Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Aug 10;77(Pt 9):912–918. doi: 10.1107/S2056989021008008

Crystal structures of phosphine-supported (η5-cyclo­penta­dien­yl)molybdenum(II) propionyl complexes

Matthew T Whited a,*, Margaret A Ball a, Alison Block a, Benjamin A Brewster a, LouLou Ferrer a, Helen J Jin-Lee a, Colby J King a, Jamie D North a, Inger L Shelton a, David G Wilson a
PMCID: PMC8423009  PMID: 34584761

Solid-state structures are presented for three propionyl complexes of MoII featuring piano-stool geometries and supported by tri­aryl­phosphine ligands, showing the effects of para substitution on supra­molecular structure and allowing comparison to the large class of previously reported acetyl complexes.

Keywords: crystal structure, phosphine, propion­yl, piano-stool complex

Abstract

Three cyclo­penta­dienylmolybdenum(II) propionyl complexes featuring tri­aryl­phosphine ligands with different para substituents, namely, dicarbon­yl(η5-cyclo­penta­dien­yl)propion­yl(tri­phenyl­phosphane-κP)molybdenum(II), [Mo(C5H5)(C3H5O)(C18H15P)(CO)2], (1), dicarbon­yl(η5-cyclo­penta­dien­yl)propion­yl[tris­(4-fluoro­phen­yl)phosphane-κP]molybdenum(II), [Mo(C5H5)(C3H5O)(C18H12F3P)(CO)2], (2), and dicarbon­yl(η5-cyclo­penta­dien­yl)propion­yl[tris­(4-meth­oxy­phen­yl)phosphane-κP]molybdenum(II) dichloromethane solvate, [Mo(C5H5)(C3H5O)(C21H21O3P)(CO)2]·CH2Cl2, (3), have been prepared from the corresponding ethyl complexes via phosphine-induced migratory insertion. These complexes exhibit four-legged piano-stool geom­etries with mol­ecular structures quite similar to each other and to related acetyl complexes. The extended structures of the three complexes differ somewhat, with the para substituent of the tri­aryl­phosphine of (2) (fluoro) or (3) (meth­oxy) engaging in non-classical C—H⋯F or C—H⋯O hydrogen-bonding inter­actions. The structure of (3) exhibits modest disorder in the position of one Cl atom of the di­chloro­methane solvent, which was modeled with two sites showing approximately equivalent occupancies [0.532 (15) and 0.478 (15)].

Chemical context  

Cyclo­penta­dienylmolybdenum(II) complexes featuring carbonyl ligands commonly adopt ‘four-legged piano-stool’ geometries (Barnett & Slocum, 1972; Kubacek et al., 1982), and those featuring alkyl co-ligands readily undergo migratory insertion to afford MoII acyl complexes upon exposure to phosphines (Barnett & Treichel, 1967; Butler et al., 1967). The effect of changing phosphine substituents on this reaction is well established, with bulkier phosphines enhancing the rates of subsequent deinsertion from the acyl complexes, a net deca­rbonylation (Barnett, 1969; Barnett & Pollmann, 1974). Most complexes of the type Mo(C5H5)(CO)2(PR 3)(COR) feature acetyl ligands, though there are limited examples of other acyl complexes that have been structurally characterized (Michelini-Rodriguez et al., 1993; Murshid et al., 2016).

We have previously reported synthetic details and solid-state structures for a number of MoII acetyl complexes of the type described above (Whited & Hofmeister, 2014; Whited et al., 2012, 2014), examining the effect of changing phosphine substituents on local and supra­molecular features. Consistent with reports on deca­rbonylation reactivity, we have found that the primary impact on mol­ecular structure is observed in the Mo—P bond lengths, with some changes in P—Mo—C bond angles as a result of sterics. Use of tri(2-fur­yl)phosphine, which features heteroatoms as potential hydrogen-bond acceptors, leads to an unusual structure with the acetyl oriented down, away from the cyclo­penta­dienyl ring rather than up toward it as observed in other cases (Whited et al., 2013), and a similar effect was observed by incorporation of a Lewis-acidic manganese unit to inter­act with the acetyl ligand (Adatia et al., 1986). Recent use of other potentially hydrogen-bonding phosphine ligands did not lead to the same solid-state effect (Anstey et al., 2020).graphic file with name e-77-00912-scheme1.jpg

We were inter­ested in extending earlier studies to higher-order alkyl groups at molybdenum, and in this report we describe the synthesis and solid-state structures of related MoII propionyl complexes derived from an ethyl precursor and supported by tri­aryl­phosphine ligands differing in their para substitution (–H, –F, and –OCH3). Although substitution of phosphine aryl groups with electron-withdrawing or -donating groups minimally affects local structure, the supra­molecular organization is substanti­ally affected by non-classical hydrogen-bonding to the fluoro and meth­oxy groups in (2) and (3), respectively.

Structural commentary  

The mol­ecular structures of (1), (2), and (3) are illustrated in Figs. 1–3 . All complexes exhibit an overall structure common for CpMo acetyl complexes of this type, with trans-disposed carbonyl ligands. As previously observed for most related acetyl complexes, the acyl C=O points up toward the Cp ring. In the case of (1), this phenomenon could be rationalized by presence of short C4—H4A⋯O1 (2.672 Å) and C4—H4B⋯O2 (2.639 Å) contacts involving the carbonyl ligands that are enabled when the acyl points up. However, the variation of the Mo1—C3—C4—C5 torsion angle across the series [175.31 (12)° for (1), 172.61 (18)° for (2), and 137.17 (10)° for (3)] argues against the general importance of such an inter­action.

Figure 1.

Figure 1

Mol­ecular structure of (1) with ellipsoids at 50% probability.

Figure 2.

Figure 2

Mol­ecular structure of (2) with ellipsoids at 50% probability.

Figure 3.

Figure 3

Mol­ecular structure of (3) with ellipsoids at 50% probability.

Selected geometric parameters for (1), (2), and (3) are presented in Tables 1–3 . Complex (2) crystallized with two nearly equivalent mol­ecules in the asymmetric unit, so geometric parameters are presented for both. In general, the three complexes are nearly identical, as might be expected based on the dominant role of sterics in determining structure and the fact that the steric profiles of the three tri­aryl­phosphine ligands are identical. The Mo—P bond length in (2) [2.4692 (4) Å (avg)] is slightly shorter than in (1) or (3) [2.4816 (4) and 2.4745 (3) Å, respectively], which may be related to stronger π-backbonding to the tris­(4-fluoro­phen­yl)phosphine ligand. Stronger backbonding is supported by the observation by infrared spectroscopy of slightly higher-energy carbonyl stretching vibrations for (2) [ν(CO)avg = 1897 cm−1] compared with (1) and (3) [ν(CO)avg = 1893 cm−1 for (1), 1890 cm−1 for (3)]. Geometric parameters for all complexes are quite similar to those for the related tri­phenyl­phosphine-supported CpMo acetyl complex (Churchill & Fennessey, 1968).

Table 1. Selected geometric parameters (Å, °) for (1) .

Mo1—P1 2.4816 (4) Mo1—C2 1.9662 (15)
Mo1—C1 1.9640 (13) Mo1—C3 2.2794 (14)
       
C1—Mo1—C2 107.83 (6) C1—Mo1—P1 79.34 (4)
C1—Mo1—C3 74.37 (5) C2—Mo1—P1 78.28 (4)
C2—Mo1—C3 72.47 (5) C3—Mo1—P1 131.76 (4)
       
Mo1—C3—C4—C5 175.31 (12)    

Table 2. Selected geometric parameters (Å, °) for (2) .

Mo1—P1 2.4730 (6) Mo2—C29 1.962 (2)
Mo1—C1 1.966 (2) Mo2—C30 1.964 (3)
Mo1—C2 1.965 (2) Mo2—C31 2.286 (2)
Mo1—C3 2.265 (2) Mo2—P2 2.4654 (6)
       
C1—Mo1—C2 109.77 (10) C29—Mo2—C30 107.12 (10)
C1—Mo1—C3 77.34 (9) C29—Mo2—C31 74.64 (9)
C2—Mo1—C3 70.93 (9) C30—Mo2—C31 73.89 (9)
C1—Mo1—P1 80.12 (7) C29—Mo2—P2 78.59 (7)
C2—Mo1—P1 79.50 (7) C30—Mo2—P2 78.48 (7)
C3—Mo1—P1 133.55 (6) C31—Mo2—P2 133.28 (6)
       
Mo1—C3—C4—C5 172.61 (18) Mo2—C31—C32—C33 173.63 (19)

Table 3. Selected geometric parameters (Å, °) for (3) .

Mo1—P1 2.4745 (3) Mo1—C2 1.9658 (12)
Mo1—C1 1.9675 (12) Mo1—C3 2.2564 (11)
       
C1—Mo1—C2 106.36 (5) C1—Mo1—P1 79.97 (3)
C1—Mo1—C3 72.49 (4) C2—Mo1—P1 79.79 (3)
C2—Mo1—C3 74.79 (4) C3—Mo1—P1 134.90 (3)
       
Mo1—C3—C4—C5 137.17 (10)    

Supra­molecular features  

In spite of the similarities among (1), (2), and (3) in their mol­ecular structures, the para substituent of the tri­aryl­phosphine ligand [H for (1), F for (2), OCH3 for (3)] plays an important role in determining the extended structure. The extended structure of (1) is dominated by non-classical C—H⋯O inter­actions involving its carbonyl ligands. A short C—H⋯O inter­action between O2 and H12 of a phenyl ring (2.36 Å) joins mol­ecules of (1) into centrosymmetrical dimers that are organized into chains along [010] by inter­molecular C15—H15⋯Cg4 (2.952 Å, where Cg4 represents the centroid of the C23–C28 ring) and intra­molecular O2⋯Cg4 (3.295 Å) inter­actions (Fig. 4, Table 4). These chains are linked into sheets parallel to (10Inline graphic) through another set of non-classical C—H⋯O inter­actions (2.60 Å) between O1 of the other carbonyl ligand and H6 from a cyclo­penta­dienyl ligand (Fig. 5).

Figure 4.

Figure 4

Chains of (1) along [010], viewed along [3Inline graphic0].

Table 4. Hydrogen-bond geometry (Å, °) for (1) .

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O2i 0.95 2.36 3.1188 (18) 137
C6—H6⋯O1ii 1.00 2.60 3.545 (2) 158

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z.

Figure 5.

Figure 5

Sheets of (1) formed by C—H⋯O inter­actions, viewed perpendicular to (10Inline graphic).

The tris­(4-fluoro­phen­yl)phosphine-supported derivative (2) features two nearly equivalent mol­ecules in the asymmetric unit exhibiting a non-classical C—H⋯O inter­action between O6 of a propionyl ligand and H15 from a phenyl ring (2.59 Å) and a C—H⋯F close contact between F3 and H53 (2.60 Å). These pairs of mol­ecules are joined into chains along [001] by C34—H34⋯O1 hydrogen bonding (2.38 Å, Fig. 6, Table 5)). The mol­ecules are further organized parallel to (010) by C—H⋯F close contacts between F4 and H49 (2.55 Å) and C—H⋯O inter­actions between O3 and H55 (2.53 Å) (Fig. 7), then further joined along [010] by C—F⋯π inter­actions (F5⋯Cg4 = 3.17 Å, where Cg4 represents the centroid of the C23–C38 ring).

Figure 6.

Figure 6

Chains along [001] of the two nearly identical mol­ecules of (2) in the asymmetric unit, with their C—H⋯O and C—H⋯F inter­actions, viewed along [010].

Table 5. Hydrogen-bond geometry (Å, °) for (2) .

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯O6 0.95 2.59 3.371 (4) 139
C49—H49⋯F4i 0.95 2.55 3.344 (3) 141
C55—H55⋯O3ii 0.95 2.53 3.450 (3) 164
C34—H34⋯O1iii 1.00 2.38 3.237 (3) 143

Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z; (iii) x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}.

Figure 7.

Figure 7

Sheets of (2) parallel to (010), viewed perpendicular to (010).

Like complex (1), complex (3) is joined into centrosymmetrical dimers by a C—H⋯O inter­action involving a carbonyl ligand (C8—H8⋯O1, Table 6), and these are linked into chains along [110] through an additional C—H⋯O inter­action between the propionyl oxygen and a cyclo­penta­dienyl ligand (Fig. 8). Additional C31—H31B⋯O5 inter­actions along [110], involving a meth­oxy group from the phosphine ligand, join the mol­ecules into a network parallel to (001). This further set of inter­actions involving meth­oxy groups, as well as important close contacts involving the di­chloro­methane solvent, are depicted in Fig. 9.

Table 6. Hydrogen-bond geometry (Å, °) for (3) .

D—H⋯A D—H H⋯A DA D—H⋯A
C31—H31B⋯O5i 0.98 2.58 3.4880 (16) 155
C6—H6⋯O3ii 1.00 2.57 3.4555 (16) 148
C8—H8⋯O1iii 1.00 2.45 3.2714 (16) 139
C32—H32B⋯O2iv 0.99 2.63 3.418 (2) 137

Symmetry codes: (i) x+1, y+1, z; (ii) -x+1, -y, -z; (iii) -x+1, -y+1, -z; (iv) x-1, y, z.

Figure 8.

Figure 8

Chains of (3) along [010], viewed perpendicular to (001).

Figure 9.

Figure 9

Network of complex (3) formed by inter­actions featuring meth­oxy groups and di­chloro­methane solvent, viewed along [100].

Database survey  

The current version of the Cambridge Structural Database (Version 5.41, updated August 2020; Groom et al., 2016) has fourteen entries corresponding to molybdenum acyl complexes of the general form Mo(C5H5)(CO)2(PR 3)(COR). The trans-dicarbonyl structure, as observed for (1)–(3), is preferred except in cases where the phosphine and acyl ligands are covalently linked, forcing them to be cis (Adams et al., 1991; Mercier et al., 1993; Yan et al., 2009).

Synthesis and crystallization  

CpMo(CO)3(CH2CH3). This compound was prepared by modification of the method used of Gladysz et al. (1979), as previously reported by Whited & Hofmeister (2014) and Anstey et al. (2020). In a 20 ml scintillation vial equipped with a flea-sized stir bar, [CpMo(CO)3]2 (0.1908 g, 0.39 mmol) was dissolved in THF (10 ml). Sodium tri­ethyl­borohydride (0.87 mL of 1.0 M solution in THF, 0.87 mmol) was added dropwise by syringe with vigorous stirring, leading to an immediate color change from purple to green–yellow with evolution of H2 gas. The reaction was allowed to proceed with stirring for 20 min, and an excess of iodo­ethane (0.098 ml, 1.2 mmol) was added dropwise with stirring and the reaction was allowed to proceed for 6 h. Volatiles were removed in vacuo to afford a yellow–brown film that was stored at 238 K for 1 week. The solid was extracted with pentane (4 × 10 ml) and filtered through a 1 cm pad of activated alumina to afford a yellow solution, and removal of solvent in vacuo afforded CpMo(CO)3(CH2CH3) as a pure yellow powder (0.131 g, 61%). 1H NMR (400 MHz, CDCl3): δ 5.28 (s, 5H, Cp ring), 1.72 (q, 3 J HH = 7.4 Hz, 2H, –CH 2CH3), 1.45 (t, 3 J HH = 7.4 Hz, 3H, –CH2CH 3). 13C{1H} NMR (101 MHz, CDCl3): δ 239.9 (Mo—CO), 227.8 (Mo—CO), 93.0 (Cp ring), 20.4 (Mo—CH2 CH3) −3.7 (Mo—CH2CH3). IR (CH2Cl2, NaCl, cm−1) ν(CO): 2015, 1921 (split).

CpMo(CO)2(PPh3)(COCH2CH3) (1). In an inert-atmos­phere glove box, CpMo(CO)3(CH2CH3) (0.0803 g, 0.293 mmol) and tri­phenyl­phosphine (0.115 g, 0.440 mmol, 1.5 equiv) were dissolved in aceto­nitrile (5 ml) in a 20 ml scintillation vial equipped with a flea-sized stir bar. The mixture was stirred for 1 week, during which time a bright-yellow precip­itate formed. The yellow solid was isolated by filtration and washed with pentane (2 × 5 ml), then dried in vacuo to afford pure 1. Yellow crystals of 1 suitable for X-ray diffraction were obtained from a concentrated di­chloro­methane solution by vapor cross diffusion with pentane at 238 K. 1H NMR (400 MHz, CDCl3): δ 7.50–7.30 (m, 15H, PPh3), 5.00 (d, J = 1.2 Hz, 5H, C5 H5 ), 3.03 (q, 3 J HH = 7.2 Hz, 2H, C(O)CH 2CH3), 0.90 (t, 3 J HH = 7.2 Hz, 3H, C(O)CH2CH 3). 13C{1H} NMR (101 MHz, CDCl3): δ 267.7 (d, 2 J CP = 11 Hz, Mo—COEt), 238.8 (d, 2 J CP = 24 Hz, Mo—CO), 135.7 (d, 1 J CP = 44 Hz, ipso-C of PPh3), 133.2 (d, 2 J CP = 11 Hz, ortho-C of PPh3), 130.5 (d, 4 J CP = 2 Hz, para-C of PPh3), 128.6 (d, 3 J CP = 11 Hz, meta-C of PPh3), 96.7 (Cp ring), 58.1 (Mo—COCH2CH3), 10.1 (Mo—COCH2 CH3). 31P{1H} NMR (162 MHz, CDCl3): δ 68.4 (s). IR (CH2Cl2, NaCl, cm−1) ν(CO): 1935, 1851, 1614 (acet­yl).

CpMo(CO)2(P(4-FPh)3)(COCH2CH3) (2). In an inert-atmosphere glove box, CpMo(CO)3(CH2CH3) (0.0997 g, 0.36 mmol) and tris­(4-fluoro­phen­yl)phosphine (0.17 g, 0.55 mmol, 1.5 equiv) were dissolved in aceto­nitrile (5 ml) in a 20 ml scintillation vial equipped with a flea-sized stir bar. The mixture was stirred for 1 week, causing a color change to orange, but without formation of any precipitate. Solvent was removed in vacuo, causing precipitation of a yellow solid that was isolated by filtration and washed with pentane (2 × 3 ml) to afford the desired product 2 (0.12 g, 56%). Yellow crystals of 2 suitable for X-ray diffraction were obtained from a concentrated di­chloro­methane solution by vapor cross diffusion with pentane at 238 K. 1H NMR (400 MHz, CDCl3): δ 7.41–7.30 (br m, 6H, ortho-C–H of phosphine), 7.14 (td, 3 J HH3 J HF = 8.6 Hz, 4 J HP = 1.5 Hz, 6H, meta-C—H of phosphine), 4.90 (d, J = 1.2 Hz, 5H, C5 H5 ), 2.99 (q, 3 J HH = 7.2 Hz, 2H, C(O)CH 2CH3), 0.90 (t, 3 J HH = 7.2 Hz, 3H, C(O)CH2CH 3). 13C{1H} NMR (101 MHz, CDCl3): δ 265.4 (d, 2 J CP = 11 Hz, Mo—COEt), 238.2 (d, 2 J CP = 24 Hz, Mo—CO), 164.0 (dd, 1 J CF = 253 Hz, 4 J CP = 2 Hz, C—F of phosphine), 135.0 (dd, 2 J CP = 13 Hz, 3 J CF = 8 Hz, ortho-C of phosphine), 131.3 (dd, 1 J CP = 46 Hz, 4 J CF = 4 Hz, ipso-C of phosphine), 116.0 (dd, 2 J CF = 21 Hz, 3 J CP = 11 Hz, meta-C of phosphine), 96.5 (Cp ring), 58.2 (Mo—COCH2CH3), 10.9 (Mo—COCH2 CH3). 31P{1H} NMR (162 MHz, CDCl3): δ 68.5 (s). IR (CH2Cl2, NaCl, cm−1) ν(CO): 1938, 1856, 1620 (acet­yl).

CpMo(CO)2(P(4-MeOPh)3)(COCH2CH3) (3). In an inert-atmosphere glove box, CpMo(CO)3(CH2CH3) (0.113 g, 0.41 mmol) and tris­(4-meth­oxy­phen­yl)phosphine (0.218 g, 0.61 mmol, 1.5 equiv) were dissolved in aceto­nitrile (5 ml) in a 20 nml scintillation vial equipped with a flea-sized stir bar. The mixture was stirred for 1 week, causing precipitation of 3 as a pure yellow powder that was isolated by filtration. Crystals of 3 suitable for X-ray diffraction were obtained from a concentrated di­chloro­methane solution by vapor cross diffusion with pentane at 238 K. 1H NMR (400 MHz, CDCl3): δ 7.37–7.23 (br m, 6H, ortho-C–H of phosphine), 7.14 (dd, 3 J HH = 8.8 Hz, 4 J HP = 1.7 Hz, meta-C—H of phosphine), 4.99 (d, J = 1.2 Hz, 5H, C5 H5 ), 3.03 (q, 3 J HH = 7.2 Hz, 2H, C(O)CH 2CH3), 0.89 (t, 3 J HH = 7.2 Hz, 3H, C(O)CH2CH 3). 13C{1H} NMR (101 MHz, CDCl3): δ 268.6 (d, 2 J CP = 11 Hz, Mo–COEt), 239.2 (d, 2 J CP = 24 Hz, Mo—CO), 161.1 (C—OCH3 of phosphine), 134.6 (d, 2 J CP = 12 Hz, ortho-C of phosphine), 127.4 (d, 1 J CP = 50 Hz, ipso-C of phosphine), 114.0 (d, 3 J CP = 11 Hz, meta-C of phosphine), 96.6 (Cp ring), 58.0 (Mo—COCH2CH3), 10.1 (Mo—COCH2 CH3). 31P{1H} NMR (162 MHz, CDCl3): δ 62.3 (s). IR (CH2Cl2, NaCl, cm−1) ν(CO): 1933, 1847, 1605 (acet­yl).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 7. H atoms were placed in calculated positions and refined in the riding-model approximation with distances of C—H = 0.95, 0.98, 0.99, and 1.00 Å for the phenyl, methyl, methyl­ene, and cyclo­penta­dienyl groups, respectively, and with U iso(H) = k×U eq(C), k = 1.2 for cyclo­penta­dienyl, phenyl, and methyl­ene groups and 1.5 for methyl groups. Methyl group H atoms were allowed to rotate in order to find the best rotameric conformation.

Table 7. Experimental details.

  (1) (2) (3)
Crystal data
Chemical formula [Mo(C5H5)(C3H5O)(C18H15P)(CO)2] [Mo(C5H5)(C3H5O)(C18H12F3P)(CO)2] [Mo(C5H5)(C3H5O)(C21H21O3P)(CO)2]·CH2Cl2
M r 536.39 590.36 711.39
Crystal system, space group Triclinic, P\overline{1} Monoclinic, P21/c Triclinic, P\overline{1}
Temperature (K) 170 170 170
a, b, c (Å) 9.1719 (5), 11.7493 (7), 12.6049 (7) 11.7991 (4), 18.6907 (8), 22.4744 (8) 10.5308 (6), 12.1305 (7), 13.6154 (8)
α, β, γ (°) 113.083 (2), 99.148 (2), 99.380 (2) 90, 97.256 (2), 90 97.660 (2), 104.759 (2), 107.081 (2)
V3) 1195.14 (12) 4916.7 (3) 1566.43 (16)
Z 2 8 2
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.64 0.65 0.68
Crystal size (mm) 0.16 × 0.16 × 0.06 0.05 × 0.05 × 0.05 0.23 × 0.21 × 0.12
 
Data collection
Diffractometer Bruker D8 QUEST ECO Bruker D8 QUEST ECO Bruker D8 QUEST ECO
Absorption correction Multi-scan (Krause et al., 2015) Multi-scan (Krause et al., 2015) Multi-scan (Krause et al., 2015)
Tmin, Tmax 0.89, 0.96 0.86, 0.97 0.84, 0.92
No. of measured, independent and observed [I > 2σ(I)] reflections 49481, 5939, 5674 73758, 10047, 8547 81820, 9578, 9053
R int 0.025 0.042 0.029
(sin θ/λ)max−1) 0.667 0.625 0.714
 
Refinement
R[F2 > 2σ(F 2)], wR(F 2), S 0.019, 0.051, 1.07 0.029, 0.063, 1.07 0.020, 0.054, 1.06
No. of reflections 5939 10047 9578
No. of parameters 299 651 393
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.34, −0.40 0.37, −0.39 0.40, −0.48

Computer programs: BIS and SAINT (Bruker, 2019), SHELXT2018/2 (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ), Mercury (Macrae et al., 2020), and publCIF (Westrip, 2010).

A small number of intense low-angle reflections [three for (1); seven for (2); five for (3)] are missing from these high-quality data sets due to the arrangement of the instrument with a conservatively sized beam stop. The large number of reflections in the data sets (and the Fourier-transform relationship of intensities to atoms) ensures that no particular bias has been introduced.

The structure of (3) exhibits modest disorder in the position of Cl1 of the di­chloro­methane solvent, which was modeled with two sites showing approximately equivalent occupancies [0.532 (15) for Cl1A, 0.468 (15) for Cl1B].

Supplementary Material

Crystal structure: contains datablock(s) global, 1, 2, 3. DOI: 10.1107/S2056989021008008/jq2008sup1.cif

e-77-00912-sup1.cif (5.8MB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S2056989021008008/jq20081sup2.hkl

e-77-00912-1sup2.hkl (472.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021008008/jq20081sup5.cdx

Structure factors: contains datablock(s) 2. DOI: 10.1107/S2056989021008008/jq20082sup3.hkl

e-77-00912-2sup3.hkl (797.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021008008/jq20082sup6.cdx

Structure factors: contains datablock(s) 3. DOI: 10.1107/S2056989021008008/jq20083sup4.hkl

e-77-00912-3sup4.hkl (760KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021008008/jq20083sup7.cdx

CCDC references: 2101246, 2101245, 2101244

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Carleton College is acknowledged for partial funding to support purchase of the Bruker D8 Quest ECO diffractometer used to perform this work.

supplementary crystallographic information

Dicarbonyl(η5-cyclopentadienyl)propionyl(triphenylphosphane-κP)molybdenum(II) (1) . Crystal data

[Mo(C5H5)(C3H5O)(C18H15P)(CO)2] Z = 2
Mr = 536.39 F(000) = 548
Triclinic, P1 Dx = 1.491 Mg m3
a = 9.1719 (5) Å Mo Kα radiation, λ = 0.71073 Å
b = 11.7493 (7) Å Cell parameters from 9085 reflections
c = 12.6049 (7) Å θ = 2.6–33.1°
α = 113.083 (2)° µ = 0.64 mm1
β = 99.148 (2)° T = 170 K
γ = 99.380 (2)° Prism, yellow
V = 1195.14 (12) Å3 0.16 × 0.16 × 0.06 mm

Dicarbonyl(η5-cyclopentadienyl)propionyl(triphenylphosphane-κP)molybdenum(II) (1) . Data collection

Bruker D8 QUEST ECO diffractometer 5939 independent reflections
Radiation source: sealed tube, Siemens KFFMO2K-90C 5674 reflections with I > 2σ(I)
Curved Graphite monochromator Rint = 0.025
Detector resolution: 7.3910 pixels mm-1 θmax = 28.3°, θmin = 2.3°
φ and ω scans h = −12→12
Absorption correction: multi-scan (Krause et al., 2015) k = −15→15
Tmin = 0.89, Tmax = 0.96 l = −16→16
49481 measured reflections

Dicarbonyl(η5-cyclopentadienyl)propionyl(triphenylphosphane-κP)molybdenum(II) (1) . Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.051 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.022P)2 + 0.6108P] where P = (Fo2 + 2Fc2)/3
5939 reflections (Δ/σ)max = 0.001
299 parameters Δρmax = 0.34 e Å3
0 restraints Δρmin = −0.40 e Å3

Dicarbonyl(η5-cyclopentadienyl)propionyl(triphenylphosphane-κP)molybdenum(II) (1) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Dicarbonyl(η5-cyclopentadienyl)propionyl(triphenylphosphane-κP)molybdenum(II) (1) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Mo1 0.21851 (2) 0.45813 (2) 0.23960 (2) 0.01978 (4)
P1 0.32246 (3) 0.69322 (3) 0.33370 (3) 0.01786 (6)
O1 0.22653 (14) 0.50413 (11) 0.01296 (9) 0.0343 (2)
O2 0.54687 (13) 0.48265 (11) 0.37404 (11) 0.0391 (3)
O3 0.23712 (16) 0.18616 (11) 0.08762 (12) 0.0459 (3)
C1 0.22950 (15) 0.48927 (12) 0.09861 (11) 0.0233 (2)
C2 0.42735 (17) 0.47555 (13) 0.32222 (12) 0.0267 (3)
C3 0.30515 (18) 0.29556 (13) 0.11888 (12) 0.0288 (3)
C4 0.4478 (2) 0.32080 (16) 0.07449 (15) 0.0390 (4)
H4A 0.428632 0.366718 0.024555 0.047*
H4B 0.533049 0.37787 0.144096 0.047*
C5 0.4970 (2) 0.20261 (19) 0.00328 (17) 0.0504 (5)
H5A 0.420288 0.151328 −0.072025 0.076*
H5B 0.507534 0.15204 0.048824 0.076*
H5C 0.595154 0.227972 −0.013045 0.076*
C6 −0.05044 (17) 0.42011 (17) 0.21381 (16) 0.0377 (4)
H6 −0.121988 0.444525 0.162697 0.045*
C7 0.01630 (18) 0.49182 (16) 0.33645 (15) 0.0356 (3)
H7 0.00108 0.576933 0.387033 0.043*
C8 0.09701 (19) 0.41922 (16) 0.37808 (14) 0.0348 (3)
H8 0.146453 0.442892 0.463005 0.042*
C9 0.08355 (19) 0.30236 (15) 0.28055 (15) 0.0354 (3)
H9 0.118582 0.227614 0.284712 0.042*
C10 −0.00792 (19) 0.30284 (16) 0.17850 (15) 0.0369 (3)
H10 −0.047308 0.228557 0.098522 0.044*
C11 0.29484 (14) 0.77386 (12) 0.48373 (11) 0.0209 (2)
C12 0.32519 (18) 0.71890 (14) 0.56225 (12) 0.0296 (3)
H12 0.360821 0.643324 0.537306 0.035*
C13 0.30390 (19) 0.77344 (15) 0.67645 (13) 0.0337 (3)
H13 0.325727 0.735596 0.729406 0.04*
C14 0.25087 (18) 0.88295 (15) 0.71309 (13) 0.0329 (3)
H14 0.235238 0.919963 0.790907 0.039*
C15 0.22073 (17) 0.93831 (14) 0.63604 (13) 0.0309 (3)
H15 0.1844 1.013525 0.661221 0.037*
C16 0.24327 (15) 0.88454 (12) 0.52163 (12) 0.0238 (2)
H16 0.223316 0.923696 0.46953 0.029*
C17 0.25504 (14) 0.78737 (12) 0.25929 (11) 0.0190 (2)
C18 0.10476 (15) 0.74751 (13) 0.19178 (12) 0.0240 (2)
H18 0.041175 0.669342 0.180761 0.029*
C19 0.04765 (17) 0.82174 (14) 0.14056 (13) 0.0302 (3)
H19 −0.055523 0.795183 0.096435 0.036*
C20 0.14075 (18) 0.93438 (14) 0.15365 (13) 0.0305 (3)
H20 0.101594 0.984707 0.118267 0.037*
C21 0.29082 (18) 0.97327 (13) 0.21836 (13) 0.0287 (3)
H21 0.355199 1.049602 0.226151 0.034*
C22 0.34774 (15) 0.90100 (12) 0.27206 (12) 0.0242 (3)
H22 0.450298 0.929118 0.317696 0.029*
C23 0.52909 (14) 0.73720 (12) 0.35437 (11) 0.0207 (2)
C24 0.58606 (15) 0.69609 (13) 0.25280 (12) 0.0258 (3)
H24 0.5177 0.656619 0.176174 0.031*
C25 0.74111 (16) 0.71250 (15) 0.26317 (14) 0.0319 (3)
H25 0.779018 0.68406 0.1938 0.038*
C26 0.84183 (16) 0.77070 (15) 0.37523 (15) 0.0331 (3)
H26 0.948349 0.781057 0.382243 0.04*
C27 0.78743 (16) 0.81325 (14) 0.47583 (13) 0.0310 (3)
H27 0.856515 0.853859 0.552162 0.037*
C28 0.63068 (16) 0.79681 (13) 0.46591 (12) 0.0264 (3)
H28 0.593438 0.826442 0.53553 0.032*

Dicarbonyl(η5-cyclopentadienyl)propionyl(triphenylphosphane-κP)molybdenum(II) (1) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mo1 0.02476 (6) 0.01872 (6) 0.01856 (6) 0.00571 (4) 0.00643 (4) 0.01018 (4)
P1 0.01821 (14) 0.01985 (14) 0.01678 (14) 0.00582 (11) 0.00409 (11) 0.00879 (11)
O1 0.0494 (6) 0.0349 (6) 0.0221 (5) 0.0107 (5) 0.0090 (4) 0.0155 (4)
O2 0.0397 (6) 0.0413 (6) 0.0407 (6) 0.0187 (5) 0.0014 (5) 0.0220 (5)
O3 0.0611 (8) 0.0230 (5) 0.0525 (7) 0.0117 (5) 0.0214 (6) 0.0118 (5)
C1 0.0263 (6) 0.0203 (6) 0.0214 (6) 0.0053 (5) 0.0048 (5) 0.0078 (5)
C2 0.0368 (7) 0.0246 (6) 0.0237 (6) 0.0131 (5) 0.0088 (5) 0.0129 (5)
C3 0.0399 (8) 0.0254 (6) 0.0231 (6) 0.0133 (6) 0.0073 (6) 0.0105 (5)
C4 0.0481 (9) 0.0354 (8) 0.0361 (8) 0.0188 (7) 0.0199 (7) 0.0112 (7)
C5 0.0631 (12) 0.0475 (10) 0.0411 (9) 0.0299 (9) 0.0218 (9) 0.0097 (8)
C6 0.0248 (7) 0.0488 (9) 0.0495 (9) 0.0041 (6) 0.0104 (6) 0.0327 (8)
C7 0.0338 (8) 0.0335 (8) 0.0460 (9) 0.0091 (6) 0.0235 (7) 0.0183 (7)
C8 0.0409 (8) 0.0411 (8) 0.0281 (7) 0.0056 (7) 0.0165 (6) 0.0194 (6)
C9 0.0462 (9) 0.0290 (7) 0.0416 (8) 0.0071 (6) 0.0193 (7) 0.0236 (7)
C10 0.0378 (8) 0.0338 (8) 0.0336 (8) −0.0071 (6) 0.0109 (6) 0.0142 (6)
C11 0.0198 (5) 0.0229 (6) 0.0189 (5) 0.0043 (5) 0.0048 (4) 0.0083 (5)
C12 0.0393 (8) 0.0309 (7) 0.0231 (6) 0.0137 (6) 0.0095 (6) 0.0136 (6)
C13 0.0438 (8) 0.0366 (8) 0.0220 (6) 0.0064 (6) 0.0086 (6) 0.0149 (6)
C14 0.0375 (8) 0.0317 (7) 0.0217 (6) 0.0000 (6) 0.0117 (6) 0.0052 (5)
C15 0.0332 (7) 0.0243 (6) 0.0296 (7) 0.0057 (5) 0.0120 (6) 0.0050 (5)
C16 0.0231 (6) 0.0221 (6) 0.0238 (6) 0.0034 (5) 0.0054 (5) 0.0085 (5)
C17 0.0209 (5) 0.0210 (6) 0.0176 (5) 0.0069 (4) 0.0057 (4) 0.0096 (5)
C18 0.0217 (6) 0.0248 (6) 0.0265 (6) 0.0047 (5) 0.0041 (5) 0.0130 (5)
C19 0.0272 (7) 0.0330 (7) 0.0308 (7) 0.0092 (6) −0.0002 (5) 0.0163 (6)
C20 0.0430 (8) 0.0266 (7) 0.0270 (7) 0.0144 (6) 0.0060 (6) 0.0153 (6)
C21 0.0382 (7) 0.0215 (6) 0.0279 (7) 0.0054 (5) 0.0083 (6) 0.0127 (5)
C22 0.0244 (6) 0.0226 (6) 0.0245 (6) 0.0033 (5) 0.0041 (5) 0.0107 (5)
C23 0.0192 (5) 0.0212 (6) 0.0223 (6) 0.0064 (4) 0.0043 (5) 0.0096 (5)
C24 0.0218 (6) 0.0286 (7) 0.0229 (6) 0.0043 (5) 0.0043 (5) 0.0080 (5)
C25 0.0255 (7) 0.0342 (7) 0.0335 (7) 0.0090 (6) 0.0119 (6) 0.0097 (6)
C26 0.0187 (6) 0.0348 (7) 0.0442 (8) 0.0079 (5) 0.0050 (6) 0.0158 (7)
C27 0.0250 (6) 0.0325 (7) 0.0302 (7) 0.0037 (5) −0.0029 (5) 0.0132 (6)
C28 0.0254 (6) 0.0281 (6) 0.0231 (6) 0.0063 (5) 0.0029 (5) 0.0096 (5)

Dicarbonyl(η5-cyclopentadienyl)propionyl(triphenylphosphane-κP)molybdenum(II) (1) . Geometric parameters (Å, º)

Mo1—P1 2.4816 (4) C11—C12 1.3951 (18)
Mo1—C1 1.9640 (13) C12—C13 1.388 (2)
Mo1—C2 1.9662 (15) C12—H12 0.95
Mo1—C3 2.2794 (14) C13—C14 1.384 (2)
Mo1—C9 2.3138 (14) C13—H13 0.95
Mo1—C10 2.3216 (15) C14—C15 1.382 (2)
Mo1—C8 2.3612 (14) C14—H14 0.95
Mo1—C6 2.3795 (15) C15—C16 1.3945 (19)
Mo1—C7 2.3805 (15) C15—H15 0.95
P1—C17 1.8270 (12) C16—H16 0.95
P1—C23 1.8289 (13) C17—C18 1.3956 (17)
P1—C11 1.8341 (13) C17—C22 1.3961 (18)
O1—C1 1.1563 (17) C18—C19 1.3910 (18)
O2—C2 1.1555 (18) C18—H18 0.95
O3—C3 1.2083 (19) C19—C20 1.387 (2)
C3—C4 1.533 (2) C19—H19 0.95
C4—C5 1.514 (2) C20—C21 1.384 (2)
C4—H4A 0.99 C20—H20 0.95
C4—H4B 0.99 C21—C22 1.3909 (19)
C5—H5A 0.98 C21—H21 0.95
C5—H5B 0.98 C22—H22 0.95
C5—H5C 0.98 C23—C28 1.3907 (18)
C6—C7 1.408 (2) C23—C24 1.3984 (18)
C6—C10 1.414 (3) C24—C25 1.3814 (19)
C6—H6 1.0 C24—H24 0.95
C7—C8 1.409 (2) C25—C26 1.392 (2)
C7—H7 1.0 C25—H25 0.95
C8—C9 1.409 (2) C26—C27 1.376 (2)
C8—H8 1.0 C26—H26 0.95
C9—C10 1.422 (2) C27—C28 1.398 (2)
C9—H9 1.0 C27—H27 0.95
C10—H10 1.0 C28—H28 0.95
C11—C16 1.3886 (18)
C1—Mo1—C2 107.83 (6) C7—C8—Mo1 73.47 (8)
C1—Mo1—C3 74.37 (5) C9—C8—Mo1 70.63 (8)
C2—Mo1—C3 72.47 (5) C7—C8—H8 125.9
C1—Mo1—C9 136.85 (6) C9—C8—H8 125.9
C2—Mo1—C9 100.67 (6) Mo1—C8—H8 125.9
C3—Mo1—C9 84.47 (6) C8—C9—C10 107.75 (14)
C1—Mo1—C10 103.82 (6) C8—C9—Mo1 74.31 (8)
C2—Mo1—C10 133.28 (6) C10—C9—Mo1 72.43 (8)
C3—Mo1—C10 84.30 (6) C8—C9—H9 125.8
C9—Mo1—C10 35.73 (6) C10—C9—H9 125.8
C1—Mo1—C8 155.48 (6) Mo1—C9—H9 125.8
C2—Mo1—C8 96.57 (6) C6—C10—C9 108.10 (15)
C3—Mo1—C8 116.63 (6) C6—C10—Mo1 74.76 (9)
C9—Mo1—C8 35.06 (6) C9—C10—Mo1 71.83 (9)
C10—Mo1—C8 58.45 (6) C6—C10—H10 125.7
C1—Mo1—C6 97.82 (6) C9—C10—H10 125.7
C2—Mo1—C6 154.34 (6) Mo1—C10—H10 125.7
C3—Mo1—C6 116.12 (6) C16—C11—C12 118.96 (12)
C9—Mo1—C6 58.55 (6) C16—C11—P1 123.40 (10)
C10—Mo1—C6 34.97 (6) C12—C11—P1 117.64 (10)
C8—Mo1—C6 57.79 (6) C13—C12—C11 120.73 (14)
C1—Mo1—C7 123.06 (6) C13—C12—H12 119.6
C2—Mo1—C7 123.54 (6) C11—C12—H12 119.6
C3—Mo1—C7 140.20 (6) C14—C13—C12 119.95 (14)
C9—Mo1—C7 58.03 (6) C14—C13—H13 120.0
C10—Mo1—C7 57.85 (6) C12—C13—H13 120.0
C8—Mo1—C7 34.56 (6) C15—C14—C13 119.77 (13)
C6—Mo1—C7 34.42 (6) C15—C14—H14 120.1
C1—Mo1—P1 79.34 (4) C13—C14—H14 120.1
C2—Mo1—P1 78.28 (4) C14—C15—C16 120.48 (14)
C3—Mo1—P1 131.76 (4) C14—C15—H15 119.8
C9—Mo1—P1 139.01 (4) C16—C15—H15 119.8
C10—Mo1—P1 141.74 (5) C11—C16—C15 120.10 (13)
C8—Mo1—P1 103.97 (4) C11—C16—H16 119.9
C6—Mo1—P1 106.91 (4) C15—C16—H16 119.9
C7—Mo1—P1 88.01 (4) C18—C17—C22 118.98 (12)
C17—P1—C23 102.95 (6) C18—C17—P1 119.14 (9)
C17—P1—C11 102.96 (6) C22—C17—P1 121.83 (10)
C23—P1—C11 103.95 (6) C19—C18—C17 120.29 (12)
C17—P1—Mo1 119.32 (4) C19—C18—H18 119.9
C23—P1—Mo1 111.87 (4) C17—C18—H18 119.9
C11—P1—Mo1 114.09 (4) C20—C19—C18 120.26 (13)
O1—C1—Mo1 175.81 (12) C20—C19—H19 119.9
O2—C2—Mo1 176.43 (13) C18—C19—H19 119.9
O3—C3—C4 118.46 (14) C21—C20—C19 119.83 (13)
O3—C3—Mo1 119.78 (12) C21—C20—H20 120.1
C4—C3—Mo1 121.76 (10) C19—C20—H20 120.1
C5—C4—C3 115.02 (15) C20—C21—C22 120.23 (13)
C5—C4—H4A 108.5 C20—C21—H21 119.9
C3—C4—H4A 108.5 C22—C21—H21 119.9
C5—C4—H4B 108.5 C21—C22—C17 120.39 (12)
C3—C4—H4B 108.5 C21—C22—H22 119.8
H4A—C4—H4B 107.5 C17—C22—H22 119.8
C4—C5—H5A 109.5 C28—C23—C24 119.14 (12)
C4—C5—H5B 109.5 C28—C23—P1 122.88 (10)
H5A—C5—H5B 109.5 C24—C23—P1 117.61 (10)
C4—C5—H5C 109.5 C25—C24—C23 120.42 (13)
H5A—C5—H5C 109.5 C25—C24—H24 119.8
H5B—C5—H5C 109.5 C23—C24—H24 119.8
C7—C6—C10 107.44 (14) C24—C25—C26 120.02 (14)
C7—C6—Mo1 72.83 (9) C24—C25—H25 120.0
C10—C6—Mo1 70.27 (9) C26—C25—H25 120.0
C7—C6—H6 126.2 C27—C26—C25 120.14 (13)
C10—C6—H6 126.2 C27—C26—H26 119.9
Mo1—C6—H6 126.2 C25—C26—H26 119.9
C6—C7—C8 108.81 (15) C26—C27—C28 120.10 (13)
C6—C7—Mo1 72.75 (9) C26—C27—H27 120.0
C8—C7—Mo1 71.97 (8) C28—C27—H27 120.0
C6—C7—H7 125.5 C23—C28—C27 120.16 (13)
C8—C7—H7 125.5 C23—C28—H28 119.9
Mo1—C7—H7 125.5 C27—C28—H28 119.9
C7—C8—C9 107.89 (14)
O3—C3—C4—C5 −5.3 (2) C14—C15—C16—C11 0.7 (2)
Mo1—C3—C4—C5 175.31 (12) C23—P1—C17—C18 157.21 (10)
C10—C6—C7—C8 −1.24 (17) C11—P1—C17—C18 −94.93 (11)
Mo1—C6—C7—C8 −63.38 (11) Mo1—P1—C17—C18 32.63 (12)
C10—C6—C7—Mo1 62.13 (10) C23—P1—C17—C22 −25.50 (12)
C6—C7—C8—C9 1.22 (17) C11—P1—C17—C22 82.36 (11)
Mo1—C7—C8—C9 −62.66 (10) Mo1—P1—C17—C22 −150.08 (9)
C6—C7—C8—Mo1 63.88 (11) C22—C17—C18—C19 −1.5 (2)
C7—C8—C9—C10 −0.72 (17) P1—C17—C18—C19 175.84 (11)
Mo1—C8—C9—C10 −65.22 (10) C17—C18—C19—C20 1.6 (2)
C7—C8—C9—Mo1 64.51 (11) C18—C19—C20—C21 −0.3 (2)
C7—C6—C10—C9 0.79 (17) C19—C20—C21—C22 −1.2 (2)
Mo1—C6—C10—C9 64.59 (11) C20—C21—C22—C17 1.3 (2)
C7—C6—C10—Mo1 −63.80 (10) C18—C17—C22—C21 0.1 (2)
C8—C9—C10—C6 −0.05 (17) P1—C17—C22—C21 −177.21 (10)
Mo1—C9—C10—C6 −66.52 (10) C17—P1—C23—C28 118.22 (11)
C8—C9—C10—Mo1 66.48 (11) C11—P1—C23—C28 11.11 (13)
C17—P1—C11—C16 −3.65 (12) Mo1—P1—C23—C28 −112.46 (11)
C23—P1—C11—C16 103.45 (12) C17—P1—C23—C24 −68.86 (11)
Mo1—P1—C11—C16 −134.44 (10) C11—P1—C23—C24 −175.97 (10)
C17—P1—C11—C12 175.23 (11) Mo1—P1—C23—C24 60.46 (11)
C23—P1—C11—C12 −77.66 (12) C28—C23—C24—C25 1.1 (2)
Mo1—P1—C11—C12 44.44 (12) P1—C23—C24—C25 −172.08 (11)
C16—C11—C12—C13 0.2 (2) C23—C24—C25—C26 −0.2 (2)
P1—C11—C12—C13 −178.74 (12) C24—C25—C26—C27 −0.7 (2)
C11—C12—C13—C14 0.5 (2) C25—C26—C27—C28 0.8 (2)
C12—C13—C14—C15 −0.6 (2) C24—C23—C28—C27 −1.1 (2)
C13—C14—C15—C16 0.0 (2) P1—C23—C28—C27 171.76 (11)
C12—C11—C16—C15 −0.8 (2) C26—C27—C28—C23 0.1 (2)
P1—C11—C16—C15 178.09 (10)

Dicarbonyl(η5-cyclopentadienyl)propionyl(triphenylphosphane-κP)molybdenum(II) (1) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C12—H12···O2i 0.95 2.36 3.1188 (18) 137
C6—H6···O1ii 1.00 2.60 3.545 (2) 158

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z.

Dicarbonyl(η5-cyclopentadienyl)propionyl[tris(4-fluorophenyl)phosphane-κP]molybdenum(II) (2) . Crystal data

[Mo(C5H5)(C3H5O)(C18H12F3P)(CO)2] F(000) = 2384
Mr = 590.36 Dx = 1.595 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 11.7991 (4) Å Cell parameters from 9718 reflections
b = 18.6907 (8) Å θ = 2.3–30.5°
c = 22.4744 (8) Å µ = 0.65 mm1
β = 97.256 (2)° T = 170 K
V = 4916.7 (3) Å3 Prism, yellow
Z = 8 0.05 × 0.05 × 0.05 mm

Dicarbonyl(η5-cyclopentadienyl)propionyl[tris(4-fluorophenyl)phosphane-κP]molybdenum(II) (2) . Data collection

Bruker D8 QUEST ECO diffractometer 10047 independent reflections
Radiation source: sealed tube, Siemens KFFMO2K-90C 8547 reflections with I > 2σ(I)
Curved Graphite monochromator Rint = 0.042
Detector resolution: 7.3910 pixels mm-1 θmax = 26.4°, θmin = 2.3°
φ and ω scans h = −14→14
Absorption correction: multi-scan (Krause et al., 2015) k = −23→23
Tmin = 0.86, Tmax = 0.97 l = −28→27
73758 measured reflections

Dicarbonyl(η5-cyclopentadienyl)propionyl[tris(4-fluorophenyl)phosphane-κP]molybdenum(II) (2) . Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0211P)2 + 4.4865P] where P = (Fo2 + 2Fc2)/3
10047 reflections (Δ/σ)max = 0.002
651 parameters Δρmax = 0.37 e Å3
0 restraints Δρmin = −0.39 e Å3

Dicarbonyl(η5-cyclopentadienyl)propionyl[tris(4-fluorophenyl)phosphane-κP]molybdenum(II) (2) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Dicarbonyl(η5-cyclopentadienyl)propionyl[tris(4-fluorophenyl)phosphane-κP]molybdenum(II) (2) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Mo1 0.68359 (2) 0.16744 (2) 0.31097 (2) 0.01937 (5)
P1 0.50728 (5) 0.18602 (3) 0.35791 (3) 0.01993 (12)
F1 0.54908 (16) 0.08511 (12) 0.61078 (7) 0.0637 (6)
F2 0.08121 (14) 0.03649 (10) 0.25717 (8) 0.0533 (5)
F3 0.36509 (14) 0.49064 (7) 0.35239 (8) 0.0441 (4)
O1 0.51071 (16) 0.18266 (10) 0.19490 (8) 0.0399 (5)
O2 0.74633 (16) 0.31199 (10) 0.37628 (8) 0.0361 (4)
O3 0.88132 (15) 0.22239 (10) 0.24695 (8) 0.0333 (4)
C1 0.5734 (2) 0.18193 (12) 0.23876 (11) 0.0256 (5)
C2 0.71837 (19) 0.25955 (13) 0.35133 (10) 0.0243 (5)
C3 0.7827 (2) 0.23663 (13) 0.25283 (10) 0.0248 (5)
C4 0.7294 (2) 0.30324 (14) 0.22084 (12) 0.0346 (6)
H4A 0.66605 0.28786 0.190403 0.041*
H4B 0.696117 0.333204 0.250547 0.041*
C5 0.8111 (3) 0.34882 (15) 0.19021 (13) 0.0409 (7)
H5A 0.84251 0.32037 0.159538 0.061*
H5B 0.873425 0.365392 0.219977 0.061*
H5C 0.77008 0.3902 0.171316 0.061*
C6 0.6987 (3) 0.04365 (14) 0.29401 (13) 0.0414 (7)
H6 0.647429 0.014715 0.264404 0.05*
C7 0.6872 (2) 0.05233 (13) 0.35502 (13) 0.0345 (6)
H7 0.625273 0.031156 0.376022 0.041*
C8 0.7818 (2) 0.09086 (14) 0.38260 (12) 0.0345 (6)
H8 0.799791 0.100797 0.426502 0.041*
C9 0.8523 (2) 0.10673 (15) 0.33829 (12) 0.0368 (6)
H9 0.930101 0.128742 0.345501 0.044*
C10 0.8008 (3) 0.07731 (15) 0.28325 (13) 0.0421 (7)
H10 0.835835 0.075189 0.245032 0.05*
C11 0.5180 (2) 0.15457 (12) 0.43586 (10) 0.0236 (5)
C12 0.6089 (2) 0.17724 (15) 0.47718 (12) 0.0350 (6)
H12 0.664562 0.208646 0.464597 0.042*
C13 0.6194 (2) 0.15470 (18) 0.53629 (12) 0.0435 (7)
H13 0.680534 0.171027 0.564616 0.052*
C14 0.5390 (2) 0.10810 (17) 0.55288 (12) 0.0408 (7)
C15 0.4497 (2) 0.08329 (14) 0.51394 (12) 0.0354 (6)
H15 0.395996 0.050678 0.526812 0.043*
C16 0.4392 (2) 0.10706 (13) 0.45480 (11) 0.0278 (5)
H16 0.377406 0.090595 0.426987 0.033*
C17 0.3749 (2) 0.14313 (12) 0.32379 (10) 0.0238 (5)
C18 0.3798 (2) 0.07402 (13) 0.30120 (11) 0.0312 (6)
H18 0.451868 0.051639 0.300493 0.037*
C19 0.2808 (2) 0.03741 (15) 0.27971 (12) 0.0363 (6)
H19 0.284022 −0.010424 0.265731 0.044*
C20 0.1781 (2) 0.07191 (16) 0.27914 (12) 0.0360 (6)
C21 0.1688 (2) 0.14034 (15) 0.29969 (11) 0.0321 (6)
H21 0.096469 0.163162 0.297831 0.039*
C22 0.2682 (2) 0.17545 (13) 0.32338 (11) 0.0275 (5)
H22 0.263447 0.222164 0.33953 0.033*
C23 0.46301 (18) 0.27942 (12) 0.36021 (10) 0.0212 (5)
C24 0.4234 (2) 0.31163 (12) 0.30539 (11) 0.0270 (5)
H24 0.421085 0.284722 0.269401 0.032*
C25 0.3877 (2) 0.38197 (13) 0.30282 (12) 0.0318 (6)
H25 0.358032 0.403262 0.265723 0.038*
C26 0.3961 (2) 0.42019 (12) 0.35498 (13) 0.0308 (6)
C27 0.4348 (2) 0.39122 (13) 0.40983 (12) 0.0306 (6)
H27 0.439161 0.419233 0.445318 0.037*
C28 0.4673 (2) 0.31977 (13) 0.41208 (11) 0.0255 (5)
H28 0.492908 0.298322 0.449712 0.031*
Mo2 0.13778 (2) 0.20503 (2) 0.57103 (2) 0.01918 (5)
P2 0.07626 (5) 0.32692 (3) 0.53987 (3) 0.01888 (12)
F4 −0.41095 (12) 0.38483 (9) 0.56536 (7) 0.0443 (4)
F5 0.36489 (13) 0.55112 (8) 0.67019 (7) 0.0405 (4)
F6 0.08738 (15) 0.40659 (9) 0.28469 (7) 0.0483 (4)
O4 −0.11576 (15) 0.17823 (10) 0.51826 (9) 0.0389 (4)
O5 0.28370 (16) 0.23246 (10) 0.46697 (9) 0.0408 (5)
O6 0.1843 (2) 0.04766 (10) 0.54648 (9) 0.0584 (6)
C29 −0.0209 (2) 0.18824 (12) 0.53604 (11) 0.0250 (5)
C30 0.2268 (2) 0.22200 (12) 0.50419 (11) 0.0261 (5)
C31 0.1403 (2) 0.09868 (12) 0.52100 (11) 0.0265 (5)
C32 0.0920 (3) 0.08959 (15) 0.45594 (12) 0.0392 (7)
H32A 0.008542 0.097943 0.452191 0.047*
H32B 0.125178 0.127064 0.43224 0.047*
C33 0.1125 (3) 0.01792 (15) 0.42855 (13) 0.0441 (7)
H33A 0.073311 0.016208 0.387439 0.066*
H33B 0.082777 −0.02003 0.452393 0.066*
H33C 0.194657 0.010948 0.428005 0.066*
C34 0.2910 (2) 0.21959 (17) 0.64802 (12) 0.0412 (7)
H34 0.365723 0.243055 0.64373 0.049*
C35 0.1968 (3) 0.25274 (16) 0.66799 (11) 0.0433 (7)
H35 0.192359 0.30424 0.679536 0.052*
C36 0.1135 (3) 0.20086 (17) 0.67425 (11) 0.0408 (7)
H36 0.040367 0.208562 0.691483 0.049*
C37 0.1563 (2) 0.13425 (15) 0.65645 (11) 0.0373 (6)
H37 0.120101 0.086396 0.660455 0.045*
C38 0.2670 (2) 0.14677 (15) 0.64067 (11) 0.0358 (6)
H38 0.322423 0.109088 0.631453 0.043*
C39 −0.07161 (19) 0.35126 (12) 0.54894 (10) 0.0202 (5)
C40 −0.1144 (2) 0.33622 (13) 0.60274 (11) 0.0293 (5)
H40 −0.064987 0.31691 0.63546 0.035*
C41 −0.2281 (2) 0.34908 (14) 0.60907 (11) 0.0314 (6)
H41 −0.256614 0.339932 0.646011 0.038*
C42 −0.2982 (2) 0.37531 (13) 0.56070 (12) 0.0290 (5)
C43 −0.2598 (2) 0.39207 (14) 0.50748 (11) 0.0314 (6)
H43 −0.309978 0.411534 0.475153 0.038*
C44 −0.1453 (2) 0.37987 (13) 0.50190 (11) 0.0264 (5)
H44 −0.11709 0.391315 0.465296 0.032*
C45 0.16211 (19) 0.39779 (12) 0.57976 (10) 0.0221 (5)
C46 0.1136 (2) 0.45612 (12) 0.60505 (10) 0.0243 (5)
H46 0.032784 0.460151 0.601914 0.029*
C47 0.1819 (2) 0.50884 (13) 0.63496 (11) 0.0279 (5)
H47 0.148881 0.548962 0.652204 0.034*
C48 0.2979 (2) 0.50132 (13) 0.63887 (11) 0.0285 (5)
C49 0.3500 (2) 0.44497 (13) 0.61377 (11) 0.0298 (6)
H49 0.430847 0.44186 0.616714 0.036*
C50 0.2813 (2) 0.39324 (13) 0.58426 (11) 0.0274 (5)
H50 0.315441 0.35379 0.566651 0.033*
C51 0.08310 (18) 0.35142 (12) 0.46138 (10) 0.0204 (5)
C52 0.1267 (2) 0.41698 (12) 0.44605 (11) 0.0250 (5)
H52 0.155534 0.449472 0.476796 0.03*
C53 0.1287 (2) 0.43575 (14) 0.38613 (11) 0.0297 (5)
H53 0.158918 0.480455 0.375637 0.036*
C54 0.0860 (2) 0.38815 (15) 0.34296 (11) 0.0316 (6)
C55 0.0410 (2) 0.32290 (14) 0.35584 (11) 0.0322 (6)
H55 0.011264 0.291174 0.324697 0.039*
C56 0.0404 (2) 0.30477 (13) 0.41563 (11) 0.0269 (5)
H56 0.010257 0.259799 0.425552 0.032*

Dicarbonyl(η5-cyclopentadienyl)propionyl[tris(4-fluorophenyl)phosphane-κP]molybdenum(II) (2) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mo1 0.02038 (10) 0.01882 (10) 0.01827 (10) 0.00364 (8) −0.00004 (7) −0.00050 (7)
P1 0.0203 (3) 0.0190 (3) 0.0200 (3) 0.0007 (2) 0.0005 (2) 0.0010 (2)
F1 0.0570 (12) 0.1040 (16) 0.0297 (9) −0.0035 (11) 0.0034 (8) 0.0313 (10)
F2 0.0360 (9) 0.0682 (12) 0.0554 (11) −0.0274 (9) 0.0049 (8) −0.0178 (9)
F3 0.0454 (10) 0.0205 (7) 0.0669 (11) 0.0049 (7) 0.0087 (8) −0.0037 (7)
O1 0.0374 (11) 0.0506 (12) 0.0284 (10) 0.0065 (9) −0.0093 (8) −0.0035 (9)
O2 0.0375 (10) 0.0331 (10) 0.0377 (10) −0.0074 (8) 0.0049 (8) −0.0128 (8)
O3 0.0276 (9) 0.0392 (10) 0.0341 (10) 0.0025 (8) 0.0079 (8) 0.0000 (8)
C1 0.0268 (12) 0.0247 (12) 0.0254 (12) 0.0038 (10) 0.0037 (10) −0.0031 (10)
C2 0.0199 (11) 0.0290 (13) 0.0243 (12) −0.0001 (10) 0.0042 (9) 0.0002 (10)
C3 0.0287 (13) 0.0271 (12) 0.0183 (11) −0.0015 (10) 0.0015 (10) −0.0039 (9)
C4 0.0399 (15) 0.0330 (14) 0.0316 (14) 0.0057 (12) 0.0075 (12) 0.0039 (11)
C5 0.0494 (17) 0.0356 (15) 0.0381 (16) −0.0021 (13) 0.0073 (13) 0.0064 (12)
C6 0.0561 (19) 0.0191 (12) 0.0470 (17) 0.0114 (12) −0.0009 (14) −0.0039 (12)
C7 0.0371 (15) 0.0207 (12) 0.0456 (16) 0.0074 (11) 0.0049 (12) 0.0096 (11)
C8 0.0336 (14) 0.0354 (14) 0.0326 (14) 0.0134 (12) −0.0024 (11) 0.0123 (12)
C9 0.0254 (13) 0.0428 (15) 0.0415 (16) 0.0161 (12) 0.0012 (12) 0.0133 (13)
C10 0.0544 (18) 0.0326 (14) 0.0414 (16) 0.0265 (14) 0.0146 (14) 0.0023 (12)
C11 0.0242 (12) 0.0254 (12) 0.0216 (11) 0.0050 (10) 0.0042 (9) 0.0033 (9)
C12 0.0266 (13) 0.0496 (16) 0.0284 (13) −0.0042 (12) 0.0019 (11) 0.0058 (12)
C13 0.0318 (15) 0.071 (2) 0.0255 (14) −0.0025 (14) −0.0042 (11) 0.0077 (14)
C14 0.0394 (16) 0.0586 (19) 0.0249 (14) 0.0102 (14) 0.0065 (12) 0.0149 (13)
C15 0.0370 (15) 0.0355 (14) 0.0356 (15) 0.0022 (12) 0.0118 (12) 0.0130 (12)
C16 0.0280 (13) 0.0244 (12) 0.0311 (13) 0.0041 (10) 0.0048 (10) 0.0020 (10)
C17 0.0244 (12) 0.0249 (12) 0.0215 (12) −0.0048 (10) 0.0007 (9) 0.0028 (9)
C18 0.0315 (14) 0.0293 (13) 0.0322 (14) −0.0013 (11) 0.0019 (11) −0.0038 (11)
C19 0.0417 (16) 0.0345 (14) 0.0324 (14) −0.0108 (12) 0.0038 (12) −0.0077 (12)
C20 0.0312 (14) 0.0508 (17) 0.0261 (13) −0.0182 (13) 0.0040 (11) −0.0026 (12)
C21 0.0244 (13) 0.0432 (15) 0.0292 (14) −0.0054 (11) 0.0052 (10) 0.0013 (12)
C22 0.0278 (13) 0.0289 (13) 0.0260 (12) −0.0027 (10) 0.0040 (10) 0.0026 (10)
C23 0.0159 (10) 0.0212 (11) 0.0263 (12) −0.0006 (9) 0.0014 (9) 0.0002 (9)
C24 0.0317 (13) 0.0225 (12) 0.0260 (12) 0.0020 (10) 0.0004 (10) −0.0006 (10)
C25 0.0342 (14) 0.0243 (12) 0.0355 (14) 0.0018 (11) −0.0012 (11) 0.0053 (11)
C26 0.0216 (12) 0.0187 (11) 0.0526 (17) 0.0007 (10) 0.0071 (11) −0.0025 (11)
C27 0.0273 (13) 0.0311 (13) 0.0345 (14) −0.0038 (11) 0.0084 (11) −0.0106 (11)
C28 0.0223 (12) 0.0289 (12) 0.0255 (12) −0.0004 (10) 0.0039 (10) −0.0013 (10)
Mo2 0.01832 (10) 0.02103 (10) 0.01787 (10) 0.00077 (8) 0.00110 (7) 0.00333 (8)
P2 0.0180 (3) 0.0205 (3) 0.0182 (3) 0.0014 (2) 0.0026 (2) 0.0011 (2)
F4 0.0207 (7) 0.0672 (11) 0.0468 (10) 0.0075 (7) 0.0113 (7) −0.0050 (8)
F5 0.0333 (8) 0.0364 (8) 0.0515 (10) −0.0146 (7) 0.0046 (7) −0.0119 (7)
F6 0.0641 (11) 0.0604 (11) 0.0221 (8) 0.0108 (9) 0.0129 (8) 0.0110 (7)
O4 0.0235 (10) 0.0388 (11) 0.0529 (12) −0.0036 (8) −0.0007 (9) −0.0067 (9)
O5 0.0381 (11) 0.0421 (11) 0.0470 (12) 0.0118 (9) 0.0244 (9) 0.0136 (9)
O6 0.0987 (19) 0.0270 (10) 0.0434 (12) 0.0110 (11) −0.0143 (12) 0.0041 (9)
C29 0.0267 (13) 0.0209 (11) 0.0277 (12) 0.0018 (10) 0.0050 (10) 0.0014 (10)
C30 0.0238 (12) 0.0227 (12) 0.0314 (13) 0.0052 (10) 0.0019 (11) 0.0025 (10)
C31 0.0251 (12) 0.0227 (12) 0.0316 (13) −0.0020 (10) 0.0035 (10) 0.0035 (10)
C32 0.0474 (17) 0.0379 (15) 0.0309 (14) 0.0088 (13) −0.0011 (12) −0.0035 (12)
C33 0.0590 (19) 0.0355 (15) 0.0383 (16) −0.0063 (14) 0.0078 (14) −0.0056 (13)
C34 0.0361 (15) 0.0618 (19) 0.0225 (13) −0.0127 (14) −0.0090 (11) 0.0028 (13)
C35 0.073 (2) 0.0383 (15) 0.0160 (12) 0.0004 (15) −0.0068 (13) −0.0004 (11)
C36 0.0420 (16) 0.0634 (19) 0.0181 (12) 0.0140 (15) 0.0072 (11) 0.0112 (13)
C37 0.0483 (17) 0.0379 (15) 0.0239 (13) −0.0049 (13) −0.0024 (12) 0.0147 (11)
C38 0.0373 (15) 0.0450 (16) 0.0229 (13) 0.0143 (13) −0.0048 (11) 0.0066 (11)
C39 0.0201 (11) 0.0202 (11) 0.0200 (11) 0.0019 (9) 0.0009 (9) −0.0004 (9)
C40 0.0292 (13) 0.0348 (14) 0.0243 (12) 0.0049 (11) 0.0045 (10) 0.0052 (11)
C41 0.0308 (13) 0.0384 (14) 0.0274 (13) 0.0050 (11) 0.0123 (11) 0.0046 (11)
C42 0.0196 (12) 0.0323 (13) 0.0363 (14) 0.0009 (10) 0.0082 (10) −0.0070 (11)
C43 0.0233 (12) 0.0424 (15) 0.0276 (13) 0.0074 (11) −0.0004 (10) 0.0001 (11)
C44 0.0233 (12) 0.0347 (13) 0.0216 (12) 0.0027 (10) 0.0044 (10) 0.0017 (10)
C45 0.0236 (12) 0.0235 (11) 0.0189 (11) −0.0017 (9) 0.0010 (9) 0.0028 (9)
C46 0.0210 (11) 0.0263 (12) 0.0248 (12) 0.0019 (10) 0.0005 (9) 0.0010 (10)
C47 0.0299 (13) 0.0233 (12) 0.0311 (13) 0.0022 (10) 0.0057 (11) −0.0022 (10)
C48 0.0283 (13) 0.0256 (12) 0.0305 (13) −0.0086 (10) −0.0003 (10) 0.0010 (10)
C49 0.0208 (12) 0.0305 (13) 0.0383 (15) −0.0027 (10) 0.0046 (11) 0.0028 (11)
C50 0.0223 (12) 0.0277 (12) 0.0329 (13) 0.0021 (10) 0.0063 (10) −0.0027 (10)
C51 0.0187 (11) 0.0242 (11) 0.0183 (11) 0.0051 (9) 0.0029 (9) 0.0011 (9)
C52 0.0250 (12) 0.0252 (12) 0.0254 (12) 0.0026 (10) 0.0053 (10) 0.0015 (10)
C53 0.0299 (13) 0.0314 (13) 0.0295 (13) 0.0052 (11) 0.0109 (11) 0.0076 (11)
C54 0.0319 (14) 0.0434 (15) 0.0215 (12) 0.0143 (12) 0.0115 (10) 0.0088 (11)
C55 0.0360 (14) 0.0364 (14) 0.0232 (12) 0.0096 (12) 0.0001 (11) −0.0033 (11)
C56 0.0307 (13) 0.0244 (12) 0.0253 (12) 0.0033 (10) 0.0023 (10) 0.0014 (10)

Dicarbonyl(η5-cyclopentadienyl)propionyl[tris(4-fluorophenyl)phosphane-κP]molybdenum(II) (2) . Geometric parameters (Å, º)

Mo1—P1 2.4730 (6) Mo2—C29 1.962 (2)
Mo1—C1 1.966 (2) Mo2—C30 1.964 (3)
Mo1—C2 1.965 (2) Mo2—C31 2.286 (2)
Mo1—C3 2.265 (2) Mo2—C38 2.315 (2)
Mo1—C9 2.306 (2) Mo2—C37 2.319 (2)
Mo1—C10 2.314 (2) Mo2—C34 2.355 (3)
Mo1—C8 2.348 (2) Mo2—C36 2.374 (3)
Mo1—C6 2.355 (3) Mo2—C35 2.376 (3)
Mo1—C7 2.366 (2) Mo2—P2 2.4654 (6)
P1—C23 1.825 (2) P2—C45 1.832 (2)
P1—C17 1.835 (2) P2—C51 1.834 (2)
P1—C11 1.837 (2) P2—C39 1.839 (2)
F1—C14 1.361 (3) F4—C42 1.359 (3)
F2—C20 1.359 (3) F5—C48 1.359 (3)
F3—C26 1.366 (3) F6—C54 1.356 (3)
O1—C1 1.155 (3) O4—C29 1.155 (3)
O2—C2 1.156 (3) O5—C30 1.154 (3)
O3—C3 1.218 (3) O6—C31 1.196 (3)
C3—C4 1.532 (3) C31—C32 1.511 (3)
C4—C5 1.515 (4) C32—C33 1.506 (4)
C4—H4A 0.99 C32—H32A 0.99
C4—H4B 0.99 C32—H32B 0.99
C5—H5A 0.98 C33—H33A 0.98
C5—H5B 0.98 C33—H33B 0.98
C5—H5C 0.98 C33—H33C 0.98
C6—C7 1.404 (4) C34—C35 1.396 (4)
C6—C10 1.406 (4) C34—C38 1.396 (4)
C6—H6 1.0 C34—H34 1.0
C7—C8 1.405 (4) C35—C36 1.400 (4)
C7—H7 1.0 C35—H35 1.0
C8—C9 1.408 (4) C36—C37 1.420 (4)
C8—H8 1.0 C36—H36 1.0
C9—C10 1.419 (4) C37—C38 1.416 (4)
C9—H9 1.0 C37—H37 1.0
C10—H10 1.0 C38—H38 1.0
C11—C16 1.391 (3) C39—C44 1.388 (3)
C11—C12 1.393 (3) C39—C40 1.397 (3)
C12—C13 1.384 (4) C40—C41 1.388 (3)
C12—H12 0.95 C40—H40 0.95
C13—C14 1.373 (4) C41—C42 1.371 (4)
C13—H13 0.95 C41—H41 0.95
C14—C15 1.364 (4) C42—C43 1.368 (3)
C15—C16 1.392 (3) C43—C44 1.391 (3)
C15—H15 0.95 C43—H43 0.95
C16—H16 0.95 C44—H44 0.95
C17—C18 1.392 (3) C45—C46 1.386 (3)
C17—C22 1.395 (3) C45—C50 1.400 (3)
C18—C19 1.387 (4) C46—C47 1.391 (3)
C18—H18 0.95 C46—H46 0.95
C19—C20 1.371 (4) C47—C48 1.367 (3)
C19—H19 0.95 C47—H47 0.95
C20—C21 1.369 (4) C48—C49 1.376 (3)
C21—C22 1.390 (3) C49—C50 1.376 (3)
C21—H21 0.95 C49—H49 0.95
C22—H22 0.95 C50—H50 0.95
C23—C28 1.384 (3) C51—C52 1.389 (3)
C23—C24 1.398 (3) C51—C56 1.393 (3)
C24—C25 1.379 (3) C52—C53 1.395 (3)
C24—H24 0.95 C52—H52 0.95
C25—C26 1.366 (4) C53—C54 1.365 (4)
C25—H25 0.95 C53—H53 0.95
C26—C27 1.371 (4) C54—C55 1.375 (4)
C27—C28 1.389 (3) C55—C56 1.387 (3)
C27—H27 0.95 C55—H55 0.95
C28—H28 0.95 C56—H56 0.95
C1—Mo1—C2 109.77 (10) C29—Mo2—C30 107.12 (10)
C1—Mo1—C3 77.34 (9) C29—Mo2—C31 74.64 (9)
C2—Mo1—C3 70.93 (9) C30—Mo2—C31 73.89 (9)
C2—Mo1—C9 100.67 (10) C29—Mo2—C38 135.20 (10)
C1—Mo1—C9 138.27 (10) C30—Mo2—C38 102.87 (10)
C3—Mo1—C9 86.76 (9) C31—Mo2—C38 82.81 (9)
C2—Mo1—C10 131.68 (11) C29—Mo2—C37 103.05 (10)
C1—Mo1—C10 103.50 (10) C30—Mo2—C37 136.20 (10)
C3—Mo1—C10 83.74 (10) C31—Mo2—C37 84.57 (9)
C9—Mo1—C10 35.76 (10) C38—Mo2—C37 35.59 (10)
C2—Mo1—C8 99.28 (10) C29—Mo2—C34 156.64 (10)
C1—Mo1—C8 150.20 (10) C30—Mo2—C34 96.22 (10)
C3—Mo1—C8 119.84 (9) C31—Mo2—C34 113.90 (10)
C9—Mo1—C8 35.20 (9) C38—Mo2—C34 34.77 (10)
C10—Mo1—C8 58.73 (10) C37—Mo2—C34 58.30 (10)
C2—Mo1—C6 156.88 (10) C29—Mo2—C36 99.19 (10)
C1—Mo1—C6 93.30 (10) C30—Mo2—C36 153.46 (10)
C3—Mo1—C6 114.34 (10) C31—Mo2—C36 117.57 (10)
C9—Mo1—C6 58.62 (11) C38—Mo2—C36 58.30 (10)
C10—Mo1—C6 35.04 (10) C37—Mo2—C36 35.19 (10)
C8—Mo1—C6 58.07 (10) C34—Mo2—C36 57.46 (10)
C2—Mo1—C7 127.71 (10) C29—Mo2—C35 125.58 (11)
C1—Mo1—C7 116.47 (10) C30—Mo2—C35 121.19 (11)
C3—Mo1—C7 140.99 (9) C31—Mo2—C35 139.20 (9)
C9—Mo1—C7 58.14 (10) C38—Mo2—C35 57.64 (10)
C10—Mo1—C7 58.07 (10) C37—Mo2—C35 57.91 (10)
C8—Mo1—C7 34.68 (9) C34—Mo2—C35 34.31 (10)
C6—Mo1—C7 34.61 (10) C36—Mo2—C35 34.28 (10)
C1—Mo1—P1 80.12 (7) C29—Mo2—P2 78.59 (7)
C2—Mo1—P1 79.50 (7) C30—Mo2—P2 78.48 (7)
C3—Mo1—P1 133.55 (6) C31—Mo2—P2 133.28 (6)
C9—Mo1—P1 134.42 (7) C38—Mo2—P2 140.53 (7)
C10—Mo1—P1 141.31 (8) C37—Mo2—P2 139.10 (7)
C8—Mo1—P1 99.33 (7) C34—Mo2—P2 105.85 (8)
C6—Mo1—P1 106.98 (8) C36—Mo2—P2 103.91 (7)
C7—Mo1—P1 85.46 (7) C35—Mo2—P2 87.44 (7)
C23—P1—C17 101.43 (10) C45—P2—C51 101.62 (10)
C23—P1—C11 105.34 (11) C45—P2—C39 103.92 (10)
C17—P1—C11 102.19 (11) C51—P2—C39 101.68 (10)
C23—P1—Mo1 113.94 (7) C45—P2—Mo2 113.86 (7)
C17—P1—Mo1 118.55 (8) C51—P2—Mo2 117.18 (7)
C11—P1—Mo1 113.67 (8) C39—P2—Mo2 116.52 (7)
O1—C1—Mo1 172.5 (2) O4—C29—Mo2 176.6 (2)
O2—C2—Mo1 175.3 (2) O5—C30—Mo2 176.6 (2)
O3—C3—C4 117.9 (2) O6—C31—C32 117.5 (2)
O3—C3—Mo1 120.52 (18) O6—C31—Mo2 119.32 (19)
C4—C3—Mo1 121.58 (17) C32—C31—Mo2 123.17 (17)
C5—C4—C3 115.1 (2) C33—C32—C31 115.8 (2)
C5—C4—H4A 108.5 C33—C32—H32A 108.3
C3—C4—H4A 108.5 C31—C32—H32A 108.3
C5—C4—H4B 108.5 C33—C32—H32B 108.3
C3—C4—H4B 108.5 C31—C32—H32B 108.3
H4A—C4—H4B 107.5 H32A—C32—H32B 107.4
C4—C5—H5A 109.5 C32—C33—H33A 109.5
C4—C5—H5B 109.5 C32—C33—H33B 109.5
H5A—C5—H5B 109.5 H33A—C33—H33B 109.5
C4—C5—H5C 109.5 C32—C33—H33C 109.5
H5A—C5—H5C 109.5 H33A—C33—H33C 109.5
H5B—C5—H5C 109.5 H33B—C33—H33C 109.5
C7—C6—C10 107.9 (3) C35—C34—C38 108.2 (3)
C7—C6—Mo1 73.13 (14) C35—C34—Mo2 73.66 (16)
C10—C6—Mo1 70.88 (15) C38—C34—Mo2 71.04 (14)
C7—C6—H6 125.9 C35—C34—H34 125.7
C10—C6—H6 125.9 C38—C34—H34 125.7
Mo1—C6—H6 125.9 Mo2—C34—H34 125.7
C6—C7—C8 108.7 (3) C34—C35—C36 108.8 (3)
C6—C7—Mo1 72.26 (14) C34—C35—Mo2 72.03 (15)
C8—C7—Mo1 71.94 (14) C36—C35—Mo2 72.80 (15)
C6—C7—H7 125.6 C34—C35—H35 125.5
C8—C7—H7 125.6 C36—C35—H35 125.5
Mo1—C7—H7 125.6 Mo2—C35—H35 125.5
C7—C8—C9 107.7 (3) C35—C36—C37 107.5 (3)
C7—C8—Mo1 73.38 (14) C35—C36—Mo2 72.92 (15)
C9—C8—Mo1 70.80 (14) C37—C36—Mo2 70.28 (14)
C7—C8—H8 126.0 C35—C36—H36 126.2
C9—C8—H8 126.0 C37—C36—H36 126.2
Mo1—C8—H8 126.0 Mo2—C36—H36 126.2
C8—C9—C10 108.0 (3) C38—C37—C36 107.3 (3)
C8—C9—Mo1 74.01 (14) C38—C37—Mo2 72.04 (14)
C10—C9—Mo1 72.42 (14) C36—C37—Mo2 74.53 (14)
C8—C9—H9 125.8 C38—C37—H37 126.0
C10—C9—H9 125.8 C36—C37—H37 126.0
Mo1—C9—H9 125.8 Mo2—C37—H37 126.0
C6—C10—C9 107.8 (3) C34—C38—C37 108.1 (3)
C6—C10—Mo1 74.08 (15) C34—C38—Mo2 74.19 (15)
C9—C10—Mo1 71.82 (14) C37—C38—Mo2 72.36 (14)
C6—C10—H10 125.9 C34—C38—H38 125.7
C9—C10—H10 125.9 C37—C38—H38 125.7
Mo1—C10—H10 125.9 Mo2—C38—H38 125.7
C16—C11—C12 118.6 (2) C44—C39—C40 118.5 (2)
C16—C11—P1 121.88 (18) C44—C39—P2 121.51 (17)
C12—C11—P1 119.53 (18) C40—C39—P2 119.86 (17)
C13—C12—C11 121.0 (2) C41—C40—C39 120.9 (2)
C13—C12—H12 119.5 C41—C40—H40 119.5
C11—C12—H12 119.5 C39—C40—H40 119.5
C14—C13—C12 118.2 (3) C42—C41—C40 118.4 (2)
C14—C13—H13 120.9 C42—C41—H41 120.8
C12—C13—H13 120.9 C40—C41—H41 120.8
F1—C14—C15 118.2 (3) F4—C42—C43 118.2 (2)
F1—C14—C13 118.7 (3) F4—C42—C41 119.0 (2)
C15—C14—C13 123.1 (2) C43—C42—C41 122.8 (2)
C14—C15—C16 118.2 (2) C42—C43—C44 118.3 (2)
C14—C15—H15 120.9 C42—C43—H43 120.8
C16—C15—H15 120.9 C44—C43—H43 120.8
C11—C16—C15 121.0 (2) C39—C44—C43 121.1 (2)
C11—C16—H16 119.5 C39—C44—H44 119.5
C15—C16—H16 119.5 C43—C44—H44 119.5
C18—C17—C22 118.6 (2) C46—C45—C50 118.8 (2)
C18—C17—P1 119.04 (18) C46—C45—P2 122.54 (18)
C22—C17—P1 122.22 (18) C50—C45—P2 118.68 (18)
C19—C18—C17 120.9 (2) C45—C46—C47 120.7 (2)
C19—C18—H18 119.6 C45—C46—H46 119.6
C17—C18—H18 119.6 C47—C46—H46 119.6
C20—C19—C18 118.4 (2) C48—C47—C46 118.2 (2)
C20—C19—H19 120.8 C48—C47—H47 120.9
C18—C19—H19 120.8 C46—C47—H47 120.9
F2—C20—C21 118.6 (3) F5—C48—C47 118.4 (2)
F2—C20—C19 118.4 (3) F5—C48—C49 118.4 (2)
C21—C20—C19 123.0 (2) C47—C48—C49 123.2 (2)
C20—C21—C22 118.1 (2) C48—C49—C50 118.0 (2)
C20—C21—H21 121.0 C48—C49—H49 121.0
C22—C21—H21 121.0 C50—C49—H49 121.0
C21—C22—C17 121.0 (2) C49—C50—C45 121.1 (2)
C21—C22—H22 119.5 C49—C50—H50 119.4
C17—C22—H22 119.5 C45—C50—H50 119.4
C28—C23—C24 118.7 (2) C52—C51—C56 118.7 (2)
C28—C23—P1 124.40 (18) C52—C51—P2 121.43 (17)
C24—C23—P1 116.89 (17) C56—C51—P2 119.85 (17)
C25—C24—C23 120.9 (2) C51—C52—C53 120.9 (2)
C25—C24—H24 119.5 C51—C52—H52 119.6
C23—C24—H24 119.5 C53—C52—H52 119.6
C26—C25—C24 118.3 (2) C54—C53—C52 118.2 (2)
C26—C25—H25 120.9 C54—C53—H53 120.9
C24—C25—H25 120.9 C52—C53—H53 120.9
C25—C26—F3 118.5 (2) F6—C54—C53 118.2 (2)
C25—C26—C27 123.0 (2) F6—C54—C55 118.7 (2)
F3—C26—C27 118.4 (2) C53—C54—C55 123.1 (2)
C26—C27—C28 118.1 (2) C54—C55—C56 118.0 (2)
C26—C27—H27 120.9 C54—C55—H55 121.0
C28—C27—H27 120.9 C56—C55—H55 121.0
C23—C28—C27 120.8 (2) C55—C56—C51 121.1 (2)
C23—C28—H28 119.6 C55—C56—H56 119.4
C27—C28—H28 119.6 C51—C56—H56 119.4
O3—C3—C4—C5 −6.1 (3) O6—C31—C32—C33 −4.5 (4)
Mo1—C3—C4—C5 172.61 (18) Mo2—C31—C32—C33 173.63 (19)
C10—C6—C7—C8 −0.4 (3) C38—C34—C35—C36 0.9 (3)
Mo1—C6—C7—C8 −63.15 (17) Mo2—C34—C35—C36 63.96 (19)
C10—C6—C7—Mo1 62.78 (18) C38—C34—C35—Mo2 −63.05 (18)
C6—C7—C8—C9 0.4 (3) C34—C35—C36—C37 −1.3 (3)
Mo1—C7—C8—C9 −62.91 (17) Mo2—C35—C36—C37 62.17 (18)
C6—C7—C8—Mo1 63.36 (18) C34—C35—C36—Mo2 −63.47 (18)
C7—C8—C9—C10 −0.4 (3) C35—C36—C37—C38 1.2 (3)
Mo1—C8—C9—C10 −64.96 (17) Mo2—C36—C37—C38 65.08 (17)
C7—C8—C9—Mo1 64.60 (17) C35—C36—C37—Mo2 −63.90 (18)
C7—C6—C10—C9 0.1 (3) C35—C34—C38—C37 −0.2 (3)
Mo1—C6—C10—C9 64.39 (17) Mo2—C34—C38—C37 −64.91 (17)
C7—C6—C10—Mo1 −64.24 (18) C35—C34—C38—Mo2 64.75 (19)
C8—C9—C10—C6 0.1 (3) C36—C37—C38—C34 −0.6 (3)
Mo1—C9—C10—C6 −65.88 (18) Mo2—C37—C38—C34 66.12 (18)
C8—C9—C10—Mo1 66.01 (18) C36—C37—C38—Mo2 −66.75 (17)
C23—P1—C11—C16 108.3 (2) C45—P2—C39—C44 105.6 (2)
C17—P1—C11—C16 2.7 (2) C51—P2—C39—C44 0.4 (2)
Mo1—P1—C11—C16 −126.24 (18) Mo2—P2—C39—C44 −128.27 (18)
C23—P1—C11—C12 −73.3 (2) C45—P2—C39—C40 −79.0 (2)
C17—P1—C11—C12 −178.9 (2) C51—P2—C39—C40 175.70 (19)
Mo1—P1—C11—C12 52.1 (2) Mo2—P2—C39—C40 47.1 (2)
C16—C11—C12—C13 −1.7 (4) C44—C39—C40—C41 0.4 (4)
P1—C11—C12—C13 179.8 (2) P2—C39—C40—C41 −175.1 (2)
C11—C12—C13—C14 1.4 (4) C39—C40—C41—C42 1.6 (4)
C12—C13—C14—F1 179.4 (3) C40—C41—C42—F4 176.8 (2)
C12—C13—C14—C15 −0.1 (5) C40—C41—C42—C43 −2.8 (4)
F1—C14—C15—C16 179.8 (2) F4—C42—C43—C44 −177.7 (2)
C13—C14—C15—C16 −0.7 (4) C41—C42—C43—C44 1.9 (4)
C12—C11—C16—C15 0.9 (4) C40—C39—C44—C43 −1.3 (4)
P1—C11—C16—C15 179.29 (19) P2—C39—C44—C43 174.10 (19)
C14—C15—C16—C11 0.3 (4) C42—C43—C44—C39 0.2 (4)
C23—P1—C17—C18 164.88 (19) C51—P2—C45—C46 101.2 (2)
C11—P1—C17—C18 −86.5 (2) C39—P2—C45—C46 −4.1 (2)
Mo1—P1—C17—C18 39.3 (2) Mo2—P2—C45—C46 −131.89 (18)
C23—P1—C17—C22 −19.6 (2) C51—P2—C45—C50 −78.1 (2)
C11—P1—C17—C22 89.0 (2) C39—P2—C45—C50 176.65 (19)
Mo1—P1—C17—C22 −145.17 (17) Mo2—P2—C45—C50 48.9 (2)
C22—C17—C18—C19 −1.2 (4) C50—C45—C46—C47 −0.7 (3)
P1—C17—C18—C19 174.5 (2) P2—C45—C46—C47 −179.96 (18)
C17—C18—C19—C20 2.4 (4) C45—C46—C47—C48 −0.2 (4)
C18—C19—C20—F2 178.9 (2) C46—C47—C48—F5 −177.3 (2)
C18—C19—C20—C21 −1.1 (4) C46—C47—C48—C49 1.2 (4)
F2—C20—C21—C22 178.5 (2) F5—C48—C49—C50 177.4 (2)
C19—C20—C21—C22 −1.5 (4) C47—C48—C49—C50 −1.2 (4)
C20—C21—C22—C17 2.8 (4) C48—C49—C50—C45 0.1 (4)
C18—C17—C22—C21 −1.5 (4) C46—C45—C50—C49 0.8 (4)
P1—C17—C22—C21 −176.99 (19) P2—C45—C50—C49 −179.95 (19)
C17—P1—C23—C28 121.0 (2) C45—P2—C51—C52 −10.9 (2)
C11—P1—C23—C28 14.8 (2) C39—P2—C51—C52 96.2 (2)
Mo1—P1—C23—C28 −110.42 (19) Mo2—P2—C51—C52 −135.61 (17)
C17—P1—C23—C24 −59.7 (2) C45—P2—C51—C56 171.36 (19)
C11—P1—C23—C24 −165.84 (18) C39—P2—C51—C56 −81.6 (2)
Mo1—P1—C23—C24 68.90 (19) Mo2—P2—C51—C56 46.6 (2)
C28—C23—C24—C25 −0.9 (4) C56—C51—C52—C53 −0.5 (3)
P1—C23—C24—C25 179.73 (19) P2—C51—C52—C53 −178.30 (18)
C23—C24—C25—C26 2.5 (4) C51—C52—C53—C54 0.4 (4)
C24—C25—C26—F3 177.5 (2) C52—C53—C54—F6 179.7 (2)
C24—C25—C26—C27 −2.2 (4) C52—C53—C54—C55 0.2 (4)
C25—C26—C27—C28 0.4 (4) F6—C54—C55—C56 179.9 (2)
F3—C26—C27—C28 −179.3 (2) C53—C54—C55—C56 −0.6 (4)
C24—C23—C28—C27 −1.0 (3) C54—C55—C56—C51 0.5 (4)
P1—C23—C28—C27 178.31 (18) C52—C51—C56—C55 0.1 (3)
C26—C27—C28—C23 1.3 (4) P2—C51—C56—C55 177.88 (19)

Dicarbonyl(η5-cyclopentadienyl)propionyl[tris(4-fluorophenyl)phosphane-κP]molybdenum(II) (2) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C15—H15···O6 0.95 2.59 3.371 (4) 139
C49—H49···F4i 0.95 2.55 3.344 (3) 141
C55—H55···O3ii 0.95 2.53 3.450 (3) 164
C34—H34···O1iii 1.00 2.38 3.237 (3) 143

Symmetry codes: (i) x+1, y, z; (ii) x−1, y, z; (iii) x, −y+1/2, z+1/2.

Dicarbonyl(η5-cyclopentadienyl)propionyl[tris(4-methoxyphenyl)phosphane-κP]molybdenum(II) dichloromethane solvate (3) . Crystal data

[Mo(C5H5)(C3H5O)(C21H21O3P)(CO)2]·CH2Cl2 Z = 2
Mr = 711.39 F(000) = 728
Triclinic, P1 Dx = 1.508 Mg m3
a = 10.5308 (6) Å Mo Kα radiation, λ = 0.71073 Å
b = 12.1305 (7) Å Cell parameters from 9554 reflections
c = 13.6154 (8) Å θ = 3.0–36.3°
α = 97.660 (2)° µ = 0.68 mm1
β = 104.759 (2)° T = 170 K
γ = 107.081 (2)° Block, pale yellow
V = 1566.43 (16) Å3 0.23 × 0.21 × 0.12 mm

Dicarbonyl(η5-cyclopentadienyl)propionyl[tris(4-methoxyphenyl)phosphane-κP]molybdenum(II) dichloromethane solvate (3) . Data collection

Bruker D8 QUEST ECO diffractometer 9578 independent reflections
Radiation source: sealed tube, Siemens KFFMO2K-90C 9053 reflections with I > 2σ(I)
Curved Graphite monochromator Rint = 0.029
Detector resolution: 7.3910 pixels mm-1 θmax = 30.5°, θmin = 2.3°
φ and ω scans h = −15→15
Absorption correction: multi-scan (Krause et al., 2015) k = −17→17
Tmin = 0.84, Tmax = 0.92 l = −19→19
81820 measured reflections

Dicarbonyl(η5-cyclopentadienyl)propionyl[tris(4-methoxyphenyl)phosphane-κP]molybdenum(II) dichloromethane solvate (3) . Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.054 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0226P)2 + 0.7135P] where P = (Fo2 + 2Fc2)/3
9578 reflections (Δ/σ)max = 0.001
393 parameters Δρmax = 0.40 e Å3
0 restraints Δρmin = −0.48 e Å3

Dicarbonyl(η5-cyclopentadienyl)propionyl[tris(4-methoxyphenyl)phosphane-κP]molybdenum(II) dichloromethane solvate (3) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Dicarbonyl(η5-cyclopentadienyl)propionyl[tris(4-methoxyphenyl)phosphane-κP]molybdenum(II) dichloromethane solvate (3) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Mo1 0.52042 (2) 0.25393 (2) 0.09427 (2) 0.01619 (3)
P1 0.51816 (3) 0.35557 (2) 0.26360 (2) 0.01580 (5)
O1 0.68635 (12) 0.51311 (8) 0.09342 (8) 0.0368 (2)
O2 0.71687 (11) 0.15626 (9) 0.24292 (8) 0.0355 (2)
O3 0.65766 (10) 0.19845 (9) −0.07044 (7) 0.0330 (2)
O4 0.07178 (10) 0.57231 (9) 0.24125 (8) 0.0335 (2)
O5 0.41490 (10) 0.06671 (8) 0.57748 (7) 0.03008 (19)
O6 1.00779 (9) 0.78117 (8) 0.52048 (7) 0.03004 (19)
C1 0.62823 (12) 0.41791 (10) 0.09761 (9) 0.0227 (2)
C2 0.64709 (12) 0.19679 (10) 0.19028 (8) 0.0220 (2)
C3 0.68821 (12) 0.24759 (10) 0.02074 (9) 0.0233 (2)
C4 0.84445 (13) 0.30859 (12) 0.07936 (10) 0.0301 (2)
H4A 0.878597 0.383496 0.057367 0.036*
H4B 0.857453 0.328655 0.154986 0.036*
C5 0.93197 (15) 0.23248 (14) 0.06042 (13) 0.0385 (3)
H5A 0.909437 0.164404 0.092354 0.058*
H5B 1.031399 0.27963 0.091479 0.058*
H5C 0.911323 0.204489 −0.01474 0.058*
C6 0.32457 (13) 0.07480 (10) 0.03752 (10) 0.0266 (2)
H6 0.313597 0.0047 0.069965 0.032*
C7 0.27424 (12) 0.16854 (10) 0.05911 (9) 0.0246 (2)
H7 0.222345 0.176265 0.110302 0.03*
C8 0.29947 (13) 0.24425 (11) −0.00983 (10) 0.0272 (2)
H8 0.266202 0.312821 −0.017144 0.033*
C9 0.36793 (14) 0.19845 (12) −0.07342 (9) 0.0309 (3)
H9 0.388632 0.227539 −0.13493 0.037*
C10 0.38374 (14) 0.09369 (11) −0.04378 (10) 0.0306 (3)
H10 0.418501 0.037449 −0.080607 0.037*
C11 0.37443 (11) 0.41395 (9) 0.25087 (8) 0.01780 (18)
C12 0.35998 (12) 0.49063 (10) 0.18422 (9) 0.0226 (2)
H12 0.419737 0.505677 0.142103 0.027*
C13 0.26014 (12) 0.54555 (11) 0.17798 (9) 0.0237 (2)
H13 0.252561 0.598157 0.132747 0.028*
C14 0.17141 (12) 0.52242 (10) 0.23893 (9) 0.0227 (2)
C15 0.18237 (12) 0.44423 (11) 0.30402 (9) 0.0248 (2)
H15 0.120263 0.426933 0.344156 0.03*
C16 0.28358 (12) 0.39144 (10) 0.31053 (9) 0.02147 (19)
H16 0.291252 0.339271 0.356177 0.026*
C17 0.05341 (16) 0.65233 (14) 0.17571 (14) 0.0397 (3)
H17A 0.141582 0.718094 0.192016 0.06*
H17B −0.018996 0.683173 0.187415 0.06*
H17C 0.025013 0.610782 0.102594 0.06*
C18 0.49824 (11) 0.26789 (9) 0.36153 (8) 0.01745 (17)
C19 0.40076 (12) 0.15263 (10) 0.33211 (9) 0.0235 (2)
H19 0.351772 0.118227 0.26037 0.028*
C20 0.37468 (13) 0.08818 (10) 0.40562 (9) 0.0253 (2)
H20 0.306101 0.011206 0.384356 0.03*
C21 0.44904 (12) 0.13610 (10) 0.51117 (8) 0.02071 (19)
C22 0.54956 (12) 0.24834 (10) 0.54166 (8) 0.02109 (19)
H22 0.602748 0.280472 0.612987 0.025*
C23 0.57210 (11) 0.31379 (10) 0.46696 (8) 0.02006 (19)
H23 0.639338 0.391388 0.488536 0.024*
C24 0.48069 (19) 0.11574 (13) 0.68676 (10) 0.0395 (3)
H24A 0.443749 0.058545 0.725802 0.059*
H24B 0.461623 0.188617 0.7061 0.059*
H24C 0.581792 0.133654 0.703274 0.059*
C25 0.66885 (11) 0.48601 (9) 0.33776 (8) 0.01716 (17)
C26 0.65268 (12) 0.58564 (10) 0.39084 (9) 0.0221 (2)
H26 0.561347 0.586707 0.38549 0.027*
C27 0.76725 (12) 0.68248 (10) 0.45087 (9) 0.0241 (2)
H27 0.75409 0.749483 0.485784 0.029*
C28 0.90179 (12) 0.68197 (10) 0.46023 (8) 0.02111 (19)
C29 0.92037 (12) 0.58325 (11) 0.40946 (9) 0.0246 (2)
H29 1.011851 0.581542 0.416595 0.03*
C30 0.80430 (12) 0.48711 (10) 0.34821 (9) 0.0231 (2)
H30 0.817702 0.420618 0.312657 0.028*
C31 1.14412 (14) 0.79549 (14) 0.51248 (11) 0.0366 (3)
H31A 1.178982 0.737871 0.54421 0.055*
H31B 1.207379 0.875805 0.548891 0.055*
H31C 1.139505 0.782624 0.438867 0.055*
C32 −0.0396 (2) 0.01902 (17) 0.26603 (16) 0.0533 (4)
H32A 0.017643 0.101022 0.305243 0.064* 0.532 (15)
H32B −0.133229 0.018994 0.22801 0.064* 0.532 (15)
H32C −0.117475 0.043473 0.229775 0.064* 0.468 (15)
H32D 0.030037 0.088435 0.319629 0.064* 0.468 (15)
Cl1A −0.0560 (9) −0.0707 (4) 0.3518 (4) 0.0661 (11) 0.532 (15)
Cl1B −0.1046 (5) −0.0962 (5) 0.3280 (3) 0.0714 (6) 0.468 (15)
Cl2 0.03837 (4) −0.02605 (4) 0.17571 (4) 0.05013 (10)

Dicarbonyl(η5-cyclopentadienyl)propionyl[tris(4-methoxyphenyl)phosphane-κP]molybdenum(II) dichloromethane solvate (3) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mo1 0.01913 (4) 0.01478 (4) 0.01330 (4) 0.00475 (3) 0.00476 (3) 0.00160 (3)
P1 0.01702 (11) 0.01515 (11) 0.01494 (11) 0.00486 (9) 0.00573 (9) 0.00235 (8)
O1 0.0471 (6) 0.0231 (4) 0.0411 (5) 0.0065 (4) 0.0188 (5) 0.0125 (4)
O2 0.0443 (6) 0.0374 (5) 0.0274 (4) 0.0239 (5) 0.0040 (4) 0.0076 (4)
O3 0.0351 (5) 0.0415 (5) 0.0210 (4) 0.0113 (4) 0.0121 (4) −0.0003 (4)
O4 0.0338 (5) 0.0424 (5) 0.0407 (5) 0.0255 (4) 0.0204 (4) 0.0176 (4)
O5 0.0403 (5) 0.0263 (4) 0.0217 (4) 0.0052 (4) 0.0110 (4) 0.0102 (3)
O6 0.0227 (4) 0.0239 (4) 0.0318 (5) −0.0006 (3) 0.0043 (3) −0.0042 (3)
C1 0.0274 (5) 0.0218 (5) 0.0199 (5) 0.0083 (4) 0.0093 (4) 0.0050 (4)
C2 0.0271 (5) 0.0193 (5) 0.0183 (4) 0.0080 (4) 0.0068 (4) 0.0005 (4)
C3 0.0272 (5) 0.0224 (5) 0.0216 (5) 0.0083 (4) 0.0104 (4) 0.0039 (4)
C4 0.0255 (6) 0.0321 (6) 0.0292 (6) 0.0057 (5) 0.0119 (5) −0.0018 (5)
C5 0.0319 (7) 0.0378 (7) 0.0445 (8) 0.0145 (6) 0.0096 (6) 0.0034 (6)
C6 0.0246 (5) 0.0185 (5) 0.0283 (6) 0.0014 (4) 0.0026 (4) 0.0013 (4)
C7 0.0198 (5) 0.0247 (5) 0.0238 (5) 0.0035 (4) 0.0037 (4) 0.0029 (4)
C8 0.0242 (5) 0.0274 (6) 0.0249 (5) 0.0074 (4) 0.0003 (4) 0.0068 (4)
C9 0.0310 (6) 0.0369 (7) 0.0157 (5) 0.0044 (5) 0.0017 (4) 0.0027 (4)
C10 0.0311 (6) 0.0263 (6) 0.0237 (5) 0.0042 (5) 0.0037 (5) −0.0077 (4)
C11 0.0175 (4) 0.0184 (4) 0.0171 (4) 0.0056 (4) 0.0060 (3) 0.0027 (3)
C12 0.0228 (5) 0.0263 (5) 0.0234 (5) 0.0101 (4) 0.0114 (4) 0.0094 (4)
C13 0.0248 (5) 0.0258 (5) 0.0250 (5) 0.0113 (4) 0.0102 (4) 0.0097 (4)
C14 0.0203 (5) 0.0247 (5) 0.0244 (5) 0.0098 (4) 0.0076 (4) 0.0038 (4)
C15 0.0238 (5) 0.0309 (6) 0.0254 (5) 0.0115 (4) 0.0133 (4) 0.0091 (4)
C16 0.0219 (5) 0.0245 (5) 0.0206 (5) 0.0084 (4) 0.0093 (4) 0.0075 (4)
C17 0.0368 (7) 0.0399 (7) 0.0557 (9) 0.0245 (6) 0.0182 (7) 0.0213 (7)
C18 0.0190 (4) 0.0173 (4) 0.0168 (4) 0.0065 (4) 0.0064 (3) 0.0038 (3)
C19 0.0270 (5) 0.0197 (5) 0.0178 (5) 0.0029 (4) 0.0035 (4) 0.0027 (4)
C20 0.0289 (6) 0.0189 (5) 0.0222 (5) 0.0017 (4) 0.0056 (4) 0.0044 (4)
C21 0.0249 (5) 0.0210 (5) 0.0202 (5) 0.0098 (4) 0.0099 (4) 0.0073 (4)
C22 0.0241 (5) 0.0226 (5) 0.0157 (4) 0.0074 (4) 0.0059 (4) 0.0035 (4)
C23 0.0213 (5) 0.0188 (4) 0.0181 (4) 0.0046 (4) 0.0062 (4) 0.0029 (4)
C24 0.0615 (10) 0.0355 (7) 0.0211 (6) 0.0107 (7) 0.0169 (6) 0.0103 (5)
C25 0.0182 (4) 0.0158 (4) 0.0169 (4) 0.0044 (3) 0.0069 (3) 0.0020 (3)
C26 0.0199 (5) 0.0195 (5) 0.0263 (5) 0.0069 (4) 0.0085 (4) −0.0001 (4)
C27 0.0245 (5) 0.0179 (5) 0.0276 (5) 0.0066 (4) 0.0082 (4) −0.0013 (4)
C28 0.0214 (5) 0.0192 (5) 0.0187 (4) 0.0026 (4) 0.0057 (4) 0.0020 (4)
C29 0.0182 (5) 0.0273 (5) 0.0252 (5) 0.0062 (4) 0.0068 (4) −0.0010 (4)
C30 0.0206 (5) 0.0224 (5) 0.0244 (5) 0.0077 (4) 0.0073 (4) −0.0028 (4)
C31 0.0217 (6) 0.0409 (7) 0.0324 (6) −0.0034 (5) 0.0045 (5) −0.0004 (5)
C32 0.0701 (12) 0.0490 (10) 0.0572 (11) 0.0328 (9) 0.0283 (9) 0.0210 (8)
Cl1A 0.104 (3) 0.0631 (13) 0.0563 (13) 0.0427 (15) 0.0394 (16) 0.0343 (11)
Cl1B 0.0648 (14) 0.0990 (17) 0.0501 (10) 0.0193 (13) 0.0146 (10) 0.0415 (9)
Cl2 0.03877 (19) 0.0537 (2) 0.0484 (2) 0.00556 (17) 0.01330 (16) 0.00379 (18)

Dicarbonyl(η5-cyclopentadienyl)propionyl[tris(4-methoxyphenyl)phosphane-κP]molybdenum(II) dichloromethane solvate (3) . Geometric parameters (Å, º)

Mo1—P1 2.4745 (3) C13—C14 1.3942 (16)
Mo1—C1 1.9675 (12) C13—H13 0.95
Mo1—C2 1.9658 (12) C14—C15 1.3908 (16)
Mo1—C3 2.2564 (11) C15—C16 1.3863 (16)
Mo1—C9 2.3092 (12) C15—H15 0.95
Mo1—C10 2.3210 (12) C16—H16 0.95
Mo1—C8 2.3562 (12) C17—H17A 0.98
Mo1—C6 2.3833 (12) C17—H17B 0.98
Mo1—C7 2.3835 (11) C17—H17C 0.98
P1—C25 1.8232 (11) C18—C23 1.3925 (14)
P1—C18 1.8283 (11) C18—C19 1.4026 (15)
P1—C11 1.8307 (11) C19—C20 1.3823 (16)
O1—C1 1.1540 (15) C19—H19 0.95
O2—C2 1.1547 (15) C20—C21 1.3974 (16)
O3—C3 1.2192 (14) C20—H20 0.95
O4—C14 1.3612 (14) C21—C22 1.3876 (15)
O4—C17 1.4246 (17) C22—C23 1.3959 (15)
O5—C21 1.3576 (13) C22—H22 0.95
O5—C24 1.4298 (16) C23—H23 0.95
O6—C28 1.3595 (13) C24—H24A 0.98
O6—C31 1.4287 (16) C24—H24B 0.98
C3—C4 1.5329 (17) C24—H24C 0.98
C4—C5 1.5251 (19) C25—C30 1.3928 (15)
C4—H4A 0.99 C25—C26 1.4009 (14)
C4—H4B 0.99 C26—C27 1.3830 (15)
C5—H5A 0.98 C26—H26 0.95
C5—H5B 0.98 C27—C28 1.3917 (16)
C5—H5C 0.98 C27—H27 0.95
C6—C10 1.4146 (18) C28—C29 1.3914 (16)
C6—C7 1.4159 (17) C29—C30 1.3905 (16)
C6—H6 1.0 C29—H29 0.95
C7—C8 1.4172 (17) C30—H30 0.95
C7—H7 1.0 C31—H31A 0.98
C8—C9 1.4153 (19) C31—H31B 0.98
C8—H8 1.0 C31—H31C 0.98
C9—C10 1.426 (2) C32—Cl1A 1.705 (3)
C9—H9 1.0 C32—Cl2 1.7561 (19)
C10—H10 1.0 C32—Cl1B 1.783 (4)
C11—C12 1.3963 (15) C32—H32A 0.99
C11—C16 1.3970 (14) C32—H32B 0.99
C12—C13 1.3920 (15) C32—H32C 0.99
C12—H12 0.95 C32—H32D 0.99
C1—Mo1—C2 106.36 (5) C9—C10—Mo1 71.62 (7)
C1—Mo1—C3 72.49 (4) C6—C10—H10 125.7
C2—Mo1—C3 74.79 (4) C9—C10—H10 125.7
C2—Mo1—C9 140.57 (5) Mo1—C10—H10 125.7
C1—Mo1—C9 100.33 (5) C12—C11—C16 118.13 (10)
C3—Mo1—C9 86.50 (5) C12—C11—P1 119.07 (8)
C2—Mo1—C10 106.27 (5) C16—C11—P1 122.64 (8)
C1—Mo1—C10 131.51 (5) C13—C12—C11 121.61 (10)
C3—Mo1—C10 82.71 (5) C13—C12—H12 119.2
C9—Mo1—C10 35.86 (5) C11—C12—H12 119.2
C2—Mo1—C8 153.82 (5) C12—C13—C14 119.18 (10)
C1—Mo1—C8 99.03 (5) C12—C13—H13 120.4
C3—Mo1—C8 120.03 (4) C14—C13—H13 120.4
C9—Mo1—C8 35.30 (5) O4—C14—C15 115.39 (10)
C10—Mo1—C8 58.80 (5) O4—C14—C13 124.68 (11)
C2—Mo1—C6 96.95 (5) C15—C14—C13 119.93 (10)
C1—Mo1—C6 156.61 (5) C16—C15—C14 120.25 (10)
C3—Mo1—C6 112.97 (4) C16—C15—H15 119.9
C9—Mo1—C6 58.69 (5) C14—C15—H15 119.9
C10—Mo1—C6 34.97 (5) C15—C16—C11 120.87 (10)
C8—Mo1—C6 58.10 (4) C15—C16—H16 119.6
C2—Mo1—C7 119.76 (5) C11—C16—H16 119.6
C1—Mo1—C7 127.63 (5) O4—C17—H17A 109.5
C3—Mo1—C7 140.20 (4) O4—C17—H17B 109.5
C9—Mo1—C7 58.32 (4) H17A—C17—H17B 109.5
C10—Mo1—C7 58.06 (4) O4—C17—H17C 109.5
C8—Mo1—C7 34.79 (4) H17A—C17—H17C 109.5
C6—Mo1—C7 34.56 (4) H17B—C17—H17C 109.5
C1—Mo1—P1 79.97 (3) C23—C18—C19 117.86 (10)
C2—Mo1—P1 79.79 (3) C23—C18—P1 122.10 (8)
C3—Mo1—P1 134.90 (3) C19—C18—P1 119.96 (8)
C9—Mo1—P1 133.97 (4) C20—C19—C18 121.19 (10)
C10—Mo1—P1 140.75 (3) C20—C19—H19 119.4
C8—Mo1—P1 98.76 (3) C18—C19—H19 119.4
C6—Mo1—P1 106.54 (3) C19—C20—C21 120.10 (10)
C7—Mo1—P1 84.85 (3) C19—C20—H20 120.0
C25—P1—C18 102.11 (5) C21—C20—H20 120.0
C25—P1—C11 101.79 (5) O5—C21—C22 124.58 (10)
C18—P1—C11 102.80 (5) O5—C21—C20 115.76 (10)
C25—P1—Mo1 117.73 (3) C22—C21—C20 119.66 (10)
C18—P1—Mo1 117.30 (3) C21—C22—C23 119.65 (10)
C11—P1—Mo1 112.88 (3) C21—C22—H22 120.2
C14—O4—C17 118.55 (10) C23—C22—H22 120.2
C21—O5—C24 117.63 (10) C18—C23—C22 121.48 (10)
C28—O6—C31 117.18 (10) C18—C23—H23 119.3
O1—C1—Mo1 175.82 (11) C22—C23—H23 119.3
O2—C2—Mo1 175.76 (10) O5—C24—H24A 109.5
O3—C3—C4 116.42 (11) O5—C24—H24B 109.5
O3—C3—Mo1 120.75 (9) H24A—C24—H24B 109.5
C4—C3—Mo1 122.76 (8) O5—C24—H24C 109.5
C5—C4—C3 113.12 (11) H24A—C24—H24C 109.5
C5—C4—H4A 109.0 H24B—C24—H24C 109.5
C3—C4—H4A 109.0 C30—C25—C26 117.80 (10)
C5—C4—H4B 109.0 C30—C25—P1 120.87 (8)
C3—C4—H4B 109.0 C26—C25—P1 121.23 (8)
H4A—C4—H4B 107.8 C27—C26—C25 121.21 (10)
C4—C5—H5A 109.5 C27—C26—H26 119.4
C4—C5—H5B 109.5 C25—C26—H26 119.4
H5A—C5—H5B 109.5 C26—C27—C28 120.13 (10)
C4—C5—H5C 109.5 C26—C27—H27 119.9
H5A—C5—H5C 109.5 C28—C27—H27 119.9
H5B—C5—H5C 109.5 O6—C28—C29 124.40 (10)
C10—C6—C7 107.57 (11) O6—C28—C27 115.94 (10)
C10—C6—Mo1 70.11 (7) C29—C28—C27 119.66 (10)
C7—C6—Mo1 72.73 (7) C30—C29—C28 119.63 (10)
C10—C6—H6 126.1 C30—C29—H29 120.2
C7—C6—H6 126.1 C28—C29—H29 120.2
Mo1—C6—H6 126.1 C29—C30—C25 121.55 (10)
C6—C7—C8 108.64 (11) C29—C30—H30 119.2
C6—C7—Mo1 72.71 (7) C25—C30—H30 119.2
C8—C7—Mo1 71.55 (7) O6—C31—H31A 109.5
C6—C7—H7 125.6 O6—C31—H31B 109.5
C8—C7—H7 125.6 H31A—C31—H31B 109.5
Mo1—C7—H7 125.6 O6—C31—H31C 109.5
C9—C8—C7 107.71 (11) H31A—C31—H31C 109.5
C9—C8—Mo1 70.54 (7) H31B—C31—H31C 109.5
C7—C8—Mo1 73.66 (7) Cl1A—C32—Cl2 112.38 (13)
C9—C8—H8 126.0 Cl2—C32—Cl1B 111.88 (16)
C7—C8—H8 126.0 Cl1A—C32—H32A 109.1
Mo1—C8—H8 126.0 Cl2—C32—H32A 109.1
C8—C9—C10 107.85 (11) Cl1A—C32—H32B 109.1
C8—C9—Mo1 74.16 (7) Cl2—C32—H32B 109.1
C10—C9—Mo1 72.52 (7) H32A—C32—H32B 107.9
C8—C9—H9 125.8 Cl2—C32—H32C 109.2
C10—C9—H9 125.8 Cl1B—C32—H32C 109.2
Mo1—C9—H9 125.8 Cl2—C32—H32D 109.2
C6—C10—C9 108.20 (11) Cl1B—C32—H32D 109.2
C6—C10—Mo1 74.93 (7) H32C—C32—H32D 107.9
O3—C3—C4—C5 −45.68 (17) C11—P1—C18—C23 −94.92 (9)
Mo1—C3—C4—C5 137.17 (10) Mo1—P1—C18—C23 140.61 (8)
C10—C6—C7—C8 1.13 (13) C25—P1—C18—C19 −173.09 (9)
Mo1—C6—C7—C8 62.95 (8) C11—P1—C18—C19 81.66 (10)
C10—C6—C7—Mo1 −61.82 (8) Mo1—P1—C18—C19 −42.82 (10)
C6—C7—C8—C9 −0.97 (13) C23—C18—C19—C20 2.47 (17)
Mo1—C7—C8—C9 62.73 (8) P1—C18—C19—C20 −174.25 (10)
C6—C7—C8—Mo1 −63.70 (8) C18—C19—C20—C21 −2.02 (19)
C7—C8—C9—C10 0.43 (14) C24—O5—C21—C22 4.22 (18)
Mo1—C8—C9—C10 65.20 (9) C24—O5—C21—C20 −175.32 (12)
C7—C8—C9—Mo1 −64.78 (8) C19—C20—C21—O5 179.25 (11)
C7—C6—C10—C9 −0.86 (14) C19—C20—C21—C22 −0.32 (18)
Mo1—C6—C10—C9 −64.38 (8) O5—C21—C22—C23 −177.41 (11)
C7—C6—C10—Mo1 63.52 (8) C20—C21—C22—C23 2.11 (17)
C8—C9—C10—C6 0.27 (14) C19—C18—C23—C22 −0.64 (16)
Mo1—C9—C10—C6 66.56 (9) P1—C18—C23—C22 176.00 (8)
C8—C9—C10—Mo1 −66.29 (9) C21—C22—C23—C18 −1.63 (17)
C25—P1—C11—C12 71.91 (9) C18—P1—C25—C30 86.31 (10)
C18—P1—C11—C12 177.41 (9) C11—P1—C25—C30 −167.65 (9)
Mo1—P1—C11—C12 −55.25 (9) Mo1—P1—C25—C30 −43.70 (10)
C25—P1—C11—C16 −103.61 (10) C18—P1—C25—C26 −90.06 (10)
C18—P1—C11—C16 1.89 (10) C11—P1—C25—C26 15.98 (10)
Mo1—P1—C11—C16 129.22 (8) Mo1—P1—C25—C26 139.94 (8)
C16—C11—C12—C13 1.21 (17) C30—C25—C26—C27 0.61 (17)
P1—C11—C12—C13 −174.52 (9) P1—C25—C26—C27 177.08 (9)
C11—C12—C13—C14 −0.71 (18) C25—C26—C27—C28 −0.54 (18)
C17—O4—C14—C15 −179.30 (12) C31—O6—C28—C29 14.43 (17)
C17—O4—C14—C13 1.31 (19) C31—O6—C28—C27 −165.75 (12)
C12—C13—C14—O4 178.64 (11) C26—C27—C28—O6 179.75 (11)
C12—C13—C14—C15 −0.72 (18) C26—C27—C28—C29 −0.42 (18)
O4—C14—C15—C16 −177.78 (11) O6—C28—C29—C30 −178.90 (11)
C13—C14—C15—C16 1.64 (18) C27—C28—C29—C30 1.28 (18)
C14—C15—C16—C11 −1.13 (18) C28—C29—C30—C25 −1.22 (19)
C12—C11—C16—C15 −0.28 (17) C26—C25—C30—C29 0.27 (17)
P1—C11—C16—C15 175.28 (9) P1—C25—C30—C29 −176.21 (9)
C25—P1—C18—C23 10.34 (10)

Dicarbonyl(η5-cyclopentadienyl)propionyl[tris(4-methoxyphenyl)phosphane-κP]molybdenum(II) dichloromethane solvate (3) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C31—H31B···O5i 0.98 2.58 3.4880 (16) 155
C6—H6···O3ii 1.00 2.57 3.4555 (16) 148
C8—H8···O1iii 1.00 2.45 3.2714 (16) 139
C32—H32B···O2iv 0.99 2.63 3.418 (2) 137

Symmetry codes: (i) x+1, y+1, z; (ii) −x+1, −y, −z; (iii) −x+1, −y+1, −z; (iv) x−1, y, z.

Funding Statement

This work was funded by National Science Foundation, Directorate for Mathematical and Physical Sciences grant CHE-1552591 to M. T. Whited; Camille and Henry Dreyfus Foundation grant TH-16-035 to M. T. Whited.

References

  1. Adams, H., Bailey, N. A., Day, A. N., Morris, M. J. & Harrison, M. M. (1991). J. Organomet. Chem. 407, 247–258.
  2. Adatia, T., Henrick, K., Horton, A. D., Mays, M. J. & McPartlin, M. (1986). J. Chem. Soc. Chem. Commun. pp. 1206–1208.
  3. Anstey, M. R., Bost, J. L., Grumman, A. S., Kennedy, N. D. & Whited, M. T. (2020). Acta Cryst. E76, 547–551. [DOI] [PMC free article] [PubMed]
  4. Barnett, K. W. (1969). Inorg. Chem. 8, 2009–2011.
  5. Barnett, K. W. & Pollmann, T. G. (1974). J. Organomet. Chem. 69, 413–421.
  6. Barnett, K. W. & Slocum, D. W. (1972). J. Organomet. Chem. 44, 1–37.
  7. Barnett, K. W. & Treichel, P. M. (1967). Inorg. Chem. 6, 294–299.
  8. Bruker (2019). BIS and SAINT. Bruker Nano, Inc., Madison, Wisconsin, USA.
  9. Butler, I. S., Basolo, F. & Pearson, R. G. (1967). Inorg. Chem. 6, 2074–2079.
  10. Churchill, M. R. & Fennessey, J. P. (1968). Inorg. Chem. 7, 953–959.
  11. Gladysz, J. A., Williams, G. M., Tam, W., Johnson, D. L., Parker, D. W. & Selover, J. C. (1979). Inorg. Chem. 18, 553–558.
  12. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  13. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  14. Kubacek, P., Hoffmann, R. & Havlas, Z. (1982). Organometallics, 1, 180–188.
  15. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  16. Mercier, F., Ricard, L. & Mathey, F. (1993). Organometallics, 12, 98–103.
  17. Michelini-Rodriquez, I., Romero, A. L., Kapoor, R. N., Cervantes-Lee, F. & Pannell, K. H. (1993). Organometallics, 12, 1221–1224.
  18. Murshid, N., Rahman, M. A. & Wang, X. (2016). J. Organomet. Chem. 819, 109–114.
  19. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  20. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  21. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  22. Whited, M. T., Bakker-Arkema, J. G., Greenwald, J. E., Morrill, L. A. & Janzen, D. E. (2013). Acta Cryst. E69, m475–m476. [DOI] [PMC free article] [PubMed]
  23. Whited, M. T., Boerma, J. W., McClellan, M. J., Padilla, C. E. & Janzen, D. E. (2012). Acta Cryst. E68, m1158–m1159. [DOI] [PMC free article] [PubMed]
  24. Whited, M. T. & Hofmeister, G. E. (2014). J. Chem. Educ. 91, 1050–1053.
  25. Whited, M. T., Hofmeister, G. E., Hodges, C. J., Jensen, L. T., Keyes, S. H., Ngamnithiporn, A. & Janzen, D. E. (2014). Acta Cryst. E70, 216–220. [DOI] [PMC free article] [PubMed]
  26. Yan, X., Yu, B., Wang, L., Tang, N. & Xi, C. (2009). Organometallics, 28, 6827–6830.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, 1, 2, 3. DOI: 10.1107/S2056989021008008/jq2008sup1.cif

e-77-00912-sup1.cif (5.8MB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S2056989021008008/jq20081sup2.hkl

e-77-00912-1sup2.hkl (472.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021008008/jq20081sup5.cdx

Structure factors: contains datablock(s) 2. DOI: 10.1107/S2056989021008008/jq20082sup3.hkl

e-77-00912-2sup3.hkl (797.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021008008/jq20082sup6.cdx

Structure factors: contains datablock(s) 3. DOI: 10.1107/S2056989021008008/jq20083sup4.hkl

e-77-00912-3sup4.hkl (760KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021008008/jq20083sup7.cdx

CCDC references: 2101246, 2101245, 2101244

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES