Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Aug 3;77(Pt 9):891–894. doi: 10.1107/S2056989021007672

Crystal structure of N′-[2-(benzo[d]thia­zol-2-yl)acet­yl]benzohydrazide, an achiral compound crystallizing in space group P1 with Z = 1

Rasha A Azzam a, Galal H Elgemeie a, Mona M Seif a, Peter G Jones b,*
PMCID: PMC8423019  PMID: 34584756

The title compound crystallizes in space group P1 despite being achiral. Two classical hydrogen bonds link the mol­ecules to form a layer structure.

Keywords: thia­zole, hydrazide, hydrogen bond, space group P1, crystal structure

Abstract

In the mol­ecule of the title compound, C16H13N3O2S, one hydrazinic nitro­gen atom is essentially planar, but the other is slightly pyramidalized. The torsion angle about the hydrazinic bond is 66.44 (15)°. Both hydrazinic hydrogen atoms lie anti­periplanar to the oxygen of the adjacent carbonyl group. The mol­ecular packing is a layer structure determined by two classical hydrogen bonds, N—H⋯O=C and N—H⋯Nthia­zole. The space group is P1 with Z = 1, which is unusual for an achiral organic compound.

Chemical context  

Heterocycles represent a link between organic synthesis and pharmaceutical chemistry, thereby encouraging researchers to discover new hetereocyclic drug candidates. One of the most prominent heterocycles is benzo­thia­zole, a privileged scaffold in the field of synthetic and medicinal chemistry (Elgemeie et al., 2000a ,b ). Its derivatives and metal complexes possess a wide range of pharmacological properties and a high degree of structural diversity that have proved vital for the investigation for novel therapeutics (Elgemeie et al., 2020; Gill et al., 2015). The carbon atom C2 (standard numbering; the carbon atom between nitro­gen and sulfur) is the most attractive site both from a synthetic and medicinal point of view (Azzam et al., 2020a ,b ). As structure–activity relationships have shown, changes in the substituent at C2 can induce marked changes in the biological activity (Azzam et al., 2017a ,b ). Numerous biologically potent mol­ecules containing 2-substituted benzo­thia­zole scaffolds have extensive biological applications (Keri et al., 2015), such as anti-microbial (König et al., 2011), anti-malarial (Bowyer et al., 2007) and anti-inflammatory (Wang et al., 2009). Among the 2-substituted benzo­thia­zoles, 2-aryl benzo­thia­zoles are versatile scaffolds that have major biological and industrial applications (Kamal et al., 2011). Part of our research has therefore concentrated on the synthetic pathways of 2-aryl­benzo­thia­zoles (Azzam et al., 2019; Elgemeie & Elghandour, 1990). Recently, we contributed to current progress in the manufacturing and biological estimation of 2-aryl, 2-pyridyl and 2-pyrimidylbenzo­thia­zoles and other anti­metabolites as potent chemotherapeutic agents (Azzam et al., 2020c ; Metwally et al., 2021). Here we deal with synthetic approaches to the new compound N′-(2-(benzo[d]thia­zol-2-yl)acet­yl)benzohydrazide (3). Compound 3 was prepared by the reaction of 2-(benzo[d]thia­zol-2-yl)acetohydrazide (2) with benzoyl chloride in the presence of pyridine at room temperature. The structure of 3 was initially determined on the basis of spectroscopic data and elemental analysis. In order to establish the structure of the product unambiguously, its crystal structure was determined and is presented here.graphic file with name e-77-00891-scheme1.jpg

Structural commentary  

The structure determination confirms the formation of compound 3 (Fig. 1). Bond lengths and angles may be regarded as normal (Allen et al., 1987); a selection is presented in Table 1. The geometry at the hydrazinic nitro­gen atom N1 is essentially planar, but N2 is slightly pyramidalized [angle sum 355 (2)°; the nitro­gen atom lies 0.15 (1) Å out of the plane of its substituents]. The general shape of the mol­ecule is defined by the torsion angles along the atom chain S1—C2—C8—C9—N1—N2—C10—C11—C12, which are also given in Table 1; in particular, the torsion angle about the hydrazine N1—N2 bond is 66.44 (15)° [cf. H01—N1—N2—H02 101 (3)°]. Each hydrazinic hydrogen atom lies anti­periplanar to a carbonyl oxygen atom across the respective N—C bond. The inter­planar angle between the benzo­thia­zol group and the phenyl ring is 75.65 (3)°.

Figure 1.

Figure 1

The mol­ecule of compound 3 in the crystal. Ellipsoids represent 50% probability levels.

Table 1. Selected geometric parameters (Å, °).

S1—C7A 1.7310 (13) N1—N2 1.3901 (14)
S1—C2 1.7422 (12) N3—C3A 1.3939 (16)
C2—N3 1.2993 (16)    
       
C7A—S1—C2 89.49 (6) C10—N2—N1 117.28 (10)
N3—C2—S1 115.83 (9) C2—N3—C3A 110.61 (10)
C9—N1—N2 119.00 (10)    
       
C9—N1—N2—C10 66.44 (15) N2—C10—C11—C12 −18.46 (17)
S1—C2—C8—C9 80.26 (12) O1—C9—N1—H01 175 (2)
N2—N1—C9—C8 −173.21 (10) O2—C10—N2—H02 166 (2)
C2—C8—C9—N1 −152.41 (11) H01—N1—N2—H02 101 (3)
N1—N2—C10—C11 −167.79 (10)    

Supra­molecular features  

Two classical hydrogen bonds, from the hydrazinic hydrogen atoms to the carbonyl oxygen O1 and the heterocyclic nitro­gen N3 (Table 2), link the mol­ecules to form layers parallel to the ab plane (Fig. 2).

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H01⋯O1i 0.88 (3) 2.02 (3) 2.8438 (14) 157 (3)
N2—H02⋯N3ii 0.85 (3) 2.15 (3) 2.9736 (15) 162 (3)

Symmetry codes: (i) x+1, y, z; (ii) x, y-1, z.

Figure 2.

Figure 2

Packing diagram of compound 3 viewed perpendicular to the ab plane. Dashed lines represent classical hydrogen bonds. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity. Selected atoms of the asymmetric unit are labelled.

Database survey  

A database search (CSD Version 5.41) for other structures containing the same benzo­thia­zol-acetyl­hydrazide moiety gave only one hit, refcode JEBQOZ, with a p-tosyl­ate group replacing the benzoyl group of 3; this was our previous publication (Azzam et al., 2017b ). There are major conformational differences between the two structures, e.g. the C—C—C(=O)—N torsion angle of JEBQOZ is −109.79 (19)° in contrast to −152.41 (11)° in the title structure. The average database bond lengths C2—S and C2—N for the benzo[d]thia­zole ring system were calculated; for 444 hits (600 different mol­ecules) the values were 1.750 (16) and 1.300 (29) Å, respectively, virtually unchanged from the values we obtained previously (Azzam et al., 2017b ); however, we regret having mistyped the latter value as 1.200.

Anecdotal evidence, combined with previous experience, would suggest that it is unusual for an achiral compound to crystallize in space group P1, which may be considered as a moderately rare space group; of the over 1.1 million structures in the Cambridge database, only 9843 are in P1 (8832 with coordinates available, 6730 of these without disorder).

We therefore wished to see how many of the P1 structures in the CSD, particularly those with Z = 1, were achiral. Unfortunately, there is at present no means of identifying, labelling and searching for chirality or chiral (‘asymmetric’) atoms using the standard ConQuest search routines, and it is clearly unfeasible to check all the P1 structures by hand. We therefore began by simply considering the small and possibly non-representative subset of 20 P1 structures (13 with Z > 1) that were determined by PGJ. Of these, 14 were pure enanti­omers; for 12 of these, the absolute configuration was determined. Of the remaining six, five were not organic compounds [two metal complexes with Z = 1 (Jones et al., 1996; Filimon et al., 2014), two organotellurium compounds (Jones et al., 2015, Z = 1; du Mont et al., 2010, Z = 4), and one phosphane sulfide (Taouss & Jones, 2013, Z = 2)], and the remaining structure (Focken et al., 2001, Z = 4) displayed planar chirality, but contained no ‘asymmetric’ atom. On this limited basis, we would therefore postulate that is very rare for achiral organic compounds to crystallize in P1, especially with Z = 1. An extension of this survey to all P1 structures in the CCDC is being planned.

Synthesis and crystallization  

A mixture of 2-(benzo[d]thia­zol-2-yl)acetohydrazide 2 (0.08 mol) and pyridine (10 mL) was stirred for 15 min at room temperature. Benzoyl chloride (0.16 mol) was then added gradually to the reaction mixture, which was stirred for 15 min at 273 K. The reaction mixture was left to stand at room temperature for another 3 h, then poured onto ice water and neutralized with HCl. The precipitate thus formed was filtered off and dried to produce a white solid product 3. This was washed with ethyl acetate and recrystallized from ethanol; yield 85%, m.p. 487 K.

IR (KBr, cm−1): υ 3429–3284 (NH), 2974 (CH aromatic), 1696, 1662 (2CO); 1H NMR (400 MHz, DMSO-d 6): δ 4.23 (s, 2H, CH2), 7.43 (t, J = 7.2 Hz, 1H, benzo­thia­zole H), 7.49–7.53 (m, 3H, C6H5), 7.58 (t, J = 7.2 Hz, 1H, benzo­thia­zole H), 7.91 (d, J = 7.2 Hz, 2H, C6H5), 7.99 (d, J = 9.6 Hz, 1H, benzo­thia­zole H), 8.09 (d, J = 9.2 Hz, 1H, benzo­thia­zole H), 10.48 (s, 1H, NH), 10.55 (s, 1H, NH); 13C NMR (100 MHz, DMSO-d 6): δ 39.4 (CH2), 122.5, 122.8, 125.5, 126.5, 127.9, 128.9, 132.4, 132.8, 136.9, 152.7, 165.0 (Ar-C), 166.0, 167.1 (2CO). Analysis: calculated for C16H13N3O2S (311.36): C 61.72; H 4.21; N 13.50%; found: C 61.70; H 4.22; N 13.55%.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. The hydrogen atoms of the NH groups were refined freely. Other hydrogens were included using a riding model starting from calculated positions (C—Haromatic = 0.95, C—Hmethyl­ene = 0.99 Å). The U(H) values were fixed at 1.2 times the equivalent U iso value of the parent carbon atoms.

Table 3. Experimental details.

Crystal data
Chemical formula C16H13N3O2S
M r 311.35
Crystal system, space group Triclinic, P1
Temperature (K) 100
a, b, c (Å) 4.71248 (9), 6.96463 (14), 11.5455 (3)
α, β, γ (°) 105.6168 (18), 95.7876 (16), 95.9993 (16)
V3) 359.64 (1)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.24
Crystal size (mm) 0.20 × 0.16 × 0.05
 
Data collection
Diffractometer XtaLAB Synergy, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2020)
Tmin, Tmax 0.844, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 60895, 6522, 6312
R int 0.034
(sin θ/λ)max−1) 0.843
 
Refinement
R[F2 > 2σ(F 2)], wR(F 2), S 0.030, 0.078, 1.06
No. of reflections 6522
No. of parameters 207
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.41, −0.27
Absolute structure Flack x determined using 2959 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter −0.016 (12)

Computer programs: CrysAlis PRO (Rigaku OD, 2020), SHELXT (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ) and XP (Siemens, 1994).

The compound contains no chiral centres and crystallizes only by chance in a chiral (Sohncke) space group.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989021007672/yk2155sup1.cif

e-77-00891-sup1.cif (1.9MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021007672/yk2155Isup2.hkl

e-77-00891-Isup2.hkl (518.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021007672/yk2155Isup3.cml

CCDC reference: 2099652

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to various colleagues at the CCDC for helpful advice and assistance. We acknowledge support by the Open Access Publication Funds of the Technical University of Braunschweig

supplementary crystallographic information

Crystal data

C16H13N3O2S Z = 1
Mr = 311.35 F(000) = 162
Triclinic, P1 Dx = 1.438 Mg m3
a = 4.71248 (9) Å Mo Kα radiation, λ = 0.71073 Å
b = 6.96463 (14) Å Cell parameters from 40070 reflections
c = 11.5455 (3) Å θ = 3.0–37.0°
α = 105.6168 (18)° µ = 0.24 mm1
β = 95.7876 (16)° T = 100 K
γ = 95.9993 (16)° Plate, colourless
V = 359.64 (1) Å3 0.20 × 0.16 × 0.05 mm

Data collection

XtaLAB Synergy, HyPix diffractometer 6522 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source 6312 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.034
Detector resolution: 10.0000 pixels mm-1 θmax = 36.8°, θmin = 3.1°
ω scans h = −7→7
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2020) k = −11→11
Tmin = 0.844, Tmax = 1.000 l = −18→19
60895 measured reflections

Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.030 w = 1/[σ2(Fo2) + (0.0486P)2 + 0.0499P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.078 (Δ/σ)max < 0.001
S = 1.06 Δρmax = 0.41 e Å3
6522 reflections Δρmin = −0.27 e Å3
207 parameters Absolute structure: Flack x determined using 2959 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
3 restraints Absolute structure parameter: −0.016 (12)
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane) 3.5462 (0.0009) x + 3.6978 (0.0019) y - 0.2128 (0.0045) z = 6.1650 (0.0025) * -0.0069 (0.0007) S1 * 0.0023 (0.0009) C2 * 0.0044 (0.0009) N3 * -0.0011 (0.0011) C4 * -0.0046 (0.0012) C5 * 0.0007 (0.0012) C6 * 0.0082 (0.0011) C7 * -0.0004 (0.0011) C3A * -0.0026 (0.0011) C7A -0.0318 (0.0015) C8 Rms deviation of fitted atoms = 0.0043 - 3.3343 (0.0019) x + 1.8849 (0.0037) y + 7.6563 (0.0052) z = 0.2749 (0.0019) Angle to previous plane (with approximate esd) = 75.652 ( 0.033 ) * 0.0041 (0.0009) C11 * 0.0008 (0.0009) C12 * -0.0051 (0.0009) C13 * 0.0044 (0.0010) C14 * 0.0006 (0.0010) C15 * -0.0049 (0.0009) C16 -0.0026 (0.0020) C10 Rms deviation of fitted atoms = 0.0038 ============================================================================= - 0.0418 (0.0830) x - 3.0734 (0.0043) y + 11.3227 (0.0146) z = 3.7743 (0.0598) * 0.0000 (0.0000) N2 * 0.0000 (0.0001) C9 * 0.0000 (0.0000) H01 0.0634 (0.0123) N1 Rms deviation of fitted atoms = 0.0000 4.0751 (0.0123) x - 3.1432 (0.0992) y - 3.6530 (0.1475) z = 1.0965 (0.0176) * 0.0000 (0.0001) N1 * 0.0000 (0.0001) C10 * 0.0000 (0.0000) H02 0.1480 (0.0122) N2 Rms deviation of fitted atoms = 0.0000 ============================================================================= Further torsion angles: 97.53 ( 0.11) O2 - C10 ··· C9 - O1 175.44 ( 2.18) H01 - N1 - C9 - O1 165.89 ( 2.18) H02 - N2 - C10 - O2 101.08 ( 2.76) H01 - N1 - N2 - H02

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.88408 (5) 0.86164 (4) 0.76703 (3) 0.01738 (7)
C2 0.8642 (3) 0.87459 (17) 0.61788 (11) 0.01314 (18)
N1 0.9484 (2) 0.36700 (15) 0.44206 (10) 0.01379 (17)
H01 1.135 (6) 0.377 (4) 0.440 (3) 0.031 (6)*
N2 0.7891 (2) 0.17967 (15) 0.38503 (10) 0.01379 (17)
H02 0.743 (6) 0.111 (4) 0.433 (2) 0.025 (6)*
N3 0.7208 (2) 1.01131 (16) 0.59308 (10) 0.01420 (17)
C3A 0.6136 (3) 1.11873 (18) 0.69578 (11) 0.01407 (18)
C4 0.4492 (3) 1.2765 (2) 0.70032 (13) 0.0202 (2)
H4 0.401227 1.318921 0.630063 0.024*
C5 0.3581 (3) 1.3691 (2) 0.80960 (15) 0.0232 (3)
H5 0.245566 1.475698 0.813913 0.028*
C6 0.4294 (3) 1.3082 (2) 0.91385 (13) 0.0214 (2)
H6 0.364372 1.374379 0.987636 0.026*
C7 0.5928 (3) 1.1534 (2) 0.91122 (12) 0.0191 (2)
H7 0.642508 1.113038 0.982118 0.023*
C7A 0.6821 (3) 1.05845 (18) 0.80085 (11) 0.01465 (19)
C8 1.0007 (3) 0.72931 (17) 0.52744 (11) 0.01505 (19)
H8A 1.188694 0.709803 0.566030 0.018*
H8B 1.035889 0.785089 0.459045 0.018*
C9 0.8084 (3) 0.52723 (17) 0.47944 (11) 0.01345 (18)
O1 0.5458 (2) 0.51401 (15) 0.47552 (10) 0.01766 (17)
C10 0.6341 (3) 0.15543 (17) 0.27343 (11) 0.01340 (18)
O2 0.6698 (2) 0.27818 (15) 0.21612 (10) 0.01878 (17)
C11 0.4201 (3) −0.03063 (17) 0.22693 (11) 0.01309 (18)
C12 0.4296 (3) −0.19751 (18) 0.27175 (12) 0.01574 (19)
H12 0.576152 −0.195084 0.335201 0.019*
C13 0.2252 (3) −0.36724 (18) 0.22370 (12) 0.0172 (2)
H13 0.233253 −0.481009 0.253846 0.021*
C14 0.0089 (3) −0.37052 (19) 0.13160 (12) 0.0180 (2)
H14 −0.132276 −0.485758 0.099661 0.022*
C15 −0.0006 (3) −0.2051 (2) 0.08620 (13) 0.0191 (2)
H15 −0.147919 −0.208041 0.022925 0.023*
C16 0.2046 (3) −0.03535 (19) 0.13308 (12) 0.0164 (2)
H16 0.198429 0.076976 0.101456 0.020*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.01905 (14) 0.01772 (12) 0.01655 (12) 0.00614 (9) 0.00163 (9) 0.00577 (9)
C2 0.0104 (5) 0.0131 (4) 0.0151 (4) 0.0011 (3) 0.0022 (3) 0.0026 (3)
N1 0.0089 (4) 0.0117 (4) 0.0194 (4) 0.0008 (3) 0.0019 (3) 0.0024 (3)
N2 0.0133 (4) 0.0114 (4) 0.0158 (4) −0.0007 (3) 0.0011 (3) 0.0038 (3)
N3 0.0136 (4) 0.0139 (4) 0.0150 (4) 0.0025 (3) 0.0025 (3) 0.0034 (3)
C3A 0.0126 (5) 0.0129 (4) 0.0161 (4) 0.0021 (3) 0.0019 (3) 0.0030 (3)
C4 0.0209 (6) 0.0178 (5) 0.0229 (6) 0.0084 (4) 0.0036 (4) 0.0054 (4)
C5 0.0203 (6) 0.0198 (5) 0.0274 (6) 0.0077 (4) 0.0049 (5) 0.0008 (5)
C6 0.0173 (6) 0.0214 (6) 0.0212 (6) 0.0023 (4) 0.0051 (4) −0.0023 (4)
C7 0.0182 (6) 0.0214 (5) 0.0156 (5) 0.0017 (4) 0.0032 (4) 0.0015 (4)
C7A 0.0132 (5) 0.0146 (4) 0.0152 (4) 0.0019 (3) 0.0023 (3) 0.0025 (3)
C8 0.0104 (5) 0.0126 (4) 0.0200 (5) 0.0006 (3) 0.0042 (4) 0.0006 (4)
C9 0.0106 (5) 0.0128 (4) 0.0160 (4) 0.0009 (3) 0.0026 (3) 0.0025 (3)
O1 0.0094 (4) 0.0163 (4) 0.0253 (4) 0.0008 (3) 0.0032 (3) 0.0026 (3)
C10 0.0128 (5) 0.0120 (4) 0.0158 (4) 0.0013 (3) 0.0032 (3) 0.0043 (3)
O2 0.0217 (5) 0.0158 (4) 0.0194 (4) −0.0020 (3) 0.0015 (3) 0.0081 (3)
C11 0.0133 (5) 0.0113 (4) 0.0148 (4) 0.0006 (3) 0.0029 (3) 0.0039 (3)
C12 0.0158 (5) 0.0130 (4) 0.0182 (5) 0.0005 (4) 0.0007 (4) 0.0051 (4)
C13 0.0192 (6) 0.0121 (4) 0.0198 (5) −0.0009 (4) 0.0029 (4) 0.0047 (4)
C14 0.0170 (5) 0.0156 (5) 0.0190 (5) −0.0022 (4) 0.0028 (4) 0.0025 (4)
C15 0.0167 (6) 0.0193 (5) 0.0198 (5) −0.0015 (4) −0.0015 (4) 0.0058 (4)
C16 0.0158 (5) 0.0156 (5) 0.0179 (5) 0.0003 (4) 0.0005 (4) 0.0065 (4)

Geometric parameters (Å, º)

S1—C7A 1.7310 (13) C11—C16 1.3994 (17)
S1—C2 1.7422 (12) C12—C13 1.3909 (17)
C2—N3 1.2993 (16) C13—C14 1.390 (2)
C2—C8 1.4933 (17) C14—C15 1.3911 (19)
N1—C9 1.3488 (16) C15—C16 1.3919 (18)
N1—N2 1.3901 (14) N1—H01 0.88 (3)
N2—C10 1.3747 (16) N2—H02 0.85 (3)
N3—C3A 1.3939 (16) C4—H4 0.9500
C3A—C4 1.4018 (18) C5—H5 0.9500
C3A—C7A 1.4056 (17) C6—H6 0.9500
C4—C5 1.386 (2) C7—H7 0.9500
C5—C6 1.401 (2) C8—H8A 0.9900
C6—C7 1.385 (2) C8—H8B 0.9900
C7—C7A 1.3967 (19) C12—H12 0.9500
C8—C9 1.5237 (16) C13—H13 0.9500
C9—O1 1.2266 (15) C14—H14 0.9500
C10—O2 1.2222 (14) C15—H15 0.9500
C10—C11 1.4925 (16) C16—H16 0.9500
C11—C12 1.3967 (17)
C7A—S1—C2 89.49 (6) C14—C15—C16 120.28 (12)
N3—C2—C8 124.45 (11) C15—C16—C11 119.80 (11)
N3—C2—S1 115.83 (9) C9—N1—H01 123.3 (19)
C8—C2—S1 119.70 (9) N2—N1—H01 116.8 (19)
C9—N1—N2 119.00 (10) C10—N2—H02 123.3 (18)
C10—N2—N1 117.28 (10) N1—N2—H02 114.4 (18)
C2—N3—C3A 110.61 (10) C5—C4—H4 120.7
N3—C3A—C4 125.26 (11) C3A—C4—H4 120.7
N3—C3A—C7A 114.95 (11) C4—C5—H5 119.4
C4—C3A—C7A 119.79 (12) C6—C5—H5 119.4
C5—C4—C3A 118.52 (13) C7—C6—H6 119.4
C4—C5—C6 121.11 (13) C5—C6—H6 119.4
C7—C6—C5 121.18 (13) C6—C7—H7 121.1
C6—C7—C7A 117.77 (13) C7A—C7—H7 121.1
C7—C7A—C3A 121.63 (12) C2—C8—H8A 109.5
C7—C7A—S1 129.24 (10) C9—C8—H8A 109.5
C3A—C7A—S1 109.13 (9) C2—C8—H8B 109.5
C2—C8—C9 110.93 (10) C9—C8—H8B 109.5
O1—C9—N1 123.27 (11) H8A—C8—H8B 108.0
O1—C9—C8 121.67 (11) C13—C12—H12 119.9
N1—C9—C8 115.06 (10) C11—C12—H12 119.9
O2—C10—N2 122.11 (11) C14—C13—H13 120.0
O2—C10—C11 122.31 (11) C12—C13—H13 120.0
N2—C10—C11 115.59 (10) C13—C14—H14 120.0
C12—C11—C16 119.69 (11) C15—C14—H14 120.0
C12—C11—C10 122.96 (11) C14—C15—H15 119.9
C16—C11—C10 117.35 (10) C16—C15—H15 119.9
C13—C12—C11 120.15 (11) C15—C16—H16 120.1
C14—C13—C12 120.05 (11) C11—C16—H16 120.1
C13—C14—C15 120.02 (11)
C7A—S1—C2—N3 −0.19 (10) N2—N1—C9—O1 6.66 (18)
C7A—S1—C2—C8 −178.46 (10) N2—N1—C9—C8 −173.21 (10)
C9—N1—N2—C10 66.44 (15) C2—C8—C9—O1 27.72 (16)
C8—C2—N3—C3A 178.23 (11) C2—C8—C9—N1 −152.41 (11)
S1—C2—N3—C3A 0.05 (14) N1—N2—C10—O2 12.34 (18)
C2—N3—C3A—C4 −179.93 (12) N1—N2—C10—C11 −167.79 (10)
C2—N3—C3A—C7A 0.16 (15) O2—C10—C11—C12 161.41 (13)
N3—C3A—C4—C5 −179.93 (13) N2—C10—C11—C12 −18.46 (17)
C7A—C3A—C4—C5 0.0 (2) O2—C10—C11—C16 −17.71 (18)
C3A—C4—C5—C6 0.4 (2) N2—C10—C11—C16 162.42 (11)
C4—C5—C6—C7 −0.1 (2) C16—C11—C12—C13 −0.29 (19)
C5—C6—C7—C7A −0.6 (2) C10—C11—C12—C13 −179.40 (12)
C6—C7—C7A—C3A 0.96 (19) C11—C12—C13—C14 −0.6 (2)
C6—C7—C7A—S1 −179.59 (11) C12—C13—C14—C15 0.9 (2)
N3—C3A—C7A—C7 179.25 (12) C13—C14—C15—C16 −0.4 (2)
C4—C3A—C7A—C7 −0.65 (19) C14—C15—C16—C11 −0.5 (2)
N3—C3A—C7A—S1 −0.30 (13) C12—C11—C16—C15 0.84 (19)
C4—C3A—C7A—S1 179.80 (10) C10—C11—C16—C15 179.99 (12)
C2—S1—C7A—C7 −179.25 (13) O1—C9—N1—H01 175 (2)
C2—S1—C7A—C3A 0.26 (9) O2—C10—N2—H02 166 (2)
N3—C2—C8—C9 −97.86 (14) H01—N1—N2—H02 101 (3)
S1—C2—C8—C9 80.26 (12)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H01···O1i 0.88 (3) 2.02 (3) 2.8438 (14) 157 (3)
N2—H02···N3ii 0.85 (3) 2.15 (3) 2.9736 (15) 162 (3)

Symmetry codes: (i) x+1, y, z; (ii) x, y−1, z.

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Azzam, R. A., Elboshi, H. A. & Elgemeie, G. H. (2020a). ACS Omega, 5, 30023–30036. [DOI] [PMC free article] [PubMed]
  3. Azzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017a). Acta Cryst. E73, 1820–1822. [DOI] [PMC free article] [PubMed]
  4. Azzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017b). Acta Cryst. E73, 1041–1043. [DOI] [PMC free article] [PubMed]
  5. Azzam, R. A., Elgemeie, G. H., Osman, R. R. & Jones, P. G. (2019). Acta Cryst. E75, 367–371. [DOI] [PMC free article] [PubMed]
  6. Azzam, R. A., Elsayed, R. E. & Elgemeie, G. H. (2020b). ACS Omega, 5, 26182–26194. [DOI] [PMC free article] [PubMed]
  7. Azzam, R. A., Osman, R. R. & Elgemeie, G. H. (2020c). ACS Omega, 5, 1640–1655. [DOI] [PMC free article] [PubMed]
  8. Bowyer, P. W., Gunaratne, R. S., Grainger, M., Withers-Martinez, C., Wickramsinghe, S. R., Tate, E. W., Leatherbarrow, R. J., Brown, K. A., Holder, A. A. & Smith, D. F. (2007). Biochem. J. 408, 173–180. [DOI] [PMC free article] [PubMed]
  9. du Mont, W., Jeske, J. & Jones, P. G. (2010). Phosphorus Sulfur Silicon, 185, 1243–1249.
  10. Elgemeie, G. H., Azzam, R. A. & Osman, R. R. (2020). Inorg. Chim. Acta, 502, 119302.
  11. Elgemeie, G. H. & Elghandour, A. H. (1990). Phosphorus Sulfur Silicon, 48, 281–284.
  12. Elgemeie, G. H., Shams, H. Z., Elkholy, Y. M. & Abbas, N. S. (2000a). Phosphorus Sulfur Silicon, 165, 265–272.
  13. Elgemeie, G. H., Shams, Z., Elkholy, M. & Abbas, N. S. (2000b). Heterocycl. Commun. 6, 363–268.
  14. Filimon, S.-A., Petrovic, D., Volbeda, J., Bannenberg, T., Jones, P. G., Freiherr von Richthofen, C.-G., Glaser, T. & Tamm, M. (2014). Eur. J. Inorg. Chem. 2014, 5997–6012.
  15. Focken, T., Hopf, H., Snieckus, V., Dix, I. & Jones, P. G. (2001). Eur. J. Org. Chem. 2001, 2221–2228.
  16. Gill, R. K., Rawal, R. K. & Bariwal, J. (2015). Arch. Pharm. Chem. Life Sci. 348, 155–178. [DOI] [PubMed]
  17. Jones, P. G., Hrib, C. & du Mont, W.-W. (2015). Private Communication (CCDC-1051873). CCDC, Cambridge, England. https://doi.org/10.5517/cc149kdd
  18. Jones, P. G., Yang, L. & Steinborn, D. (1996). Acta Cryst. C52, 2399–2402.
  19. Kamal, A., Srikanth, Y. V., Naseer Ahmed Khan, M., Ashraf, M., Kashi Reddy, M., Sultana, F., Kaur, T., Chashoo, G., Suri, N., Sehar, I., Wani, Z. A., Saxena, A., Sharma, P. R., Bhushan, S., Mondhe, D. M. & Saxena, A. K. (2011). Bioorg. Med. Chem. 19, 7136–7150. [DOI] [PubMed]
  20. Keri, R. S., Patil, M. R., Patil, S. A. & Budagumpi, S. (2015). Eur. J. Med. Chem. 89, 207–251. [DOI] [PubMed]
  21. König, J., Wyllie, S., Wells, G., Stevens, M. F., Wyatt, P. G. & Fairlamb, A. H. (2011). J. Biol. Chem. 286, 8523–8533. [DOI] [PMC free article] [PubMed]
  22. Metwally, N. H., Elgemeie, G. H. & Jones, P. G. (2021). Acta Cryst. E77, 615–617. [DOI] [PMC free article] [PubMed]
  23. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  24. Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  25. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  26. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  27. Siemens (1994). XP. Siemens Analytical X–Ray Instruments, Madison, Wisconsin, USA.
  28. Taouss, C. & Jones, P. G. (2013). Z. Naturforsch. Teil B, 68, 860–870.
  29. Wang, X., Sarris, K., Kage, K., Zhang, D., Brown, S. P., Kolasa, T., Surowy, C., El Kouhen, O. F., Muchmore, S. W., Brioni, J. D. & Stewart, A. O. (2009). J. Med. Chem. 52, 170–180. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989021007672/yk2155sup1.cif

e-77-00891-sup1.cif (1.9MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021007672/yk2155Isup2.hkl

e-77-00891-Isup2.hkl (518.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021007672/yk2155Isup3.cml

CCDC reference: 2099652

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES