) 0.0035 (11) 0.0026 (11) −0.0023 (10)
C2 0.016 (2) 0.0189 (18) 0.0141 (18) 0.0026 (15) 0.0051 (15) 0.0004 (14)
Co2 0.0175 (3) 0.0160 (3) 0.0165 (3) 0.0032 (2) 0.0082 (2) 0.00012 (19)
O2 0.0288 (16) 0.0168 (13) 0.0201 (14) 0.0024 (12) 0.0116 (12) −0.0006 (10)
C3 0.027 (2) 0.0183 (18) 0.0181 (19) 0.0059 (16) 0.0073 (16) 0.0019 (15)
C4 0.024 (2) 0.025 (2) 0.0160 (19) 0.0061 (17) 0.0090 (16) 0.0060 (15)
C5 0.0161 (19) 0.0233 (19) 0.0116 (17) 0.0038 (16) 0.0043 (14) 0.0008 (14)
C6 0.023 (2) 0.0162 (17) 0.0161 (18) 0.0024 (15) 0.0063 (15) 0.0007 (14)
O9 0.0234 (16) 0.0212 (14) 0.0379 (17) 0.0016 (12) 0.0137 (13) −0.0051 (12)
C7 0.016 (2) 0.0223 (19) 0.0122 (18) 0.0034 (16) 0.0061 (15) 0.0028 (14)
C8 0.021 (2) 0.028 (2) 0.0118 (18) 0.0054 (17) 0.0047 (15) −0.0001 (15)
O8 0.0198 (14) 0.0211 (13) 0.0235 (14) 0.0074 (12) 0.0054 (11) −0.0018 (11)
C9 0.014 (2) 0.029 (2) 0.0182 (19) 0.0028 (16) 0.0050 (15) 0.0048 (16)
C10 0.016 (2) 0.0204 (19) 0.023 (2) 0.0044 (16) 0.0073 (16) 0.0028 (15)
O4 0.0367 (18) 0.0335 (16) 0.0126 (13) −0.0052 (13) 0.0117 (12) −0.0010 (11)
C13 0.023 (2) 0.0166 (18) 0.0173 (19) 0.0030 (16) 0.0046 (16) 0.0001 (14)
C12 0.021 (2) 0.0157 (18) 0.0188 (19) 0.0019 (16) 0.0095 (16) 0.0052 (15)
O3 0.055 (2) 0.0272 (16) 0.0197 (15) 0.0098 (14) 0.0167 (14) −0.0012 (12)
O6 0.0177 (15) 0.0345 (15) 0.0207 (14) 0.0010 (12) 0.0085 (11) 0.0043 (12)
O1 0.0217 (14) 0.0209 (13) 0.0174 (13) 0.0021 (11) 0.0107 (11) −0.0001 (10)
O10 0.0263 (16) 0.0333 (16) 0.0275 (15) 0.0067 (13) 0.0076 (12) 0.0101 (12)
N1 0.0157 (16) 0.0177 (15) 0.0141 (15) 0.0030 (13) 0.0063 (12) 0.0037 (12)

Geometric parameters (Å, º)

Co1—O5 2.049 (3) C5—C8 1.504 (5)
Co1—O7 2.033 (3) C6—H6 0.9300
Co1—O7i 2.362 (3) C6—C7 1.383 (5)
Co1—O4ii 1.992 (3) O9—H9A 0.8744
Co1—O1 2.083 (3) O9—H9B 0.8742
Co1—N1 2.241 (3) C7—N1 1.461 (4)
O5—C10 1.252 (5) C8—O4 1.258 (5)
C1—C2 1.495 (5) C8—O3 1.249 (5)
C1—O2 1.258 (4) O8—C12 1.240 (4)
C1—O1 1.281 (4) C9—H9C 0.9700
O7—C12 1.276 (4) C9—H9D 0.9700
C2—C3 1.401 (5) C9—C10 1.521 (5)
C2—C7 1.403 (5) C9—N1 1.491 (5)
Co2—O2iii 2.161 (2) C10—O6 1.259 (5)
Co2—O9 2.057 (3) C13—H13A 0.9700
Co2—O8iv 2.065 (3) C13—H13B 0.9700
Co2—O6 2.038 (3) C13—C12 1.512 (5)
Co2—O1iii 2.212 (2) C13—N1 1.492 (5)
Co2—O10 2.126 (3) O10—H10A 0.8942
C3—H3 0.9300 O10—H10B 0.9225
C3—C4 1.381 (5) O11—O13 0.771 (12)
C4—H4 0.9300 O12—O14 1.17 (3)
C4—C5 1.384 (5) O13—O14 1.21 (3)
C5—C6 1.391 (5)
O5—Co1—O7i 170.67 (10) C6—C5—C8 119.9 (3)
O5—Co1—O1 99.02 (11) C5—C6—H6 118.9
O5—Co1—N1 76.91 (11) C7—C6—C5 122.2 (3)
O7—Co1—O5 115.34 (11) C7—C6—H6 118.9
O7—Co1—O7i 71.31 (11) Co2—O9—H9A 109.7
O7—Co1—O1 133.46 (10) Co2—O9—H9B 109.8
O7—Co1—N1 78.36 (10) H9A—O9—H9B 104.3
O4ii—Co1—O5 91.10 (11) C2—C7—N1 121.3 (3)
O4ii—Co1—O7i 80.73 (10) C6—C7—C2 118.7 (3)
O4ii—Co1—O7 103.42 (11) C6—C7—N1 119.9 (3)
O4ii—Co1—O1 106.43 (11) O4—C8—C5 116.2 (3)
O4ii—Co1—N1 167.23 (11) O3—C8—C5 118.0 (3)
O1—Co1—O7i 79.19 (9) O3—C8—O4 125.8 (3)
O1—Co1—N1 80.14 (10) C12—O8—Co2v 130.6 (2)
N1—Co1—O7i 111.56 (10) H9C—C9—H9D 108.2
C10—O5—Co1 119.4 (2) C10—C9—H9C 109.6
O2—C1—C2 119.7 (3) C10—C9—H9D 109.6
O2—C1—O1 118.9 (3) N1—C9—H9C 109.6
O1—C1—C2 121.4 (3) N1—C9—H9D 109.6
Co1—O7—Co1i 108.69 (10) N1—C9—C10 110.1 (3)
C12—O7—Co1i 120.4 (2) O5—C10—C9 117.6 (3)
C12—O7—Co1 116.8 (2) O5—C10—O6 125.6 (3)
C3—C2—C1 116.4 (3) O6—C10—C9 116.8 (3)
C3—C2—C7 118.8 (3) C8—O4—Co1vi 129.3 (2)
C7—C2—C1 124.8 (3) H13A—C13—H13B 108.0
O2iii—Co2—O1iii 59.97 (9) C12—C13—H13A 109.4
O9—Co2—O2iii 96.68 (10) C12—C13—H13B 109.4
O9—Co2—O8iv 84.76 (11) N1—C13—H13A 109.4
O9—Co2—O1iii 156.66 (10) N1—C13—H13B 109.4
O9—Co2—O10 89.06 (11) N1—C13—C12 111.1 (3)
O8iv—Co2—O2iii 92.24 (10) O7—C12—C13 116.7 (3)
O8iv—Co2—O1iii 95.29 (10) O8—C12—O7 125.3 (3)
O8iv—Co2—O10 173.82 (11) O8—C12—C13 117.9 (3)
O6—Co2—O2iii 161.71 (11) C10—O6—Co2 124.7 (2)
O6—Co2—O9 101.55 (11) Co1—O1—Co2iii 119.35 (12)
O6—Co2—O8iv 90.90 (11) C1—O1—Co1 115.4 (2)
O6—Co2—O1iii 101.79 (10) C1—O1—Co2iii 89.1 (2)
O6—Co2—O10 90.63 (11) Co2—O10—H10A 110.5
O10—Co2—O2iii 88.17 (11) Co2—O10—H10B 93.8
O10—Co2—O1iii 90.26 (10) H10A—O10—H10B 114.8
C1—O2—Co2iii 92.0 (2) C7—N1—Co1 117.5 (2)
C2—C3—H3 119.3 C7—N1—C9 109.1 (3)
C4—C3—C2 121.5 (3) C7—N1—C13 113.8 (3)
C4—C3—H3 119.3 C9—N1—Co1 105.0 (2)
C3—C4—H4 120.2 C9—N1—C13 110.2 (3)
C3—C4—C5 119.7 (3) C13—N1—Co1 100.6 (2)
C5—C4—H4 120.2 O11—O13—O14 171 (2)
C4—C5—C6 119.0 (3) O12—O14—O13 164 (2)
C4—C5—C8 121.1 (3)
Co1—O5—C10—C9 4.5 (4) C4—C5—C8—O4 −1.8 (5)
Co1—O5—C10—O6 −174.9 (3) C4—C5—C8—O3 179.1 (4)
Co1i—O7—C12—O8 51.6 (4) C5—C6—C7—C2 3.3 (6)
Co1—O7—C12—O8 −173.0 (3) C5—C6—C7—N1 −179.8 (3)
Co1—O7—C12—C13 4.5 (4) C5—C8—O4—Co1vi −163.4 (2)
Co1i—O7—C12—C13 −130.8 (3) C6—C5—C8—O4 177.4 (4)
O5—C10—O6—Co2 9.2 (5) C6—C5—C8—O3 −1.7 (5)
C1—C2—C3—C4 −175.7 (3) C6—C7—N1—Co1 158.5 (3)
C1—C2—C7—C6 173.2 (3) C6—C7—N1—C9 −82.2 (4)
C1—C2—C7—N1 −3.7 (6) C6—C7—N1—C13 41.4 (5)
C2—C1—O2—Co2iii 178.1 (3) C7—C2—C3—C4 1.9 (6)
C2—C1—O1—Co1 59.6 (4) C8—C5—C6—C7 −179.0 (3)
C2—C1—O1—Co2iii −178.0 (3) C9—C10—O6—Co2 −170.2 (2)
C2—C3—C4—C5 1.6 (6) C10—C9—N1—Co1 −33.2 (3)
C2—C7—N1—Co1 −24.7 (4) C10—C9—N1—C7 −160.1 (3)
C2—C7—N1—C9 94.7 (4) C10—C9—N1—C13 74.3 (4)
C2—C7—N1—C13 −141.8 (3) C12—C13—N1—Co1 −40.3 (3)
Co2v—O8—C12—O7 9.3 (5) C12—C13—N1—C7 86.3 (4)
Co2v—O8—C12—C13 −168.3 (2) C12—C13—N1—C9 −150.7 (3)
O2—C1—C2—C3 −13.0 (5) O3—C8—O4—Co1vi 15.5 (6)
O2—C1—C2—C7 169.5 (3) O1—C1—C2—C3 164.0 (3)
O2—C1—O1—Co1 −123.4 (3) O1—C1—C2—C7 −13.6 (6)
O2—C1—O1—Co2iii −1.0 (3) O1—C1—O2—Co2iii 1.1 (3)
C3—C2—C7—C6 −4.3 (5) N1—C9—C10—O5 22.0 (5)
C3—C2—C7—N1 178.9 (3) N1—C9—C10—O6 −158.6 (3)
C3—C4—C5—C6 −2.6 (6) N1—C13—C12—O7 27.9 (4)
C3—C4—C5—C8 176.6 (3) N1—C13—C12—O8 −154.3 (3)
C4—C5—C6—C7 0.2 (6)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, y, z+1; (iii) −x, −y+1, −z+1; (iv) x−1, y, z; (v) x+1, y, z; (vi) x, y, z−1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O9—H9A···O3vii 0.87 1.93 2.701 (4) 146
O9—H9B···O2viii 0.87 2.00 2.809 (4) 153
O10—H10A···O12 0.89 1.98 2.849 (10) 164
O10—H10B···O5 0.92 2.02 2.798 (4) 141

Symmetry codes: (vii) −x, −y, −z; (viii) x−1, y−1, z.

Funding Statement

This work was funded by Natural Science Foundation of Shandong Province grants ZR2019QB013 and ZR2018MB041.

References

  1. Allendorf, M. D., Dong, R., Feng, X., Kaskel, S., Matoga, D. & Stavila, V. (2020). Chem. Rev. 120, 8581–8640. [DOI] [PubMed]
  2. Bavykina, A., Kolobov, N., Khan, I. S., Bau, J. A., Ramirez, A. & Gascon, J. (2020). Chem. Rev. 120, 8468–8535. [DOI] [PubMed]
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  4. Gan, L., Chidambaram, A., Fonquernie, P. G., Light, M. E., Choquesillo-Lazarte, D., Huang, H., Solano, E., Fraile, J., Viñas, C., Teixidor, F., Navarro, J. A. R., Stylianou, K. C. & Planas, J. G. (2020). J. Am. Chem. Soc. 142, 8299–8311. [DOI] [PubMed]
  5. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  6. Islamoglu, T., Chen, Z., Wasson, M. C., Buru, C. T., Kirlikovali, K. O., Afrin, U., Mian, M. R. & Farha, O. K. (2020). Chem. Rev. 120, 8130–8160. [DOI] [PubMed]
  7. Li, H.-X., Zhang, Z.-H., Wang, Q., Xue, D.-X. & Bai, J. (2020b). Cryst. Growth Des. 20, 8015–8020.
  8. Li, S.-D., Su, F., Zhu, M.-L. & Lu, L.-P. (2020a). Acta Cryst. C76, 863–868. [DOI] [PubMed]
  9. Liu, M., Gao, K., Fan, Y., Guo, X., Wu, J., Meng, X. & Hou, H. (2018). Chem. Eur. J. 24, 1416–1424. [DOI] [PubMed]
  10. Liu, M. L., Shi, W., Song, H. B., Cheng, P., Liao, D. Z. & Yan, S. P. (2009). CrystEngComm, 11, 102–108.
  11. Liu, M.-L., Wang, Y.-X., Shi, W. & Cui, J.-Z. (2012). J. Coord. Chem. 65, 1915–1925.
  12. Ma, J., Chen, L., Wu, M. Y., Zhang, S. Q., Xiong, K. C., Han, D., Jiang, F. L. & Hong, M. C. (2013). CrystEngComm, 15, 911–921.
  13. Ma, J., Jiang, F.-L., Chen, L., Wu, M.-Y., Zhou, K., Yi, W.-T., Xiong, J. & Hong, M.-C. (2015). Inorg. Chem. Commun. 58, 43–47.
  14. Ma, J., Zhang, W.-Z., Xiong, J. & Yan, C.-Y. (2021). Acta Cryst. E77, 944–949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Padial, N. M., Lerma-Berlanga, B., Almora-Barrios, N., Castells-Gil, J., da Silva, I., de la Mata, M. A., Molina, S. I., Hernández-Saz, J., Platero-Prats, A. E., Tatay, S. & Martı-Gastaldo, C. (2020). J. Am. Chem. Soc. 142, 6638–6648. [DOI] [PubMed]
  16. Pang, J., Yuan, S., Qin, J., Liu, C., Lollar, C., Wu, M., Yuan, D., Zhou, H.-C. & Hong, M. (2017). J. Am. Chem. Soc. 139, 16939–16945. [DOI] [PubMed]
  17. Qian, Q., Asinger, P. A., Lee, M. J., Han, G., Mizrahi Rodriguez, K., Lin, S., Benedetti, F. M., Wu, A. X., Chi, W. S. & Smith, Z. P. (2020). Chem. Rev. 120, 8161–8266. [DOI] [PubMed]
  18. Rice, A. M., Martin, C. R., Galitskiy, V. A., Berseneva, A. A., Leith, G. A. & Shustova, N. B. (2020). Chem. Rev. 120, 8790–8813. [DOI] [PubMed]
  19. Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.
  20. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  21. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  22. Shen, J.-Q., Liao, P.-Q., Zhou, D.-D., He, C.-T., Wu, J.-X., Zhang, W.-X., Zhang, J.-P. & Chen, X.-M. (2017). J. Am. Chem. Soc. 139, 1778–1781. [DOI] [PubMed]
  23. Thorarinsdottir, A. E. & Harris, T. D. (2020). Chem. Rev. 120, 8716–8789. [DOI] [PubMed]
  24. Wang, M., Gou, X., Shi, W. & Cheng, P. (2019b). Chem. Commun. 55, 11000–11012. [DOI] [PubMed]
  25. Wang, Y., Feng, L., Fan, W., Wang, K.-Y., Wang, X., Wang, X., Zhang, K., Zhang, X., Dai, F., Sun, D. & Zhou, H.-C. (2019a). J. Am. Chem. Soc. 141, 6967–6975. [DOI] [PubMed]
  26. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  27. Xu, Y. Q., Yuan, D. Q., Wu, B. L., Han, L., Wu, M. Y., Jiang, F. L. & Hong, M. C. (2006). Cryst. Growth Des. 6, 1168–1174.
  28. Yang, S., Peng, L., Syzgantseva, O. A., Trukhina, O., Kochetygov, I., Justin, A., Sun, D. T., Abedini, H., Syzgantseva, M. A., Oveisi, E., Lu, G. & Queen, W. L. (2020). J. Am. Chem. Soc. 142, 13415–13425. [DOI] [PubMed]
  29. Zhang, J.-Y., Ma, X.-L., Wang, Z.-X., He, X., Shao, M. & Li, M.-X. (2019b). Cryst. Growth Des. 19, 2308–2321.
  30. Zhang, Y.-Q., Blatov, V. A., Lv, X.-X., Tang, D.-Y., Qian, L.-L., Li, K. & Li, B.-L. (2019a). Acta Cryst. C75, 960–968. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021008355/wm5615sup1.cif

e-77-00939-sup1.cif (98.7KB, cif)

Supporting information file. DOI: 10.1107/S2056989021008355/wm5615Isup3.cdx

Figure S1 The simulated and experimental PXRD patterns for compound (I). DOI: 10.1107/S2056989021008355/wm5615sup4.tif

CCDC reference: 2063394

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES