Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Aug 3;77(Pt 9):887–890. doi: 10.1107/S2056989021007726

Crystal structure, Hirshfeld surface and photo­physical analysis of 2-nitro-3-phenyl-9H-carbazole

Neetu Singh a, Ga Hee Noh a, Hyoung-Ryun Park a,*, Junseong Lee a,*
PMCID: PMC8423020  PMID: 34584755

The title compound was synthesized from a di­nitro­biphenyl­benzene derivative using a novel modification of the Cadogan reaction. The reaction has several possible ring-closed products and the title compound was separated as the major product. It crystallizes in the monoclinic P Inline graphic space group and possesses a single closed Cadogan ring.

Keywords: crystal structure, carbazole, Cadogan reaction

Abstract

The title compound, C18H12N2O2, was synthesized from a di­nitro­biphenyl­benzene derivative using a novel modification of the Cadogan reaction. The reaction has several possible ring-closed products and the title compound was separated as the major product. The X-ray crystallographic study revealed that the carbazole compound crystallizes in the monoclinic P Inline graphic space group and possesses a single closed Cadogan ring. There are two independent mol­ecules in the asymmetric unit. In the crystal, the mol­ecules are linked by N—H⋯O hydrogen bonding.

Chemical context  

Carbazole consists of two benzene ring fused on either side of a central pyrrole ring and is also known as dibenzo­pyrrole or di­phenyl­enimine. This N-containing heterocyclic compound was discovered by Graebe and Glaser in 1872 (Collin et al., 2006). Carbazoles represent an important class of heterocycles with several advantages. By the introduction of substituents in the carbazole fragment at the nitro­gen atom and the aromatic framework at positions 3 and 6, the photophysical properties can be modified (Srivastava & Chakrabarti, 2017; Sun et al., 2015). The high stability and redox potential property of carbazole-based polymers compared with other conducting polymers has attracted a great attention (Nandy et al., 2014; Bashir et al., 2015; Sutanto et al., 2021; Niu et al., 2021). Carbazole-based ligands exhibit high hole-transporting mobility and strong absorption in the UV–visible spectroscopic region, and therefore show good electro- and photoactive properties (Yavuz et al., 2001). Polycyclic compounds containing two pyrrole rings have become widely used because of their good charge-transfer properties and the feasibility of tuning the electronic levels in the compound for different types of applications (Wakim et al., 2008; Reig et al., 2015; Xiang et al., 2018; Zhang et al., 2018; Szafraniec-Gorol et al., 2021), These types of compounds are therefore excellent candidates for applications such as OLEDs (organic light-emitting diodes; Svetlichnyi et al., 2010; Oda et al., 2021; Zhou et al., 2021; Bao et al., 2020), DSSCs (dye-sensitized solar cells; Zhang et al., 2009; Li et al., 2018; Lokhande et al., 2019), OPV (organic photovoltaics; Chan et al., 2013; Yang et al., 2020) and OFETs (organic field-effect transistors; Reig et al., 2015; Chen et al., 2020; Koli et al., 2020).

The title compound was isolated as an inter­mediate in the middle of the synthetic route for the synthesis of double Cadogan-fused carbazoles. The reaction between 1,3-di­nitro­diphenyl­benzene and tri­phenyl­phosphine using the solvent o-di­chloro­benzene resulted in a mixture of single- and double-Cadogen ring-closure products. First, a di­nitro compound was obtained by a nitration reaction and in the second step, performing double Suzuki coupling reaction on 1,5-di­bromo-2,4-di­nitro­benzene and benzene­boronic acid gave a terphenyl compound. Then, in the final step, a single Cadogan ring closure was performed to obtain the title compound, 1.graphic file with name e-77-00887-scheme1.jpg

Structural commentary  

Structural analysis confirmed the formation of a single Cadogan ring major product, i.e. carbazole with a nitro group at the 2-position, and a phenyl group at the 3-position. The mol­ecular structure of compound 1 is shown in Fig. 1. There are two independent mol­ecules in the asymmetric unit in which the dihedral angles between the carbazole ring system (r.m.s. deviations of 0.001 and 0.002 Å for the N1-carbazole and N3-carbazole units, respectively) and the attached phenyl rings are 55.54 (6) and 43.46 (7)°.

Figure 1.

Figure 1

The asymmetric unit of the title compound, with atom labelling and displacement ellipsoids drawn at the 50% probability level.

Supra­molecular features  

In the crystal, the two mol­ecules are linked into [110] chains by N—H⋯O and N—H⋯N hydrogen bonds involving the carbazole N atom of one independent mol­ecule and the nitro group of the other (Table 1), as shown in Fig. 2. In addition, π–π stacking inter­actions occur along the c-axis direction [Cg1⋯Cg1(1 − x, −y, 1 − z) = 3.3963 (9) Å and Cg8⋯Cg8(1 − x, −y, −z) = 3.3982 (10) Å where Cg1 and Cg8 are the centroids of the N1/C1/C6/C7/C12 and N3/C19/C24/C25/C30 rings, respectively] with adjacent carbazole rings within the stacks being almost parallel. The combination of hydrogen bonding and π-stacked carbazole ring systems results in the formation of a three-dimensional inter­action.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.88 (1) 2.33 (1) 3.1825 (16) 162 (1)
N1—H1⋯O4i 0.88 (1) 2.38 (1) 3.1331 (17) 143 (1)
N1—H1⋯N4i 0.88 (1) 2.59 (1) 3.4610 (17) 168 (1)
N3—H3A⋯O1ii 0.88 (1) 2.26 (1) 3.1079 (18) 162 (1)
N3—H3A⋯O2ii 0.88 (1) 2.45 (1) 3.2039 (19) 143 (1)
N3—H3A⋯N2ii 0.88 (1) 2.60 (1) 3.4700 (19) 170 (1)

Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+2, -y+1, -z+1.

Figure 2.

Figure 2

A plot showing (a) the inter­molecular N—H⋯O, C—H⋯O hydrogen bonds and (b) π–π inter­actions.

Database survey  

A search of the Cambridge Structural Database (CSD Version 5.42, November 2020; Groom et al. 2016) using a fragment composed of carbazole with a nitro group gave only one hit, which did not have much in common with the title compound. The most similar reported compound is ABEPON (9-ethyl-3-methyl-1,6-di­nitro­carbazole; Asker et al., 2004), whose main component consists of a nitro group on the carbazole ring. Examples of carbazole compounds substituted in the 3-position include ABAFOA (9-p-tolyl-9H-carbazole-3-carbo­nitrile; Ramathilagam et al., 2011), ADALOH [3,6-di­bromo-9-(4-tolyl­sulfon­yl)-9H-carbazole; Li et al., 2006], ANUWUD (dimethyl 9H-carbazole-1,3-dicarboxalate; Verma et al., 2015) and ATAWEZ [3,6-dimeth­oxy-9-(2-tri­fluoro­meth­yl)phenyl-9H-carbazole; Matsubara et al., 2016].

Hirshfeld surface analysis  

A Hirshfeld surface analysis (McKinnon et al.,2007; Spackman & Jayatilaka et al., 2009) of compound 1 was performed with CrystalExplorer17 (Turner et al., 2017) to give an insight into the inter­molecular inter­actions. The Hirsfeld surface was calculated using a standard (high) surface resolution with the three-dimensional d norm surface plotted over a fixed colour scale of −0.1339 (red) to 1.4773 a.u. (blue) as shown in Fig. 3. The red spots indicate short contacts, i.e. negative d norm values on the surface, which highlight the hydrogen-bonding inter­actions.

Figure 3.

Figure 3

The Hirshfeld surface of the title compound mapped over d normto visualize the inter­molecular inter­actions.

The 2D finger plots shown in Fig. 3 indicate that the most important contributions to the overall surface are from H⋯H (36.3%), C⋯H/H⋯C (30.2%) and O⋯H/H⋯O (24%) inter­actions whereas the contribution of N⋯H/H⋯N inter­actions is almost negligible at 0.9%.

Photophysical study  

The absorption and emission spectra of compound 1 were measured in dilute CH2Cl2 solution at room temperature, as shown in Fig. 4. Compound 1 exhibits an absorption band at 260 nm to 410 nm, which can be assigned to the carbazole moieties. The broad absorption bands at the lower energy peak around 350 nm suggest the formation of the carbazole dimer excimer from the carbazole groups. The PL spectrum of compound 1 excited at 350 nm shows a dominant blue–violet broad peak at 400 nm associated with the emission from the carbazole excimer.

Figure 4.

Figure 4

Absorption and emission spectra of the title compound 1 in DCM. The emission spectrum was excited at 350 nm.

Synthesis and crystallization  

The synthesis of the title compound is shown in Fig. 5. The reaction yielded single and double Cadogan ring-closure products. First we prepared di­nitro compound a by a nitration reaction and then we synthesized terphenyl compound b by performing double Suzuki-coupling reaction on 1,5-di­bromo-2,4-di­nitro­benzene and benzene­boronic acid. A two-necked flask fitted with a condenser was charged with 1,3-di­nitro-4,6-diphenyl benzene (b) (0.320 g, 1 mmol) and 0.655 g (2.5 mmol) of tri­phenyl­phosphine. 8 mL of the solvent o-di­chloro­benzene were added o the reaction mixture. The resulting reaction mixture was stirred at 473 K under nitro­gen for 24 h. The solvent was removed under reduced pressure at 333 K and the crude product was purified by column chromatography (silica gel, 10% EA in hexa­nes as eluent) to provide 0.230 g of the title product as a beige solid (yield: 86%). 1H NMR (500 MHz, CDCl3): δ 8.39 (s, 1H), 8.09 (d, J = 8.2 Hz, 1H), 8.05 (d, J = 9.9 Hz, 2H), 7.56–7.51 (m, 2H), 7.48–7.38 (m, 5H), 7.32 (ddd, J = 8.0, 6.4, 1.7 Hz, 1H).

Figure 5.

Figure 5

Reaction scheme.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. N-bound H atoms were refined with U iso(H) = 1.2U eq(N). C-bound H atoms were positioned geometrically (C—H = 0.95 Å) and refined as riding with U iso(H) = 1.2U eq(C).

Table 2. Experimental details.

Crystal data
Chemical formula C18H12N2O2
M r 288.30
Crystal system, space group Triclinic, P\overline{1}
Temperature (K) 100
a, b, c (Å) 9.2660 (3), 12.9590 (4), 13.1010 (4)
α, β, γ (°) 96.2487 (15), 109.1813 (15), 106.1061 (14)
V3) 1392.39 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.1 × 0.1 × 0.1
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014)
Tmin, Tmax 0.628, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 17357, 5277, 4470
R int 0.026
(sin θ/λ)max−1) 0.611
 
Refinement
R[F2 > 2σ(F 2)], wR(F 2), S 0.041, 0.115, 1.08
No. of reflections 5277
No. of parameters 398
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.40, −0.31

Computer programs: APEX2 and SAINT (Bruker, 2014), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021007726/ex2047sup1.cif

e-77-00887-sup1.cif (529.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021007726/ex2047Isup2.hkl

e-77-00887-Isup2.hkl (419.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021007726/ex2047Isup3.cdx

Supporting information file. DOI: 10.1107/S2056989021007726/ex2047Isup4.cdx

Supporting information file. DOI: 10.1107/S2056989021007726/ex2047Isup5.cml

CCDC reference: 2099768

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C18H12N2O2 Z = 4
Mr = 288.30 F(000) = 600
Triclinic, P1 Dx = 1.375 Mg m3
a = 9.2660 (3) Å Mo Kα radiation, λ = 0.71073 Å
b = 12.9590 (4) Å Cell parameters from 8081 reflections
c = 13.1010 (4) Å θ = 2.6–25.7°
α = 96.2487 (15)° µ = 0.09 mm1
β = 109.1813 (15)° T = 100 K
γ = 106.1061 (14)° Block, white
V = 1392.39 (8) Å3 0.1 × 0.1 × 0.1 mm

Data collection

Bruker APEXII CCD diffractometer 4470 reflections with I > 2σ(I)
φ and ω scans Rint = 0.026
Absorption correction: multi-scan (SADABS; Bruker, 2014) θmax = 25.7°, θmin = 1.7°
Tmin = 0.628, Tmax = 0.745 h = −11→11
17357 measured reflections k = −15→15
5277 independent reflections l = −15→15

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0657P)2 + 0.2853P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.115 (Δ/σ)max = 0.001
S = 1.08 Δρmax = 0.40 e Å3
5277 reflections Δρmin = −0.31 e Å3
398 parameters Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.026 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 1.07827 (13) 0.32279 (9) 0.71767 (9) 0.0379 (3)
O2 1.11420 (15) 0.18678 (11) 0.79164 (10) 0.0523 (3)
N1 0.58804 (14) −0.11853 (9) 0.53169 (10) 0.0267 (3)
H1 0.5808 −0.1487 0.5876 0.032*
N2 1.04678 (14) 0.22353 (11) 0.71390 (10) 0.0324 (3)
C1 0.48711 (16) −0.16207 (11) 0.42177 (12) 0.0258 (3)
C2 0.35659 (17) −0.26036 (11) 0.37438 (13) 0.0312 (3)
H2 0.3235 −0.3083 0.4185 0.037*
C3 0.27777 (17) −0.28488 (12) 0.26075 (13) 0.0339 (3)
H3 0.1894 −0.3517 0.2261 0.041*
C4 0.32410 (17) −0.21428 (12) 0.19502 (13) 0.0338 (3)
H4 0.2663 −0.2334 0.1171 0.041*
C5 0.45313 (17) −0.11701 (12) 0.24236 (12) 0.0306 (3)
H5 0.4844 −0.0691 0.1977 0.037*
C6 0.53657 (16) −0.09055 (11) 0.35684 (11) 0.0253 (3)
C7 0.67397 (15) 0.00101 (11) 0.43280 (11) 0.0241 (3)
C8 0.77372 (16) 0.09677 (11) 0.41936 (11) 0.0250 (3)
H8 0.7534 0.1117 0.3475 0.030*
C9 0.90234 (16) 0.17073 (11) 0.50954 (11) 0.0248 (3)
C10 0.92260 (16) 0.14514 (11) 0.61431 (11) 0.0257 (3)
C11 0.82673 (16) 0.05185 (11) 0.63224 (11) 0.0263 (3)
H11 0.8457 0.0380 0.7044 0.032*
C12 0.70141 (16) −0.02055 (11) 0.53961 (11) 0.0240 (3)
C13 1.01868 (16) 0.26510 (11) 0.49125 (11) 0.0255 (3)
C14 0.96555 (18) 0.33925 (12) 0.43259 (12) 0.0314 (3)
H14 0.8537 0.3314 0.4059 0.038*
C15 1.0741 (2) 0.42439 (12) 0.41272 (14) 0.0377 (4)
H15 1.0363 0.4747 0.3728 0.045*
C16 1.2368 (2) 0.43656 (12) 0.45059 (14) 0.0389 (4)
H16 1.3110 0.4949 0.4366 0.047*
C17 1.29147 (18) 0.36317 (12) 0.50921 (13) 0.0355 (4)
H17 1.4035 0.3716 0.5359 0.043*
C18 1.18363 (17) 0.27788 (12) 0.52902 (12) 0.0297 (3)
H18 1.2219 0.2275 0.5686 0.036*
O3 0.39259 (13) 0.17339 (8) 0.23420 (9) 0.0372 (3)
O4 0.54564 (13) 0.31480 (10) 0.36730 (9) 0.0424 (3)
N3 0.55743 (14) 0.60781 (9) 0.13124 (10) 0.0289 (3)
H3A 0.6607 0.6425 0.1717 0.035*
N4 0.44465 (14) 0.27322 (10) 0.27258 (10) 0.0302 (3)
C19 0.46298 (17) 0.64286 (11) 0.04645 (12) 0.0273 (3)
C20 0.50540 (19) 0.73722 (11) 0.00593 (13) 0.0320 (3)
H20 0.6134 0.7872 0.0348 0.038*
C21 0.3850 (2) 0.75518 (12) −0.07728 (13) 0.0345 (4)
H21 0.4103 0.8199 −0.1050 0.041*
C22 0.22615 (19) 0.68083 (12) −0.12246 (13) 0.0345 (3)
H22 0.1460 0.6956 −0.1802 0.041*
C23 0.18495 (18) 0.58607 (12) −0.08380 (12) 0.0307 (3)
H23 0.0776 0.5351 −0.1153 0.037*
C24 0.30359 (16) 0.56668 (11) 0.00213 (12) 0.0263 (3)
C25 0.30496 (16) 0.48076 (11) 0.06358 (11) 0.0250 (3)
C26 0.18845 (16) 0.38326 (11) 0.05811 (11) 0.0253 (3)
H26 0.0807 0.3646 0.0062 0.030*
C27 0.22709 (16) 0.31273 (11) 0.12733 (11) 0.0248 (3)
C28 0.38882 (16) 0.34634 (11) 0.20367 (11) 0.0255 (3)
C29 0.50785 (16) 0.44388 (11) 0.21468 (11) 0.0269 (3)
H29 0.6141 0.4642 0.2692 0.032*
C30 0.46465 (16) 0.51022 (11) 0.14253 (11) 0.0254 (3)
C31 0.09599 (16) 0.21235 (11) 0.12135 (12) 0.0260 (3)
C32 −0.01531 (18) 0.14815 (11) 0.01888 (13) 0.0328 (3)
H32 −0.0024 0.1655 −0.0469 0.039*
C33 −0.1454 (2) 0.05885 (12) 0.01173 (16) 0.0446 (4)
H33 −0.2219 0.0162 −0.0587 0.054*
C34 −0.1634 (2) 0.03214 (13) 0.10686 (18) 0.0467 (5)
H34 −0.2524 −0.0288 0.1021 0.056*
C35 −0.0517 (2) 0.09420 (13) 0.20895 (16) 0.0413 (4)
H35 −0.0628 0.0746 0.2745 0.050*
C36 0.07586 (18) 0.18444 (12) 0.21679 (13) 0.0319 (3)
H36 0.1503 0.2278 0.2876 0.038*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0334 (6) 0.0313 (6) 0.0382 (6) 0.0010 (5) 0.0118 (5) −0.0041 (5)
O2 0.0430 (7) 0.0552 (8) 0.0326 (6) −0.0003 (6) −0.0058 (5) 0.0137 (5)
N1 0.0263 (6) 0.0246 (6) 0.0297 (6) 0.0080 (5) 0.0110 (5) 0.0083 (5)
N2 0.0245 (6) 0.0380 (7) 0.0276 (7) 0.0035 (5) 0.0081 (5) 0.0029 (5)
C1 0.0225 (6) 0.0235 (7) 0.0321 (8) 0.0106 (5) 0.0095 (6) 0.0029 (5)
C2 0.0268 (7) 0.0229 (7) 0.0428 (9) 0.0080 (6) 0.0129 (7) 0.0047 (6)
C3 0.0251 (7) 0.0255 (7) 0.0429 (9) 0.0057 (6) 0.0084 (7) −0.0036 (6)
C4 0.0282 (7) 0.0353 (8) 0.0307 (8) 0.0097 (6) 0.0067 (6) −0.0046 (6)
C5 0.0287 (7) 0.0330 (8) 0.0290 (8) 0.0098 (6) 0.0113 (6) 0.0023 (6)
C6 0.0224 (7) 0.0242 (7) 0.0292 (7) 0.0090 (5) 0.0099 (6) 0.0021 (5)
C7 0.0214 (6) 0.0257 (7) 0.0259 (7) 0.0089 (5) 0.0097 (6) 0.0032 (5)
C8 0.0231 (7) 0.0276 (7) 0.0253 (7) 0.0088 (5) 0.0101 (6) 0.0058 (5)
C9 0.0214 (6) 0.0251 (7) 0.0288 (7) 0.0086 (5) 0.0102 (6) 0.0048 (5)
C10 0.0204 (6) 0.0280 (7) 0.0258 (7) 0.0071 (5) 0.0068 (6) 0.0022 (5)
C11 0.0254 (7) 0.0300 (7) 0.0245 (7) 0.0109 (6) 0.0091 (6) 0.0069 (6)
C12 0.0220 (6) 0.0229 (6) 0.0296 (7) 0.0096 (5) 0.0109 (6) 0.0058 (5)
C13 0.0244 (7) 0.0233 (7) 0.0266 (7) 0.0051 (5) 0.0104 (6) 0.0013 (5)
C14 0.0280 (7) 0.0295 (7) 0.0344 (8) 0.0087 (6) 0.0099 (6) 0.0057 (6)
C15 0.0440 (9) 0.0245 (7) 0.0432 (9) 0.0093 (7) 0.0159 (8) 0.0088 (6)
C16 0.0394 (9) 0.0221 (7) 0.0489 (10) −0.0014 (6) 0.0201 (8) 0.0025 (6)
C17 0.0251 (7) 0.0303 (8) 0.0446 (9) 0.0017 (6) 0.0134 (7) 0.0005 (6)
C18 0.0264 (7) 0.0273 (7) 0.0337 (8) 0.0078 (6) 0.0111 (6) 0.0043 (6)
O3 0.0402 (6) 0.0291 (6) 0.0455 (7) 0.0135 (5) 0.0174 (5) 0.0120 (5)
O4 0.0354 (6) 0.0493 (7) 0.0313 (6) 0.0086 (5) 0.0023 (5) 0.0123 (5)
N3 0.0229 (6) 0.0228 (6) 0.0330 (7) 0.0011 (5) 0.0077 (5) 0.0008 (5)
N4 0.0258 (6) 0.0343 (7) 0.0316 (7) 0.0090 (5) 0.0122 (5) 0.0096 (5)
C19 0.0285 (7) 0.0231 (7) 0.0295 (7) 0.0068 (6) 0.0131 (6) 0.0003 (5)
C20 0.0357 (8) 0.0222 (7) 0.0390 (8) 0.0057 (6) 0.0196 (7) 0.0026 (6)
C21 0.0465 (9) 0.0258 (7) 0.0399 (9) 0.0143 (7) 0.0244 (7) 0.0099 (6)
C22 0.0418 (9) 0.0341 (8) 0.0337 (8) 0.0191 (7) 0.0159 (7) 0.0092 (6)
C23 0.0295 (7) 0.0288 (7) 0.0328 (8) 0.0098 (6) 0.0114 (6) 0.0039 (6)
C24 0.0270 (7) 0.0217 (7) 0.0300 (7) 0.0069 (5) 0.0129 (6) 0.0016 (5)
C25 0.0244 (7) 0.0229 (7) 0.0256 (7) 0.0069 (5) 0.0094 (6) 0.0004 (5)
C26 0.0211 (6) 0.0239 (7) 0.0264 (7) 0.0046 (5) 0.0072 (6) 0.0013 (5)
C27 0.0243 (7) 0.0233 (7) 0.0249 (7) 0.0056 (5) 0.0102 (6) 0.0006 (5)
C28 0.0261 (7) 0.0268 (7) 0.0243 (7) 0.0091 (6) 0.0104 (6) 0.0047 (5)
C29 0.0220 (7) 0.0278 (7) 0.0254 (7) 0.0057 (6) 0.0059 (6) 0.0001 (5)
C30 0.0231 (7) 0.0219 (6) 0.0279 (7) 0.0036 (5) 0.0104 (6) −0.0004 (5)
C31 0.0237 (7) 0.0211 (6) 0.0346 (8) 0.0080 (5) 0.0126 (6) 0.0051 (5)
C32 0.0307 (8) 0.0245 (7) 0.0386 (8) 0.0079 (6) 0.0101 (7) 0.0019 (6)
C33 0.0321 (8) 0.0230 (8) 0.0640 (12) 0.0033 (6) 0.0085 (8) −0.0033 (7)
C34 0.0356 (9) 0.0224 (8) 0.0860 (14) 0.0069 (7) 0.0295 (10) 0.0132 (8)
C35 0.0458 (9) 0.0322 (8) 0.0674 (12) 0.0200 (7) 0.0387 (9) 0.0226 (8)
C36 0.0335 (8) 0.0287 (7) 0.0408 (9) 0.0136 (6) 0.0199 (7) 0.0097 (6)

Geometric parameters (Å, º)

O1—N2 1.2291 (17) O3—N4 1.2296 (16)
O2—N2 1.2275 (17) O4—N4 1.2319 (16)
N1—H1 0.8800 N3—H3A 0.8800
N1—C1 1.3829 (18) N3—C19 1.3776 (19)
N1—C12 1.3734 (17) N3—C30 1.3716 (17)
N2—C10 1.4610 (18) N4—C28 1.4600 (18)
C1—C2 1.3966 (19) C19—C20 1.394 (2)
C1—C6 1.409 (2) C19—C24 1.4128 (19)
C2—H2 0.9500 C20—H20 0.9500
C2—C3 1.380 (2) C20—C21 1.374 (2)
C3—H3 0.9500 C21—H21 0.9500
C3—C4 1.400 (2) C21—C22 1.401 (2)
C4—H4 0.9500 C22—H22 0.9500
C4—C5 1.382 (2) C22—C23 1.383 (2)
C5—H5 0.9500 C23—H23 0.9500
C5—C6 1.394 (2) C23—C24 1.393 (2)
C6—C7 1.4462 (18) C24—C25 1.4437 (19)
C7—C8 1.3940 (19) C25—C26 1.3928 (18)
C7—C12 1.4113 (19) C25—C30 1.4142 (19)
C8—H8 0.9500 C26—H26 0.9500
C8—C9 1.3890 (19) C26—C27 1.3909 (19)
C9—C10 1.412 (2) C27—C28 1.4120 (19)
C9—C13 1.4890 (19) C27—C31 1.4875 (18)
C10—C11 1.3817 (19) C28—C29 1.3846 (19)
C11—H11 0.9500 C29—H29 0.9500
C11—C12 1.3867 (19) C29—C30 1.383 (2)
C13—C14 1.390 (2) C31—C32 1.389 (2)
C13—C18 1.3975 (19) C31—C36 1.394 (2)
C14—H14 0.9500 C32—H32 0.9500
C14—C15 1.384 (2) C32—C33 1.389 (2)
C15—H15 0.9500 C33—H33 0.9500
C15—C16 1.380 (2) C33—C34 1.378 (3)
C16—H16 0.9500 C34—H34 0.9500
C16—C17 1.386 (2) C34—C35 1.379 (3)
C17—H17 0.9500 C35—H35 0.9500
C17—C18 1.381 (2) C35—C36 1.379 (2)
C18—H18 0.9500 C36—H36 0.9500
C1—N1—H1 125.5 C19—N3—H3A 125.5
C12—N1—H1 125.5 C30—N3—H3A 125.5
C12—N1—C1 109.05 (11) C30—N3—C19 109.05 (11)
O1—N2—C10 119.42 (12) O3—N4—O4 122.28 (12)
O2—N2—O1 122.57 (13) O3—N4—C28 119.53 (12)
O2—N2—C10 118.00 (13) O4—N4—C28 118.17 (12)
N1—C1—C2 129.30 (13) N3—C19—C20 129.19 (13)
N1—C1—C6 109.00 (12) N3—C19—C24 109.16 (12)
C2—C1—C6 121.70 (13) C20—C19—C24 121.64 (14)
C1—C2—H2 121.4 C19—C20—H20 121.3
C3—C2—C1 117.14 (14) C21—C20—C19 117.45 (14)
C3—C2—H2 121.4 C21—C20—H20 121.3
C2—C3—H3 119.0 C20—C21—H21 119.1
C2—C3—C4 121.97 (13) C20—C21—C22 121.89 (14)
C4—C3—H3 119.0 C22—C21—H21 119.1
C3—C4—H4 119.7 C21—C22—H22 119.7
C5—C4—C3 120.65 (14) C23—C22—C21 120.61 (15)
C5—C4—H4 119.7 C23—C22—H22 119.7
C4—C5—H5 120.6 C22—C23—H23 120.6
C4—C5—C6 118.76 (14) C22—C23—C24 118.85 (14)
C6—C5—H5 120.6 C24—C23—H23 120.6
C1—C6—C7 106.36 (12) C19—C24—C25 106.21 (12)
C5—C6—C1 119.77 (13) C23—C24—C19 119.53 (13)
C5—C6—C7 133.86 (14) C23—C24—C25 134.26 (13)
C8—C7—C6 133.64 (13) C26—C25—C24 133.90 (13)
C8—C7—C12 119.83 (12) C26—C25—C30 119.64 (13)
C12—C7—C6 106.53 (12) C30—C25—C24 106.46 (12)
C7—C8—H8 119.5 C25—C26—H26 119.4
C9—C8—C7 120.95 (13) C27—C26—C25 121.17 (12)
C9—C8—H8 119.5 C27—C26—H26 119.4
C8—C9—C10 116.54 (12) C26—C27—C28 116.44 (12)
C8—C9—C13 119.74 (12) C26—C27—C31 118.77 (12)
C10—C9—C13 123.46 (12) C28—C27—C31 124.67 (12)
C9—C10—N2 119.60 (12) C27—C28—N4 120.38 (12)
C11—C10—N2 115.52 (12) C29—C28—N4 114.84 (12)
C11—C10—C9 124.79 (12) C29—C28—C27 124.63 (13)
C10—C11—H11 121.7 C28—C29—H29 121.6
C10—C11—C12 116.66 (13) C30—C29—C28 116.83 (12)
C12—C11—H11 121.7 C30—C29—H29 121.6
N1—C12—C7 109.05 (12) N3—C30—C25 109.12 (12)
N1—C12—C11 129.75 (13) N3—C30—C29 129.64 (12)
C11—C12—C7 121.20 (12) C29—C30—C25 121.24 (12)
C14—C13—C9 121.11 (12) C32—C31—C27 119.84 (13)
C14—C13—C18 118.63 (13) C32—C31—C36 118.71 (13)
C18—C13—C9 120.21 (12) C36—C31—C27 121.33 (13)
C13—C14—H14 119.7 C31—C32—H32 119.7
C15—C14—C13 120.60 (14) C33—C32—C31 120.58 (15)
C15—C14—H14 119.7 C33—C32—H32 119.7
C14—C15—H15 119.8 C32—C33—H33 120.0
C16—C15—C14 120.38 (15) C34—C33—C32 120.01 (16)
C16—C15—H15 119.8 C34—C33—H33 120.0
C15—C16—H16 120.2 C33—C34—H34 120.1
C15—C16—C17 119.61 (14) C33—C34—C35 119.77 (15)
C17—C16—H16 120.2 C35—C34—H34 120.1
C16—C17—H17 119.9 C34—C35—H35 119.7
C18—C17—C16 120.26 (14) C34—C35—C36 120.60 (16)
C18—C17—H17 119.9 C36—C35—H35 119.7
C13—C18—H18 119.7 C31—C36—H36 119.8
C17—C18—C13 120.52 (14) C35—C36—C31 120.31 (15)
C17—C18—H18 119.7 C35—C36—H36 119.8
O1—N2—C10—C9 33.96 (18) O3—N4—C28—C27 35.93 (18)
O1—N2—C10—C11 −142.78 (13) O3—N4—C28—C29 −139.86 (13)
O2—N2—C10—C9 −147.07 (14) O4—N4—C28—C27 −145.47 (13)
O2—N2—C10—C11 36.19 (18) O4—N4—C28—C29 38.74 (17)
N1—C1—C2—C3 −178.83 (13) N3—C19—C20—C21 −177.36 (13)
N1—C1—C6—C5 179.82 (11) N3—C19—C24—C23 178.82 (12)
N1—C1—C6—C7 −0.43 (14) N3—C19—C24—C25 −0.84 (15)
N2—C10—C11—C12 176.07 (11) N4—C28—C29—C30 173.21 (11)
C1—N1—C12—C7 0.29 (14) C19—N3—C30—C25 −0.34 (15)
C1—N1—C12—C11 −179.86 (13) C19—N3—C30—C29 178.60 (13)
C1—C2—C3—C4 −0.8 (2) C19—C20—C21—C22 −1.6 (2)
C1—C6—C7—C8 −179.68 (13) C19—C24—C25—C26 −178.57 (14)
C1—C6—C7—C12 0.60 (14) C19—C24—C25—C30 0.62 (14)
C2—C1—C6—C5 0.67 (19) C20—C19—C24—C23 −0.4 (2)
C2—C1—C6—C7 −179.58 (12) C20—C19—C24—C25 179.97 (12)
C2—C3—C4—C5 0.7 (2) C20—C21—C22—C23 0.3 (2)
C3—C4—C5—C6 0.1 (2) C21—C22—C23—C24 1.0 (2)
C4—C5—C6—C1 −0.78 (19) C22—C23—C24—C19 −1.0 (2)
C4—C5—C6—C7 179.56 (14) C22—C23—C24—C25 178.56 (14)
C5—C6—C7—C8 0.0 (3) C23—C24—C25—C26 1.8 (3)
C5—C6—C7—C12 −179.70 (14) C23—C24—C25—C30 −178.97 (15)
C6—C1—C2—C3 0.13 (19) C24—C19—C20—C21 1.7 (2)
C6—C7—C8—C9 −178.43 (13) C24—C25—C26—C27 177.60 (13)
C6—C7—C12—N1 −0.56 (14) C24—C25—C30—N3 −0.18 (14)
C6—C7—C12—C11 179.58 (11) C24—C25—C30—C29 −179.23 (12)
C7—C8—C9—C10 −1.82 (18) C25—C26—C27—C28 0.96 (19)
C7—C8—C9—C13 172.60 (12) C25—C26—C27—C31 177.21 (12)
C8—C7—C12—N1 179.68 (11) C26—C25—C30—N3 179.14 (11)
C8—C7—C12—C11 −0.18 (19) C26—C25—C30—C29 0.09 (19)
C8—C9—C10—N2 −174.94 (11) C26—C27—C28—N4 −174.31 (12)
C8—C9—C10—C11 1.5 (2) C26—C27—C28—C29 1.0 (2)
C8—C9—C13—C14 55.80 (18) C26—C27—C31—C32 44.14 (18)
C8—C9—C13—C18 −121.42 (14) C26—C27—C31—C36 −131.90 (14)
C9—C10—C11—C12 −0.5 (2) C27—C28—C29—C30 −2.4 (2)
C9—C13—C14—C15 −177.70 (13) C27—C31—C32—C33 −175.23 (13)
C9—C13—C18—C17 177.90 (13) C27—C31—C36—C35 176.57 (13)
C10—C9—C13—C14 −130.18 (14) C28—C27—C31—C32 −139.94 (14)
C10—C9—C13—C18 52.60 (18) C28—C27—C31—C36 44.02 (19)
C10—C11—C12—N1 179.96 (12) C28—C29—C30—N3 −177.09 (13)
C10—C11—C12—C7 −0.20 (18) C28—C29—C30—C25 1.75 (19)
C12—N1—C1—C2 179.16 (13) C30—N3—C19—C20 179.86 (13)
C12—N1—C1—C6 0.10 (14) C30—N3—C19—C24 0.75 (15)
C12—C7—C8—C9 1.25 (19) C30—C25—C26—C27 −1.50 (19)
C13—C9—C10—N2 10.87 (19) C31—C27—C28—N4 9.68 (19)
C13—C9—C10—C11 −172.72 (12) C31—C27—C28—C29 −174.96 (12)
C13—C14—C15—C16 0.3 (2) C31—C32—C33—C34 −1.1 (2)
C14—C13—C18—C17 0.6 (2) C32—C31—C36—C35 0.5 (2)
C14—C15—C16—C17 −0.3 (2) C32—C33—C34—C35 −0.1 (2)
C15—C16—C17—C18 0.4 (2) C33—C34—C35—C36 1.5 (2)
C16—C17—C18—C13 −0.6 (2) C34—C35—C36—C31 −1.7 (2)
C18—C13—C14—C15 −0.4 (2) C36—C31—C32—C33 0.9 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O3i 0.88 (1) 2.33 (1) 3.1825 (16) 162 (1)
N1—H1···O4i 0.88 (1) 2.38 (1) 3.1331 (17) 143 (1)
N1—H1···N4i 0.88 (1) 2.59 (1) 3.4610 (17) 168 (1)
N3—H3A···O1ii 0.88 (1) 2.26 (1) 3.1079 (18) 162 (1)
N3—H3A···O2ii 0.88 (1) 2.45 (1) 3.2039 (19) 143 (1)
N3—H3A···N2ii 0.88 (1) 2.60 (1) 3.4700 (19) 170 (1)

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+2, −y+1, −z+1.

Funding Statement

This work was funded by National Research Foundation of Korea grant 2019R1A2C1001989.

References

  1. Asker, E. & Masnovi, J. (2004). Acta Cryst. E60, o1613–o1615.
  2. Bao, L., Zhu, J., Song, W., Zhou, H., Huang, J., Mu, H. & Su, J. (2020). Org. Electron. 83, 105672.
  3. Bashir, M., Bano, A., Ijaz, A. S. & Chaudhary, B. A. (2015). Molecules, 20, 13496–13517. [DOI] [PMC free article] [PubMed]
  4. Bruker (2014). APEX2 SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Chan, L.-H., Lin, L.-C., Yao, C.-H., Liu, Y.-R., Jiang, Z.-J. & Cho, T.-Y. (2013). Thin Solid Films, 544, 386–391.
  6. Chen, C.-H., Wang, Y., Michinobu, T., Chang, S.-W., Chiu, Y.-C., Ke, C.-Y. & Liou, G.-S. (2020). Appl. Mater. Interfaces, 12, 6144–6150. [DOI] [PubMed]
  7. Collin, G., Höke, H. & Talbiersky, J. (2006). Carbazole. In Ullmann’s Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH.
  8. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  9. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  10. Koli, M. R., Labiod, A., Chakraborty, S., Kumar, M., Lévêque, P., Ulrich, G., Leclerc, N., Jacquemin, D. & Mula, S. (2020). ChemPhotoChem 4, 729-741.
  11. Li, M., Wang, Z., Liang, M., Liu, L., Wang, X., Sun, Z. & Xue, S. (2018). J. Phys. Chem. C, 122, 24014–24024.
  12. Li, N., Huang, P.-M., Xiong, X.-L., Xu, X.-D. & Shao, Z.-J. (2006). Acta Cryst. E62, o1805–o1806.
  13. Lokhande, P. K. M., Sonigara, K. K., Jadhav, M. M., Patil, D. S., Soni, S. S. & Sekar, N. (2019). ChemistrySelect 4, 4044–4056.
  14. Matsubara, R., Shimada, T., Kobori, Y., Yabuta, T., Osakai, T. & Hayashi, M. (2016). Chem. Asian J. 11, 2006–2010. [DOI] [PubMed]
  15. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  16. Nandy, B. C., Gupta, A., Mittal, A. & Vyas, V. (2014). J. Biomed. Pharm. Res, 3, 42–48.
  17. Niu, P., Huang, H., Zhao, L., Zhang, C., Shen, Z. & Li, M. (2021). J. Electroanal. Chem. 894, 115352.
  18. Oda, S., Kumano, W., Hama, T., Kawasumi, R., Yoshiura, K. & Hatakeyama, T. (2021). Angew. Chem. 133, 2918–2922. [DOI] [PubMed]
  19. Ramathilagam, C., Venkatesan, N., Rajakumar, P., Umarani, P. R. & Manivannan, V. (2011). Acta Cryst. E67, o2796. [DOI] [PMC free article] [PubMed]
  20. Reig, M., Puigdollers, J. & Velasco, D. (2015). J. Mater. Chem. C. 3, 506–513.
  21. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  22. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  23. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  24. Srivastava, A. & Chakrabarti, P. (2017). Appl. Phys. A, 123, 784.
  25. Sun, D., Ren, Z., Bryce, M. R. & Yan, S. (2015). J. Mater. Chem. C. 3, 9496–9508.
  26. Sutanto, A. A., Joseph, V., Igci, C., Syzgantseva, O. A., Syzgantseva, M. A., Jankauskas, V., Rakstys, K., Queloz, V. I., Huang, P.-Y., Ni, J.-S., Kinge, S., Asiri, A. M., Chen, M. & Nazeeruddin, M. K. (2021). Chem. Mater. 33, 3286–3296.
  27. Svetlichnyi, V. M., Alexandrova, E. L., Miagkova, L. A., Matushina, N. V., Nekrasova, T. N., Tameev, A. R., Stepanenko, S. N., Vannikov, A. V. & Kudryavtsev, V. V. (2010). Semiconductors, 44, 1581-1587.
  28. Szafraniec-Gorol, G., Slodek, A., Zych, D., Vasylieva, M., Siwy, M., Sulowska, K., Maćkowski, S., Taydakov, I., Goriachiy, D. & Schab-Balcerzak, E. (2021). J. Mater. Chem. C. 9, 7351–7362.
  29. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface. net
  30. Verma, A. K., Danodia, A. K., Saunthwal, R. K., Patel, M. & Choudhary, D. (2015). Org. Lett. 17, 3658–3661. [DOI] [PubMed]
  31. Wakim, S., Aïch, B. R., Tao, Y. & Leclerc, M. (2008). Polym. Rev. 48, 432–462.
  32. Xiang, S., Lv, X., Sun, S., Zhang, Q., Huang, Z., Guo, R., Gu, H., Liu, S. & Wang, L. (2018). J. Mater. Chem. C. 6, 5812–5820.
  33. Yang, J., Devillers, C. H., Fleurat-Lessard, P., Jiang, H., Wang, S., Gros, C. P., Gupta, G., Sharma, G. D. & Xu, H. (2020). Dalton Trans. 49, 5606–5617. [DOI] [PubMed]
  34. Yavuz, Ö., Sezer, E. & Saraç, A. S. (2001). Polym. Int. 50, 271–276.
  35. Zhang, D., Song, X., Cai, M., Kaji, H. & Duan, L. (2018). Adv. Mater. 30, 1705406. [DOI] [PubMed]
  36. Zhang, X.-H., Wang, Z.-S., Cui, Y., Koumura, N., Furube, A. & Hara, K. (2009). J. Phys. Chem. C, 113, 13409–13415.
  37. Zhou, H., Yin, M., Zhao, Z., Miao, Y., Jin, X., Huang, J., Gao, Z., Wang, H., Su, J. & Tian, H. (2021). J. Mater. Chem. C. 9, 5899–5907.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021007726/ex2047sup1.cif

e-77-00887-sup1.cif (529.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021007726/ex2047Isup2.hkl

e-77-00887-Isup2.hkl (419.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021007726/ex2047Isup3.cdx

Supporting information file. DOI: 10.1107/S2056989021007726/ex2047Isup4.cdx

Supporting information file. DOI: 10.1107/S2056989021007726/ex2047Isup5.cml

CCDC reference: 2099768

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES