Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Jul 16;77(Pt 9):867–870. doi: 10.1107/S2056989021007210

Synthesis and crystal structure of 1-hy­droxy-8-methyl-9H-carbazole-2-carbaldehyde

Aravazhi Amalan Thiruvalluvar a,*, M Sridharan b,*, K J Rajendra Prasad c, M Zeller d
PMCID: PMC8423023  PMID: 34584751

Two crystallographically independent mol­ecules are present in the asymmetric unit. O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds form rings and chains and π–π stacks further connect mol­ecules in the crystal.

Keywords: crystal structure, 9H-carbazole, π–π stacks, N—H⋯O, O—H⋯O, C—H⋯O hydrogen bonding

Abstract

Two crystallographically independent mol­ecules are present in the asymmetric unit of the title compound, C14H11NO2, with virtually identical geometries. The carbazole units are planar. The hy­droxy group at position 1, carbaldehyde group at position 2, and methyl group at position 8 (with the exception of two H atoms) are coplanar with the attached benzene rings. The dihedral angle between the two benzene rings is 2.20 (9)° in mol­ecule A and 2.01 (9)° in mol­ecule B. The pyrrole ring makes dihedral angles of 0.82 (10) and 1.40 (10)° [0.84 (10) and 1.18 (10)° in mol­ecule B] with the (–CH3)-substituted and (–OH and –CHO) substituted benzene rings, respectively. The mol­ecular structure is stabilized by the intra­molecular O—H⋯O hydrogen bonds, while the crystal structure features N—H⋯O and C—H⋯O hydrogen bonds. A range of π–π contacts further stabilizes the crystal structure.

Chemical context  

Nitro­gen-containing heterocyclic compounds are key building blocks used to develop chemicals of biological and medicinal inter­est. Among nitro­gen heterocycles, carbazole alkaloids represent an important class of natural products. The Indian medicinal plant Murraya koenigii spreng (Rutaceae) is a rich source of carbazole alkaloids (Knölker & Reddy, 2002), and a number of these natural products with novel structures and useful biological activities have been isolated from this plant over the past decades. The increase of isolable natural products as well as the pharmacological action of these carbazole derivatives has generated synthetic inter­est; consequently, the synthesis of carbazoles has been an active area of study.

Based on the structural, biological and pharmacological importance of carbazole derivatives, the present investigation was to devise a viable synthetic route to these compounds using different methodologies. For our synthetic strategy, 2,3,4,9-tetra­hydro-1H-carbazol-1-ones prepared in our laboratory were used as precursors, opening new avenues for the synthesis of highly functionalized carbazole derivatives such as 1-hy­droxy­imino-2,3,4,9-tetra­hydro-1H-carbazoles, 1-hy­droxy­carbazoles, and 1-hy­droxy-2-formyl­carbazoles. The functionalized carbazoles thus prepared lead to mukonine isomers, oxazolocarbazoles, girinimbine isomers, pyran­ocarbazoles, indoloisoflavones, indolocoumarins, indoloxanthones, benzocarbazoles, car­baz­ol­yl­oxy­prop­an­ol­amines and pyrazolo-, isoxazolo-, furo-, oxazino-, pyrimido-, pyridazino-, pyrido-, pyrazino- and indolo-carbazoles in excellent yields (Shanmugasundaram & Rajendra Prasad, 1999; Sridharan & Rajendra Prasad, 2011; Sridharan, Beagle et al., 2008 and references cited therein). Herein, we report the synthesis and crystal structure of 1-hy­droxy-8-methyl-9H-carbazole-2-carbaldehyde (Fig. 1), which is a potential precursor for the synthesis of many hetero-annulated carbazoles (Gunaseelan et al., 2007).graphic file with name e-77-00867-scheme1.jpg

Figure 1.

Figure 1

The two crystallographically independent mol­ecules with the atom-numbering scheme. Non-H atoms are shown at the 50% displacement ellipsoid probability level, H atoms are represented as small spheres.

Structural commentary  

The title compound crystallizes in the monoclinic space group P21/c with two independent mol­ecules (A and B, Fig. 1) in the asymmetric unit. They are superimposable and both are essentially planar. Placing inverted mol­ecule B on mol­ecule A gives the best fit, with the overlay of the two independent mol­ecules shown in Fig. 2. The weighted r.m.s. fit of the 17 non-H fitted atoms is 0.034 Å, the r.m.s. bond fit is 0.003 Å and the r.m.s. angle fit is 0.383°. Both independent mol­ecules, including the hy­droxy group at position 1, carbaldehyde group at position 2, and methyl group at position 8 (with the exception of two H atoms) are near planar. The dihedral angle between the two benzene rings of the carbazole is 2.20 (9)° in mol­ecule A and 2.01 (9)° in mol­ecule B. The pyrrole ring makes dihedral angles of 0.82 (10) and 1.40 (10)° for mol­ecule A and 0.84 (10) and 1.18 (10)° for mol­ecule B with the methyl-substituted and hydroxide/carbaldehyde-substituted benzene rings, respectively. The compound exhibits intra­molecular O—H⋯O hydrogen bonding between the hydroxide and aldehyde groups (Table 1). Hydrogen bonds similar to the O1—H1D⋯O2 and O3—H3A⋯O4 bonds observed in this structure, forming S(6) ring motifs, have previously been observed (Bernstein et al., 1995).

Figure 2.

Figure 2

Least-squares overlay of the two independent mol­ecules (inverted mol­ecule B on mol­ecule A). Fit rotation angle is −172.76°, r.m.s. fit = 0.087 Å.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O3i 0.93 2.50 3.254 (2) 138
N1—H1⋯O4ii 0.87 (2) 2.00 (2) 2.862 (2) 174 (2)
O1—H1D⋯O2 0.94 (3) 1.74 (3) 2.602 (2) 151 (3)
N2—H2⋯O2iii 0.91 (2) 1.97 (2) 2.879 (2) 173 (2)
O3—H3A⋯O4 0.90 (3) 1.78 (3) 2.595 (2) 150 (3)

Symmetry codes: (i) x, y-1, z; (ii) x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}; (iii) x, y+1, z.

Supra­molecular features  

In the crystal, mol­ecules are connected into chains parallel to the c axis by inter­molecular N—H⋯O and C—H⋯O hydrogen bonds (Table 1, Fig. 3). Both crystallographically independent mol­ecules are arranged in similar N1—H1⋯O4(x, Inline graphic − y, Inline graphic + z) and N2—H2⋯O2(x, 1 + y, z) hydrogen bonds. A C14—H14⋯O3(x, −1 + y, z) hydrogen bond is also present. A range of π–π contacts is also observed (Fig. 4). The distances between ring centroids are Cg1⋯Cg2(x, −1 + y, z) = 3.4604 (13) Å, Cg1⋯Cg3 (x, 1 + y, z) = 3.4896 (13) Å and Cg7⋯Cg9 (x, 1 + y, z) = 3.6279 (13) Å, where Cg1, Cg2, Cg3, Cg7 and Cg9 are the centroids of the N1/C7/C6/C10/C9, C2–C7, C8–C13, N2/C21/C20/C24/C23 and C22–C27 rings, respectively.

Figure 3.

Figure 3

Perspective partial packing view of the title compound, viewed along the b axis, showing the hydrogen-bonding inter­actions. Black dashed lines indicate the N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds.

Figure 4.

Figure 4

Straw-style packing view of the title compound, viewed down the b axis, showing slipped π–π stacking inter­actions. Centroids are indicated by green spheres and contacts between centroids by black dotted lines.

Database survey  

A search in the Cambridge Structural Database (CSD, Version 5.42, update May 2021; Groom et al., 2016) for the structure 1-hy­droxy-8-methyl-9H-carbazole-2-carbaldehyde gave two hits, viz. 2,2,10-trimethyl-2,3-di­hydro­pyrano(2,3-a)carbazol-4(11H)-one (CSD refcode: BOGTOH; Sridharan, Prasad et al., 2008) and 1-(1-hy­droxy-8-methyl-9H-carbazol-2-yl)ethanone (CSD refcode: WACYEG; Archana et al., 2010). A search for the structure of 9H-carbazole-1-ol gave 69 hits. 1-Hy­droxy-3-methyl-9H-carbazole-2-carbaldehyde, C14H11NO2, (CSD refcode: NIFCUB; Gunaseelan et al., 2007) has the most similar structure to that of the title compound, with a 3-methyl rather than an 8-methyl group. The structure of NIFCUB is similarly stabilized by inter- and intra­molecular N—H⋯O and O—H⋯O hydrogen bonds.

Synthesis and crystallization  

30% Sodium hydride in mineral oil (2.4 g) was washed with dry benzene and taken into a round-bottom flask containing dry benzene (100 ml). The flask was kept in an ice bath under stirring. Ethyl formate (8 ml) was added dropwise to the solution over a period of 10 minutes. Then 8-methyl-2,3,4,9-tetra­hydro-1H-carbazol-1-one (1.6 g, 0.008 mol) in dry benzene (25 ml) was added slowly and the reaction mixture was allowed to stir for another 36 h. The reaction was monitored by TLC. After completion of the reaction, benzene was removed in vacuo and the contents in the flask were transferred to a beaker containing water. It was neutralized with dilute HCl, filtered, washed with water and dried to get crude 1-hy­droxy-8-methyl-9H-carbazole-2-carbaldehyde. It was purified by column chromatography over silica using petroleum ether:ethyl acetate (95:5) as eluant. The brown pure product obtained was recrystallized using glacial acetic acid (needle-shaped crystals, yield 0.965 g, 55%), m.p. 414 K (Fig. 5).

Figure 5.

Figure 5

Synthesis of the title compound.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The indole NH hydrogen atoms, H1 and H2 and the hydroxyl OH hydrogen atoms H1D and H3A were located in a difference-Fourier map and freely refined. The remaining hydrogen atoms were placed in calculated positions with C—H bond distances of 0.93 Å (aromatic H), or 0.96 Å (methyl H) and were refined with anisotropic displacement parameters 1.2 and 1.5 times that of the parent carbon atoms.

Table 2. Experimental details.

Crystal data
Chemical formula C14H11NO2
M r 225.24
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 28.290 (5), 3.9052 (7), 20.264 (3)
β (°) 105.817 (2)
V3) 2154.0 (6)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.75 × 0.19 × 0.10
 
Data collection
Diffractometer Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2005)
Tmin, Tmax 0.830, 0.991
No. of measured, independent and observed [I > 2σ(I)] reflections 19760, 5344, 4453
R int 0.034
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F 2)], wR(F 2), S 0.055, 0.146, 1.18
No. of reflections 5344
No. of parameters 325
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.31, −0.24

Computer programs: APEX2 and SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008), SHELXL2018/3 (Sheldrick, 2015), PLATON (Spek, 2020) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021007210/yy2001sup1.cif

e-77-00867-sup1.cif (639.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021007210/yy2001Isup2.hkl

e-77-00867-Isup2.hkl (425.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021007210/yy2001Isup3.cdx

Supporting information file. DOI: 10.1107/S2056989021007210/yy2001Isup4.cml

CCDC reference: 1540679

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

AAT remembers the long time association and research collaboration with the late Professor Jerry P. Jasinski of the Department of Chemistry, Keene State College, USA. MS thanks the academic and administrative authorities of RV College of Engineering for their support and encouragement.

supplementary crystallographic information

Crystal data

C14H11NO2 F(000) = 944
Mr = 225.24 Dx = 1.389 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 28.290 (5) Å Cell parameters from 7327 reflections
b = 3.9052 (7) Å θ = 2.2–31.3°
c = 20.264 (3) Å µ = 0.09 mm1
β = 105.817 (2)° T = 296 K
V = 2154.0 (6) Å3 Needle, brown
Z = 8 0.75 × 0.19 × 0.10 mm

Data collection

Bruker SMART APEXII CCD diffractometer 5344 independent reflections
Radiation source: fine-focus sealed tube 4453 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.034
ω scans θmax = 28.3°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −37→37
Tmin = 0.830, Tmax = 0.991 k = −5→5
19760 measured reflections l = −26→26

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055 Hydrogen site location: mixed
wR(F2) = 0.146 H atoms treated by a mixture of independent and constrained refinement
S = 1.18 w = 1/[σ2(Fo2) + (0.0612P)2 + 1.1713P] where P = (Fo2 + 2Fc2)/3
5344 reflections (Δ/σ)max = 0.001
325 parameters Δρmax = 0.31 e Å3
0 restraints Δρmin = −0.24 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.60695 (8) 0.8782 (6) 0.79934 (10) 0.0305 (4)
H1A 0.586381 0.993978 0.822872 0.046*
H1B 0.636607 1.007032 0.804205 0.046*
H1C 0.614950 0.654265 0.818701 0.046*
C2 0.58026 (7) 0.8460 (5) 0.72475 (10) 0.0225 (4)
C3 0.53306 (7) 0.9707 (5) 0.69748 (11) 0.0269 (4)
H3 0.517561 1.081062 0.726518 0.032*
C4 0.50767 (7) 0.9371 (5) 0.62778 (11) 0.0278 (4)
H4 0.475869 1.021909 0.611961 0.033*
C5 0.52935 (6) 0.7800 (5) 0.58267 (10) 0.0239 (4)
H5 0.512575 0.758554 0.536525 0.029*
C6 0.57725 (6) 0.6531 (5) 0.60773 (9) 0.0190 (3)
C7 0.60179 (6) 0.6862 (5) 0.67805 (9) 0.0187 (3)
C8 0.69229 (6) 0.2303 (5) 0.61767 (9) 0.0186 (3)
C9 0.65285 (6) 0.4087 (4) 0.62986 (8) 0.0171 (3)
C10 0.61009 (6) 0.4752 (5) 0.57646 (8) 0.0173 (3)
C11 0.60642 (6) 0.3678 (5) 0.50886 (9) 0.0213 (4)
H11 0.578573 0.416290 0.473378 0.026*
C12 0.64511 (7) 0.1896 (5) 0.49680 (9) 0.0213 (4)
H12 0.643093 0.114554 0.452561 0.026*
C13 0.68800 (6) 0.1176 (5) 0.55022 (9) 0.0199 (4)
C14 0.72687 (7) −0.0821 (5) 0.53619 (10) 0.0230 (4)
H14 0.722444 −0.163999 0.491820 0.028*
C15 0.88208 (8) 0.8160 (5) 0.68439 (9) 0.0265 (4)
H15A 0.902174 0.905029 0.726989 0.040*
H15B 0.860603 0.642822 0.693463 0.040*
H15C 0.862872 0.997972 0.658394 0.040*
C16 0.91438 (7) 0.6628 (5) 0.64413 (9) 0.0214 (4)
C17 0.96492 (7) 0.6431 (5) 0.66858 (9) 0.0256 (4)
H17 0.979856 0.730010 0.711994 0.031*
C18 0.99471 (7) 0.4977 (5) 0.63077 (10) 0.0270 (4)
H18 1.028583 0.491116 0.649516 0.032*
C19 0.97440 (7) 0.3645 (5) 0.56619 (9) 0.0232 (4)
H19 0.994149 0.267196 0.541288 0.028*
C20 0.92328 (6) 0.3795 (5) 0.53906 (9) 0.0187 (3)
C21 0.89409 (6) 0.5292 (5) 0.57814 (8) 0.0179 (3)
C22 0.80092 (6) 0.2763 (5) 0.42718 (9) 0.0183 (3)
C23 0.84263 (6) 0.3534 (4) 0.47993 (8) 0.0176 (3)
C24 0.89000 (6) 0.2655 (5) 0.47573 (8) 0.0180 (3)
C25 0.89635 (7) 0.0985 (5) 0.41705 (9) 0.0218 (4)
H25 0.927599 0.043979 0.413640 0.026*
C26 0.85547 (7) 0.0181 (5) 0.36514 (9) 0.0232 (4)
H26 0.859196 −0.093655 0.326343 0.028*
C27 0.80755 (7) 0.1021 (5) 0.36941 (9) 0.0206 (4)
C28 0.76490 (7) −0.0010 (5) 0.31623 (9) 0.0254 (4)
H28 0.769894 −0.116522 0.278565 0.030*
N1 0.64768 (5) 0.5391 (4) 0.69071 (8) 0.0191 (3)
N2 0.84527 (5) 0.5107 (4) 0.54173 (7) 0.0187 (3)
O1 0.73268 (5) 0.1687 (4) 0.67024 (6) 0.0238 (3)
O2 0.76604 (5) −0.1520 (4) 0.57967 (7) 0.0276 (3)
O3 0.75629 (5) 0.3697 (4) 0.43310 (7) 0.0230 (3)
O4 0.72203 (5) 0.0536 (4) 0.31724 (7) 0.0298 (3)
H1 0.6700 (9) 0.527 (7) 0.7295 (13) 0.033 (6)*
H1D 0.7530 (11) 0.035 (9) 0.6508 (16) 0.065 (9)*
H2 0.8187 (8) 0.600 (6) 0.5531 (12) 0.031 (6)*
H3A 0.7344 (11) 0.288 (9) 0.3952 (16) 0.063 (9)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0445 (12) 0.0266 (10) 0.0261 (10) 0.0013 (9) 0.0192 (9) −0.0015 (8)
C2 0.0284 (9) 0.0157 (9) 0.0283 (9) −0.0017 (7) 0.0160 (8) 0.0015 (7)
C3 0.0298 (10) 0.0167 (9) 0.0411 (11) 0.0003 (7) 0.0213 (9) 0.0011 (8)
C4 0.0212 (9) 0.0196 (9) 0.0443 (12) 0.0017 (7) 0.0120 (8) 0.0058 (8)
C5 0.0203 (8) 0.0193 (9) 0.0310 (10) −0.0008 (7) 0.0053 (7) 0.0067 (7)
C6 0.0191 (8) 0.0169 (8) 0.0218 (8) −0.0018 (6) 0.0068 (6) 0.0048 (7)
C7 0.0208 (8) 0.0157 (8) 0.0219 (8) 0.0002 (6) 0.0096 (7) 0.0042 (7)
C8 0.0188 (8) 0.0193 (9) 0.0182 (8) −0.0015 (7) 0.0059 (6) 0.0015 (6)
C9 0.0181 (7) 0.0172 (8) 0.0170 (8) −0.0028 (6) 0.0066 (6) 0.0026 (6)
C10 0.0182 (7) 0.0172 (8) 0.0173 (8) −0.0025 (6) 0.0061 (6) 0.0034 (6)
C11 0.0227 (8) 0.0226 (9) 0.0177 (8) −0.0034 (7) 0.0041 (6) 0.0027 (7)
C12 0.0268 (9) 0.0218 (9) 0.0158 (8) −0.0064 (7) 0.0067 (7) −0.0003 (7)
C13 0.0215 (8) 0.0203 (9) 0.0199 (8) −0.0039 (7) 0.0089 (6) −0.0004 (7)
C14 0.0276 (9) 0.0214 (9) 0.0238 (9) −0.0023 (7) 0.0133 (7) 0.0004 (7)
C15 0.0382 (10) 0.0237 (10) 0.0179 (8) −0.0029 (8) 0.0083 (7) −0.0025 (7)
C16 0.0300 (9) 0.0177 (9) 0.0160 (8) −0.0027 (7) 0.0053 (7) 0.0030 (7)
C17 0.0330 (10) 0.0216 (9) 0.0181 (8) −0.0055 (8) −0.0001 (7) 0.0028 (7)
C18 0.0244 (9) 0.0262 (10) 0.0265 (9) −0.0019 (7) 0.0005 (7) 0.0064 (8)
C19 0.0226 (8) 0.0237 (10) 0.0232 (9) 0.0031 (7) 0.0062 (7) 0.0061 (7)
C20 0.0209 (8) 0.0171 (8) 0.0188 (8) 0.0008 (7) 0.0064 (6) 0.0039 (6)
C21 0.0206 (8) 0.0165 (8) 0.0166 (8) −0.0004 (6) 0.0052 (6) 0.0034 (6)
C22 0.0214 (8) 0.0180 (8) 0.0166 (8) 0.0002 (7) 0.0068 (6) 0.0031 (6)
C23 0.0222 (8) 0.0174 (8) 0.0143 (8) 0.0004 (7) 0.0070 (6) 0.0016 (6)
C24 0.0206 (8) 0.0171 (8) 0.0171 (8) 0.0028 (6) 0.0064 (6) 0.0040 (6)
C25 0.0245 (9) 0.0225 (9) 0.0203 (8) 0.0045 (7) 0.0092 (7) 0.0024 (7)
C26 0.0325 (10) 0.0220 (9) 0.0165 (8) 0.0030 (8) 0.0093 (7) −0.0003 (7)
C27 0.0270 (9) 0.0202 (9) 0.0143 (8) 0.0001 (7) 0.0051 (6) 0.0012 (7)
C28 0.0346 (10) 0.0233 (10) 0.0162 (8) −0.0013 (8) 0.0035 (7) 0.0003 (7)
N1 0.0197 (7) 0.0218 (8) 0.0165 (7) 0.0019 (6) 0.0060 (6) 0.0013 (6)
N2 0.0204 (7) 0.0216 (8) 0.0149 (7) 0.0002 (6) 0.0062 (5) −0.0005 (6)
O1 0.0187 (6) 0.0312 (8) 0.0203 (6) 0.0047 (5) 0.0034 (5) −0.0006 (5)
O2 0.0247 (7) 0.0301 (8) 0.0308 (7) 0.0022 (6) 0.0123 (6) −0.0014 (6)
O3 0.0186 (6) 0.0318 (8) 0.0187 (6) −0.0013 (5) 0.0051 (5) −0.0013 (5)
O4 0.0278 (7) 0.0397 (9) 0.0193 (6) −0.0043 (6) 0.0019 (5) −0.0011 (6)

Geometric parameters (Å, º)

C1—C2 1.500 (3) C15—H15B 0.9600
C1—H1A 0.9600 C15—H15C 0.9600
C1—H1B 0.9600 C16—C17 1.382 (3)
C1—H1C 0.9600 C16—C21 1.404 (2)
C2—C3 1.387 (3) C17—C18 1.404 (3)
C2—C7 1.404 (2) C17—H17 0.9300
C3—C4 1.405 (3) C18—C19 1.380 (3)
C3—H3 0.9300 C18—H18 0.9300
C4—C5 1.376 (3) C19—C20 1.401 (2)
C4—H4 0.9300 C19—H19 0.9300
C5—C6 1.402 (2) C20—C21 1.417 (2)
C5—H5 0.9300 C20—C24 1.440 (2)
C6—C7 1.411 (2) C21—N2 1.379 (2)
C6—C10 1.438 (2) C22—O3 1.350 (2)
C7—N1 1.378 (2) C22—C23 1.392 (2)
C8—O1 1.354 (2) C22—C27 1.410 (2)
C8—C9 1.393 (2) C23—N2 1.379 (2)
C8—C13 1.409 (2) C23—C24 1.408 (2)
C9—N1 1.378 (2) C24—C25 1.410 (2)
C9—C10 1.410 (2) C25—C26 1.371 (3)
C10—C11 1.409 (2) C25—H25 0.9300
C11—C12 1.374 (3) C26—C27 1.420 (3)
C11—H11 0.9300 C26—H26 0.9300
C12—C13 1.417 (2) C27—C28 1.439 (2)
C12—H12 0.9300 C28—O4 1.237 (2)
C13—C14 1.438 (3) C28—H28 0.9300
C14—O2 1.244 (2) N1—H1 0.87 (2)
C14—H14 0.9300 N2—H2 0.91 (2)
C15—C16 1.505 (3) O1—H1D 0.94 (3)
C15—H15A 0.9600 O3—H3A 0.90 (3)
C2—C1—H1A 109.5 H15A—C15—H15C 109.5
C2—C1—H1B 109.5 H15B—C15—H15C 109.5
H1A—C1—H1B 109.5 C17—C16—C21 115.81 (17)
C2—C1—H1C 109.5 C17—C16—C15 123.33 (17)
H1A—C1—H1C 109.5 C21—C16—C15 120.86 (16)
H1B—C1—H1C 109.5 C16—C17—C18 122.89 (17)
C3—C2—C7 115.79 (17) C16—C17—H17 118.6
C3—C2—C1 122.54 (17) C18—C17—H17 118.6
C7—C2—C1 121.68 (17) C19—C18—C17 120.89 (18)
C2—C3—C4 122.71 (18) C19—C18—H18 119.6
C2—C3—H3 118.6 C17—C18—H18 119.6
C4—C3—H3 118.6 C18—C19—C20 118.34 (18)
C5—C4—C3 120.74 (17) C18—C19—H19 120.8
C5—C4—H4 119.6 C20—C19—H19 120.8
C3—C4—H4 119.6 C19—C20—C21 119.64 (16)
C4—C5—C6 118.62 (18) C19—C20—C24 133.72 (17)
C4—C5—H5 120.7 C21—C20—C24 106.64 (15)
C6—C5—H5 120.7 N2—C21—C16 128.23 (16)
C5—C6—C7 119.64 (17) N2—C21—C20 109.32 (15)
C5—C6—C10 133.48 (17) C16—C21—C20 122.43 (16)
C7—C6—C10 106.86 (15) O3—C22—C23 119.39 (15)
N1—C7—C2 128.29 (17) O3—C22—C27 122.90 (16)
N1—C7—C6 109.21 (15) C23—C22—C27 117.71 (16)
C2—C7—C6 122.50 (16) N2—C23—C22 128.21 (16)
O1—C8—C9 119.60 (15) N2—C23—C24 110.28 (15)
O1—C8—C13 122.58 (16) C22—C23—C24 121.50 (16)
C9—C8—C13 117.81 (16) C23—C24—C25 120.38 (16)
N1—C9—C8 128.95 (16) C23—C24—C20 105.83 (15)
N1—C9—C10 109.92 (15) C25—C24—C20 133.78 (16)
C8—C9—C10 121.13 (16) C26—C25—C24 118.57 (16)
C11—C10—C9 120.79 (16) C26—C25—H25 120.7
C11—C10—C6 133.37 (16) C24—C25—H25 120.7
C9—C10—C6 105.84 (15) C25—C26—C27 121.34 (17)
C12—C11—C10 118.20 (16) C25—C26—H26 119.3
C12—C11—H11 120.9 C27—C26—H26 119.3
C10—C11—H11 120.9 C22—C27—C26 120.48 (16)
C11—C12—C13 121.50 (16) C22—C27—C28 118.85 (17)
C11—C12—H12 119.3 C26—C27—C28 120.62 (17)
C13—C12—H12 119.3 O4—C28—C27 124.41 (18)
C8—C13—C12 120.56 (16) O4—C28—H28 117.8
C8—C13—C14 119.52 (16) C27—C28—H28 117.8
C12—C13—C14 119.89 (16) C9—N1—C7 108.16 (14)
O2—C14—C13 124.09 (17) C9—N1—H1 124.4 (16)
O2—C14—H14 118.0 C7—N1—H1 127.5 (16)
C13—C14—H14 118.0 C23—N2—C21 107.92 (15)
C16—C15—H15A 109.5 C23—N2—H2 123.7 (15)
C16—C15—H15B 109.5 C21—N2—H2 128.2 (15)
H15A—C15—H15B 109.5 C8—O1—H1D 104.5 (18)
C16—C15—H15C 109.5 C22—O3—H3A 105.7 (19)
C7—C2—C3—C4 0.8 (3) C18—C19—C20—C21 0.0 (3)
C1—C2—C3—C4 −179.15 (19) C18—C19—C20—C24 −178.91 (19)
C2—C3—C4—C5 −0.9 (3) C17—C16—C21—N2 179.02 (18)
C3—C4—C5—C6 0.2 (3) C15—C16—C21—N2 −0.9 (3)
C4—C5—C6—C7 0.5 (3) C17—C16—C21—C20 0.7 (3)
C4—C5—C6—C10 178.98 (19) C15—C16—C21—C20 −179.26 (17)
C3—C2—C7—N1 −179.66 (18) C19—C20—C21—N2 −179.13 (16)
C1—C2—C7—N1 0.3 (3) C24—C20—C21—N2 0.0 (2)
C3—C2—C7—C6 0.0 (3) C19—C20—C21—C16 −0.5 (3)
C1—C2—C7—C6 179.92 (17) C24—C20—C21—C16 178.64 (16)
C5—C6—C7—N1 179.06 (16) O3—C22—C23—N2 2.3 (3)
C10—C6—C7—N1 0.2 (2) C27—C22—C23—N2 −177.78 (17)
C5—C6—C7—C2 −0.6 (3) O3—C22—C23—C24 −179.11 (16)
C10—C6—C7—C2 −179.45 (16) C27—C22—C23—C24 0.8 (3)
O1—C8—C9—N1 −0.6 (3) N2—C23—C24—C25 179.47 (16)
C13—C8—C9—N1 178.76 (17) C22—C23—C24—C25 0.6 (3)
O1—C8—C9—C10 −179.52 (16) N2—C23—C24—C20 −0.3 (2)
C13—C8—C9—C10 −0.2 (3) C22—C23—C24—C20 −179.20 (16)
N1—C9—C10—C11 179.77 (16) C19—C20—C24—C23 179.2 (2)
C8—C9—C10—C11 −1.1 (3) C21—C20—C24—C23 0.18 (19)
N1—C9—C10—C6 −0.63 (19) C19—C20—C24—C25 −0.6 (4)
C8—C9—C10—C6 178.49 (16) C21—C20—C24—C25 −179.59 (19)
C5—C6—C10—C11 1.2 (4) C23—C24—C25—C26 −1.3 (3)
C7—C6—C10—C11 179.77 (19) C20—C24—C25—C26 178.46 (19)
C5—C6—C10—C9 −178.36 (19) C24—C25—C26—C27 0.5 (3)
C7—C6—C10—C9 0.24 (19) O3—C22—C27—C26 178.33 (17)
C9—C10—C11—C12 1.6 (3) C23—C22—C27—C26 −1.6 (3)
C6—C10—C11—C12 −177.90 (19) O3—C22—C27—C28 −4.1 (3)
C10—C11—C12—C13 −0.8 (3) C23—C22—C27—C28 175.89 (16)
O1—C8—C13—C12 −179.70 (16) C25—C26—C27—C22 1.0 (3)
C9—C8—C13—C12 1.0 (3) C25—C26—C27—C28 −176.49 (18)
O1—C8—C13—C14 2.4 (3) C22—C27—C28—O4 0.3 (3)
C9—C8—C13—C14 −176.92 (16) C26—C27—C28—O4 177.80 (19)
C11—C12—C13—C8 −0.5 (3) C8—C9—N1—C7 −178.24 (18)
C11—C12—C13—C14 177.38 (17) C10—C9—N1—C7 0.8 (2)
C8—C13—C14—O2 −3.4 (3) C2—C7—N1—C9 179.03 (18)
C12—C13—C14—O2 178.69 (18) C6—C7—N1—C9 −0.6 (2)
C21—C16—C17—C18 −0.4 (3) C22—C23—N2—C21 179.13 (17)
C15—C16—C17—C18 179.59 (18) C24—C23—N2—C21 0.4 (2)
C16—C17—C18—C19 −0.1 (3) C16—C21—N2—C23 −178.75 (18)
C17—C18—C19—C20 0.3 (3) C20—C21—N2—C23 −0.3 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C14—H14···O3i 0.93 2.50 3.254 (2) 138
N1—H1···O4ii 0.87 (2) 2.00 (2) 2.862 (2) 174 (2)
O1—H1D···O2 0.94 (3) 1.74 (3) 2.602 (2) 151 (3)
N2—H2···O2iii 0.91 (2) 1.97 (2) 2.879 (2) 173 (2)
O3—H3A···O4 0.90 (3) 1.78 (3) 2.595 (2) 150 (3)

Symmetry codes: (i) x, y−1, z; (ii) x, −y+1/2, z+1/2; (iii) x, y+1, z.

Funding Statement

This work was funded by Ohio Board of Regents grant 0087210; National Science Foundation grant 0087210 to YSU.

References

  1. Archana, R., Prabakaran, K., Rajendra Prasad, K. J., Thiruvalluvar, A. & Butcher, R. J. (2010). Acta Cryst. E66, o3146. [DOI] [PMC free article] [PubMed]
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  5. Gunaseelan, A. T., Thiruvalluvar, A., Martin, A. E. & Prasad, K. J. R. (2007). Acta Cryst. E63, o2682–o2683.
  6. Knölker, H.-J. & Reddy, K. R. (2002). Chem. Rev. 102, 4303–4427. [DOI] [PubMed]
  7. Shanmugasundaram, K. & Rajendra Prasad, K. J. (1999). Heterocycles, 51, 9, 2163–2169.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  10. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  11. Sridharan, M., Beagle, L. K., Zeller, M. & Rajendra Prasad, K. J. (2008). J. Chem. Res. pp. 572–577.
  12. Sridharan, M. & Rajendra Prasad, K. J. (2011). J. Chem. Res. 53–59.
  13. Sridharan, M., Prasad, K. J. R., Ngendahimana, A. & Zeller, M. (2008). Acta Cryst. E64, o2157. [DOI] [PMC free article] [PubMed]
  14. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021007210/yy2001sup1.cif

e-77-00867-sup1.cif (639.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021007210/yy2001Isup2.hkl

e-77-00867-Isup2.hkl (425.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021007210/yy2001Isup3.cdx

Supporting information file. DOI: 10.1107/S2056989021007210/yy2001Isup4.cml

CCDC reference: 1540679

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES