Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Aug 17;77(Pt 9):880–886. doi: 10.1107/S2056989021008264

Crystal structures and hydrogen-bonding analysis of a series of benzamide complexes of zinc(II) chloride

Elizabeth Tinapple a, Sam Farrar a, Dean H Johnston a,*
PMCID: PMC8423010  PMID: 34584754

Five new bis­(aryl­amide)­dichlorido­zinc(II) complexes have been prepared and characterized. All of the complexes contain hydrogen bonds between the amide N—H group and the amide carbonyl oxygen atoms or the chlorine atoms, forming extended networks.

Keywords: ionic co-crystal, co-crystal salt, zinc(II) chloride, benzamide, tolu­amide

Abstract

Ionic co-crystals are co-crystals between organic mol­ecules and inorganic salt coformers. Co-crystals of pharmaceuticals are of inter­est to help control polymorph formation and potentially improve stability and other physical properties. We describe the preparation, crystal structures, and hydrogen bonding of five different 2:1 benzamide or tolu­amide/zinc(II) chloride co-crystal salts, namely, bis­(benzamide-κO)di­chlorido­zinc(II), [ZnCl2(C7H7NO)2], di­chlor­ido­bis­(2-methyl­benzamide-κO)zinc(II), [ZnCl2(C8H9NO)2], di­chlorido­bis­(3-methyl­benzamide-κO)zinc(II), [ZnCl2(C8H9NO)2], di­chlorido­bis­(4-methyl­benzamide-κO)zinc(II), [ZnCl2(C8H9NO)2], and di­chlorido­bis­(4-hy­droxy­benzamide-κO)zinc(II), [ZnCl2(C7H7NO2)2]. All of the complexes contain hydrogen bonds between the amide N—H group and the amide carbonyl oxygen atoms or the chlorine atoms, forming extended networks.

Chemical context  

Ionic co-crystals, formed from the combination of inorganic salts and organic mol­ecules, are of inter­est for their ability to promote or stabilize crystal forms of organic or pharmaceutical mol­ecules (Braga et al., 2011, 2018). The chloride salts of magnesium, calcium, and strontium have been shown to form an extensive range of structure types when co-crystallized with drug mol­ecules such as piracetam (Braga et al., 2011; Song et al., 2018), etiracetam and levitiracetam (Song et al., 2019, 2020), and nicotinamide and isonicotinamide (Braga et al., 2011; Song et al., 2020). Sodium bromide and sodium iodide form ionic co-crystals with carbamazepine (Buist & Kennedy, 2014). More recently, it has been shown that co-crystallization with ionic salts can produce chirally resolved forms when combining lithium halides with l- and dl-histidine (Braga et al., 2016), magnesium chloride with RS-oxiracetam (Shemchuk et al., 2020), and zinc chloride with RS-etiracetam (Shemchuk et al., 2018). Co-crystallization of nefiracetam with zinc chloride produced products with improved solubility and dissolution rates (Buol et al., 2020).graphic file with name e-77-00880-scheme1.jpg

The current study was undertaken to explore the preparation of ionic co-crystals (alternatively termed co-crystal salts; Grothe, et al., 2016) using zinc chloride combined with various organic amides (specifically benzamide, 4-hy­droxy­benzamide, and tolu­amide) that can serve as models of pharmaceutical mol­ecules.

Structural commentary  

Five new zinc complexes, (1) through (5), have been prepared and structurally characterized. All five complexes are 2:1 O-bonded aryl amide:ZnCl2 complexes with approximately tetra­hedral zinc(II) centers. The complexes crystallize in five different space groups and form hydrogen-bonding inter­actions between the amide N—H groups and either an amide oxygen or a zinc-bound chlorido ligand.

Compound (1), bis­(benzamide-κO)di­chlorido­zinc(II), [ZnCl2(C7H7NO)2], crystallizes in the P21/n space group with two independent mol­ecules in the asymmetric unit and displays one N—H⋯O and one N—H⋯Cl intra­molecular hydrogen bond in each mol­ecule (see Fig. 1 and Table 1). A search for non-crystallographic symmetry using PLATON (Spek, 2020) shows the two independent zinc complexes are related by a rotation of −173.2° and translation by 7.232 Å along the vector [1.000 0.101 0.992]. Alignment of the two residues gave a weighted r.m.s. fit of 0.330 Å.

Figure 1.

Figure 1

Displacement ellipsoid (50%) diagram and atom-numbering scheme of the two independent mol­ecules in (1). N—H⋯O contacts are shown in red and N—H⋯Cl contacts are shown in green.

Table 1. Hydrogen-bond geometry (Å, °) for (1) .

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1AA⋯O2A 0.84 (2) 2.12 (2) 2.888 (2) 152 (3)
N1A—H1AB⋯Cl1B i 0.87 (2) 2.56 (2) 3.3644 (15) 153 (2)
N2A—H2AA⋯Cl1A 0.87 (2) 2.51 (2) 3.3281 (15) 155 (2)
N2A—H2AB⋯Cl2A ii 0.85 (2) 2.51 (2) 3.3404 (15) 164 (2)
N1B—H1BA⋯O2B 0.84 (2) 2.17 (2) 2.911 (2) 147 (2)
N1B—H1BB⋯Cl1A 0.88 (2) 2.51 (2) 3.3682 (16) 167 (2)
N2B—H2BA⋯Cl1B 0.85 (2) 2.57 (2) 3.3085 (15) 146 (2)
N2B—H2BB⋯Cl2B iii 0.85 (2) 2.48 (2) 3.3107 (15) 165 (2)

Symmetry codes: (i) x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}; (ii) -x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}; (iii) -x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}.

As shown in Fig. 2, compound (2), di­chlorido­bis­(2-methyl­benzamide-κO)zinc(II), [ZnCl2(C8H9NO)2], displays two intra­molecular N—H⋯Cl hydrogen bonds to one chlorine atom (see Table 2) and crystallizes in the P21 space group. Compound (3), di­chlorido­bis­(3-methyl­benzamide-κO)zinc(II), [ZnCl2(C8H9NO)2], crystallizes in the C2/c space group with the zinc atom lying on the twofold axis (see Fig. 3) and, unlike the other compounds in this study, compound (3) does not form any intra­molecular hydrogen bonds. Compound (4), di­chlorido­bis­(4-methyl­benzamide-κO)zinc(II), [ZnCl2(C8H9NO)2], crystallizes in the P21/c space group and compound (5), di­chlorido­bis­(4-hy­droxy­benzamide-κO)zinc(II), [ZnCl2(C7H7NO2)2], crystallizes in the Cc space group and both compounds form two intra­molecular hydrogen bonds, one N—H⋯O and one N—H⋯Cl, similar to the inter­actions found in compound (1) (see Figs. 4 and 5 and Tables 4 and 5).

Figure 2.

Figure 2

Displacement ellipsoid (50%) diagram and atom-numbering scheme for (2). N—H⋯Cl contacts are shown in green.

Table 2. Hydrogen-bond geometry (Å, °) for (2) .

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl2i 0.82 (2) 2.57 (2) 3.2916 (17) 147 (2)
N1—H1B⋯Cl1 0.86 (2) 2.54 (2) 3.3077 (17) 150 (2)
N2—H2A⋯Cl1 0.85 (2) 2.52 (2) 3.2667 (16) 148 (2)
N2—H2B⋯O1ii 0.84 (2) 2.14 (2) 2.949 (2) 163 (2)

Symmetry codes: (i) x, y-1, z; (ii) x-1, y, z.

Figure 3.

Figure 3

Displacement ellipsoid (50%) diagram and atom-numbering scheme for (3). The minor component of the disordered methyl group is not shown for clarity.

Figure 4.

Figure 4

Displacement ellipsoid (50%) diagram and atom-numbering scheme for (4). The N—H⋯O contact is shown in red and the N—H⋯Cl contact is shown in green.

Figure 5.

Figure 5

Displacement ellipsoid (50%) diagram and atom numbering scheme for (5). The N—H⋯O contact is shown in red and the N—H⋯Cl contact is shown in green.

Table 4. Hydrogen-bond geometry (Å, °) for (4) .

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2 0.87 (2) 2.07 (2) 2.8753 (19) 154 (2)
N1—H1B⋯Cl2i 0.86 (2) 2.49 (2) 3.2265 (14) 145 (2)
N2—H2A⋯Cl1ii 0.86 (2) 2.50 (2) 3.2956 (16) 155 (2)
N2—H2B⋯Cl2 0.87 (2) 3.05 (2) 3.6341 (17) 126 (2)

Symmetry codes: (i) x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}; (ii) x-1, y, z.

Table 5. Hydrogen-bond geometry (Å, °) for (5) .

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯Cl1i 0.84 (3) 2.64 (4) 3.322 (3) 140 (5)
O3—H3⋯Cl2ii 0.84 (3) 2.75 (4) 3.349 (3) 130 (4)
O4—H4⋯Cl2iii 0.80 (3) 2.33 (3) 3.131 (3) 175 (6)
N1—H1A⋯Cl1 0.86 (3) 2.93 (4) 3.648 (4) 142 (4)
N1—H1B⋯Cl1iv 0.87 (3) 2.61 (3) 3.479 (4) 173 (4)
N2—H2A⋯O1 0.84 (3) 2.15 (3) 2.924 (5) 154 (5)
N2—H2B⋯Cl2v 0.84 (3) 2.77 (4) 3.405 (4) 135 (5)

Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1; (iii) x+{\script{1\over 2}}, y-{\script{1\over 2}}, z; (iv) x, -y+2, z+{\script{1\over 2}}; (v) x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}.

A comparison of selected bond lengths and bond angles for all five complexes is given in Table 6. The average zinc–chlorine distance of 2.224 (13) Å compares well with the average of 2.22 (2) Å observed for 27 similar four-coordinate ZnCl2 L 2 complexes (with L = carbonyl oxygen donating ligand) found in a search of the CSD (Version 5.42, May 2021; Groom et al., 2016). A similar agreement is found for the zinc–oxygen distance with both averages at 1.98 (2) Å. The bond angles in the complexes in this study display an average Cl—Zn—Cl angle of 117 (5)° and an average O—Zn—O angle of 101 (3)°, again quite close to the average angles of 119 (4) and 100 (7)° for the set of comparable mol­ecules.

Table 6. Selected bond lengths and angles (Å, °) for compounds (1) through (5).

Compound R / position Zn—Cl1 Zn—Cl2 Zn—O1 Zn—O2 Cl—Zn—Cl O—Zn—O
(1)a H 2.2294 (4) 2.2118 (4) 1.9653 (12) 2.0040 (13) 113.726 (18) 99.75 (5)
(1)b H 2.2361 (4) 2.2107 (4) 1.9632 (12) 2.0089 (13) 114.034 (18) 101.44 (5)
(2) CH3 / ortho 2.2340 (4) 2.1947 (5) 2.0169 (13) 1.9781 (11) 125.120 (19) 103.92 (5)
(3)c CH3 / meta 2.2341 (4) 2.2341 (4) 1.9652 (10) 1.9652 (10) 121.25 (2) 96.12 (6)
(4) CH3 / para 2.2166 (5) 2.2170 (5) 1.9592 (12) 2.0191 (11) 115.836 (17) 101.98 (5)
(5) OH / para 2.2347 (11) 2.2305 (11) 1.980 (3) 1.954 (3) 112.84 (4) 101.21 (12)

Notes: (a) mol­ecule 1; (b) mol­ecule 2; (c) O1/O2 and Cl1/Cl2 related by symmetry.

Supra­molecular features  

Each compound displays a unique hydrogen-bonding network, consisting primarily of N—H⋯O and N—H⋯Cl inter­actions, summarized in Table 1 through 5. In addition to four intra­molecular hydrogen bonds, compound (1) forms four N—H⋯Cl inter­molecular hydrogen bonds (two from each independent mol­ecule), forming an extended network as shown in Fig. 6 and summarized in Table 1. Compound (2) also utilizes N—H bonds in hydrogen-bonding inter­actions, two intra­molecular and two inter­molecular, to form layers within the structure (see Fig. 7 and Table 2). Only inter­molecular N—H⋯Cl hydrogen bonds are found in compound (3) (shown in Fig. 8, two inter­actions per asymmetric unit, four per mol­ecule, see Table 3) and they combine to form chains that run parallel to the c axis. Compound (4) forms two N—H⋯Cl inter­molecular contacts in addition to the two intra­molecular hydrogen bonds, resulting in a complex set of layers that run perpendicular to the b axis (see Fig. 9 and Table 4). The addition of the 4-hy­droxy group in compound (5) results in the greatest number of hydrogen bonds among this set of complexes, as shown in Fig. 10 and summarized in Table 5, with two N—H⋯Cl and three O—H⋯Cl inter­molecular inter­actions per mol­ecule.

Figure 6.

Figure 6

Packing diagram of (1) (viewed along b) showing N—H⋯O contacts (red) and N—H⋯Cl contacts (green).

Figure 7.

Figure 7

Packing diagram of (2) (viewed along b) showing N—H⋯O contacts (red) and N—H⋯Cl contacts (green).

Figure 8.

Figure 8

Packing diagram of (3) (viewed along [101]) showing N—H⋯Cl contacts (green). The minor component of the disordered methyl group is not shown for clarity.

Table 3. Hydrogen-bond geometry (Å, °) for (3) .

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1i 0.85 (2) 2.56 (2) 3.2854 (13) 145 (2)
N1—H1B⋯Cl1ii 0.85 (2) 2.52 (2) 3.2979 (13) 153 (2)

Symmetry codes: (i) x, -y+1, z-{\script{1\over 2}}; (ii) x, y, z-1.

Figure 9.

Figure 9

Packing diagram of (4) (viewed along a) showing N—H⋯O contacts (red) and N—H⋯Cl contacts (green).

Figure 10.

Figure 10

Packing diagram of (5) (viewed along a) showing N—H⋯O contacts (red) and N—H⋯Cl contacts (green).

Compounds (1), (3), and (5) form π–π inter­actions between the benzene rings of the benzamide or tolu­amide groups as summarized in Table 7. No significant π–π inter­actions were found for compounds (2) or (4).

Table 7. Summary of π–π inter­actions (Å, °) in compounds (1), (3), and (5).

α is the dihedral angle between planes. Cg is the centroid of the benzene ring of the benzamide or tolu­amide mol­ecule.

Compound Ring i Ring j CgCg distance α
(1) 1 4i 3.9522 (11) 8.76 (9)
(1) 1 4ii 3.8781 (11) 8.76 (9)
(1) 3 2iii 3.8195 (10) 6.27 (8)
(3) 1 1iv 3.7770 (10) 6.86 (7)
(5) 1 2v 3.760 (3) 8.0 (2)

Symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) 1 − x, 2 − y, 1 − z; (iii) {3\over 2} − x, −{1\over 2} + y, {1\over 2} − z; (iv) 1 − x, y, {1\over 2} − z; (v) −{1\over 2} + x, {3\over 2} − y, {1\over 2} + z.

Database survey  

A search of the CSD (Version 5.42, May 2021; Groom et al., 2016) produced a relatively small number of amide-coordinated zinc(II)chloride complexes. One of the earliest is a di­chlorido­bis­(dma)zinc(II) complex (CSD refcode: DMAMZN10; Herceg & Fischer, 1974; dma = N,N-di­methyl­acetamide). The similar di­chlorido­bis­(dmf)zinc(II) (KOBWIH; Suzuki et al., 1991; dmf = N,N-di­methyl­formamide) has also been reported. Edwards et al. (1999, 1998) investigated the structures of a series of ZnX 2 L 2 complexes that included L = dmf and X = Br and I (FIQBEM, FEXWIO, respectively), the latter of which undergoes a reversible phase transition at 228 K (Edwards et al., 1998). A similar study (Turnbull et al., 2000) compared the structures of ZnX 2(dma)2 where X = Cl, Br, I (DMAMZN11, CAHWEO, CAHWAK, respectively). As part of a larger study, Smirnov et al. (2014) prepared and crystallographically characterized di­methyl­urea complexes of zinc(II)chloride and zinc(II)bromide (ZZZSAG01, COQXIR) along with bis­(piperidine-1-carboxamide) zinc(II)halide complexes (COQWOW, COQVIP), all of which display intra­molecular N—H⋯O hydrogen bonding similar to that observed in this study.

A number of zinc(II) iodide complexes, ZnI2 L 2, have been prepared with simple amide ligands, including urea (ACAQAW; Furmanova et al., 2001), acetamide (VIDBOA; Savinkina et al., 2007), and formamide (DIYGUO; Savinkina et al., 2008). Savinkina et al. (2009) have also prepared a series of ZnI2 L 2 complexes with L = di­methyl­urea (VUCTUJ), thio­acetamide (VUCTOD), and benzamide (VUCVAR).

Three structural studies have prepared zinc(II)chloride complexes with pharmaceutically relevant mol­ecules. Sultana et al. (2016) prepared bis­(4′-meth­oxy­acetanilide)di­chlorido­zinc(II) (EQIGOC). Di­chlorido­bis­(nicotinamide)­zinc(II) has also been studied (WUKZAD; İde et al., 2002) but differs from the structures in this report in that the two nicotinamide ligands are N-bonded through the ring nitro­gen instead of the amide oxygen. Buol et al. (2020) describe the preparation and crystal structures of co-crystals obtained from the co-crystallization of nefiracetam with zinc(II)chloride, producing two different structures. In one form (CCDC 2010272), the four-coordinate zinc atom binds to one nefiracetam molecule (via the γ-lactam carbonyl), one water molecule, and two chlorido ligands. In the second form (CCDC 2010264), the zinc bonds to one nefiracetam molecule through the γ-lactam and to a second via the amide carbonyl, forming a cyclic zinc dimer.

Synthesis and crystallization  

All reagents were used as received from the manufacturer. Compounds (1) through (5) were prepared by dissolution of the respective components in various solvents [50:50 v:v ratio of water and ethanol (benzamide, 4-hy­droxy­benzamide), ethanol (o,m,p-tolu­amide)] followed by slow evaporation. In a typical preparation, a 1:1 stoichiometric ratio of benzamide (0.1352 g) and zinc(II) chloride (0.1336 g) was dissolved in approximately 5 mL of a 50:50 v:v ratio of water and ethanol. Slow evaporation of the resulting solution produced single crystals of compound (1).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 8. All hydrogen atoms were located in difference maps.

Table 8. Experimental details.

  (1) (2) (3) (4) (5)
Crystal data
Chemical formula [ZnCl2(C7H7NO)2] [ZnCl2(C8H9NO)2] [ZnCl2(C8H9NO)2] [ZnCl2(C8H9NO)2] [ZnCl2(C7H7NO2)2]
M r 378.54 406.59 406.59 406.59 410.54
Crystal system, space group Monoclinic, P21/n Monoclinic, P21 Monoclinic, C2/c Monoclinic, P21/c Monoclinic, C c
Temperature (K) 100 100 100 100 100
a, b, c (Å) 20.6241 (11), 7.3309 (4), 20.6485 (11) 7.3802 (3), 8.2491 (3), 14.5953 (5) 13.9452 (11), 18.9742 (16), 7.0651 (6) 6.8376 (4), 17.2694 (9), 14.9856 (7) 7.0532 (6), 21.3776 (17), 11.1181 (9)
β (°) 90.532 (1) 97.852 (1) 108.021 (2) 96.893 (2) 106.477 (2)
V3) 3121.8 (3) 880.23 (6) 1777.7 (3) 1756.73 (16) 1607.5 (2)
Z 8 2 4 4 4
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 1.92 1.71 1.69 1.71 1.88
Crystal size (mm) 0.6 × 0.60 × 0.35 0.5 × 0.16 × 0.11 0.42 × 0.14 × 0.14 0.56 × 0.18 × 0.09 0.15 × 0.09 × 0.07
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD Bruker APEXII CCD Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015) Multi-scan (SADABS; Krause et al., 2015) Multi-scan (SADABS; Krause et al., 2015) Multi-scan (SADABS; Krause et al., 2015) Multi-scan (SADABS; Krause et al., 2015)
Tmin, Tmax 0.558, 0.746 0.478, 0.680 0.620, 0.746 0.629, 0.746 0.673, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 48491, 9668, 9501 20749, 5348, 5135 12177, 2295, 2023 33806, 5376, 4283 17255, 4168, 3809
R int 0.023 0.025 0.027 0.051 0.042
(sin θ/λ)max−1) 0.718 0.714 0.676 0.715 0.676
 
Refinement
R[F2 > 2σ(F 2)], wR(F 2), S 0.022, 0.053, 1.07 0.018, 0.039, 1.00 0.022, 0.059, 1.05 0.031, 0.069, 1.01 0.030, 0.065, 1.05
No. of reflections 9668 5348 2295 5376 4168
No. of parameters 404 223 113 222 227
No. of restraints 8 5 17 4 8
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.43, −0.35 0.31, −0.24 0.39, −0.26 0.46, −0.32 0.46, −0.29
Absolute structure Refined as an inversion twin. Refined as an inversion twin
Absolute structure parameter 0.016 (6) 0.024 (13)

Computer programs: BIS (Bruker, 2020), SAINT (Bruker, 2020), SHELXT (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ), CrystalMaker (Palmer, 2020), OLEX2 (Dolomanov et al., 2009), and publCIF (Westrip, 2010).

All carbon-bonded H atoms were placed in idealized positions using a riding model with aromatic C—H = 0.95 Å, methyl C—H = 0.98 Å and U iso(H) = 1.2U eq(C) (aromatic) or U iso(H) = 1.5U eq(C) (meth­yl). All amide H-atom positions were refined with N—H distances restrained to 0.88 (2) Å and Uiso(H) = 1.5Ueq(N). The hydroxyl H-atom positions in compound (5) were refined with O—H distances restrained to 0.84 (2) Å and U iso(H) = 1.5U eq(N).

Compound (1) was refined as a pseudo-merohedral twin (monoclinic mimicking ortho­rhom­bic, since β is close to 90°) with a twin law of (0 0 −1 0 −1 0 −1 0 0) , corresponding to a twofold rotation about the [10Inline graphic] axis. The twin ratio refined to 0.4825 (5).

The methyl group in compound (3) was modeled as a disordered methyl group with each set of hydrogen atoms rotated by 60° (AFIX 127). The disorder was identified from multiple peaks near C8 in the difference map. The refined occupancies of the two hydrogen atom sets were 0.54 (2):0.46 (2).

Supplementary Material

Crystal structure: contains datablock(s) global, 1, 2, 3, 4, 5. DOI: 10.1107/S2056989021008264/zl5023sup1.cif

e-77-00880-sup1.cif (3.8MB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S2056989021008264/zl50231sup2.hkl

e-77-00880-1sup2.hkl (767.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021008264/zl50231sup7.mol

Structure factors: contains datablock(s) 2. DOI: 10.1107/S2056989021008264/zl50232sup3.hkl

e-77-00880-2sup3.hkl (425.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021008264/zl50232sup8.mol

Structure factors: contains datablock(s) 3. DOI: 10.1107/S2056989021008264/zl50233sup4.hkl

e-77-00880-3sup4.hkl (184.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021008264/zl50233sup9.mol

Supporting information file. DOI: 10.1107/S2056989021008264/zl50234sup10.mol

Structure factors: contains datablock(s) 4. DOI: 10.1107/S2056989021008264/zl50234sup5.hkl

e-77-00880-4sup5.hkl (427.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021008264/zl50235sup11.mol

Structure factors: contains datablock(s) 5. DOI: 10.1107/S2056989021008264/zl50235sup6.hkl

e-77-00880-5sup6.hkl (332.2KB, hkl)

CCDC references: 2102513, 2102512, 2102511, 2102510, 2102509

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Bis(benzamide-κO)dichloridozinc(II) (1) . Crystal data

[ZnCl2(C7H7NO)2] F(000) = 1536
Mr = 378.54 Dx = 1.611 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 20.6241 (11) Å Cell parameters from 9702 reflections
b = 7.3309 (4) Å θ = 6.8–30.5°
c = 20.6485 (11) Å µ = 1.92 mm1
β = 90.532 (1)° T = 100 K
V = 3121.8 (3) Å3 Block, clear light colourless
Z = 8 0.6 × 0.60 × 0.35 mm

Bis(benzamide-κO)dichloridozinc(II) (1) . Data collection

Bruker APEXII CCD diffractometer 9668 independent reflections
Radiation source: sealed tube 9501 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.023
Detector resolution: 8 pixels mm-1 θmax = 30.7°, θmin = 1.0°
ω and φ scans h = −29→27
Absorption correction: multi-scan (SADABS; Krause et al., 2015) k = −10→10
Tmin = 0.558, Tmax = 0.746 l = −29→29
48491 measured reflections

Bis(benzamide-κO)dichloridozinc(II) (1) . Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.022 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.053 w = 1/[σ2(Fo2) + (0.0256P)2 + 1.2394P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max = 0.002
9668 reflections Δρmax = 0.43 e Å3
404 parameters Δρmin = −0.34 e Å3
8 restraints

Bis(benzamide-κO)dichloridozinc(II) (1) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a 2-component twin.

Bis(benzamide-κO)dichloridozinc(II) (1) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1A 0.62741 (2) 0.74478 (4) 0.34018 (2) 0.01179 (4)
Cl1A 0.69397 (2) 0.97842 (5) 0.36146 (2) 0.01636 (7)
Cl2A 0.66272 (2) 0.47923 (6) 0.37699 (2) 0.02204 (9)
O1A 0.53865 (6) 0.78998 (17) 0.36973 (6) 0.0163 (2)
O2A 0.61465 (6) 0.73870 (17) 0.24363 (6) 0.0163 (2)
N1A 0.48113 (7) 0.8093 (2) 0.27621 (8) 0.0217 (3)
H1AA 0.5138 (10) 0.785 (4) 0.2536 (12) 0.033*
H1AB 0.4458 (10) 0.824 (3) 0.2534 (11) 0.033*
N2A 0.71341 (7) 0.8269 (2) 0.21095 (7) 0.0189 (3)
H2AA 0.7218 (12) 0.869 (3) 0.2497 (9) 0.028*
H2AB 0.7417 (10) 0.851 (3) 0.1825 (10) 0.028*
C1A 0.42560 (7) 0.8246 (2) 0.37895 (8) 0.0138 (3)
C2A 0.36411 (9) 0.7932 (2) 0.35252 (10) 0.0188 (3)
H2A 0.359316 0.761280 0.308143 0.023*
C3A 0.30976 (9) 0.8092 (3) 0.39175 (11) 0.0251 (4)
H3A 0.267689 0.788739 0.374069 0.030*
C4A 0.31709 (9) 0.8548 (3) 0.45663 (10) 0.0257 (4)
H4A 0.279853 0.865296 0.483113 0.031*
C5A 0.37808 (9) 0.8854 (3) 0.48331 (9) 0.0245 (4)
H5A 0.382768 0.916605 0.527769 0.029*
C6A 0.43205 (8) 0.8700 (2) 0.44430 (8) 0.0188 (3)
H6A 0.473993 0.890556 0.462261 0.023*
C7A 0.48516 (7) 0.8061 (2) 0.34012 (8) 0.0137 (3)
C8A 0.63351 (8) 0.7328 (2) 0.13053 (8) 0.0129 (3)
C9A 0.67309 (8) 0.7703 (2) 0.07743 (8) 0.0156 (3)
H9A 0.715796 0.815424 0.084231 0.019*
C10A 0.64995 (9) 0.7416 (2) 0.01464 (9) 0.0190 (3)
H10A 0.676912 0.767083 −0.021295 0.023*
C11A 0.58777 (9) 0.6760 (2) 0.00452 (8) 0.0201 (3)
H11A 0.572142 0.656193 −0.038327 0.024*
C12A 0.54825 (8) 0.6391 (2) 0.05687 (8) 0.0201 (3)
H12A 0.505440 0.595321 0.049643 0.024*
C13A 0.57073 (8) 0.6657 (2) 0.11984 (8) 0.0163 (3)
H13A 0.543606 0.638474 0.155497 0.020*
C14A 0.65448 (8) 0.7671 (2) 0.19832 (8) 0.0129 (3)
Zn1B 0.83932 (2) 0.71554 (2) 0.62742 (2) 0.01256 (4)
Cl1B 0.86157 (2) 0.48139 (6) 0.69283 (2) 0.01790 (8)
Cl2B 0.87722 (2) 0.97969 (6) 0.66307 (2) 0.02414 (8)
O1B 0.86683 (6) 0.67828 (17) 0.53751 (6) 0.0176 (2)
O2B 0.74288 (6) 0.71225 (17) 0.61469 (6) 0.0171 (2)
N1B 0.77974 (8) 0.7747 (2) 0.48074 (8) 0.0190 (3)
H1BA 0.7583 (12) 0.791 (3) 0.5147 (10) 0.028*
H1BB 0.7610 (11) 0.815 (3) 0.4453 (9) 0.028*
N2B 0.71169 (7) 0.6279 (2) 0.71506 (7) 0.0201 (3)
H2BA 0.7511 (8) 0.612 (3) 0.7260 (11) 0.030*
H2BB 0.6836 (10) 0.585 (3) 0.7407 (10) 0.030*
C1B 0.87943 (7) 0.7032 (2) 0.42412 (8) 0.0134 (3)
C2B 0.85410 (10) 0.7395 (2) 0.36242 (9) 0.0191 (3)
H2B 0.810046 0.775075 0.357395 0.023*
C3B 0.89345 (10) 0.7234 (3) 0.30844 (9) 0.0231 (4)
H3B 0.876266 0.747726 0.266478 0.028*
C4B 0.95793 (9) 0.6716 (3) 0.31582 (9) 0.0229 (3)
H4B 0.984945 0.661451 0.278984 0.028*
C5B 0.98268 (8) 0.6349 (2) 0.37696 (9) 0.0221 (3)
H5B 1.026722 0.599079 0.381792 0.027*
C6B 0.94395 (7) 0.6499 (2) 0.43130 (8) 0.0165 (3)
H6B 0.961289 0.623994 0.473079 0.020*
C7B 0.84054 (8) 0.7192 (2) 0.48449 (8) 0.0133 (3)
C8B 0.63040 (7) 0.6729 (2) 0.63094 (8) 0.0135 (3)
C9B 0.57871 (8) 0.6850 (2) 0.67379 (8) 0.0176 (3)
H9B 0.586500 0.697499 0.718986 0.021*
C10B 0.51568 (8) 0.6786 (3) 0.64956 (8) 0.0189 (3)
H10B 0.480096 0.687201 0.678286 0.023*
C11B 0.50456 (8) 0.6597 (2) 0.58355 (8) 0.0196 (3)
H11B 0.461330 0.655944 0.567321 0.024*
C12B 0.55602 (8) 0.6463 (3) 0.54103 (8) 0.0197 (3)
H12B 0.548141 0.632735 0.495882 0.024*
C13B 0.61889 (8) 0.6528 (2) 0.56485 (8) 0.0164 (3)
H13B 0.654323 0.643623 0.535959 0.020*
C14B 0.69873 (8) 0.6727 (2) 0.65418 (8) 0.0151 (3)

Bis(benzamide-κO)dichloridozinc(II) (1) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1A 0.00847 (10) 0.01580 (8) 0.01112 (10) 0.00076 (6) 0.00080 (5) 0.00048 (6)
Cl1A 0.01556 (17) 0.01763 (16) 0.01590 (17) −0.00279 (13) 0.00038 (13) −0.00214 (13)
Cl2A 0.01553 (18) 0.02015 (18) 0.0306 (2) 0.00577 (13) 0.00699 (15) 0.00859 (15)
O1A 0.0097 (5) 0.0253 (6) 0.0139 (5) 0.0034 (4) −0.0001 (4) −0.0007 (4)
O2A 0.0124 (6) 0.0253 (6) 0.0112 (6) −0.0021 (4) 0.0016 (4) −0.0004 (4)
N1A 0.0101 (6) 0.0408 (9) 0.0143 (7) 0.0017 (6) 0.0003 (5) 0.0039 (6)
N2A 0.0108 (6) 0.0342 (8) 0.0118 (6) −0.0019 (5) 0.0012 (4) −0.0034 (5)
C1A 0.0101 (6) 0.0145 (7) 0.0169 (7) 0.0014 (5) 0.0035 (5) 0.0027 (5)
C2A 0.0098 (8) 0.0244 (8) 0.0221 (9) −0.0006 (6) 0.0017 (6) 0.0051 (7)
C3A 0.0095 (7) 0.0296 (9) 0.0362 (11) 0.0009 (6) 0.0040 (7) 0.0075 (8)
C4A 0.0174 (8) 0.0252 (9) 0.0348 (10) 0.0037 (7) 0.0140 (7) 0.0029 (7)
C5A 0.0230 (8) 0.0269 (9) 0.0238 (8) 0.0021 (7) 0.0106 (6) −0.0049 (7)
C6A 0.0143 (7) 0.0217 (8) 0.0206 (8) 0.0018 (6) 0.0041 (6) −0.0027 (6)
C7A 0.0095 (6) 0.0150 (7) 0.0166 (7) 0.0007 (5) 0.0020 (5) 0.0014 (5)
C8A 0.0122 (7) 0.0160 (7) 0.0104 (6) 0.0026 (5) −0.0005 (5) −0.0011 (5)
C9A 0.0127 (7) 0.0215 (8) 0.0125 (7) 0.0033 (5) 0.0017 (5) −0.0002 (5)
C10A 0.0198 (8) 0.0233 (8) 0.0140 (7) 0.0062 (6) 0.0012 (6) 0.0000 (6)
C11A 0.0231 (8) 0.0223 (8) 0.0149 (7) 0.0043 (6) −0.0027 (6) −0.0039 (6)
C12A 0.0189 (7) 0.0218 (8) 0.0194 (8) −0.0022 (6) −0.0035 (6) −0.0047 (6)
C13A 0.0165 (7) 0.0178 (7) 0.0146 (7) −0.0012 (6) 0.0006 (5) −0.0022 (5)
C14A 0.0108 (7) 0.0166 (7) 0.0114 (7) 0.0024 (5) −0.0002 (5) 0.0000 (5)
Zn1B 0.01035 (10) 0.01706 (8) 0.01029 (10) 0.00033 (6) 0.00080 (6) −0.00034 (6)
Cl1B 0.01485 (17) 0.01905 (17) 0.01981 (19) 0.00226 (12) −0.00040 (14) 0.00404 (13)
Cl2B 0.0299 (2) 0.02135 (17) 0.0213 (2) −0.00772 (15) 0.00810 (15) −0.00662 (14)
O1B 0.0148 (5) 0.0277 (6) 0.0103 (5) 0.0031 (5) 0.0004 (4) −0.0016 (4)
O2B 0.0104 (6) 0.0269 (6) 0.0140 (6) 0.0009 (4) 0.0028 (4) 0.0032 (4)
N1B 0.0126 (7) 0.0326 (8) 0.0117 (7) 0.0026 (5) 0.0015 (5) 0.0016 (5)
N2B 0.0114 (6) 0.0358 (8) 0.0130 (6) 0.0005 (6) 0.0010 (5) 0.0033 (6)
C1B 0.0126 (7) 0.0150 (7) 0.0126 (7) −0.0014 (5) 0.0023 (5) −0.0019 (5)
C2B 0.0194 (9) 0.0240 (8) 0.0139 (8) 0.0010 (6) 0.0000 (6) 0.0001 (6)
C3B 0.0279 (10) 0.0283 (9) 0.0133 (8) 0.0025 (7) 0.0047 (7) 0.0015 (6)
C4B 0.0282 (9) 0.0234 (8) 0.0173 (8) 0.0013 (7) 0.0108 (6) −0.0004 (6)
C5B 0.0186 (8) 0.0254 (8) 0.0225 (8) 0.0015 (6) 0.0077 (6) −0.0033 (6)
C6B 0.0133 (7) 0.0197 (7) 0.0164 (7) 0.0011 (6) 0.0030 (5) −0.0017 (6)
C7B 0.0120 (7) 0.0158 (7) 0.0120 (7) −0.0023 (5) 0.0016 (5) −0.0029 (5)
C8B 0.0108 (6) 0.0152 (7) 0.0146 (7) −0.0008 (5) 0.0002 (5) −0.0013 (5)
C9B 0.0140 (7) 0.0224 (8) 0.0163 (8) 0.0008 (6) 0.0013 (6) −0.0035 (6)
C10B 0.0108 (7) 0.0268 (8) 0.0191 (8) −0.0014 (6) 0.0032 (5) −0.0036 (6)
C11B 0.0120 (7) 0.0252 (8) 0.0216 (8) −0.0039 (6) −0.0030 (6) −0.0002 (6)
C12B 0.0166 (7) 0.0282 (9) 0.0142 (7) −0.0051 (6) −0.0021 (5) 0.0003 (6)
C13B 0.0143 (7) 0.0198 (7) 0.0151 (7) −0.0029 (6) 0.0011 (5) 0.0008 (6)
C14B 0.0129 (7) 0.0176 (7) 0.0147 (7) 0.0009 (6) 0.0023 (5) −0.0015 (6)

Bis(benzamide-κO)dichloridozinc(II) (1) . Geometric parameters (Å, º)

Zn1A—Cl1A 2.2361 (4) Zn1B—Cl1B 2.2294 (4)
Zn1A—Cl2A 2.2107 (4) Zn1B—Cl2B 2.2118 (4)
Zn1A—O1A 1.9632 (12) Zn1B—O1B 1.9653 (12)
Zn1A—O2A 2.0089 (13) Zn1B—O2B 2.0040 (13)
O1A—C7A 1.2618 (19) O1B—C7B 1.254 (2)
O2A—C14A 1.268 (2) O2B—C14B 1.2617 (19)
N1A—H1AA 0.842 (16) N1B—H1BA 0.842 (16)
N1A—H1AB 0.871 (16) N1B—H1BB 0.876 (16)
N1A—C7A 1.322 (2) N1B—C7B 1.320 (2)
N2A—H2AA 0.874 (16) N2B—H2BA 0.850 (16)
N2A—H2AB 0.851 (16) N2B—H2BB 0.848 (16)
N2A—C14A 1.316 (2) N2B—C14B 1.324 (2)
C1A—C2A 1.395 (2) C1B—C2B 1.398 (2)
C1A—C6A 1.395 (2) C1B—C6B 1.393 (2)
C1A—C7A 1.479 (2) C1B—C7B 1.493 (2)
C2A—H2A 0.9500 C2B—H2B 0.9500
C2A—C3A 1.394 (3) C2B—C3B 1.390 (3)
C3A—H3A 0.9500 C3B—H3B 0.9500
C3A—C4A 1.388 (3) C3B—C4B 1.390 (3)
C4A—H4A 0.9500 C4B—H4B 0.9500
C4A—C5A 1.387 (3) C4B—C5B 1.384 (3)
C5A—H5A 0.9500 C5B—H5B 0.9500
C5A—C6A 1.385 (2) C5B—C6B 1.388 (2)
C6A—H6A 0.9500 C6B—H6B 0.9500
C8A—C9A 1.400 (2) C8B—C9B 1.394 (2)
C8A—C13A 1.401 (2) C8B—C13B 1.391 (2)
C8A—C14A 1.483 (2) C8B—C14B 1.485 (2)
C9A—H9A 0.9500 C9B—H9B 0.9500
C9A—C10A 1.394 (2) C9B—C10B 1.389 (2)
C10A—H10A 0.9500 C10B—H10B 0.9500
C10A—C11A 1.384 (3) C10B—C11B 1.387 (2)
C11A—H11A 0.9500 C11B—H11B 0.9500
C11A—C12A 1.386 (2) C11B—C12B 1.387 (2)
C12A—H12A 0.9500 C12B—H12B 0.9500
C12A—C13A 1.390 (2) C12B—C13B 1.383 (2)
C13A—H13A 0.9500 C13B—H13B 0.9500
Cl2A—Zn1A—Cl1A 114.035 (18) Cl2B—Zn1B—Cl1B 113.726 (18)
O1A—Zn1A—Cl1A 112.47 (4) O1B—Zn1B—Cl1B 113.93 (4)
O1A—Zn1A—Cl2A 110.29 (4) O1B—Zn1B—Cl2B 109.38 (4)
O1A—Zn1A—O2A 101.44 (5) O1B—Zn1B—O2B 99.75 (5)
O2A—Zn1A—Cl1A 106.65 (4) O2B—Zn1B—Cl1B 105.59 (4)
O2A—Zn1A—Cl2A 111.18 (4) O2B—Zn1B—Cl2B 113.67 (4)
C7A—O1A—Zn1A 132.74 (11) C7B—O1B—Zn1B 131.70 (11)
C14A—O2A—Zn1A 130.46 (11) C14B—O2B—Zn1B 129.74 (12)
H1AA—N1A—H1AB 113 (3) H1BA—N1B—H1BB 115 (3)
C7A—N1A—H1AA 120 (2) C7B—N1B—H1BA 120.1 (18)
C7A—N1A—H1AB 125.9 (18) C7B—N1B—H1BB 124.4 (17)
H2AA—N2A—H2AB 115 (2) H2BA—N2B—H2BB 116 (2)
C14A—N2A—H2AA 118.3 (16) C14B—N2B—H2BA 118.1 (17)
C14A—N2A—H2AB 124.9 (16) C14B—N2B—H2BB 123.5 (16)
C2A—C1A—C7A 121.96 (15) C2B—C1B—C7B 123.15 (15)
C6A—C1A—C2A 119.73 (15) C6B—C1B—C2B 119.91 (15)
C6A—C1A—C7A 118.29 (14) C6B—C1B—C7B 116.94 (14)
C1A—C2A—H2A 120.3 C1B—C2B—H2B 120.0
C3A—C2A—C1A 119.46 (19) C3B—C2B—C1B 119.91 (18)
C3A—C2A—H2A 120.3 C3B—C2B—H2B 120.0
C2A—C3A—H3A 120.0 C2B—C3B—H3B 120.0
C4A—C3A—C2A 120.01 (18) C2B—C3B—C4B 120.03 (18)
C4A—C3A—H3A 120.0 C4B—C3B—H3B 120.0
C3A—C4A—H4A 119.6 C3B—C4B—H4B 120.1
C5A—C4A—C3A 120.86 (16) C5B—C4B—C3B 119.84 (16)
C5A—C4A—H4A 119.6 C5B—C4B—H4B 120.1
C4A—C5A—H5A 120.4 C4B—C5B—H5B 119.6
C6A—C5A—C4A 119.12 (18) C4B—C5B—C6B 120.80 (16)
C6A—C5A—H5A 120.4 C6B—C5B—H5B 119.6
C1A—C6A—H6A 119.6 C1B—C6B—H6B 120.3
C5A—C6A—C1A 120.81 (16) C5B—C6B—C1B 119.50 (16)
C5A—C6A—H6A 119.6 C5B—C6B—H6B 120.3
O1A—C7A—N1A 122.15 (15) O1B—C7B—N1B 121.88 (15)
O1A—C7A—C1A 118.20 (15) O1B—C7B—C1B 118.61 (14)
N1A—C7A—C1A 119.64 (14) N1B—C7B—C1B 119.51 (15)
C9A—C8A—C13A 119.37 (15) C9B—C8B—C14B 121.61 (14)
C9A—C8A—C14A 122.60 (15) C13B—C8B—C9B 120.32 (15)
C13A—C8A—C14A 117.99 (14) C13B—C8B—C14B 118.02 (14)
C8A—C9A—H9A 119.9 C8B—C9B—H9B 120.4
C10A—C9A—C8A 120.11 (16) C10B—C9B—C8B 119.19 (16)
C10A—C9A—H9A 119.9 C10B—C9B—H9B 120.4
C9A—C10A—H10A 119.9 C9B—C10B—H10B 119.9
C11A—C10A—C9A 120.13 (17) C11B—C10B—C9B 120.19 (16)
C11A—C10A—H10A 119.9 C11B—C10B—H10B 119.9
C10A—C11A—H11A 120.0 C10B—C11B—H11B 119.7
C10A—C11A—C12A 120.05 (16) C10B—C11B—C12B 120.57 (15)
C12A—C11A—H11A 120.0 C12B—C11B—H11B 119.7
C11A—C12A—H12A 119.7 C11B—C12B—H12B 120.2
C11A—C12A—C13A 120.57 (16) C13B—C12B—C11B 119.51 (16)
C13A—C12A—H12A 119.7 C13B—C12B—H12B 120.2
C8A—C13A—H13A 120.1 C8B—C13B—H13B 119.9
C12A—C13A—C8A 119.76 (15) C12B—C13B—C8B 120.22 (15)
C12A—C13A—H13A 120.1 C12B—C13B—H13B 119.9
O2A—C14A—N2A 120.79 (15) O2B—C14B—N2B 122.02 (15)
O2A—C14A—C8A 118.92 (15) O2B—C14B—C8B 118.66 (15)
N2A—C14A—C8A 120.29 (14) N2B—C14B—C8B 119.31 (14)
Zn1A—O1A—C7A—N1A −6.1 (2) Zn1B—O1B—C7B—N1B −11.6 (2)
Zn1A—O1A—C7A—C1A 174.83 (11) Zn1B—O1B—C7B—C1B 168.80 (11)
Zn1A—O2A—C14A—N2A −7.2 (2) Zn1B—O2B—C14B—N2B 1.6 (3)
Zn1A—O2A—C14A—C8A 173.10 (10) Zn1B—O2B—C14B—C8B −177.09 (11)
C1A—C2A—C3A—C4A −0.4 (3) C1B—C2B—C3B—C4B −0.1 (3)
C2A—C1A—C6A—C5A −0.4 (3) C2B—C1B—C6B—C5B 0.6 (2)
C2A—C1A—C7A—O1A −162.09 (15) C2B—C1B—C7B—O1B 177.76 (15)
C2A—C1A—C7A—N1A 18.8 (2) C2B—C1B—C7B—N1B −1.9 (2)
C2A—C3A—C4A—C5A 0.1 (3) C2B—C3B—C4B—C5B 0.5 (3)
C3A—C4A—C5A—C6A 0.0 (3) C3B—C4B—C5B—C6B −0.3 (3)
C4A—C5A—C6A—C1A 0.1 (3) C4B—C5B—C6B—C1B −0.3 (3)
C6A—C1A—C2A—C3A 0.5 (3) C6B—C1B—C2B—C3B −0.4 (3)
C6A—C1A—C7A—O1A 16.1 (2) C6B—C1B—C7B—O1B −2.4 (2)
C6A—C1A—C7A—N1A −162.95 (16) C6B—C1B—C7B—N1B 177.91 (15)
C7A—C1A—C2A—C3A 178.72 (16) C7B—C1B—C2B—C3B 179.38 (16)
C7A—C1A—C6A—C5A −178.66 (16) C7B—C1B—C6B—C5B −179.20 (15)
C8A—C9A—C10A—C11A 0.0 (2) C8B—C9B—C10B—C11B 0.2 (3)
C9A—C8A—C13A—C12A −0.7 (2) C9B—C8B—C13B—C12B 0.5 (3)
C9A—C8A—C14A—O2A 176.29 (15) C9B—C8B—C14B—O2B −160.50 (16)
C9A—C8A—C14A—N2A −3.4 (2) C9B—C8B—C14B—N2B 20.8 (3)
C9A—C10A—C11A—C12A 0.2 (3) C9B—C10B—C11B—C12B 0.2 (3)
C10A—C11A—C12A—C13A −0.7 (3) C10B—C11B—C12B—C13B −0.3 (3)
C11A—C12A—C13A—C8A 0.9 (3) C11B—C12B—C13B—C8B 0.0 (3)
C13A—C8A—C9A—C10A 0.2 (2) C13B—C8B—C9B—C10B −0.6 (3)
C13A—C8A—C14A—O2A −1.6 (2) C13B—C8B—C14B—O2B 22.1 (2)
C13A—C8A—C14A—N2A 178.73 (15) C13B—C8B—C14B—N2B −156.62 (16)
C14A—C8A—C9A—C10A −177.62 (15) C14B—C8B—C9B—C10B −177.92 (16)
C14A—C8A—C13A—C12A 177.25 (15) C14B—C8B—C13B—C12B 177.94 (16)

Bis(benzamide-κO)dichloridozinc(II) (1) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1A—H1AA···O2A 0.84 (2) 2.12 (2) 2.888 (2) 152 (3)
N1A—H1AB···Cl1Bi 0.87 (2) 2.56 (2) 3.3644 (15) 153 (2)
N2A—H2AA···Cl1A 0.87 (2) 2.51 (2) 3.3281 (15) 155 (2)
N2A—H2AB···Cl2Aii 0.85 (2) 2.51 (2) 3.3404 (15) 164 (2)
N1B—H1BA···O2B 0.84 (2) 2.17 (2) 2.911 (2) 147 (2)
N1B—H1BB···Cl1A 0.88 (2) 2.51 (2) 3.3682 (16) 167 (2)
N2B—H2BA···Cl1B 0.85 (2) 2.57 (2) 3.3085 (15) 146 (2)
N2B—H2BB···Cl2Biii 0.85 (2) 2.48 (2) 3.3107 (15) 165 (2)

Symmetry codes: (i) x−1/2, −y+3/2, z−1/2; (ii) −x+3/2, y+1/2, −z+1/2; (iii) −x+3/2, y−1/2, −z+3/2.

Dichloridobis(2-methylbenzamide-κO)zinc(II) (2) . Crystal data

[ZnCl2(C8H9NO)2] F(000) = 416
Mr = 406.59 Dx = 1.534 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
a = 7.3802 (3) Å Cell parameters from 9884 reflections
b = 8.2491 (3) Å θ = 2.8–30.5°
c = 14.5953 (5) Å µ = 1.71 mm1
β = 97.852 (1)° T = 100 K
V = 880.23 (6) Å3 Needle, clear light colourless
Z = 2 0.5 × 0.16 × 0.11 mm

Dichloridobis(2-methylbenzamide-κO)zinc(II) (2) . Data collection

Bruker APEXII CCD diffractometer 5348 independent reflections
Radiation source: sealed tube 5135 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.025
Detector resolution: 8 pixels mm-1 θmax = 30.5°, θmin = 2.8°
ω and φ scans h = −10→10
Absorption correction: multi-scan (SADABS; Krause et al., 2015) k = −11→11
Tmin = 0.478, Tmax = 0.680 l = −20→20
20749 measured reflections

Dichloridobis(2-methylbenzamide-κO)zinc(II) (2) . Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.018 w = 1/[σ2(Fo2) + (0.0078P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.039 (Δ/σ)max < 0.001
S = 1.00 Δρmax = 0.31 e Å3
5348 reflections Δρmin = −0.24 e Å3
223 parameters Absolute structure: Refined as an inversion twin.
5 restraints Absolute structure parameter: 0.016 (6)
Primary atom site location: dual

Dichloridobis(2-methylbenzamide-κO)zinc(II) (2) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a 2-component inversion twin

Dichloridobis(2-methylbenzamide-κO)zinc(II) (2) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1 0.65448 (2) 0.68146 (2) 0.17755 (2) 0.01057 (5)
Cl1 0.47230 (6) 0.60339 (6) 0.05028 (3) 0.01680 (9)
Cl2 0.81306 (6) 0.90729 (5) 0.19165 (3) 0.01797 (10)
O1 0.85119 (17) 0.51161 (15) 0.20425 (9) 0.0127 (2)
O2 0.51677 (14) 0.66731 (18) 0.28443 (8) 0.0146 (2)
N1 0.7092 (2) 0.28760 (19) 0.14025 (13) 0.0191 (4)
H1A 0.719 (3) 0.190 (3) 0.1287 (15) 0.029*
H1B 0.616 (3) 0.340 (3) 0.1134 (17) 0.029*
N2 0.2228 (2) 0.64887 (18) 0.21691 (10) 0.0143 (3)
H2A 0.253 (3) 0.665 (3) 0.1637 (13) 0.021*
H2B 0.114 (3) 0.627 (3) 0.2209 (15) 0.021*
C1 1.0259 (2) 0.2690 (2) 0.20486 (12) 0.0104 (3)
C2 1.1130 (2) 0.1966 (2) 0.13538 (11) 0.0133 (3)
C3 1.2723 (2) 0.1092 (2) 0.16300 (13) 0.0169 (4)
H3 1.334536 0.060513 0.117218 0.020*
C4 1.3429 (2) 0.0912 (2) 0.25546 (13) 0.0177 (4)
H4 1.451212 0.029817 0.272382 0.021*
C5 1.2548 (2) 0.1629 (3) 0.32327 (12) 0.0163 (4)
H5 1.301711 0.149691 0.386746 0.020*
C6 1.0978 (2) 0.2542 (2) 0.29786 (12) 0.0128 (3)
H6 1.039430 0.306526 0.343897 0.015*
C7 0.8535 (2) 0.3634 (2) 0.18179 (12) 0.0109 (3)
C8 1.0403 (3) 0.2111 (3) 0.03369 (13) 0.0230 (5)
H8A 1.139556 0.190759 −0.003126 0.034*
H8B 0.991635 0.320424 0.020737 0.034*
H8C 0.942754 0.131322 0.017568 0.034*
C9 0.2906 (2) 0.6074 (2) 0.38067 (11) 0.0112 (3)
C10 0.3975 (2) 0.5094 (2) 0.44575 (12) 0.0136 (3)
C11 0.3296 (3) 0.4755 (2) 0.52821 (13) 0.0176 (4)
H11 0.397722 0.406299 0.572177 0.021*
C12 0.1661 (3) 0.5397 (2) 0.54805 (13) 0.0181 (4)
H12 0.124588 0.515956 0.605376 0.022*
C13 0.0628 (2) 0.6389 (2) 0.48400 (13) 0.0165 (4)
H13 −0.049035 0.684050 0.497503 0.020*
C14 0.1242 (2) 0.6717 (3) 0.40001 (11) 0.0135 (3)
H14 0.053015 0.737965 0.355540 0.016*
C15 0.3493 (2) 0.64320 (19) 0.28939 (12) 0.0113 (3)
C16 0.5780 (3) 0.4348 (2) 0.42876 (14) 0.0190 (4)
H16A 0.563507 0.383911 0.367518 0.029*
H16B 0.615433 0.352757 0.476157 0.029*
H16C 0.671673 0.519549 0.431646 0.029*

Dichloridobis(2-methylbenzamide-κO)zinc(II) (2) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.00830 (8) 0.01066 (9) 0.01290 (9) 0.00019 (8) 0.00197 (6) 0.00037 (9)
Cl1 0.01314 (19) 0.0252 (2) 0.01136 (19) 0.00219 (17) −0.00077 (14) 0.00050 (17)
Cl2 0.0186 (2) 0.01049 (19) 0.0251 (2) −0.00277 (17) 0.00381 (18) 0.00124 (18)
O1 0.0107 (6) 0.0098 (6) 0.0171 (6) 0.0007 (5) −0.0001 (5) −0.0020 (5)
O2 0.0082 (5) 0.0214 (6) 0.0143 (5) −0.0029 (6) 0.0020 (4) −0.0005 (6)
N1 0.0123 (7) 0.0113 (7) 0.0318 (10) 0.0008 (6) −0.0042 (7) −0.0047 (7)
N2 0.0094 (6) 0.0219 (9) 0.0117 (7) −0.0016 (6) 0.0021 (5) 0.0013 (6)
C1 0.0093 (7) 0.0084 (7) 0.0136 (8) −0.0015 (6) 0.0022 (6) −0.0001 (6)
C2 0.0132 (7) 0.0134 (8) 0.0138 (7) −0.0011 (7) 0.0036 (6) 0.0006 (8)
C3 0.0145 (8) 0.0171 (8) 0.0207 (9) 0.0013 (7) 0.0077 (7) −0.0026 (8)
C4 0.0127 (8) 0.0165 (8) 0.0237 (10) 0.0034 (7) 0.0012 (7) 0.0018 (8)
C5 0.0157 (8) 0.0168 (9) 0.0153 (8) 0.0016 (8) −0.0015 (6) 0.0019 (8)
C6 0.0128 (8) 0.0123 (7) 0.0137 (8) −0.0016 (6) 0.0030 (6) −0.0023 (6)
C7 0.0114 (8) 0.0107 (8) 0.0108 (8) −0.0005 (6) 0.0018 (6) 0.0016 (6)
C8 0.0220 (9) 0.0320 (13) 0.0154 (9) 0.0030 (8) 0.0043 (7) 0.0001 (8)
C9 0.0099 (7) 0.0122 (7) 0.0117 (8) −0.0036 (6) 0.0017 (6) −0.0022 (7)
C10 0.0126 (8) 0.0126 (7) 0.0147 (8) −0.0019 (6) −0.0011 (6) −0.0009 (7)
C11 0.0220 (10) 0.0150 (8) 0.0149 (9) −0.0045 (7) −0.0008 (7) 0.0014 (7)
C12 0.0224 (10) 0.0193 (9) 0.0137 (9) −0.0072 (7) 0.0064 (7) −0.0015 (7)
C13 0.0140 (8) 0.0200 (9) 0.0164 (8) −0.0036 (6) 0.0056 (6) −0.0041 (7)
C14 0.0119 (7) 0.0138 (7) 0.0148 (7) −0.0013 (8) 0.0015 (5) −0.0016 (8)
C15 0.0113 (7) 0.0098 (8) 0.0128 (8) 0.0000 (5) 0.0017 (6) −0.0008 (6)
C16 0.0146 (8) 0.0209 (9) 0.0212 (10) 0.0048 (7) 0.0008 (7) 0.0036 (8)

Dichloridobis(2-methylbenzamide-κO)zinc(II) (2) . Geometric parameters (Å, º)

Zn1—Cl1 2.2340 (4) C5—H5 0.9500
Zn1—Cl2 2.1947 (5) C5—C6 1.389 (2)
Zn1—O1 2.0169 (13) C6—H6 0.9500
Zn1—O2 1.9781 (11) C8—H8A 0.9800
O1—C7 1.266 (2) C8—H8B 0.9800
O2—C15 1.2637 (19) C8—H8C 0.9800
N1—H1A 0.82 (2) C9—C10 1.405 (2)
N1—H1B 0.858 (19) C9—C14 1.402 (2)
N1—C7 1.310 (2) C9—C15 1.486 (2)
N2—H2A 0.847 (18) C10—C11 1.393 (3)
N2—H2B 0.836 (18) C10—C16 1.519 (3)
N2—C15 1.313 (2) C11—H11 0.9500
C1—C2 1.406 (2) C11—C12 1.384 (3)
C1—C6 1.394 (2) C12—H12 0.9500
C1—C7 1.490 (2) C12—C13 1.389 (3)
C2—C3 1.391 (2) C13—H13 0.9500
C2—C8 1.512 (2) C13—C14 1.390 (2)
C3—H3 0.9500 C14—H14 0.9500
C3—C4 1.386 (3) C16—H16A 0.9800
C4—H4 0.9500 C16—H16B 0.9800
C4—C5 1.389 (3) C16—H16C 0.9800
Cl2—Zn1—Cl1 125.120 (19) N1—C7—C1 118.01 (16)
O1—Zn1—Cl1 107.22 (4) C2—C8—H8A 109.5
O1—Zn1—Cl2 102.18 (4) C2—C8—H8B 109.5
O2—Zn1—Cl1 108.84 (3) C2—C8—H8C 109.5
O2—Zn1—Cl2 107.52 (4) H8A—C8—H8B 109.5
O2—Zn1—O1 103.91 (5) H8A—C8—H8C 109.5
C7—O1—Zn1 130.95 (12) H8B—C8—H8C 109.5
C15—O2—Zn1 131.79 (10) C10—C9—C15 121.02 (15)
H1A—N1—H1B 119 (2) C14—C9—C10 120.54 (16)
C7—N1—H1A 118.0 (15) C14—C9—C15 118.44 (15)
C7—N1—H1B 121.5 (16) C9—C10—C16 123.15 (16)
H2A—N2—H2B 118 (2) C11—C10—C9 117.69 (17)
C15—N2—H2A 119.8 (14) C11—C10—C16 119.12 (16)
C15—N2—H2B 121.5 (15) C10—C11—H11 119.0
C2—C1—C7 121.28 (15) C12—C11—C10 122.04 (17)
C6—C1—C2 120.96 (16) C12—C11—H11 119.0
C6—C1—C7 117.75 (16) C11—C12—H12 120.0
C1—C2—C8 122.60 (16) C11—C12—C13 119.91 (18)
C3—C2—C1 117.57 (15) C13—C12—H12 120.0
C3—C2—C8 119.84 (16) C12—C13—H13 120.2
C2—C3—H3 119.1 C12—C13—C14 119.52 (18)
C4—C3—C2 121.86 (17) C14—C13—H13 120.2
C4—C3—H3 119.1 C9—C14—H14 119.9
C3—C4—H4 120.1 C13—C14—C9 120.27 (16)
C3—C4—C5 119.86 (17) C13—C14—H14 119.9
C5—C4—H4 120.1 O2—C15—N2 122.81 (16)
C4—C5—H5 120.2 O2—C15—C9 119.34 (14)
C4—C5—C6 119.70 (16) N2—C15—C9 117.86 (15)
C6—C5—H5 120.2 C10—C16—H16A 109.5
C1—C6—H6 120.0 C10—C16—H16B 109.5
C5—C6—C1 120.02 (16) C10—C16—H16C 109.5
C5—C6—H6 120.0 H16A—C16—H16B 109.5
O1—C7—N1 122.80 (17) H16A—C16—H16C 109.5
O1—C7—C1 119.18 (15) H16B—C16—H16C 109.5
Zn1—O1—C7—N1 −6.3 (3) C7—C1—C6—C5 177.87 (16)
Zn1—O1—C7—C1 174.92 (12) C8—C2—C3—C4 −179.24 (17)
Zn1—O2—C15—N2 −11.9 (3) C9—C10—C11—C12 −2.2 (3)
Zn1—O2—C15—C9 168.30 (12) C10—C9—C14—C13 −0.1 (3)
C1—C2—C3—C4 0.9 (3) C10—C9—C15—O2 −38.3 (2)
C2—C1—C6—C5 −1.9 (3) C10—C9—C15—N2 141.92 (17)
C2—C1—C7—O1 −119.46 (19) C10—C11—C12—C13 1.1 (3)
C2—C1—C7—N1 61.7 (2) C11—C12—C13—C14 0.6 (3)
C2—C3—C4—C5 −0.7 (3) C12—C13—C14—C9 −1.1 (3)
C3—C4—C5—C6 −0.8 (3) C14—C9—C10—C11 1.7 (3)
C4—C5—C6—C1 2.1 (3) C14—C9—C10—C16 179.43 (17)
C6—C1—C2—C3 0.5 (3) C14—C9—C15—O2 142.68 (18)
C6—C1—C2—C8 −179.44 (18) C14—C9—C15—N2 −37.1 (2)
C6—C1—C7—O1 60.7 (2) C15—C9—C10—C11 −177.30 (16)
C6—C1—C7—N1 −118.08 (19) C15—C9—C10—C16 0.4 (3)
C7—C1—C2—C3 −179.36 (16) C15—C9—C14—C13 178.94 (16)
C7—C1—C2—C8 0.7 (3) C16—C10—C11—C12 179.92 (17)

Dichloridobis(2-methylbenzamide-κO)zinc(II) (2) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···Cl2i 0.82 (2) 2.57 (2) 3.2916 (17) 147 (2)
N1—H1B···Cl1 0.86 (2) 2.54 (2) 3.3077 (17) 150 (2)
N2—H2A···Cl1 0.85 (2) 2.52 (2) 3.2667 (16) 148 (2)
N2—H2B···O1ii 0.84 (2) 2.14 (2) 2.949 (2) 163 (2)

Symmetry codes: (i) x, y−1, z; (ii) x−1, y, z.

Dichloridobis(3-methylbenzamide-κO)zinc(II) (3) . Crystal data

[ZnCl2(C8H9NO)2] F(000) = 832
Mr = 406.59 Dx = 1.519 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 13.9452 (11) Å Cell parameters from 6211 reflections
b = 18.9742 (16) Å θ = 3.1–28.7°
c = 7.0651 (6) Å µ = 1.69 mm1
β = 108.021 (2)° T = 100 K
V = 1777.7 (3) Å3 Needle, clear light colourless
Z = 4 0.42 × 0.14 × 0.14 mm

Dichloridobis(3-methylbenzamide-κO)zinc(II) (3) . Data collection

Bruker APEXII CCD diffractometer 2295 independent reflections
Radiation source: sealed tube 2023 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.027
Detector resolution: 8 pixels mm-1 θmax = 28.7°, θmin = 1.9°
ω and φ scans h = −18→18
Absorption correction: multi-scan (SADABS; Krause et al., 2015) k = −25→25
Tmin = 0.620, Tmax = 0.746 l = −9→9
12177 measured reflections

Dichloridobis(3-methylbenzamide-κO)zinc(II) (3) . Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.022 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.059 w = 1/[σ2(Fo2) + (0.0284P)2 + 1.5576P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.001
2295 reflections Δρmax = 0.39 e Å3
113 parameters Δρmin = −0.26 e Å3
17 restraints

Dichloridobis(3-methylbenzamide-κO)zinc(II) (3) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Dichloridobis(3-methylbenzamide-κO)zinc(II) (3) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Zn1 0.500000 0.38624 (2) 0.750000 0.01707 (8)
Cl1 0.62434 (3) 0.44400 (2) 0.97242 (5) 0.02080 (9)
O1 0.56261 (8) 0.31701 (5) 0.61793 (15) 0.0204 (2)
N1 0.61233 (10) 0.38460 (7) 0.40319 (19) 0.0202 (3)
H1A 0.5980 (15) 0.4225 (9) 0.452 (3) 0.030*
H1B 0.6324 (15) 0.3898 (10) 0.302 (3) 0.030*
C1 0.62069 (10) 0.25740 (7) 0.3812 (2) 0.0158 (3)
C2 0.61038 (10) 0.19345 (8) 0.4691 (2) 0.0180 (3)
H2 0.588635 0.193263 0.583965 0.022*
C3 0.63116 (12) 0.12987 (8) 0.3927 (2) 0.0221 (3)
C4 0.66207 (12) 0.13155 (8) 0.2221 (2) 0.0247 (3)
H4 0.676788 0.088681 0.167359 0.030*
C5 0.67144 (12) 0.19491 (8) 0.1323 (2) 0.0234 (3)
H5 0.691823 0.195033 0.015859 0.028*
C6 0.65141 (11) 0.25802 (8) 0.2104 (2) 0.0187 (3)
H6 0.658428 0.301380 0.148814 0.022*
C7 0.59708 (10) 0.32279 (7) 0.4738 (2) 0.0158 (3)
C8 0.62193 (14) 0.06111 (9) 0.4921 (3) 0.0332 (4)
H8A 0.630921 0.069427 0.633494 0.050* 0.54 (2)
H8B 0.673809 0.028337 0.478992 0.050* 0.54 (2)
H8C 0.555047 0.040823 0.428655 0.050* 0.54 (2)
H8D 0.608931 0.022964 0.393933 0.050* 0.46 (2)
H8E 0.566042 0.064055 0.548436 0.050* 0.46 (2)
H8F 0.684804 0.051568 0.598773 0.050* 0.46 (2)

Dichloridobis(3-methylbenzamide-κO)zinc(II) (3) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.02315 (13) 0.01516 (12) 0.01467 (12) 0.000 0.00842 (9) 0.000
Cl1 0.02732 (19) 0.01659 (17) 0.01841 (16) −0.00333 (13) 0.00694 (14) −0.00035 (12)
O1 0.0265 (6) 0.0175 (5) 0.0197 (5) 0.0021 (4) 0.0110 (4) −0.0008 (4)
N1 0.0259 (7) 0.0152 (6) 0.0214 (6) 0.0015 (5) 0.0099 (5) −0.0002 (5)
C1 0.0121 (6) 0.0173 (6) 0.0165 (6) 0.0004 (5) 0.0023 (5) −0.0016 (5)
C2 0.0148 (7) 0.0199 (7) 0.0184 (6) 0.0015 (5) 0.0038 (5) 0.0002 (5)
C3 0.0189 (7) 0.0171 (7) 0.0283 (8) 0.0006 (5) 0.0046 (6) 0.0001 (6)
C4 0.0234 (8) 0.0204 (7) 0.0306 (8) 0.0008 (6) 0.0089 (6) −0.0079 (6)
C5 0.0216 (7) 0.0277 (8) 0.0233 (7) −0.0005 (6) 0.0103 (6) −0.0057 (6)
C6 0.0170 (7) 0.0196 (7) 0.0196 (6) −0.0007 (5) 0.0058 (5) −0.0006 (5)
C7 0.0130 (6) 0.0168 (6) 0.0157 (6) 0.0004 (5) 0.0015 (5) −0.0008 (5)
C8 0.0398 (10) 0.0178 (8) 0.0439 (10) 0.0011 (7) 0.0156 (8) 0.0039 (7)

Dichloridobis(3-methylbenzamide-κO)zinc(II) (3) . Geometric parameters (Å, º)

Zn1—Cl1 2.2341 (4) C3—C4 1.400 (2)
Zn1—Cl1i 2.2341 (4) C3—C8 1.506 (2)
Zn1—O1i 1.9652 (10) C4—H4 0.9500
Zn1—O1 1.9652 (10) C4—C5 1.384 (2)
O1—C7 1.2581 (16) C5—H5 0.9500
N1—H1A 0.847 (15) C5—C6 1.383 (2)
N1—H1B 0.848 (15) C6—H6 0.9500
N1—C7 1.3173 (18) C8—H8A 0.9800
C1—C2 1.3906 (19) C8—H8B 0.9800
C1—C6 1.3998 (19) C8—H8C 0.9800
C1—C7 1.4863 (19) C8—H8D 0.9800
C2—H2 0.9500 C8—H8E 0.9800
C2—C3 1.388 (2) C8—H8F 0.9800
Cl1—Zn1—Cl1i 121.25 (2) C5—C6—C1 119.36 (14)
O1i—Zn1—Cl1 110.86 (3) C5—C6—H6 120.3
O1—Zn1—Cl1i 110.86 (3) O1—C7—N1 122.08 (13)
O1—Zn1—Cl1 107.44 (3) O1—C7—C1 118.40 (12)
O1i—Zn1—Cl1i 107.44 (3) N1—C7—C1 119.53 (12)
O1i—Zn1—O1 96.12 (6) C3—C8—H8A 109.5
C7—O1—Zn1 131.54 (9) C3—C8—H8B 109.5
H1A—N1—H1B 114.8 (18) C3—C8—H8C 109.5
C7—N1—H1A 121.2 (13) C3—C8—H8D 109.5
C7—N1—H1B 123.8 (13) C3—C8—H8E 109.5
C2—C1—C6 119.59 (13) C3—C8—H8F 109.5
C2—C1—C7 117.67 (12) H8A—C8—H8B 109.5
C6—C1—C7 122.74 (13) H8A—C8—H8C 109.5
C1—C2—H2 119.3 H8A—C8—H8D 141.1
C3—C2—C1 121.45 (13) H8A—C8—H8E 56.3
C3—C2—H2 119.3 H8A—C8—H8F 56.3
C2—C3—C4 118.15 (14) H8B—C8—H8C 109.5
C2—C3—C8 120.88 (15) H8B—C8—H8D 56.3
C4—C3—C8 120.97 (14) H8B—C8—H8E 141.1
C3—C4—H4 119.6 H8B—C8—H8F 56.3
C5—C4—C3 120.80 (14) H8C—C8—H8D 56.3
C5—C4—H4 119.6 H8C—C8—H8E 56.3
C4—C5—H5 119.7 H8C—C8—H8F 141.1
C6—C5—C4 120.65 (14) H8D—C8—H8E 109.5
C6—C5—H5 119.7 H8D—C8—H8F 109.5
C1—C6—H6 120.3 H8E—C8—H8F 109.5
Zn1—O1—C7—N1 12.2 (2) C3—C4—C5—C6 0.7 (2)
Zn1—O1—C7—C1 −167.56 (9) C4—C5—C6—C1 −0.5 (2)
C1—C2—C3—C4 −0.7 (2) C6—C1—C2—C3 0.8 (2)
C1—C2—C3—C8 178.60 (15) C6—C1—C7—O1 174.61 (13)
C2—C1—C6—C5 −0.3 (2) C6—C1—C7—N1 −5.2 (2)
C2—C1—C7—O1 −4.73 (19) C7—C1—C2—C3 −179.79 (13)
C2—C1—C7—N1 175.49 (13) C7—C1—C6—C5 −179.60 (13)
C2—C3—C4—C5 −0.1 (2) C8—C3—C4—C5 −179.35 (15)

Symmetry code: (i) −x+1, y, −z+3/2.

Dichloridobis(3-methylbenzamide-κO)zinc(II) (3) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···Cl1ii 0.85 (2) 2.56 (2) 3.2854 (13) 145 (2)
N1—H1B···Cl1iii 0.85 (2) 2.52 (2) 3.2979 (13) 153 (2)

Symmetry codes: (ii) x, −y+1, z−1/2; (iii) x, y, z−1.

Dichloridobis(4-methylbenzamide-κO)zinc(II) (4) . Crystal data

[ZnCl2(C8H9NO)2] F(000) = 832
Mr = 406.59 Dx = 1.537 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 6.8376 (4) Å Cell parameters from 8511 reflections
b = 17.2694 (9) Å θ = 2.4–30.1°
c = 14.9856 (7) Å µ = 1.71 mm1
β = 96.893 (2)° T = 100 K
V = 1756.73 (16) Å3 Needle, clear light colourless
Z = 4 0.56 × 0.18 × 0.09 mm

Dichloridobis(4-methylbenzamide-κO)zinc(II) (4) . Data collection

Bruker APEXII CCD diffractometer 5376 independent reflections
Radiation source: sealed tube 4283 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.051
Detector resolution: 8 pixels mm-1 θmax = 30.5°, θmin = 1.8°
ω and φ scans h = −9→9
Absorption correction: multi-scan (SADABS; Krause et al., 2015) k = −24→24
Tmin = 0.629, Tmax = 0.746 l = −21→21
33806 measured reflections

Dichloridobis(4-methylbenzamide-κO)zinc(II) (4) . Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.031 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.069 w = 1/[σ2(Fo2) + (0.028P)2 + 0.9244P] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max = 0.001
5376 reflections Δρmax = 0.46 e Å3
222 parameters Δρmin = −0.32 e Å3
4 restraints

Dichloridobis(4-methylbenzamide-κO)zinc(II) (4) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Dichloridobis(4-methylbenzamide-κO)zinc(II) (4) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1 0.62040 (3) 0.33576 (2) 0.90851 (2) 0.01257 (6)
Cl1 0.77285 (6) 0.44248 (3) 0.96142 (3) 0.01698 (9)
Cl2 0.47211 (6) 0.26784 (3) 1.00645 (3) 0.01897 (9)
O1 0.80611 (18) 0.27132 (8) 0.85157 (8) 0.0185 (3)
O2 0.42159 (16) 0.36421 (7) 0.80292 (7) 0.0138 (2)
N1 0.6780 (2) 0.27321 (10) 0.70593 (9) 0.0173 (3)
H1A 0.581 (3) 0.3025 (12) 0.7182 (14) 0.026*
H1B 0.679 (3) 0.2600 (13) 0.6506 (11) 0.026*
N2 0.1956 (2) 0.41980 (11) 0.87969 (10) 0.0227 (4)
H2A 0.076 (3) 0.4331 (14) 0.8844 (16) 0.034*
H2B 0.275 (3) 0.4161 (14) 0.9295 (12) 0.034*
C1 0.9836 (2) 0.20466 (10) 0.75021 (10) 0.0121 (3)
C2 1.1478 (2) 0.20012 (10) 0.81520 (10) 0.0135 (3)
H2 1.145841 0.225037 0.871603 0.016*
C3 1.3132 (2) 0.15949 (10) 0.79764 (11) 0.0147 (3)
H3 1.424273 0.157277 0.842184 0.018*
C4 1.3201 (2) 0.12177 (10) 0.71601 (11) 0.0140 (3)
C5 1.1545 (2) 0.12644 (10) 0.65131 (11) 0.0149 (3)
H5 1.156387 0.101115 0.595143 0.018*
C6 0.9882 (2) 0.16732 (10) 0.66776 (10) 0.0138 (3)
H6 0.877513 0.169957 0.623050 0.017*
C7 0.8142 (2) 0.25188 (10) 0.77107 (10) 0.0130 (3)
C8 1.4980 (3) 0.07558 (11) 0.69831 (12) 0.0200 (4)
H8A 1.469032 0.020189 0.702178 0.030*
H8B 1.609350 0.088824 0.743154 0.030*
H8C 1.531608 0.087642 0.638088 0.030*
C9 0.1206 (2) 0.40383 (10) 0.71921 (10) 0.0135 (3)
C10 0.1505 (2) 0.35807 (11) 0.64562 (11) 0.0153 (3)
H10 0.255602 0.321747 0.650256 0.018*
C11 0.0270 (3) 0.36541 (11) 0.56531 (11) 0.0189 (4)
H11 0.047805 0.333358 0.515810 0.023*
C12 −0.1263 (3) 0.41870 (11) 0.55606 (12) 0.0197 (4)
C13 −0.1537 (3) 0.46467 (12) 0.62984 (13) 0.0250 (4)
H13 −0.257293 0.501643 0.624800 0.030*
C14 −0.0324 (3) 0.45754 (11) 0.71067 (12) 0.0217 (4)
H14 −0.053924 0.489388 0.760262 0.026*
C15 0.2540 (2) 0.39488 (10) 0.80440 (10) 0.0131 (3)
C16 −0.2596 (3) 0.42661 (13) 0.46859 (13) 0.0276 (4)
H16A −0.220031 0.389179 0.424975 0.041*
H16B −0.249033 0.479199 0.445066 0.041*
H16C −0.396095 0.416577 0.478950 0.041*

Dichloridobis(4-methylbenzamide-κO)zinc(II) (4) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.01264 (9) 0.01536 (11) 0.00929 (8) 0.00095 (8) −0.00036 (6) −0.00125 (7)
Cl1 0.01717 (18) 0.0165 (2) 0.01668 (18) −0.00171 (16) −0.00044 (14) −0.00253 (15)
Cl2 0.01998 (19) 0.0250 (2) 0.01107 (16) −0.00528 (17) −0.00144 (14) 0.00284 (16)
O1 0.0177 (6) 0.0255 (7) 0.0120 (5) 0.0070 (5) 0.0000 (4) −0.0039 (5)
O2 0.0119 (5) 0.0180 (6) 0.0111 (5) 0.0022 (5) −0.0002 (4) −0.0012 (4)
N1 0.0164 (7) 0.0238 (9) 0.0112 (6) 0.0065 (6) −0.0008 (5) −0.0040 (6)
N2 0.0158 (7) 0.0376 (10) 0.0141 (7) 0.0066 (7) −0.0002 (6) −0.0059 (7)
C1 0.0123 (7) 0.0114 (8) 0.0123 (7) −0.0012 (6) 0.0009 (6) 0.0002 (6)
C2 0.0147 (7) 0.0146 (9) 0.0107 (7) −0.0008 (6) −0.0006 (6) −0.0007 (6)
C3 0.0133 (7) 0.0152 (9) 0.0146 (7) −0.0004 (6) −0.0024 (6) 0.0012 (6)
C4 0.0129 (7) 0.0117 (8) 0.0177 (7) −0.0005 (6) 0.0029 (6) 0.0010 (6)
C5 0.0173 (8) 0.0140 (9) 0.0133 (7) −0.0001 (7) 0.0018 (6) −0.0023 (6)
C6 0.0141 (7) 0.0144 (8) 0.0125 (6) −0.0001 (6) −0.0003 (6) −0.0011 (6)
C7 0.0128 (7) 0.0134 (8) 0.0126 (7) −0.0022 (6) 0.0006 (6) −0.0007 (6)
C8 0.0151 (8) 0.0196 (10) 0.0250 (8) 0.0023 (7) 0.0012 (7) −0.0032 (7)
C9 0.0127 (7) 0.0132 (8) 0.0139 (7) −0.0006 (6) −0.0015 (6) −0.0014 (6)
C10 0.0147 (7) 0.0167 (9) 0.0140 (7) 0.0023 (6) 0.0001 (6) −0.0011 (6)
C11 0.0214 (8) 0.0213 (10) 0.0134 (7) −0.0010 (7) −0.0010 (6) −0.0039 (7)
C12 0.0194 (8) 0.0182 (10) 0.0193 (8) −0.0021 (7) −0.0065 (7) 0.0020 (7)
C13 0.0219 (9) 0.0201 (10) 0.0301 (10) 0.0084 (8) −0.0088 (8) −0.0032 (8)
C14 0.0221 (9) 0.0195 (10) 0.0218 (8) 0.0060 (7) −0.0040 (7) −0.0064 (7)
C15 0.0132 (7) 0.0130 (8) 0.0128 (7) −0.0016 (6) 0.0001 (6) −0.0014 (6)
C16 0.0282 (10) 0.0273 (11) 0.0237 (9) −0.0014 (8) −0.0121 (8) 0.0023 (8)

Dichloridobis(4-methylbenzamide-κO)zinc(II) (4) . Geometric parameters (Å, º)

Zn1—Cl1 2.2166 (5) C5—H5 0.9500
Zn1—Cl2 2.2170 (5) C5—C6 1.385 (2)
Zn1—O1 1.9592 (12) C6—H6 0.9500
Zn1—O2 2.0191 (11) C8—H8A 0.9800
O1—C7 1.2599 (19) C8—H8B 0.9800
O2—C15 1.265 (2) C8—H8C 0.9800
N1—H1A 0.869 (16) C9—C10 1.392 (2)
N1—H1B 0.861 (15) C9—C14 1.393 (2)
N1—C7 1.318 (2) C9—C15 1.485 (2)
N2—H2A 0.858 (16) C10—H10 0.9500
N2—H2B 0.871 (16) C10—C11 1.391 (2)
N2—C15 1.313 (2) C11—H11 0.9500
C1—C2 1.398 (2) C11—C12 1.389 (3)
C1—C6 1.397 (2) C12—C13 1.392 (3)
C1—C7 1.480 (2) C12—C16 1.510 (2)
C2—H2 0.9500 C13—H13 0.9500
C2—C3 1.382 (2) C13—C14 1.389 (2)
C3—H3 0.9500 C14—H14 0.9500
C3—C4 1.392 (2) C16—H16A 0.9800
C4—C5 1.402 (2) C16—H16B 0.9800
C4—C8 1.505 (2) C16—H16C 0.9800
Cl1—Zn1—Cl2 115.836 (17) N1—C7—C1 119.92 (14)
O1—Zn1—Cl1 109.06 (4) C4—C8—H8A 109.5
O1—Zn1—Cl2 111.08 (4) C4—C8—H8B 109.5
O1—Zn1—O2 101.98 (5) C4—C8—H8C 109.5
O2—Zn1—Cl1 108.75 (4) H8A—C8—H8B 109.5
O2—Zn1—Cl2 109.22 (4) H8A—C8—H8C 109.5
C7—O1—Zn1 132.35 (11) H8B—C8—H8C 109.5
C15—O2—Zn1 127.89 (10) C10—C9—C14 119.06 (15)
H1A—N1—H1B 117 (2) C10—C9—C15 119.24 (15)
C7—N1—H1A 119.6 (15) C14—C9—C15 121.69 (15)
C7—N1—H1B 123.4 (15) C9—C10—H10 119.9
H2A—N2—H2B 117 (2) C11—C10—C9 120.14 (16)
C15—N2—H2A 123.2 (16) C11—C10—H10 119.9
C15—N2—H2B 119.3 (16) C10—C11—H11 119.4
C2—C1—C7 117.86 (14) C12—C11—C10 121.30 (16)
C6—C1—C2 119.24 (15) C12—C11—H11 119.4
C6—C1—C7 122.85 (14) C11—C12—C13 118.05 (15)
C1—C2—H2 119.9 C11—C12—C16 121.06 (17)
C3—C2—C1 120.19 (15) C13—C12—C16 120.89 (17)
C3—C2—H2 119.9 C12—C13—H13 119.4
C2—C3—H3 119.3 C14—C13—C12 121.28 (17)
C2—C3—C4 121.31 (14) C14—C13—H13 119.4
C4—C3—H3 119.3 C9—C14—H14 119.9
C3—C4—C5 118.12 (15) C13—C14—C9 120.16 (17)
C3—C4—C8 121.10 (14) C13—C14—H14 119.9
C5—C4—C8 120.77 (15) O2—C15—N2 121.42 (14)
C4—C5—H5 119.4 O2—C15—C9 119.51 (14)
C6—C5—C4 121.21 (15) N2—C15—C9 119.07 (15)
C6—C5—H5 119.4 C12—C16—H16A 109.5
C1—C6—H6 120.0 C12—C16—H16B 109.5
C5—C6—C1 119.92 (14) C12—C16—H16C 109.5
C5—C6—H6 120.0 H16A—C16—H16B 109.5
O1—C7—N1 121.75 (16) H16A—C16—H16C 109.5
O1—C7—C1 118.33 (14) H16B—C16—H16C 109.5
Zn1—O1—C7—N1 −2.3 (3) C7—C1—C6—C5 177.51 (16)
Zn1—O1—C7—C1 176.97 (12) C8—C4—C5—C6 178.48 (17)
Zn1—O2—C15—N2 7.0 (3) C9—C10—C11—C12 0.8 (3)
Zn1—O2—C15—C9 −173.68 (11) C10—C9—C14—C13 0.4 (3)
C1—C2—C3—C4 −0.6 (3) C10—C9—C15—O2 20.4 (2)
C2—C1—C6—C5 0.0 (3) C10—C9—C15—N2 −160.32 (18)
C2—C1—C7—O1 −15.5 (2) C10—C11—C12—C13 −0.2 (3)
C2—C1—C7—N1 163.79 (17) C10—C11—C12—C16 179.77 (18)
C2—C3—C4—C5 0.4 (3) C11—C12—C13—C14 −0.3 (3)
C2—C3—C4—C8 −178.10 (16) C12—C13—C14—C9 0.2 (3)
C3—C4—C5—C6 0.0 (3) C14—C9—C10—C11 −0.9 (3)
C4—C5—C6—C1 −0.2 (3) C14—C9—C15—O2 −158.86 (17)
C6—C1—C2—C3 0.4 (3) C14—C9—C15—N2 20.5 (3)
C6—C1—C7—O1 166.97 (16) C15—C9—C10—C11 179.83 (16)
C6—C1—C7—N1 −13.8 (3) C15—C9—C14—C13 179.64 (18)
C7—C1—C2—C3 −177.27 (16) C16—C12—C13—C14 179.70 (19)

Dichloridobis(4-methylbenzamide-κO)zinc(II) (4) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O2 0.87 (2) 2.07 (2) 2.8753 (19) 154 (2)
N1—H1B···Cl2i 0.86 (2) 2.49 (2) 3.2265 (14) 145 (2)
N2—H2A···Cl1ii 0.86 (2) 2.50 (2) 3.2956 (16) 155 (2)
N2—H2B···Cl2 0.87 (2) 3.05 (2) 3.6341 (17) 126 (2)

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) x−1, y, z.

Dichloridobis(4-hydroxybenzamide-κO)zinc(II) (5) . Crystal data

[ZnCl2(C7H7NO2)2] F(000) = 832
Mr = 410.54 Dx = 1.696 Mg m3
Monoclinic, Cc Mo Kα radiation, λ = 0.71073 Å
a = 7.0532 (6) Å Cell parameters from 5843 reflections
b = 21.3776 (17) Å θ = 2.7–27.6°
c = 11.1181 (9) Å µ = 1.88 mm1
β = 106.477 (2)° T = 100 K
V = 1607.5 (2) Å3 Block, clear light colourless
Z = 4 0.15 × 0.09 × 0.07 mm

Dichloridobis(4-hydroxybenzamide-κO)zinc(II) (5) . Data collection

Bruker APEXII CCD diffractometer 4168 independent reflections
Radiation source: sealed tube 3809 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.042
Detector resolution: 8 pixels mm-1 θmax = 28.7°, θmin = 1.9°
ω and φ scans h = −9→9
Absorption correction: multi-scan (SADABS; Krause et al., 2015) k = −28→28
Tmin = 0.673, Tmax = 0.746 l = −15→15
17255 measured reflections

Dichloridobis(4-hydroxybenzamide-κO)zinc(II) (5) . Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.030 w = 1/[σ2(Fo2) + (0.023P)2 + 0.9687P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.065 (Δ/σ)max < 0.001
S = 1.05 Δρmax = 0.46 e Å3
4168 reflections Δρmin = −0.29 e Å3
227 parameters Absolute structure: Refined as an inversion twin
8 restraints Absolute structure parameter: 0.024 (13)
Primary atom site location: dual

Dichloridobis(4-hydroxybenzamide-κO)zinc(II) (5) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a 2-component inversion twin.

Dichloridobis(4-hydroxybenzamide-κO)zinc(II) (5) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1 0.53881 (5) 0.85209 (2) 0.23775 (4) 0.01454 (12)
Cl1 0.73319 (15) 0.92222 (5) 0.18199 (9) 0.0198 (2)
Cl2 0.21825 (15) 0.86831 (5) 0.14477 (10) 0.0210 (2)
O1 0.5952 (4) 0.84920 (13) 0.4225 (3) 0.0171 (6)
O2 0.6040 (5) 0.76660 (13) 0.2016 (3) 0.0202 (6)
O3 0.7811 (5) 0.80301 (14) 1.0011 (3) 0.0203 (7)
H3 0.833 (7) 0.828 (2) 1.059 (4) 0.030*
O4 0.6608 (5) 0.49561 (14) −0.0004 (3) 0.0260 (7)
H4 0.681 (8) 0.4641 (19) 0.041 (5) 0.039*
N1 0.6218 (6) 0.95087 (17) 0.4782 (3) 0.0188 (8)
H1A 0.606 (7) 0.960 (2) 0.401 (3) 0.028*
H1B 0.644 (7) 0.9847 (17) 0.524 (4) 0.028*
N2 0.7170 (6) 0.72093 (18) 0.3908 (3) 0.0203 (8)
H2A 0.711 (8) 0.7563 (16) 0.422 (5) 0.030*
H2B 0.757 (8) 0.6873 (17) 0.428 (4) 0.030*
C1 0.6588 (6) 0.87096 (18) 0.6380 (4) 0.0129 (8)
C2 0.7355 (6) 0.91117 (19) 0.7389 (4) 0.0154 (8)
H2 0.759638 0.953737 0.723612 0.018*
C3 0.7767 (6) 0.88968 (19) 0.8609 (4) 0.0153 (8)
H3A 0.829009 0.917405 0.929006 0.018*
C4 0.7414 (6) 0.8275 (2) 0.8836 (4) 0.0153 (8)
C5 0.6645 (6) 0.78625 (19) 0.7834 (4) 0.0157 (8)
H5 0.641179 0.743710 0.799426 0.019*
C6 0.6234 (6) 0.80752 (19) 0.6626 (4) 0.0156 (8)
H6 0.570865 0.779649 0.594761 0.019*
C7 0.6229 (6) 0.89057 (18) 0.5072 (4) 0.0135 (8)
C8 0.6692 (6) 0.65874 (18) 0.2021 (4) 0.0129 (8)
C9 0.7129 (6) 0.60210 (19) 0.2654 (4) 0.0153 (8)
H9 0.745040 0.601421 0.354333 0.018*
C10 0.7104 (6) 0.54637 (19) 0.2002 (4) 0.0169 (8)
H10 0.738364 0.507780 0.244024 0.020*
C11 0.6661 (6) 0.5479 (2) 0.0692 (4) 0.0165 (8)
C12 0.6224 (6) 0.6047 (2) 0.0046 (4) 0.0178 (9)
H12 0.592215 0.605752 −0.084269 0.021*
C13 0.6238 (6) 0.65941 (19) 0.0717 (4) 0.0154 (8)
H13 0.593257 0.697989 0.028103 0.018*
C14 0.6644 (6) 0.71888 (18) 0.2678 (4) 0.0137 (8)

Dichloridobis(4-hydroxybenzamide-κO)zinc(II) (5) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.0211 (2) 0.0112 (2) 0.01033 (19) 0.0013 (2) 0.00287 (15) −0.0002 (2)
Cl1 0.0282 (5) 0.0143 (5) 0.0176 (5) −0.0022 (4) 0.0078 (4) 0.0003 (4)
Cl2 0.0213 (5) 0.0154 (5) 0.0225 (5) 0.0004 (4) 0.0003 (4) 0.0000 (4)
O1 0.0246 (15) 0.0157 (15) 0.0100 (14) 0.0000 (12) 0.0035 (11) −0.0003 (11)
O2 0.0332 (17) 0.0102 (15) 0.0194 (15) 0.0024 (12) 0.0109 (13) 0.0015 (11)
O3 0.0308 (17) 0.0190 (16) 0.0090 (14) −0.0028 (13) 0.0022 (12) 0.0018 (11)
O4 0.0412 (19) 0.0116 (16) 0.0236 (17) 0.0012 (14) 0.0068 (15) −0.0021 (12)
N1 0.031 (2) 0.0137 (19) 0.0106 (17) 0.0004 (16) 0.0046 (15) 0.0008 (13)
N2 0.032 (2) 0.0143 (19) 0.0137 (18) 0.0036 (17) 0.0043 (16) −0.0014 (14)
C1 0.014 (2) 0.0111 (18) 0.0125 (18) 0.0009 (15) 0.0028 (15) −0.0019 (15)
C2 0.018 (2) 0.012 (2) 0.017 (2) 0.0015 (15) 0.0071 (16) −0.0013 (15)
C3 0.020 (2) 0.014 (2) 0.0111 (19) 0.0004 (16) 0.0025 (15) −0.0033 (14)
C4 0.014 (2) 0.022 (2) 0.0099 (18) 0.0026 (16) 0.0039 (15) 0.0029 (15)
C5 0.018 (2) 0.013 (2) 0.016 (2) −0.0004 (16) 0.0062 (15) 0.0012 (15)
C6 0.0155 (19) 0.015 (2) 0.016 (2) −0.0007 (16) 0.0039 (16) −0.0026 (16)
C7 0.0138 (19) 0.014 (2) 0.0132 (19) −0.0013 (15) 0.0052 (15) −0.0012 (15)
C8 0.0136 (18) 0.0098 (19) 0.0148 (19) −0.0006 (14) 0.0035 (15) 0.0002 (14)
C9 0.018 (2) 0.012 (2) 0.0148 (19) −0.0005 (16) 0.0037 (16) 0.0013 (15)
C10 0.021 (2) 0.0115 (19) 0.018 (2) 0.0009 (16) 0.0044 (16) 0.0023 (15)
C11 0.019 (2) 0.014 (2) 0.017 (2) −0.0016 (16) 0.0038 (16) −0.0024 (15)
C12 0.020 (2) 0.021 (2) 0.0118 (19) −0.0001 (17) 0.0022 (16) −0.0021 (16)
C13 0.0163 (19) 0.013 (2) 0.016 (2) −0.0018 (15) 0.0033 (15) 0.0020 (15)
C14 0.0148 (18) 0.0110 (19) 0.016 (2) −0.0023 (15) 0.0061 (15) 0.0014 (15)

Dichloridobis(4-hydroxybenzamide-κO)zinc(II) (5) . Geometric parameters (Å, º)

Zn1—Cl1 2.2347 (11) C2—H2 0.9500
Zn1—Cl2 2.2305 (11) C2—C3 1.383 (6)
Zn1—O1 1.980 (3) C3—H3A 0.9500
Zn1—O2 1.954 (3) C3—C4 1.388 (6)
O1—C7 1.266 (5) C4—C5 1.404 (5)
O2—C14 1.259 (5) C5—H5 0.9500
O3—H3 0.84 (3) C5—C6 1.369 (6)
O3—C4 1.361 (5) C6—H6 0.9500
O4—H4 0.80 (3) C8—C9 1.390 (5)
O4—C11 1.353 (5) C8—C13 1.394 (6)
N1—H1A 0.86 (3) C8—C14 1.483 (5)
N1—H1B 0.87 (3) C9—H9 0.9500
N1—C7 1.328 (5) C9—C10 1.392 (6)
N2—H2A 0.84 (3) C10—H10 0.9500
N2—H2B 0.84 (3) C10—C11 1.400 (6)
N2—C14 1.313 (5) C11—C12 1.401 (6)
C1—C2 1.395 (5) C12—H12 0.9500
C1—C6 1.419 (5) C12—C13 1.386 (6)
C1—C7 1.465 (5) C13—H13 0.9500
Cl2—Zn1—Cl1 112.84 (4) C6—C5—C4 119.8 (4)
O1—Zn1—Cl1 110.51 (9) C6—C5—H5 120.1
O1—Zn1—Cl2 111.39 (9) C1—C6—H6 119.8
O2—Zn1—Cl1 111.83 (10) C5—C6—C1 120.4 (4)
O2—Zn1—Cl2 108.48 (10) C5—C6—H6 119.8
O2—Zn1—O1 101.21 (12) O1—C7—N1 120.6 (4)
C7—O1—Zn1 133.9 (3) O1—C7—C1 119.0 (4)
C14—O2—Zn1 134.3 (3) N1—C7—C1 120.4 (4)
C4—O3—H3 115 (4) C9—C8—C13 119.2 (4)
C11—O4—H4 113 (4) C9—C8—C14 122.6 (4)
H1A—N1—H1B 111 (5) C13—C8—C14 118.2 (4)
C7—N1—H1A 117 (3) C8—C9—H9 119.5
C7—N1—H1B 132 (3) C8—C9—C10 120.9 (4)
H2A—N2—H2B 128 (5) C10—C9—H9 119.5
C14—N2—H2A 116 (4) C9—C10—H10 120.4
C14—N2—H2B 116 (4) C9—C10—C11 119.2 (4)
C2—C1—C6 118.9 (4) C11—C10—H10 120.4
C2—C1—C7 122.7 (4) O4—C11—C10 122.5 (4)
C6—C1—C7 118.3 (3) O4—C11—C12 117.2 (4)
C1—C2—H2 119.7 C10—C11—C12 120.3 (4)
C3—C2—C1 120.6 (4) C11—C12—H12 120.4
C3—C2—H2 119.7 C13—C12—C11 119.3 (4)
C2—C3—H3A 120.1 C13—C12—H12 120.4
C2—C3—C4 119.9 (4) C8—C13—H13 119.5
C4—C3—H3A 120.1 C12—C13—C8 121.1 (4)
O3—C4—C3 123.0 (4) C12—C13—H13 119.5
O3—C4—C5 116.6 (4) O2—C14—N2 122.0 (4)
C3—C4—C5 120.4 (4) O2—C14—C8 117.8 (3)
C4—C5—H5 120.1 N2—C14—C8 120.2 (4)
Zn1—O1—C7—N1 −1.8 (6) C6—C1—C7—N1 168.7 (4)
Zn1—O1—C7—C1 179.0 (3) C7—C1—C2—C3 −176.6 (4)
Zn1—O2—C14—N2 −7.0 (6) C7—C1—C6—C5 176.6 (4)
Zn1—O2—C14—C8 171.2 (3) C8—C9—C10—C11 1.0 (6)
O3—C4—C5—C6 −179.2 (4) C9—C8—C13—C12 −0.2 (6)
O4—C11—C12—C13 179.3 (4) C9—C8—C14—O2 −173.0 (4)
C1—C2—C3—C4 −0.1 (6) C9—C8—C14—N2 5.2 (6)
C2—C1—C6—C5 −0.2 (6) C9—C10—C11—O4 −180.0 (4)
C2—C1—C7—O1 164.6 (4) C9—C10—C11—C12 −0.8 (6)
C2—C1—C7—N1 −14.6 (6) C10—C11—C12—C13 0.1 (6)
C2—C3—C4—O3 179.0 (4) C11—C12—C13—C8 0.5 (6)
C2—C3—C4—C5 0.2 (6) C13—C8—C9—C10 −0.5 (6)
C3—C4—C5—C6 −0.3 (6) C13—C8—C14—O2 5.6 (6)
C4—C5—C6—C1 0.3 (6) C13—C8—C14—N2 −176.1 (4)
C6—C1—C2—C3 0.1 (6) C14—C8—C9—C10 178.1 (4)
C6—C1—C7—O1 −12.0 (6) C14—C8—C13—C12 −179.0 (4)

Dichloridobis(4-hydroxybenzamide-κO)zinc(II) (5) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O3—H3···Cl1i 0.84 (3) 2.64 (4) 3.322 (3) 140 (5)
O3—H3···Cl2ii 0.84 (3) 2.75 (4) 3.349 (3) 130 (4)
O4—H4···Cl2iii 0.80 (3) 2.33 (3) 3.131 (3) 175 (6)
N1—H1A···Cl1 0.86 (3) 2.93 (4) 3.648 (4) 142 (4)
N1—H1B···Cl1iv 0.87 (3) 2.61 (3) 3.479 (4) 173 (4)
N2—H2A···O1 0.84 (3) 2.15 (3) 2.924 (5) 154 (5)
N2—H2B···Cl2v 0.84 (3) 2.77 (4) 3.405 (4) 135 (5)

Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1; (iii) x+1/2, y−1/2, z; (iv) x, −y+2, z+1/2; (v) x+1/2, −y+3/2, z+1/2.

Funding Statement

This work was funded by National Science Foundation, Directorate for Education and Human Resources grant 0942850 to Dean H. Johnston.

References

  1. Braga, D., Degli Esposti, L., Rubini, K., Shemchuk, O. & Grepioni, F. (2016). Cryst. Growth Des. 16, 7263–7270.
  2. Braga, D., Grepioni, F., Lampronti, G. I., Maini, L. & Turrina, A. (2011). Cryst. Growth Des. 11, 5621–5627.
  3. Braga, D., Grepioni, F. & Shemchuk, O. (2018). CrystEngComm, 20, 2212–2220.
  4. Bruker (2020). BIS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Buist, A. R. & Kennedy, A. R. (2014). Cryst. Growth Des. 14, 6508–6513.
  6. Buol, X., Robeyns, K., Caro Garrido, C., Tumanov, N., Collard, L., Wouters, J. & Leyssens, T. (2020). Pharmaceutics, 12, 653. [DOI] [PMC free article] [PubMed]
  7. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  8. Edwards, R. A., Easteal, A. J., Gladkikh, O. P., Robinson, W. T., Turnbull, M. M. & Wilkins, C. J. (1998). Acta Cryst. B54, 663–670.
  9. Edwards, R. A., Gladkikh, O. P., Nieuwenhuyzen, M. & Wilkins, C. J. (1999). Z. Kristallogr. 214, 111–118.
  10. Furmanova, N. G., Resnyanskii, V. F., Sulaimankulov, K. S., Zhorobekova, Sh. Zh. & Sulaimankulova, D. K. (2001). Crystallogr. Rep. 46, 51–55.
  11. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  12. Grothe, E., Meekes, H., Vlieg, E., ter Horst, J. H. & de Gelder, R. (2016). Cryst. Growth Des. 16, 3237–3243.
  13. Herceg, M. & Fischer, J. (1974). Acta Cryst. B30, 1289–1293.
  14. İde, S., Ataç, A. & Yurdakul, Ş. (2002). J. Mol. Struct. 605, 103–107.
  15. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  16. Palmer, D. C. (2020). CrystalMaker. CrystalMaker Software Ltd, Begbroke, England.
  17. Savinkina, E. V., Buravlev, E. A., Zamilatskov, I. A. & Albov, D. V. (2007). Acta Cryst. E63, m1094–m1095.
  18. Savinkina, E. V., Buravlev, E. A., Zamilatskov, I. A., Albov, D. V., Kravchenko, V. V., Zaitseva, M. G. & Mavrin, B. N. (2009). Z. Anorg. Allg. Chem. 635, 1458–1462.
  19. Savinkina, E. V., Zamilatskov, I. A., Buravlev, E. A., Albov, D. V. & Tsivadze, A. Yu. (2008). Mendeleev Commun. 18, 92–93.
  20. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  21. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  22. Shemchuk, O., Song, L., Robeyns, K., Braga, D., Grepioni, F. & Leyssens, T. (2018). Chem. Commun. 54, 10890–10892. [DOI] [PubMed]
  23. Shemchuk, O., Song, L., Tumanov, N., Wouters, J., Braga, D., Grepioni, F. & Leyssens, T. (2020). Cryst. Growth Des. 20, 2602–2607.
  24. Smirnov, A. S., Butukhanova, E. S., Bokach, N. A., Starova, G. L., Gurzhiy, V. V., Kuznetsov, M. L. & Kukushkin, V. Yu. (2014). Dalton Trans. 43, 15798–15811. [DOI] [PubMed]
  25. Song, L., Robeyns, K. & Leyssens, T. (2018). Cryst. Growth Des. 18, 3215–3221.
  26. Song, L., Robeyns, K., Tumanov, N., Wouters, J. & Leyssens, T. (2020). Chem. Commun. 56, 13229–13232. [DOI] [PubMed]
  27. Song, L., Shemchuk, O., Robeyns, K., Braga, D., Grepioni, F. & Leyssens, T. (2019). Cryst. Growth Des. 19, 2446–2454.
  28. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  29. Sultana, K., Zaib, S., Hassan Khan, N., Khan, I., Shahid, K., Simpson, J. & Iqbal, J. (2016). New J. Chem. 40, 7084–7094.
  30. Suzuki, H., Fukushima, N., Ishiguro, S., Masuda, H. & Ohtaki, H. (1991). Acta Cryst. C47, 1838–1842.
  31. Turnbull, M. M., Wikaira, J. L. & Wilkins, C. J. (2000). Z. Kristallogr. 215, 702–706.
  32. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, 1, 2, 3, 4, 5. DOI: 10.1107/S2056989021008264/zl5023sup1.cif

e-77-00880-sup1.cif (3.8MB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S2056989021008264/zl50231sup2.hkl

e-77-00880-1sup2.hkl (767.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021008264/zl50231sup7.mol

Structure factors: contains datablock(s) 2. DOI: 10.1107/S2056989021008264/zl50232sup3.hkl

e-77-00880-2sup3.hkl (425.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021008264/zl50232sup8.mol

Structure factors: contains datablock(s) 3. DOI: 10.1107/S2056989021008264/zl50233sup4.hkl

e-77-00880-3sup4.hkl (184.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021008264/zl50233sup9.mol

Supporting information file. DOI: 10.1107/S2056989021008264/zl50234sup10.mol

Structure factors: contains datablock(s) 4. DOI: 10.1107/S2056989021008264/zl50234sup5.hkl

e-77-00880-4sup5.hkl (427.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021008264/zl50235sup11.mol

Structure factors: contains datablock(s) 5. DOI: 10.1107/S2056989021008264/zl50235sup6.hkl

e-77-00880-5sup6.hkl (332.2KB, hkl)

CCDC references: 2102513, 2102512, 2102511, 2102510, 2102509

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES