Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Aug 24;77(Pt 9):958–964. doi: 10.1107/S2056989021008562

Crystal structures of three N-(pyridine-2-carbon­yl)pyridine-2-carboxamides as potential ligands for supra­molecular chemistry

Xiaowen Xu a, Richard Hoogenboom a, Kristof Van Hecke b,*
PMCID: PMC8423013  PMID: 34584770

The crystal structures of three N-(pyridine-2-carbon­yl)pyridine-2-carboxamide ligands, with or without F atoms on the 3-position of the pyridine ring, with potential use in supra­molecular chemistry are reported.

Keywords: supra­molecular chemistry, N-(pyridine-2-carbon­yl)pyridine-2-carboxamide, fluorine moieties, crystal structure

Abstract

The synthesis and single-crystal X-ray structures of three N-(pyridine-2-carbon­yl)pyridine-2-carboxamide imides, with or without F atoms on the 3-position of the pyridine rings are reported, namely, N-(pyridine-2-carbon­yl)pyridine-2-carboxamide, C12H9N3O2 (1), N-(3-fluoro­pyridine-2-carbon­yl)pyridine-2-carboxamide, C12H8FN3O2 (2), and 3-fluoro-N-(3-fluoro­pyridine-2-carbon­yl)pyridine-2-carboxamide, C12H7F2N3O2 (3). The above-mentioned compounds were synthesized by a mild, general procedure with an excellent yield, providing straightforward access to symmetrical and/or asymmetrical heterocyclic ureas. The crystal structures of 1 and 2 are isomorphous, showing similar packing arrangements, i.e. double layers of parallel (face-to-face) mol­ecules alternating with analogous, but perpendicularly oriented, double layers. In contrast, the crystal structure of 3, containing a fluoro- group at the 3-position of both pyridine rings, shows mol­ecular arrangements in a longitudinal, tubular manner along the c axis, with the aromatic pyridine and carbon­yl/fluorine moieties facing towards each other.

Chemical context  

N-(Pyridine-2-carbon­yl)pyridine-2-carboxamide systems and their derivatives have been shown to be very useful inter­mediates for the construction of mol­ecular building blocks, able to self-assemble into a wide range of super-architectures taking advantage of acceptor–donor–donor–acceptor (ADDA) arrays of hydrogen-bonding sites (Corbin et al., 2001). Further inter­est in this family of compounds has involved the investigation of their metal coordination complexes, which possess strong luminescence characteristics (Das et al., 2018), as well as their electrochemical (Gasser et al., 2012), magnetic (Kajiwara et al., 2010) and catalytic properties (Chowdhury et al., 2007). Consequently, the synthesis of N-(pyridine-2-carbon­yl)pyridine-2-carboxamide, containing different functional groups, at a large scale and in a high yield is of great importance in the field of supra­molecular chemistry. Previously reported studies have shown the conversion of 2-amino­pyridine to 1 in a single step (Gerchuk & Taits, 1950; Corbin et al., 2001). However, the utilized reaction conditions were, to some extent, harsh and the reported yield of the compound was rather low (< 32%), presumably because of the inferior nucleophilicity of the –NH2 groups at the 2-position of the pyridine rings. Moreover, the use of this procedure is limited to the synthesis of symmetrical imides. The synthesis of high-yield asymmetrical imides, bearing different functional groups on the pyridine rings, is still challenging.graphic file with name e-77-00958-scheme1.jpg

Herein, we report the single-crystal X-ray structural analysis of the imides N-(pyridine-2-carbon­yl)pyridine-2-carboxamide (1) (R 1 = H, R 2 = H), N-(3-fluoro­pyridine-2-carbon­yl)pyridine-2-carboxamide (2) (R 1 = F, R 2 = H) and 3-fluoro-N-(3-fluoro­pyridine-2-carbon­yl)pyridine-2-carboxamide (3) (R 1 = F, R 2 = F), prepared via a simple, straightforward synthesis method that does not involve high pressure nor harsh conditions and can be carried out on a large scale.

Structural commentary  

The structure of 1, although determined at a different temperature of 200 K, has previously been deposited in the CSD (refcode COJNAT; Castaneda & Gabidullin, 2019). Compound 1 crystallizes in the non-centrosymmetric ortho­rhom­bic space group Pna21, with the asymmetric unit consisting of one N-(pyridine-2-carbon­yl)pyridine-2-carboxamide mol­ecule. The mol­ecular structure of 1 is found almost completely planar, with a dihedral angle of 6.1 (2)° between the best planes through the two pyridine rings (Fig. 1 a).

Figure 1.

Figure 1

Mol­ecular structures of (a) 1, (b) 2 and (c) 3, showing thermal displacement ellipsoids drawn at the 50% probability level and the atom-labelling scheme. The disorder in 2 (b) is shown in yellow. The carbon atoms in the asymmetric unit of 3 (c) are shown in green. Intra­molecular hydrogen bonds are indicated.

The structure of 2 is isomorphous with 1, although the 3-fluoro-N-(pyridine-2-carbon­yl)pyridine-2-carboxamide mol­ecules are rotated 90° with respect to 1 (Fig. 2). Similarly to 1, the asymmetric unit contains one planar 3-fluoro-N-(pyridine-2-carbon­yl)pyridine-2-carboxamide mol­ecule, which shows a dihedral angle of 5.2 (2)° between the best planes through the two pyridine rings. Here, the fluoro group is found disordered over both pyridine rings, i.e. a transverse disorder by 180° rotation along the axis through the imide N—H function occurs, showing refined occupancy factors of 0.563 (8) and 0.437 (8) for the first (F1A) and second fluoro (F1B) site, respectively (Fig. 1 b).

Figure 2.

Figure 2

Unit-cell fit of the structures of 1 and 2, showing a 90° rotation of the mol­ecules of 2 (in green). Hydrogen atoms and disorder of the fluorine atoms are omitted for clarity.

Compound 3 crystallizes in the centrosymmetric monoclinic space group I2/a, with the asymmetric unit consisting of only half of a total 3-fluoro-N-(3-fluoro-pyridine-2-carbon­yl)pyridine-2-carboxamide mol­ecule. The second half is generated by symmetry, i.e. a twofold axis runs through the N—H imide atoms. In contrast to the previous structures of 1 and 2, the mol­ecular structure of 3 is not planar, with a dihedral angle of 29.73 (11)° between the best planes through the two pyridine rings (Fig. 1 c).

Supra­molecular features  

Despite the presence of two pyridine rings in the mol­ecular structure of 1, only weak π–π inter­actions are present in the crystal packing, with rather large centroid–centroid distances ranging from 4.969 (2) to 5.497 (2) Å. However, clear C=O⋯π contacts are observed in the crystal packing [C6—O1⋯Cg1(x, y, −1 + z) = 3.861 (3) Å; Cg1 is the centroid of the C1–C5/N1 ring]. Intra­molecular potential hydrogen bonds are found between the imide N2—H2 hydrogen atom and both pyridine nitro­gen atoms [N2—H2⋯N1 = 2.15 (6) Å; N2—H2⋯N3 = 2.15 (5) Å], while non-classical inter­molecular hydrogen bonds can be observed between the first pyridine rings and carbonyl O2 atoms of symmetry-equivalent mol­ecules [C3—H3⋯O2i = 2.48 Å; symmetry code: (i) Inline graphic − x, Inline graphic + y, −Inline graphic + z], while these first pyridine rings are further connected to each other via similar hydrogen bonds with the pyridine N1 atoms [C5—H5⋯N1ii = 2.51 Å; symmetry code: (ii) −x, 1 − y, −Inline graphic + z] (Table 1). As such, in the packing, double layers of parallel (face-to-face) mol­ecules of 1 are observed, parallel with the (100) plane, alternating with analogous double layers, oriented perpendicular to the former layers (Fig. 3).

Table 1. Hydrogen-bond geometry (Å, °) for 1 .

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N1 0.90 (5) 2.15 (6) 2.614 (5) 111 (4)
N2—H2⋯N3 0.90 (5) 2.15 (5) 2.637 (4) 113 (5)
C3—H3⋯O2i 0.95 2.48 3.343 (5) 152
C5—H5⋯N1ii 0.95 2.51 3.393 (5) 154

Symmetry codes: (i) -x+{\script{1\over 2}}, y+{\script{1\over 2}}, z+{\script{3\over 2}}; (ii) -x, -y+1, z-{\script{1\over 2}}.

Figure 3.

Figure 3

Packing in the structure of 1, showing (a) the perpendicularly oriented mol­ecules, viewed down the a axis and (b) the double layers of parallel-oriented (face-to-face) mol­ecules, inter­changed with analogous double layers, perpendicular to the former layers.

For the structure of 2, analogous to 1, only weak π–π inter­actions are present in the crystal packing between the 3-fluoro-pyridine rings, with centroid–centroid distances in the range 4.915 (3) to 5.473 (3) Å, while C=O⋯π contacts are also observed in the crystal packing [C6—O1⋯Cg1(x, y, −1 + z)= 3.865 (4) Å; Cg1 is the centroid of the C1–C5/N1 ring]. Analogous to 1, intra­molecular potential hydrogen bonds between the imide N2—H2 hydrogen atom and both pyridine nitro­gen atoms are observed [N2—H2⋯N1 = 2.16 (6) Å; N2—H2⋯N3 = 2.11 (6) Å], while non-classical inter­molecular hydrogen bonds occur between the first pyridine rings and carbonyl O2 atoms of symmetry-equivalent mol­ecules [C3—H3⋯O2i = 2.43 Å; symmetry code: (i) Inline graphic − x, Inline graphic + y, Inline graphic + z], while these first pyridine rings are further connected to each other via similar hydrogen bonds with the pyridine N1 atoms [C5—H5⋯N1ii = 2.53 Å; symmetry code: (ii) 1 − x, 2 − y, Inline graphic + z]. Additionally, C—H⋯F hydrogen bonds are observed with the two disordered fluorine moieties [C3—H3⋯F1B i = 2.40 Å; C10—H10⋯F1A iii = 2.45 Å; symmetry code: (iii) Inline graphic + x, Inline graphic − y, −1 + z] (Table 2). However, in the packing, analogous to 1, alternating double layers of parallel (face-to-face) mol­ecules of 2 are observed, parallel with the (100) plane (Fig. 4). Hence, the extra C—H⋯F bonds do not alter the overall architecture.

Table 2. Hydrogen-bond geometry (Å, °) for 2 .

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N1 0.92 (5) 2.16 (6) 2.614 (6) 109 (4)
N2—H2⋯N3 0.92 (5) 2.11 (6) 2.622 (5) 114 (5)
C3—H3⋯O2i 0.95 2.43 3.320 (6) 156
C3—H3⋯F1B i 0.95 2.40 3.049 (8) 125
C5—H5⋯N1ii 0.95 2.53 3.420 (6) 156
C10—H10⋯F1A iii 0.95 2.45 3.169 (7) 132

Symmetry codes: (i) -x+{\script{1\over 2}}, y+{\script{1\over 2}}, z+{\script{3\over 2}}; (ii) -x+1, -y+2, z+{\script{1\over 2}}; (iii) x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-1.

Figure 4.

Figure 4

Packing in the structure of 2, showing (a) the perpendicularly oriented mol­ecules, viewed down the a axis and (b) the double layers of parallel-oriented (face-to-face) mol­ecules, inter­changed with analogous double layers, perpendicular to the former layers. C10—H10⋯F1A hydrogen bonds are indicated. Hydrogen atoms and disorder of the fluorine atoms are omitted for clarity.

For 3, besides weak π–π inter­actions between the pyridine rings [centroid–centroid distances in the range 4.3776 (13)–5.9437 (13) Å], one strong π–π contact is observed between the pyridine ring and its symmetry-equivalent [CgCg(Inline graphic − x, Inline graphic − y, Inline graphic − z) = 3.6334 (13) Å; Cg is the centroid of the C1–C5/N1 ring]. Analogous to 1 and 2, intra­molecular potential hydrogen bonds are observed between the imide N2—H2 hydrogen atom and the pyridine nitro­gen atom [N2—H2⋯N1 = 2.265 (15) Å], while non-classical inter­molecular hydrogen bonds between the pyridine rings and carbonyl O1 atoms of symmetry-equivalent mol­ecules are found [C4—H4⋯O1ii = 2.49 Å; symmetry code: (ii) −x, −Inline graphic + y, Inline graphic − z] (Table 3). Additionally, although significantly longer, other hydrogen bonds are formed between the pyridine ring and the carbonyl O1 atom [C5—H5⋯O1ii = 2.61 Å] and C—H⋯F hydrogen bonds are observed with the fluorine moieties [C5—H5⋯F1ii = 2.66 Å; C3—H3⋯F1iii = 2.58 Å; symmetry codes: (iii) −x, 1 − y, −z]. This gives rise to a different packing assembly, i.e. the mol­ecules are arranged in a longitudinal, tubular manner along the c-axis direction, while the aromatic pyridine and the carbon­yl/fluorine moieties, face towards each other (Fig. 5).

Table 3. Hydrogen-bond geometry (Å, °) for 3 .

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N1 0.84 (4) 2.27 (2) 2.671 (2) 110 (1)
N2—H2⋯N1i 0.84 (4) 2.27 (2) 2.671 (2) 110 (1)
C4—H4⋯O1ii 0.95 2.49 3.135 (3) 125
C5—H5⋯O1ii 0.95 2.61 3.207 (3) 122
C3—H3⋯F1iii 0.95 2.58 3.398 (3) 145
C5—H5⋯F1ii 0.95 2.66 3.604 (3) 176

Symmetry codes: (i) -x+{\script{1\over 2}}, y, -z+1; (ii) -x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}; (iii) -x, -y+1, -z.

Figure 5.

Figure 5

Packing in the structure of 3, showing (a) the longitudinal tubular arrangement of the mol­ecules along the c axis and (b) the aromatic pyridine and the carbon­yl/fluorine moieties facing towards each other. C5—H5⋯F1 and C3—H3⋯F1 hydrogen bonds are indicated. Hydrogen atoms are omitted for clarity.

Database survey  

A survey of compounds related to 1, 2 and 3, deposited with the Cambridge Structural Database (CSD 2021.1, version 5.42 updates May 2021; Groom et al., 2016) resulted in three other compounds with refcodes COJNAT, WUXQOW and ZAVVAV.

As previously mentioned, COJNAT (Castaneda & Gabidullin, 2019) represents the same structure as 1, although determined at 200 K. When fitting the mol­ecular structures of COJNAT and 1, an r.m.s.d. of 0.0107 Å is obtained.

The structure with refcode WUXQOW (Sahu et al., 2010) represents an analogous structure to 1, but featuring quinoline moieties instead of pyridine rings, i.e. N,N-bis­(quinolin-2-ylcarbon­yl)amine. Similarly to 1, the mol­ecular structure is also found to be almost completely planar, with a dihedral angle of 1.34 (4)° between the best planes through the two quinoline moieties.

The structure with refcode ZAVVAV (Zebret et al., 2012) represents another N-(pyridine-2-carbon­yl)pyridine-2-carboxamide system, in this case featuring two meth­oxy substituents, one on each pyridine ring, i.e. methyl 6-({[6-(meth­oxy­carbon­yl)pyridin-2-yl]carbon­yl}carbamo­yl)pyridine-2-carboxyl­ate. Here, because of steric hindrance of the substituents, the planes defined by the two pyridine rings are distorted by 14.52 (11)°.

Synthesis and crystallization  

The known compound 1 was prepared in excellent yield by the reaction between 2-pyridine­carbonyl chloride and 2-pyri­dine­carboxamide under mild conditions. By introducing a fluoro group at the 3-position of 2-pyridine­carbonyl chloride and/or 2-pyridine­carboxamide, the new compounds 2 and 3 could be obtained, also in excellent yield. Details for the synthesis of the precursors and the products are given below. Unless otherwise stated, all reagents were used as received.

3-Fluoro­pyridine-2-carb­oxy­lic acid

The preparation of 3-fluoro­pyridine-2-carb­oxy­lic acid was performed according to a previously reported procedure (Eller et al., 2006). Commercially available lithium 3-fluoro­picolinate (1.47 g, 10 mmol) was recrystallized from a mixture of EtOH–H2O (9:1), which was acidified with several drops of concentrated HCl (36.5%) to afford 3-fluoro­pyridine-2-carb­oxy­lic acid. Yield: 91%. 1H NMR (300 MHz, DMSO-d 6) δ 8.49 (d, J = 4.4 Hz, 1H), 7.94–7.81 (m, 1H), 7.64–7.70 (m, 1H). 13C NMR (101 MHz, DMSO-d 6) δ 164.35, 159.27, 145.26, 138.65, 128.27, 125.59.

2-Pyridine­carbonyl chloride

The preparation of 2-pyridine­carbonyl chloride was performed according to a previously reported procedure (Aluri et al., 2011). 2-Pyridine­carb­oxy­lic acid (1.23 g, 10 mmol) and SOCl2 (11.9 g, 100 mmol) were dissolved in 100 ml of dry toluene with 10 drops of DMF. The reaction mixture was refluxed at 383.15 K for 3 h. The reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. The resulting viscous residue was used directly in the next step without further purification.

3-Fluoro­pyridine-2-carbonyl chloride

The preparation of 3-fluoro­pyridine-2-carbonyl chloride was performed according to a previously reported procedure (Aluri et al., 2011). 3-Fluoro­pyridin-2-carb­oxy­lic acid (1.41 g, 10 mmol) and SOCl2 (11.9 g, 100 mmol) were dissolved in 100 ml of dry toluene with 10 drops of DMF. The reaction mixture was refluxed at 383 K for 3 h. The reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. The resulting viscous residue was used directly in the next step without further purification.

2-Pyridine­carboxamide

The preparation of 2-pyridine­carboxamide was performed according to a previously reported procedure (Cai et al., 2014). 20 ml of NH3/methanol solution (NH3 ca 7 N in methanol solution) was slowly added to 2-pyridine­carbonyl chloride at 273 K under stirring. The resulting reaction mixture was allowed to warm to room temperature and stirred overnight. The solvent was removed under reduced pressure and the residue was purified by a silica column with an eluent of hexa­ne/ethyl acetate (5/1) to afford the product. Yield: 88%. 1H NMR (300 MHz, DMSO-d 6) δ 8.63 (d, J = 4.7 Hz, 1H), 8.11 (s, 1H), 8.06–7.94 (m, 2H), 7.64 (s, 1H), 7.63–7.55 (m, 1H).

3-Fluoro­pyridin-2-carboxamide

20 ml of NH3/methanol (NH3 ca 7 N in methanol solution) was added slowly to 3-fluoro­pyridin-2-carbonyl chloride at 273 K under stirring. The resulting reaction mixture was allowed to warm to room temperature and stirred overnight. The solvent was removed under reduced pressure and the residue was purified by silica column with an eluent of hexa­ne/ethyl acetate (5/1) to afford the product. Yield 85%. 1H NMR (300 MHz, CDCl3) δ 8.34 (dt, J = 4.2, 1.4 Hz, 1H), 7.63 (s, 1H), 7.54–7.40 (m, 2H), 6.30 (s, 1H). 13C NMR (101 MHz, CDCl3) δ 164.96, 164.91, 158.20, 144.12, 144.07, 137.26, 128.42, 128.37, 126.36, 126.16.

N -(Pyridine-2-carbon­yl)pyridine-2-carboxamide (1)

2-Pyridine­carbonyl chloride (212.32 mg, 1.5 mmol) and 2-pyridine­carboxamide (170.98 mg, 1.4 mmol) were dissolved in toluene (20 ml). The resulting reaction mixture was refluxed at 383 K overnight. The solvent was removed under reduced pressure and the residue was purified by a silica column with an eluent of hexa­ne/ethyl acetate (3/1) to afford the product. Yield: 91%. 1H NMR (300 MHz, CDCl3) δ 13.03 (s, 1H), 8.75 (ddd, J = 4.8, 1.7, 0.9 Hz, 2H), 8.35 (dt, J = 7.9, 1.1 Hz, 2H), 7.94 (td, J = 7.7, 1.7 Hz, 2H), 7.56 (ddd, J = 7.6, 4.8, 1.2 Hz, 2H). 13C NMR (101 MHz, CDCl3) δ 162.65, 149.15, 148.67, 137.73, 127.50, 123.49.

N -(3-Fluoro­pyridine-2-carbon­yl)pyridine-2-carboxamide (2)

3-Fluoro­pyridin-2-carboxamide (238.47 mg, 1.5 mmol) and 2-pyridine­carboxamide (170.98 mg, 1.4 mmol) were dissolved in toluene (20 ml). The resulting reaction mixture was refluxed at 383 K overnight. The solvent was removed under reduced pressure and the residue was purified by a silica column with an eluent of hexa­ne/ethyl acetate (3/1) to afford the product. Yield: 89%. 1H NMR (300 MHz, DMSO-d 6) δ 12.72 (s, 1H), 8.81 (ddd, J = 4.8, 1.6, 0.9 Hz, 1H), 8.66 (dt, J = 4.5, 1.4 Hz, 1H), 8.22 (dt, J = 7.8, 1.1 Hz, 1H), 8.13 (td, J = 7.7, 1.7 Hz, 1H), 8.02 (ddd, J = 11.3, 8.5, 1.2 Hz, 1H), 7.92–7.85 (m, 1H), 7.78 (ddd, J = 7.5, 4.8, 1.3 Hz, 1H). 13C NMR (101 MHz, DMSO-d 6) 161.88, 160.91, 159.53, 159.47, 158.21, 148.97, 148.16, 144.99, 144.93, 138.66, 135.97, 135.92, 130.72, 130.67, 128.35, 127.45, 127.26, 122.94.

3-Fluoro- N -(3-fluoro­pyridine-2-carbon­yl)pyridine-2-carb­ox­amide (3)

3-Fluoro­pyridin-2-carboxamide (238.47 mg, 1.5 mmol) and 3-fluoro­pyridin-2-carbonyl chloride (196.04 mg, 1.4 mmol) were dissolved in toluene (20 ml). The resulting reaction mixture was refluxed at 383 K overnight. The solvent was removed under reduced pressure and the residue was purified by a silica column with an eluent of hexa­ne/ethyl acetate (3/1) to afford the product. Yield: 80%. 1H NMR (300 MHz, DMSO-d 6) δ 12.53 (s, 1H), 8.64 (dt, J = 4.5, 1.4 Hz, 2H), 8.02 (ddd, J = 11.3, 8.5, 1.2 Hz, 2H), 7.91–7.80 (m, 2H). 13C NMR (101 MHz, DMSO-d 6) 160.75, 159.72, 159.66, 158.05, 156.16, 144.97, 144.92, 136.12, 136.08, 130.62, 130.56, 127.36, 127.17.

Crystals of 1, 2, and 3, suitable for single-crystal X-ray diffraction analysis were prepared by slow evaporation of a 10 mg ml−1 aceto­nitrile solution at room temperature. All crystals appeared as colourless blocks.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 4. For all structures, the imide N—H hydrogen atoms could be located from a difference electron-density Fourier map, and were further refined with isotropic temperature factors fixed at 1.2 times U eq of the parent atoms.

Table 4. Experimental details.

  1 2 3
Crystal data
Chemical formula C12H9N3O2 C12H8FN3O2 C12H7F2N3O2
M r 227.22 245.21 263.21
Crystal system, space group Orthorhombic, P n a21 Orthorhombic, P n a21 Monoclinic, I2/a
Temperature (K) 100 100 100
a, b, c (Å) 16.2689 (6), 12.8086 (7), 4.9983 (2) 16.6058 (10), 12.9096 (7), 4.9153 (3) 6.7062 (3), 14.1190 (5), 11.2074 (5)
α, β, γ (°) 90, 90, 90 90, 90, 90 90, 97.140 (4), 90
V3) 1041.56 (8) 1053.71 (11) 1052.94 (8)
Z 4 4 4
Radiation type Cu Kα Cu Kα Cu Kα
μ (mm−1) 0.85 1.03 1.22
Crystal size (mm) 0.20 × 0.12 × 0.06 0.26 × 0.10 × 0.05 0.11 × 0.09 × 0.06
 
Data collection
Diffractometer SuperNova, Dual, Cu at zero, Atlas SuperNova, Dual, Cu at zero, Atlas SuperNova, Dual, Cu at zero, Atlas
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2015) Gaussian (CrysAlis PRO; Rigaku OD, 2015) Gaussian (CrysAlis PRO; Rigaku OD, 2015)
Tmin, Tmax 0.187, 0.563 0.983, 0.995 0.993, 0.996
No. of measured, independent and observed [I > 2σ(I)] reflections 8626, 2028, 1831 5774, 1798, 1567 5200, 1083, 856
R int 0.076 0.054 0.069
(sin θ/λ)max−1) 0.627 0.629 0.628
 
Refinement
R[F2 > 2σ(F 2)], wR(F 2), S 0.060, 0.170, 1.07 0.055, 0.152, 1.03 0.055, 0.161, 1.04
No. of reflections 2028 1798 1083
No. of parameters 157 176 88
No. of restraints 1 1 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.32, −0.30 0.28, −0.28 0.29, −0.32
Absolute structure Flack x determined using 673 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013) Flack x determined using 450 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter 0.0 (3) 0.2 (3)

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SHELXS (Sheldrick, 2008), SHELXL (Sheldrick, 2015) and OLEX2 (Dolomanov et al., 2009).

For the structure of 2, the 3-fluoro­pyridine atom is disordered at both pyridine sites, showing final occupancy factors of 0.563 (8) and 0.437 (8), for the first and second site, respectively.

Supplementary Material

Crystal structure: contains datablock(s) global, 1, 2, 3. DOI: 10.1107/S2056989021008562/vm2252sup1.cif

e-77-00958-sup1.cif (717.2KB, cif)

Supporting information file. DOI: 10.1107/S2056989021008562/vm22521sup2.cml

Supporting information file. DOI: 10.1107/S2056989021008562/vm22522sup3.cml

Supporting information file. DOI: 10.1107/S2056989021008562/vm22523sup4.cml

CCDC references: 2103652, 2103651, 2103650

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

N-(Pyridine-2-carbonyl)pyridine-2-carboxamide (1) . Crystal data

C12H9N3O2 Dx = 1.449 Mg m3
Mr = 227.22 Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, Pna21 Cell parameters from 4719 reflections
a = 16.2689 (6) Å θ = 4.2–74.0°
b = 12.8086 (7) Å µ = 0.85 mm1
c = 4.9983 (2) Å T = 100 K
V = 1041.56 (8) Å3 Block, clear colourless
Z = 4 0.20 × 0.12 × 0.06 mm
F(000) = 472

N-(Pyridine-2-carbonyl)pyridine-2-carboxamide (1) . Data collection

SuperNova, Dual, Cu at zero, Atlas diffractometer 2028 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source 1831 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.076
Detector resolution: 10.4839 pixels mm-1 θmax = 75.3°, θmin = 4.4°
ω scans h = −14→20
Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2015) k = −15→15
Tmin = 0.187, Tmax = 0.563 l = −5→6
8626 measured reflections

N-(Pyridine-2-carbonyl)pyridine-2-carboxamide (1) . Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.060 w = 1/[σ2(Fo2) + (0.1236P)2 + 0.0215P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.170 (Δ/σ)max < 0.001
S = 1.07 Δρmax = 0.32 e Å3
2028 reflections Δρmin = −0.30 e Å3
157 parameters Absolute structure: Flack x determined using 673 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraint Absolute structure parameter: 0.0 (3)
Primary atom site location: structure-invariant direct methods

N-(Pyridine-2-carbonyl)pyridine-2-carboxamide (1) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

N-(Pyridine-2-carbonyl)pyridine-2-carboxamide (1) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.29400 (14) 0.3937 (2) 0.2999 (6) 0.0362 (7)
O2 0.22855 (16) 0.2512 (2) 0.7000 (6) 0.0343 (7)
N1 0.10762 (18) 0.4562 (3) −0.0277 (7) 0.0301 (7)
N2 0.16131 (17) 0.3339 (2) 0.3528 (7) 0.0299 (7)
N3 0.01890 (19) 0.2587 (3) 0.5153 (7) 0.0335 (8)
C1 0.1883 (2) 0.4642 (3) 0.0217 (8) 0.0288 (8)
C2 0.2393 (2) 0.5328 (3) −0.1112 (8) 0.0322 (8)
H2A 0.296091 0.536690 −0.068626 0.039*
C3 0.2060 (2) 0.5956 (3) −0.3071 (9) 0.0372 (9)
H3 0.239464 0.643907 −0.401515 0.045*
C4 0.1232 (2) 0.5872 (3) −0.3640 (9) 0.0372 (9)
H4 0.098806 0.628601 −0.500275 0.045*
C5 0.0767 (2) 0.5170 (3) −0.2176 (8) 0.0344 (8)
H5 0.019566 0.512061 −0.255151 0.041*
C6 0.2213 (2) 0.3943 (3) 0.2372 (8) 0.0279 (8)
C7 0.1662 (2) 0.2696 (3) 0.5753 (8) 0.0284 (8)
C8 0.0840 (2) 0.2245 (3) 0.6517 (8) 0.0290 (8)
C9 −0.0551 (2) 0.2220 (3) 0.5853 (10) 0.0361 (9)
H9 −0.101987 0.245492 0.489110 0.043*
C10 −0.0664 (2) 0.1513 (3) 0.7923 (9) 0.0371 (9)
H10 −0.119977 0.127904 0.838484 0.045*
C11 0.0010 (3) 0.1157 (4) 0.9290 (9) 0.0410 (10)
H11 −0.004963 0.066767 1.070577 0.049*
C12 0.0785 (2) 0.1526 (3) 0.8565 (9) 0.0368 (9)
H12 0.126414 0.128826 0.946242 0.044*
H2 0.110 (3) 0.341 (4) 0.286 (12) 0.044*

N-(Pyridine-2-carbonyl)pyridine-2-carboxamide (1) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0224 (11) 0.0457 (15) 0.0404 (17) 0.0004 (11) −0.0002 (11) 0.0017 (13)
O2 0.0291 (12) 0.0387 (14) 0.0352 (15) 0.0032 (10) −0.0065 (10) 0.0041 (12)
N1 0.0235 (13) 0.0340 (15) 0.0328 (17) 0.0006 (11) −0.0019 (12) −0.0011 (13)
N2 0.0235 (13) 0.0350 (15) 0.0312 (17) 0.0004 (11) −0.0032 (12) 0.0022 (13)
N3 0.0286 (14) 0.0353 (16) 0.0365 (19) −0.0011 (11) 0.0011 (13) 0.0023 (15)
C1 0.0270 (15) 0.0290 (16) 0.0302 (19) 0.0025 (13) 0.0024 (14) −0.0040 (14)
C2 0.0270 (16) 0.0333 (18) 0.036 (2) −0.0007 (13) 0.0064 (15) −0.0024 (16)
C3 0.0379 (19) 0.0334 (18) 0.040 (2) 0.0007 (15) 0.0100 (17) 0.0029 (17)
C4 0.0424 (19) 0.0361 (18) 0.033 (2) 0.0081 (17) 0.0016 (17) −0.0015 (16)
C5 0.0308 (16) 0.0393 (18) 0.033 (2) 0.0036 (15) 0.0007 (16) −0.0005 (17)
C6 0.0214 (15) 0.0318 (17) 0.0304 (19) 0.0016 (12) −0.0011 (13) −0.0024 (15)
C7 0.0303 (16) 0.0281 (16) 0.0269 (18) 0.0034 (13) −0.0011 (14) 0.0002 (14)
C8 0.0283 (16) 0.0296 (17) 0.0292 (19) 0.0010 (13) −0.0011 (13) −0.0032 (15)
C9 0.0262 (16) 0.0390 (19) 0.043 (2) −0.0019 (15) 0.0023 (16) 0.0022 (16)
C10 0.0350 (17) 0.0367 (18) 0.040 (2) −0.0063 (15) 0.0072 (16) −0.0006 (17)
C11 0.043 (2) 0.041 (2) 0.038 (3) −0.0062 (16) 0.0010 (18) 0.0060 (18)
C12 0.0346 (17) 0.041 (2) 0.035 (2) −0.0004 (15) −0.0030 (15) 0.0069 (17)

N-(Pyridine-2-carbonyl)pyridine-2-carboxamide (1) . Geometric parameters (Å, º)

O1—C6 1.224 (4) C3—C4 1.380 (6)
O2—C7 1.214 (4) C4—H4 0.9500
N1—C1 1.339 (4) C4—C5 1.385 (6)
N1—C5 1.327 (5) C5—H5 0.9500
N2—C6 1.373 (5) C7—C8 1.506 (5)
N2—C7 1.385 (5) C8—C12 1.380 (6)
N2—H2 0.90 (5) C9—H9 0.9500
N3—C8 1.333 (5) C9—C10 1.387 (6)
N3—C9 1.339 (5) C10—H10 0.9500
C1—C2 1.379 (5) C10—C11 1.370 (6)
C1—C6 1.499 (5) C11—H11 0.9500
C2—H2A 0.9500 C11—C12 1.394 (6)
C2—C3 1.378 (6) C12—H12 0.9500
C3—H3 0.9500
C5—N1—C1 117.3 (3) O1—C6—C1 122.3 (3)
C6—N2—C7 129.2 (3) N2—C6—C1 112.6 (3)
C6—N2—H2 116 (3) O2—C7—N2 125.1 (3)
C7—N2—H2 114 (3) O2—C7—C8 122.5 (3)
C8—N3—C9 117.8 (4) N2—C7—C8 112.4 (3)
N1—C1—C2 123.3 (4) N3—C8—C7 116.7 (3)
N1—C1—C6 115.9 (3) N3—C8—C12 123.1 (4)
C2—C1—C6 120.7 (3) C12—C8—C7 120.1 (3)
C1—C2—H2A 120.7 N3—C9—H9 118.6
C3—C2—C1 118.6 (3) N3—C9—C10 122.9 (4)
C3—C2—H2A 120.7 C10—C9—H9 118.6
C2—C3—H3 120.5 C9—C10—H10 120.5
C2—C3—C4 119.0 (4) C11—C10—C9 118.9 (4)
C4—C3—H3 120.5 C11—C10—H10 120.5
C3—C4—H4 120.8 C10—C11—H11 120.6
C3—C4—C5 118.3 (4) C10—C11—C12 118.7 (4)
C5—C4—H4 120.8 C12—C11—H11 120.6
N1—C5—C4 123.5 (4) C8—C12—C11 118.6 (4)
N1—C5—H5 118.3 C8—C12—H12 120.7
C4—C5—H5 118.3 C11—C12—H12 120.7
O1—C6—N2 125.1 (3)
O2—C7—C8—N3 173.6 (4) C3—C4—C5—N1 −1.0 (6)
O2—C7—C8—C12 −5.5 (5) C5—N1—C1—C2 1.0 (6)
N1—C1—C2—C3 −0.8 (6) C5—N1—C1—C6 −179.9 (3)
N1—C1—C6—O1 179.4 (4) C6—N2—C7—O2 −4.7 (6)
N1—C1—C6—N2 −1.1 (5) C6—N2—C7—C8 174.7 (3)
N2—C7—C8—N3 −5.8 (5) C6—C1—C2—C3 −179.8 (3)
N2—C7—C8—C12 175.2 (4) C7—N2—C6—O1 7.6 (6)
N3—C8—C12—C11 −1.6 (6) C7—N2—C6—C1 −171.9 (3)
N3—C9—C10—C11 −1.1 (7) C7—C8—C12—C11 177.4 (4)
C1—N1—C5—C4 −0.1 (6) C8—N3—C9—C10 0.3 (6)
C1—C2—C3—C4 −0.3 (6) C9—N3—C8—C7 −178.0 (3)
C2—C1—C6—O1 −1.5 (5) C9—N3—C8—C12 1.0 (6)
C2—C1—C6—N2 178.0 (3) C9—C10—C11—C12 0.5 (7)
C2—C3—C4—C5 1.1 (6) C10—C11—C12—C8 0.7 (7)

N-(Pyridine-2-carbonyl)pyridine-2-carboxamide (1) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2···N1 0.90 (5) 2.15 (6) 2.614 (5) 111 (4)
N2—H2···N3 0.90 (5) 2.15 (5) 2.637 (4) 113 (5)
C3—H3···O2i 0.95 2.48 3.343 (5) 152
C5—H5···N1ii 0.95 2.51 3.393 (5) 154

Symmetry codes: (i) −x+1/2, y+1/2, z−3/2; (ii) −x, −y+1, z−1/2.

N-(3-Fluoropyridine-2-carbonyl)pyridine-2-carboxamide (2) . Crystal data

C12H8FN3O2 Dx = 1.546 Mg m3
Mr = 245.21 Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, Pna21 Cell parameters from 2360 reflections
a = 16.6058 (10) Å θ = 3.4–74.8°
b = 12.9096 (7) Å µ = 1.03 mm1
c = 4.9153 (3) Å T = 100 K
V = 1053.71 (11) Å3 Block, clear colourless
Z = 4 0.26 × 0.10 × 0.05 mm
F(000) = 504

N-(3-Fluoropyridine-2-carbonyl)pyridine-2-carboxamide (2) . Data collection

SuperNova, Dual, Cu at zero, Atlas diffractometer 1798 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source 1567 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.054
Detector resolution: 10.4839 pixels mm-1 θmax = 75.9°, θmin = 5.3°
ω scans h = −19→20
Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2015) k = −15→16
Tmin = 0.983, Tmax = 0.995 l = −6→5
5774 measured reflections

N-(3-Fluoropyridine-2-carbonyl)pyridine-2-carboxamide (2) . Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.055 w = 1/[σ2(Fo2) + (0.0898P)2 + 0.4172P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.152 (Δ/σ)max < 0.001
S = 1.03 Δρmax = 0.28 e Å3
1798 reflections Δρmin = −0.28 e Å3
176 parameters Absolute structure: Flack x determined using 450 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraint Absolute structure parameter: 0.2 (3)
Primary atom site location: structure-invariant direct methods

N-(3-Fluoropyridine-2-carbonyl)pyridine-2-carboxamide (2) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

N-(3-Fluoropyridine-2-carbonyl)pyridine-2-carboxamide (2) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O2 0.27904 (19) 0.7427 (2) 0.1952 (8) 0.0338 (8)
O1 0.21184 (17) 0.8809 (3) 0.5995 (8) 0.0359 (8)
N3 0.4847 (2) 0.7588 (3) 0.3876 (9) 0.0309 (9)
N2 0.3438 (2) 0.8296 (3) 0.5407 (9) 0.0271 (8)
N1 0.3932 (2) 0.9540 (3) 0.9257 (8) 0.0269 (8)
C12 0.4327 (3) 0.6517 (4) 0.0372 (11) 0.0407 (12)
H12 0.387317 0.626086 −0.059309 0.049* 0.563 (8)
C8 0.4221 (3) 0.7223 (3) 0.2426 (10) 0.0267 (9)
C9 0.5586 (3) 0.7247 (3) 0.3242 (12) 0.0358 (11)
H9 0.603043 0.749297 0.427390 0.043*
C10 0.5730 (3) 0.6555 (4) 0.1156 (11) 0.0393 (11)
H10 0.626396 0.634525 0.073279 0.047*
C11 0.5087 (3) 0.6176 (4) −0.0299 (12) 0.0433 (13)
H11 0.516473 0.569153 −0.172922 0.052*
C7 0.3403 (2) 0.7643 (3) 0.3213 (10) 0.0270 (9)
C6 0.2827 (2) 0.8864 (3) 0.6609 (9) 0.0257 (9)
C1 0.3139 (2) 0.9587 (3) 0.8767 (10) 0.0247 (9)
C2 0.2642 (3) 1.0262 (3) 1.0150 (10) 0.0300 (10)
H2A 0.208315 1.028822 0.973723 0.036* 0.437 (8)
C3 0.2959 (3) 1.0902 (3) 1.2140 (12) 0.0351 (11)
H3 0.262391 1.137086 1.310847 0.042*
C4 0.3766 (3) 1.0842 (3) 1.2677 (11) 0.0341 (10)
H4 0.400053 1.126025 1.405499 0.041*
C5 0.4234 (3) 1.0164 (3) 1.1188 (10) 0.0302 (9)
H5 0.479609 1.013741 1.154679 0.036*
F1B 0.3801 (4) 0.6170 (5) −0.1240 (16) 0.046 (2) 0.437 (8)
F1A 0.1855 (3) 1.0352 (3) 0.9733 (12) 0.0368 (16) 0.563 (8)
H2 0.395 (3) 0.837 (4) 0.611 (14) 0.044*

N-(3-Fluoropyridine-2-carbonyl)pyridine-2-carboxamide (2) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O2 0.0306 (15) 0.0302 (14) 0.0407 (19) −0.0041 (12) −0.0077 (16) −0.0028 (15)
O1 0.0223 (15) 0.0426 (17) 0.043 (2) −0.0018 (12) −0.0037 (15) 0.0012 (16)
N3 0.0279 (18) 0.0288 (17) 0.036 (2) −0.0004 (13) −0.0008 (17) −0.0003 (17)
N2 0.0239 (17) 0.0283 (17) 0.029 (2) −0.0004 (13) −0.0022 (15) −0.0039 (15)
N1 0.0249 (17) 0.0281 (16) 0.028 (2) −0.0030 (13) −0.0019 (15) −0.0021 (15)
C12 0.055 (3) 0.034 (2) 0.033 (3) 0.006 (2) −0.009 (3) −0.003 (2)
C8 0.029 (2) 0.0221 (16) 0.029 (2) −0.0005 (14) −0.0027 (18) 0.0019 (17)
C9 0.033 (2) 0.028 (2) 0.047 (3) 0.0026 (17) 0.003 (2) −0.001 (2)
C10 0.045 (2) 0.030 (2) 0.043 (3) 0.0102 (19) 0.012 (2) 0.005 (2)
C11 0.061 (3) 0.036 (2) 0.033 (3) 0.010 (2) 0.004 (3) −0.004 (2)
C7 0.031 (2) 0.0227 (18) 0.027 (2) −0.0036 (15) −0.003 (2) 0.0033 (17)
C6 0.0198 (18) 0.0282 (18) 0.029 (3) −0.0029 (15) −0.0016 (17) 0.0038 (19)
C1 0.0218 (18) 0.0222 (16) 0.030 (2) −0.0014 (14) −0.0005 (19) 0.0011 (16)
C2 0.028 (2) 0.0232 (18) 0.039 (3) 0.0010 (15) 0.006 (2) 0.0045 (19)
C3 0.043 (3) 0.0250 (19) 0.037 (3) −0.0003 (17) 0.009 (2) −0.003 (2)
C4 0.044 (3) 0.0276 (19) 0.030 (2) −0.0053 (18) 0.005 (2) −0.002 (2)
C5 0.030 (2) 0.0301 (19) 0.031 (2) −0.0040 (16) −0.001 (2) −0.002 (2)
F1B 0.036 (4) 0.053 (4) 0.050 (5) −0.002 (3) −0.012 (3) −0.025 (4)
F1A 0.020 (2) 0.028 (2) 0.062 (4) 0.0007 (16) 0.002 (2) 0.001 (2)

N-(3-Fluoropyridine-2-carbonyl)pyridine-2-carboxamide (2) . Geometric parameters (Å, º)

O2—C7 1.224 (5) C9—C10 1.381 (7)
O1—C6 1.217 (5) C10—H10 0.9500
N3—C8 1.346 (6) C10—C11 1.376 (8)
N3—C9 1.340 (6) C11—H11 0.9500
N2—C7 1.370 (6) C6—C1 1.505 (6)
N2—C6 1.384 (6) C1—C2 1.380 (6)
N2—H2 0.92 (6) C2—H2A 0.9500
N1—C1 1.341 (5) C2—C3 1.384 (7)
N1—C5 1.342 (6) C2—F1A 1.327 (6)
C12—H12 0.9500 C3—H3 0.9500
C12—C8 1.372 (7) C3—C4 1.369 (7)
C12—C11 1.376 (7) C4—H4 0.9500
C12—F1B 1.262 (8) C4—C5 1.381 (6)
C8—C7 1.511 (6) C5—H5 0.9500
C9—H9 0.9500
C9—N3—C8 118.0 (4) O2—C7—C8 122.4 (4)
C7—N2—C6 129.1 (4) N2—C7—C8 112.6 (3)
C7—N2—H2 113 (4) O1—C6—N2 124.9 (4)
C6—N2—H2 118 (4) O1—C6—C1 122.9 (4)
C1—N1—C5 117.9 (4) N2—C6—C1 112.2 (3)
C8—C12—H12 119.8 N1—C1—C6 115.9 (3)
C8—C12—C11 120.5 (5) N1—C1—C2 121.9 (4)
C11—C12—H12 119.8 C2—C1—C6 122.2 (4)
F1B—C12—C8 127.5 (6) C1—C2—H2A 120.1
F1B—C12—C11 111.7 (6) C1—C2—C3 119.8 (4)
N3—C8—C12 121.5 (4) C3—C2—H2A 120.1
N3—C8—C7 115.7 (4) F1A—C2—C1 124.6 (5)
C12—C8—C7 122.8 (4) F1A—C2—C3 115.6 (4)
N3—C9—H9 118.5 C2—C3—H3 120.8
N3—C9—C10 122.9 (5) C4—C3—C2 118.4 (4)
C10—C9—H9 118.5 C4—C3—H3 120.8
C9—C10—H10 120.6 C3—C4—H4 120.5
C11—C10—C9 118.8 (5) C3—C4—C5 119.0 (4)
C11—C10—H10 120.6 C5—C4—H4 120.5
C12—C11—H11 120.9 N1—C5—C4 123.0 (4)
C10—C11—C12 118.3 (5) N1—C5—H5 118.5
C10—C11—H11 120.9 C4—C5—H5 118.5
O2—C7—N2 125.0 (4)
O1—C6—C1—N1 178.5 (4) C11—C12—C8—C7 178.6 (4)
O1—C6—C1—C2 −1.9 (7) C7—N2—C6—O1 6.0 (7)
N3—C8—C7—O2 175.2 (4) C7—N2—C6—C1 −172.9 (4)
N3—C8—C7—N2 −3.2 (5) C6—N2—C7—O2 −2.1 (7)
N3—C9—C10—C11 −1.7 (8) C6—N2—C7—C8 176.3 (4)
N2—C6—C1—N1 −2.6 (5) C6—C1—C2—C3 179.2 (4)
N2—C6—C1—C2 177.0 (4) C6—C1—C2—F1A −0.4 (7)
N1—C1—C2—C3 −1.2 (7) C1—N1—C5—C4 0.2 (6)
N1—C1—C2—F1A 179.2 (4) C1—C2—C3—C4 0.0 (7)
C12—C8—C7—O2 −4.7 (6) C2—C3—C4—C5 1.2 (7)
C12—C8—C7—N2 176.8 (4) C3—C4—C5—N1 −1.3 (7)
C8—N3—C9—C10 1.0 (7) C5—N1—C1—C6 −179.3 (4)
C8—C12—C11—C10 0.6 (8) C5—N1—C1—C2 1.1 (6)
C9—N3—C8—C12 0.6 (7) F1B—C12—C8—N3 −175.0 (6)
C9—N3—C8—C7 −179.4 (4) F1B—C12—C8—C7 5.0 (9)
C9—C10—C11—C12 0.9 (7) F1B—C12—C11—C10 175.1 (6)
C11—C12—C8—N3 −1.3 (7) F1A—C2—C3—C4 179.6 (5)

N-(3-Fluoropyridine-2-carbonyl)pyridine-2-carboxamide (2) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2···N1 0.92 (5) 2.16 (6) 2.614 (6) 109 (4)
N2—H2···N3 0.92 (5) 2.11 (6) 2.622 (5) 114 (5)
C3—H3···O2i 0.95 2.43 3.320 (6) 156
C3—H3···F1Bi 0.95 2.40 3.049 (8) 125
C5—H5···N1ii 0.95 2.53 3.420 (6) 156
C10—H10···F1Aiii 0.95 2.45 3.169 (7) 132

Symmetry codes: (i) −x+1/2, y+1/2, z+3/2; (ii) −x+1, −y+2, z+1/2; (iii) x+1/2, −y+3/2, z−1.

3-Fluoro-N-(3-fluoropyridine-2-carbonyl)pyridine-2-carboxamide (3) . Crystal data

C12H7F2N3O2 F(000) = 536
Mr = 263.21 Dx = 1.660 Mg m3
Monoclinic, I2/a Cu Kα radiation, λ = 1.54184 Å
a = 6.7062 (3) Å Cell parameters from 1899 reflections
b = 14.1190 (5) Å θ = 5.0–74.9°
c = 11.2074 (5) Å µ = 1.22 mm1
β = 97.140 (4)° T = 100 K
V = 1052.94 (8) Å3 Block, clear colourless
Z = 4 0.11 × 0.09 × 0.06 mm

3-Fluoro-N-(3-fluoropyridine-2-carbonyl)pyridine-2-carboxamide (3) . Data collection

SuperNova, Dual, Cu at zero, Atlas diffractometer 1083 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source 856 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.069
Detector resolution: 10.4839 pixels mm-1 θmax = 75.4°, θmin = 5.1°
ω scans h = −7→8
Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2015) k = −17→17
Tmin = 0.993, Tmax = 0.996 l = −14→13
5200 measured reflections

3-Fluoro-N-(3-fluoropyridine-2-carbonyl)pyridine-2-carboxamide (3) . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.055 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.161 w = 1/[σ2(Fo2) + (0.0954P)2 + 0.7955P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
1083 reflections Δρmax = 0.29 e Å3
88 parameters Δρmin = −0.32 e Å3
0 restraints

3-Fluoro-N-(3-fluoropyridine-2-carbonyl)pyridine-2-carboxamide (3) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

3-Fluoro-N-(3-fluoropyridine-2-carbonyl)pyridine-2-carboxamide (3) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1 0.1012 (3) 0.49942 (9) 0.14190 (14) 0.0349 (5)
O1 0.1649 (3) 0.53996 (11) 0.37977 (16) 0.0296 (5)
N1 0.0596 (3) 0.29674 (13) 0.33292 (17) 0.0204 (5)
N2 0.250000 0.41071 (19) 0.500000 0.0218 (6)
C2 0.0612 (4) 0.41086 (16) 0.1771 (2) 0.0245 (6)
C1 0.0945 (3) 0.38567 (15) 0.2979 (2) 0.0217 (5)
C5 −0.0104 (3) 0.23375 (15) 0.2494 (2) 0.0208 (5)
H5 −0.037842 0.171355 0.274533 0.025*
C4 −0.0453 (3) 0.25475 (16) 0.1273 (2) 0.0233 (5)
H4 −0.094044 0.207588 0.070604 0.028*
C3 −0.0075 (4) 0.34557 (16) 0.0902 (2) 0.0247 (6)
H3 −0.028177 0.362470 0.007558 0.030*
C6 0.1711 (3) 0.45473 (15) 0.3944 (2) 0.0213 (5)
H2 0.250000 0.351 (3) 0.500000 0.026*

3-Fluoro-N-(3-fluoropyridine-2-carbonyl)pyridine-2-carboxamide (3) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.0551 (11) 0.0191 (7) 0.0292 (9) −0.0062 (6) −0.0002 (7) 0.0071 (6)
O1 0.0404 (10) 0.0157 (8) 0.0316 (10) 0.0016 (7) 0.0006 (8) 0.0023 (7)
N1 0.0190 (9) 0.0171 (9) 0.0254 (10) 0.0017 (7) 0.0038 (7) 0.0014 (7)
N2 0.0254 (13) 0.0141 (12) 0.0262 (15) 0.000 0.0042 (11) 0.000
C2 0.0262 (11) 0.0165 (10) 0.0309 (13) 0.0012 (9) 0.0042 (10) 0.0048 (9)
C1 0.0203 (11) 0.0167 (11) 0.0278 (12) 0.0022 (8) 0.0023 (9) 0.0021 (9)
C5 0.0188 (10) 0.0174 (10) 0.0270 (12) 0.0007 (8) 0.0058 (9) 0.0008 (8)
C4 0.0213 (11) 0.0223 (11) 0.0258 (12) 0.0025 (8) 0.0014 (9) −0.0022 (9)
C3 0.0276 (11) 0.0239 (12) 0.0222 (12) 0.0039 (9) 0.0014 (10) 0.0028 (9)
C6 0.0222 (11) 0.0162 (10) 0.0259 (12) 0.0014 (8) 0.0051 (9) 0.0009 (9)

3-Fluoro-N-(3-fluoropyridine-2-carbonyl)pyridine-2-carboxamide (3) . Geometric parameters (Å, º)

F1—C2 1.348 (2) C2—C3 1.378 (3)
O1—C6 1.214 (3) C1—C6 1.498 (3)
N1—C1 1.344 (3) C5—H5 0.9500
N1—C5 1.334 (3) C5—C4 1.391 (3)
N2—C6i 1.383 (3) C4—H4 0.9500
N2—C6 1.383 (3) C4—C3 1.381 (3)
N2—H2 0.85 (4) C3—H3 0.9500
C2—C1 1.391 (3)
C5—N1—C1 118.5 (2) N1—C5—C4 123.4 (2)
C6i—N2—C6 126.6 (3) C4—C5—H5 118.3
C6i—N2—H2 116.71 (13) C5—C4—H4 120.7
C6—N2—H2 116.71 (13) C3—C4—C5 118.6 (2)
F1—C2—C1 120.5 (2) C3—C4—H4 120.7
F1—C2—C3 118.4 (2) C2—C3—C4 117.8 (2)
C3—C2—C1 121.1 (2) C2—C3—H3 121.1
N1—C1—C2 120.7 (2) C4—C3—H3 121.1
N1—C1—C6 117.0 (2) O1—C6—N2 124.3 (2)
C2—C1—C6 122.3 (2) O1—C6—C1 123.0 (2)
N1—C5—H5 118.3 N2—C6—C1 112.68 (19)
F1—C2—C1—N1 −178.3 (2) C1—C2—C3—C4 1.0 (4)
F1—C2—C1—C6 1.3 (4) C5—N1—C1—C2 −1.0 (3)
F1—C2—C3—C4 179.1 (2) C5—N1—C1—C6 179.41 (19)
N1—C1—C6—O1 −162.6 (2) C5—C4—C3—C2 −0.6 (3)
N1—C1—C6—N2 17.9 (3) C3—C2—C1—N1 −0.2 (4)
N1—C5—C4—C3 −0.6 (3) C3—C2—C1—C6 179.3 (2)
C2—C1—C6—O1 17.8 (4) C6i—N2—C6—O1 1.68 (18)
C2—C1—C6—N2 −161.7 (2) C6i—N2—C6—C1 −178.8 (2)
C1—N1—C5—C4 1.4 (3)

Symmetry code: (i) −x+1/2, y, −z+1.

3-Fluoro-N-(3-fluoropyridine-2-carbonyl)pyridine-2-carboxamide (3) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2···N1 0.84 (4) 2.27 (2) 2.671 (2) 110 (1)
N2—H2···N1i 0.84 (4) 2.27 (2) 2.671 (2) 110 (1)
C4—H4···O1ii 0.95 2.49 3.135 (3) 125
C5—H5···O1ii 0.95 2.61 3.207 (3) 122
C3—H3···F1iii 0.95 2.58 3.398 (3) 145
C5—H5···F1ii 0.95 2.66 3.604 (3) 176

Symmetry codes: (i) −x+1/2, y, −z+1; (ii) −x, y−1/2, −z+1/2; (iii) −x, −y+1, −z.

Funding Statement

This work was funded by Fonds Wetenschappelijk Onderzoek grant AUGE/11/029; Bijzonder Onderzoeksfonds UGent grant 01N03217; Bijzonder Onderzoeksfonds UGent grant 01SC1717; China Scholarship Council grant 201506780014.

References

  1. Aluri, B. R., Niaz, B., Kindermann, M. K., Jones, P. G. & Heinicke, J. (2011). Dalton Trans. 40, 211–224. [DOI] [PubMed]
  2. Cai, S., Chen, C., Shao, P. & Xi, C. (2014). Org. Lett. 16, 3142–3145. [DOI] [PubMed]
  3. Castaneda, R. & Gabidullin, B. (2019). CSD Communication (CCDC 1945074). CCDC, Cambridge, England.
  4. Chowdhury, H., Rahaman, S. H., Ghosh, R., Sarkar, S. K., Fun, H.-K. & Ghosh, B. K. (2007). J. Mol. Struct. 826, 170–176.
  5. Corbin, P. S., Zimmerman, S. C., Thiessen, P. A., Hawryluk, N. A. & Murray, T. J. (2001). J. Am. Chem. Soc. 123, 10475–10488. [DOI] [PubMed]
  6. Das, K., Dolai, S., Vojtíšek, P. & Manna, S. C. (2018). Polyhedron, 149, 7–16.
  7. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  8. Eller, G. A., Wimmer, V., Haring, A. W. & Holzer, W. (2006). Synthesis, pp. 4219–4229.
  9. Gasser, G., Mari, C., Burkart, M., Green, S. J., Ribas, J., Stoeckli-Evans, H. & Tucker, J. H. R. (2012). New J. Chem. 36, 1819–1827.
  10. Gerchuk, M. & Taits, S. (1950). Zh. Obshch. Khim. 20, 910–916.
  11. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  12. Kajiwara, T., Tanaka, H., Nakano, M., Takaishi, S., Nakazawa, Y. & Yamashita, M. (2010). Inorg. Chem. 49, 8358–8370. [DOI] [PubMed]
  13. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  14. Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  15. Sahu, R., Padhi, S. K., Jena, H. S. & Manivannan, V. (2010). Inorg. Chim. Acta, 363, 1448–1454.
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  18. Zebret, S., Dupont, N., Besnard, C., Bernardinelli, G. & Hamacek, J. (2012). Dalton Trans. 41, 4817–4823. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, 1, 2, 3. DOI: 10.1107/S2056989021008562/vm2252sup1.cif

e-77-00958-sup1.cif (717.2KB, cif)

Supporting information file. DOI: 10.1107/S2056989021008562/vm22521sup2.cml

Supporting information file. DOI: 10.1107/S2056989021008562/vm22522sup3.cml

Supporting information file. DOI: 10.1107/S2056989021008562/vm22523sup4.cml

CCDC references: 2103652, 2103651, 2103650

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES