Abstract
Objective
Illumina BeadChip arrays are commonly used to generate DNA methylation data for large epidemiological studies. Updates in technology over time create challenges for data harmonization within and between studies, many of which obtained data from the older 450K and newer EPIC platforms. The pre-processing pipeline for DNA methylation is not trivial, and influences the downstream analyses. Incorporating different platforms adds a new level of technical variability that has not yet been taken into account by recommended pipelines. Our study evaluated the performance of various tools on different versions of platform data harmonization at each step of pre-processing pipeline, including quality control (QC), normalization, batch effect adjustment, and genomic inflation. We illustrate our novel approach using 450K and EPIC data from the Diabetes Autoimmunity Study in the Young (DAISY) prospective cohort.
Results
We found normalization and probe filtering had the biggest effect on data harmonization. Employing a meta-analysis was an effective and easily executable method for accounting for platform variability. Correcting for genomic inflation also helped with harmonization. We present guidelines for studies seeking to harmonize data from the 450K and EPIC platforms, which includes the use of technical replicates for evaluating numerous pre-processing steps, and employing a meta-analysis.
Supplementary Information
The online version contains supplementary material available at 10.1186/s13104-021-05741-2.
Keywords: DNA methylation, Illumina 450K, Illumina EPIC, Platform harmonization
Introduction
Numerous epidemiological studies have examined DNA methylation due to its important role in physiological processes, and the development and progression of human diseases [1]. Microarrays are widely used for DNA methylation profiling, and are affordable for studies with large sample sizes. Illumina’s methylation array is a common choice in many data repositories such as TCGA with ~ 12,000 samples, ENCODE with ~ 250 datasets and GEO with ~ 7000 datasets (April 2020).
DNA methylation array technologies have evolved so more individual methylation CpG sites can be evaluated on a single array. Illumina’s BeadChip methylation microarrays are extremely popular, the most recent being the HumanMethylationEPIC BeadChip (“EPIC”) released in 2016 that measures ~ 8,50,000 CpG sites (probes), which is an increase from the previous array (HumanMethylation450K BeadChip, “450K”). In many studies, both platforms have been used, due to technology updates in the middle of large projects, or multiple batches for studies over time [2–6]. Some investigators are interested in maximizing sample size for research questions by analyzing data from the current EPIC and older 450K arrays. Numerous publications focus on certain aspects of pre-processing such as normalization [7] or probe filtering [8] but there are currently no papers that consider the entire pipeline. Establishing best practices is relevant for other epidemiological studies that needed to change platforms mid-study, in addition to the re-analyses of public data.
We evaluate the performance of common harmonization tools of 450K and EPIC data at various pre-processing and analytical steps using the Diabetes Autoimmunity Study in the Young (DAISY), which prospectively follows genetically high-risk children for the development of type 1 diabetes (T1D) [4]. We explored normalization, probe-level QC and filtering, batch effect adjustment, and genomic inflation by testing methods that were easy to implement from well-established and documented R packages. Finally, we provide evaluation guidelines for studies facing similar harmonization challenges.
Main text
Methods
Figure 1 shows a summary of the pre-processing pipeline and the data harmonization evaluations.
Data
Peripheral whole blood was collected prospectively from individuals enrolled in DAISY. Cases of T1D were frequency matched to controls, and DNA methylation generated on up to five prospective samples per subject [4]. The EPIC platform replaced the 450 K during data acquisition. There were 42/42 and 45/45 matched T1D cases/controls (corresponding to 184 and 211 unique arrays) for the 450 K and EPIC platforms, respectively.
Normalization and probe-level QC
First, three established normalization and probe-level QC methods were evaluated (Fig. 1): subset-quantile within array normalization (SWAN, [9]), normal-exponential using out-of-band probes (Noob, [10]) and single-sample Noob (ssNoob,[11]). SWAN and ssNoob normalizations were performed within the minfi package [12], while Noob normalization was performed in the SeSAMe package [7]. We examined two detection above background methods: minfi’s default [12] and SeSAMe’s pooBAH [7] and coupled it to the normalization in the same R package. Filtering on probe-level QC was performed after each normalization prior to evaluation of platform effects and included removing probes with known SNPs in the probe sequence [13] as well as cross-reactive probes [14]. See Jonhson et al. for full detail [4].
For evaluating normalization and probe-level QC procedures, we looked at the first 10 principal components (PCs) to determine if there was a large platform effect across components, as well as the three technical replicate metrics mentioned below. For the PCA, all probes that passed QC were included, regardless if present or not on the other platform, excluding probes on chromosome X.
Twelve technical replicates were selected to be balanced with respect to sex, age, and islet autoimmunity (IA) status. To examine this data we used three metrics: (1) a difference in methylation Beta value at the individual probe (Additional file 1: Eqn S1), (2) correlation of all probes across a single technical replicate pair (Additional file 1: Eqn S2) and (3) correlation of the technical replicate pairs across a single probe (Eqn S3, see Additional file 1: Methods).
Batch effect adjustment
Second, we applied two different within platform batch effect methods: ComBat [15] and RUVm [16] (Fig. 1) in the sva (v3.30.0) and missMethyl (v1.16.0) packages respectively.
Additional probe filtering
Third, we explored supplemental probe filtering by removing low range probes (< 5% Beta) as suggested [8] and compared how well technical replicates correlated.
Statistical analysis
We performed a linear mixed model using T1D status to predict methylation (M-values) while adjusting for age and sex and using subject as a random effect using the R/nlme package (v3.1–137) [17].
Genomic inflation
We corrected for genomic inflation using the R/BACON package (v1.10.1) [18]. In brief, BACON estimates an empirical null distribution using a Bayesian method to account for the bias and inflation of test-statistics specific to EWAS datasets.
Meta-analysis
Stouffer’s meta-analysis method [19] combined the statistical results from the two different platforms. This method generates a single meta-analysis p-value for each probe, and accounts for consistent effect direction.
Results
For each of the processing Steps 1–4, we compared different options with a variety of data harmonization evaluation diagnostics (Fig. 1).
Normalization evaluation
First, we explored normalization of both datasets together using ssNoob (coupled with minfi probe QC), as recommended by Fortin [11]. After associating the first 10 PCs with platform, we found the first and second PC had extremely high associations with platform and sex respectively (Fig. 2). Sex differences are expected to be a large contributor to methylation profiles as methylation is known to have a large role in female X-chromosome inactivation. Applying subsequent batch adjustment did not reduce the strong platform effect (Additional file 1: Table S1), regardless of method applied. Therefore, we applied normalization procedures by each platform separately.
To explore the effect of SWAN or SeSAMe on harmonization of platforms, we examined technical replicates across platforms. Correlation across probes for each pair of technical replicates (Additional file 1: Eqn S2) was extremely high (> 0.98) for both methods. This is not surprising given the large amount of probes used to calculate each correlation, and similar to high correlation between random pairs of samples (> 0.97). Individual probe correlations deemed much more informative (Eqn S3). We generated densities of probe-level correlations across the technical replicates as well as across random samples (Fig. 3). The distribution of the random sample correlations for both the SeSAMe and SWAN are centered around 0 and look more Gaussian compared to the distributions for the technical replicate correlations, which look like a mixture of two or more distributions in addition to being centered around a higher correlation coefficient.
We examined the absolute differences in methylation on the probe-level (Additional file 1: Eqn S1) of the Beta value (% methylation) for each technical replicate (Additional file 1: Figure S1). In all technical replicate pairs, SeSAMe has a tighter distribution closer to 0 and shown to harmonize better, while SWAN has higher absolute differences. We report the mean bias (and 95% CI) for the differences between platforms by normalization type (Additional file 1: Table S2). Given these results, we moved forward with the SeSAMe normalization (see Additional file 1: for probe QC filtering numbers).
Batch effect adjustment
Even normalizing within each platform type, we still have technical batch effects to consider, since a variety of factors can add unwanted technical variation [20]. Therefore, we examined within platform batch effect being defined as plate and row location combination. We performed ComBat and RUVm to adjust for within platform batch effects on the SeSAMe dataset. Based on the PC analysis, ComBat performed slightly better, as the top PCs were less associated with batches defined as plate by rows (Additional file 1: Figure S2, [20]). Our results of ComBat outperforming other methods is consistent with Jiao and colleagues [21].
Probe filtering
Applying the Logue beta range filteer [8], removing probes with < 5% Beta methylation range, resulted in removing 15.8% (59,397) and 33.9% (225,342) of probes in the 450 K and EPIC platforms respectively. The mean beta values for the probes which were removed fell only on the extremes for both platforms (Additional file 1: Figure S3), while the probes which passed this criteria had mean beta values throughout the potential 0–100% methylation values. Additional considerations are summarized in the Supplement.
Genomic inflation in statistical analysis
After statistical analysis, it’s important to consider the genomic inflation factor lambda (i.e., general inflation of test statistics due to population structure), which is the ratio of the median of the observed distribution of the test statistics to the expected median, and should be close to 1. In the 450 K platform, the SWAN normalized dataset resulted in an extreme genomic inflation whereas the EPIC was deflated (Additional file 1: Figure S6). However, genomic inflation was comparable between the platforms for the SeSAMe normalized datasets. To account for any additional genomic inflation we applied BACON [18], which was developed to control for genomic inflation specifically for EWAS. After this adjustment, the genomic inflation factor for the SeSAMe 450 K and EPIC datasets were 1.03 and 1.08 respectively.
To perform the meta-analysis, we only kept probes present in both the SeSAMe datasets (1,99,243 probes). Final results are reported by R. K. Johnson and colleagues [4]. This final pipeline as it gives comparable candidate probes to other DNA methylation papers in T1D [22–25].
Discussion
Pre-processing any ‘omics dataset including Illumina’s BeadChip array can have substantial effects on downstream analyses. The introduction of an updated array adds the additional hurdle of harmonizing more than one platform to leverage all available data. If possible, we recommend including technical replicates in the study design to aid in assessing the quality of pre-processing steps as it was key for our harmonization evaluation process of the various methods. Additional file 1: Figure S7 summarizes our recommended best practices based on the tested approaches. We realize new methods are constantly evolving in this field, and this flow chart aims to help guide analysts in what decisions need to be made throughout this process.
There are special considerations regarding probe filtering, which is performed at two stages. The first stage is based on low quality probes identified after normalization, and the second stage is before statistical modeling based on removing non-varying probes. Other filtering criteria such as probes with both high variance and high differences in beta values between technical replicates should be considered. In the first probe filtering, the pooBAH method (part of SeSAMe pipeline) removed a high number of probes compared to SWAN, specifically those on sex chromosomes. Other normalization procedures, such as functional normalization [26], which utilize control probes were not reported, but may work well for some datasets. However, the resulting genomic inflation values were more consistent among the platforms and closer to one, which is desired. This suggests pooBAH correctly identifies germline and somatic deletions that would be causing this inflated signal. However, the use of pooBAH filtering on sex chromosomes should be considered with caution.
Another consideration is adjusting for cell type proportion and for this specific analysis it is discussed in depth in Johnson et al. 2020 [4]. There are conflicting viewpoints for whether to include cell type adjustment [27, 28], and should depend on the specific study design.
In addition to a meta-analysis, we explored an alternative approach, where data were pooled into one statistical model and included a fixed covariate of platform and subsequently adjusted for genomic inflation afterward. In this study, results of the single model were qualitatively similar to the meta-analysis and provided little evidence to support one method over the other. We recommend that both approaches be considered, in addition to random effect methods [29].
In summary, our evaluation methods relied on technical replicates, which we highly recommend. The harmonization evaluation metrics on the technical replaces were used to compare methods at different steps, and can be used to evaluate other options as new methods are developed. We hope our guidelines aid others in their endeavors for performing analyses consisting of both 450 K and EPIC platforms.
Limitations
Others have explored individual steps in this pipeline [8, 11], therefore we did not examine individual steps in depth using multiple datasets or simulations. The goal of this work was to evaluate the entirety of steps involved in a methylation processing pipeline based on data from both Illumina’s 450 K and EPIC platforms and how it affects harmonization. We do not claim that our recommended pipeline will be best in all scenarios, but illustrate what factors need to be considered for selecting a pipeline with other datasets, and new methods as they are published.
Supplementary Information
Acknowledgements
We would like to thank everyone involved in the IVYOmics analysis group.
Abbreviations
- QC
Quality control
- DAISY
Diabetes Autoimmunity Study in the Young
- T1D
Type 1 diabetes
- SWAN
Subset-quantile within array normalization
- Noob
Normal-exponential using out-of-band probes
- ssNoob
Single-sample Noob
- IA
Islet autoimmunity
- PC
Principal component
Authors' contributions
All authors: Lauren A Vanderlinden, Randi K Johnson, Patrick M Carry, Fran Dong, Dawn L DeMeo, Ivana V Yang, Jill M Norris, and Katerina Kechris have made a substantial contributions to the conception of the work, interpretation of the data, critical revisions of the manuscript and approved the final draft (authorship requirements). LAV, RKJ, PMC was specifically involved in conceptualization, data curation, formal analysis, methodology, validation, visualization, writing–original draft, writing–review and editing. FD, IVY and DLD was specifically involved in conceptualization, data curation, methodology, writing–review and editing. J.M.N. was specifically involved in conceptualization, funding acquisition, project administration, methodology, writing–review and editing. K.K. was specifically involved in conceptualization, funding acquisition, project administration, formal analysis, methodology, validation, visualization, writing–original draft, writing–review and editing. All authors have read and approved the final manuscript.
Funding
We would like to thank the generous contributions made by all participants and families enrolled in the DAISY study as well as the dedicated clinical and research staff at the Barbara Davis Center. This work was funded by NIH R01-DK104351, R01-DK32493.
Availability of data and materials
The datasets generated during and/or analysed during the current study are accessible through GEO Series accession number GSE142512 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE142512). All data generated for this study are included in Johnson R.K. and colleagues [4]. This manuscript was based on the preprocessing for the analyses used in the Johnson R.K. publication [4].
Declarations
Ethics approval and consent to participate
Data collected from the DAISY study is in accordance with the Declaration of Helsinki and the Colorado Multiple Institutional Review Board approved all study protocols. Informed consent (via written informed consent form) was obtained from the parents of each study subject.
Consent for publication
Not applicable.
Competing interests
The authors declare that they have no competing interests.
Footnotes
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Contributor Information
Lauren A. Vanderlinden, Email: lauren.vanderlinden@cuanschutz.edu
Randi K. Johnson, Email: randi.johnson@cuanschutz.edu
Patrick M. Carry, Email: patrick.carry@cuanschutz.edu
Fran Dong, Email: fran.dong@cuanschutz.edu.
Dawn L. DeMeo, Email: redld@channing.harvard.edu
Ivana V. Yang, Email: ivana.yang@cuanschutz.edu
Jill M. Norris, Email: jill.norris@cuanschutz.edu
Katerina Kechris, Email: katerina.kechris@cuanschutz.edu.
References
- 1.Jin Z, Liu Y. DNA methylation in human diseases. Genes Dis. 2018;5(1):1–8. doi: 10.1016/j.gendis.2018.01.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Abdulrahim JW, Coulter KL, Elizabeth G, Siegler IC, Redford W, Ravi K, et al. Epigenome-Wide Association Study for All-Cause Mortality in a Cardiovascular Cohort Identifies Differential Methylation in Castor Zinc Finger 1 (CASZ1) J Am Heart Assoc. 2019;8(21):e013228. doi: 10.1161/JAHA.119.013228. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Fernandez-Jimenez N, Allard C, Bouchard L, Perron P, Bustamante M, Bilbao JR, et al. Comparison of Illumina 450K and EPIC arrays in placental DNA methylation. Epigenetics. 2019;14(12):1177–1182. doi: 10.1080/15592294.2019.1634975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Johnson RK, Vanderlinden LA, Dong F, Carry PM, Seifert J, Waugh K, et al. Longitudinal DNA methylation differences precede type 1 diabetes. Sci Rep. 2020 doi: 10.1038/s41598-020-60758-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.McEwen LM, Jones MJ, Lin DTS, Edgar RD, Husquin LT, MacIsaac JL, et al. Systematic evaluation of DNA methylation age estimation with common preprocessing methods and the Infinium MethylationEPIC BeadChip array. Clin Epigenetics. 2018;10(1):123. doi: 10.1186/s13148-018-0556-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Solomon O, MacIsaac J, Quach H, Tindula G, Kobor MS, Huen K, et al. Comparison of DNA methylation measured by Illumina 450K and EPIC BeadChips in blood of newborns and 14-year-old children. Epigenetics. 2018;13(6):655–664. doi: 10.1080/15592294.2018.1497386. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Zhou W, Triche TJ, Laird PW, Shen H. SeSAMe reducing artifactual detection of DNA methylation by Infinium BeadChips in genomic deletions. Nucleic Acids Res. 2018;46(20):e123. doi: 10.1093/nar/gky691. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Logue MW, Smith AK, Wolf EJ, Maniates H, Stone A, Schichman SA, et al. The correlation of methylation levels measured using Illumina 450K and EPIC BeadChips in blood samples. Epigenomics. 2017;9(11):1363–1371. doi: 10.2217/epi-2017-0078. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Maksimovic J, Gordon L, Oshlack A. SWAN: Subset-quantile Within Array Normalization for Illumina Infinium HumanMethylation450 BeadChips. Genome Biol. 2012;13(6):R44. doi: 10.1186/gb-2012-13-6-r44. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Triche TJ, Weisenberger DJ, Van Den Berg D, Laird PW, Siegmund KD. Low-level processing of Illumina Infinium DNA Methylation BeadArrays. Nucleic Acids Res. 2013;41(7):e90–e90. doi: 10.1093/nar/gkt090. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Fortin J-P, Triche TJ, Hansen KD. Preprocessing, normalization and integration of the Illumina HumanMethylationEPIC array with minfi. Bioinforma Oxf Engl. 2017;33(4):558–560. doi: 10.1093/bioinformatics/btw691. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD, et al. Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinforma Oxf Engl. 2014;30(10):1363–1369. doi: 10.1093/bioinformatics/btu049. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Maksimovic J, Gagnon-Bartsch JA, Speed TP, Oshlack A. Removing unwanted variation in a differential methylation analysis of Illumina HumanMethylation450 array data. Nucleic Acids Res. 2015 doi: 10.1093/nar/gkv526. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Chen Y, Lemire M, Choufani S, Butcher DT, Grafodatskaya D, Zanke BW, et al. Discovery of cross-reactive probes and polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray. Epigenetics. 2013;8(2):203–209. doi: 10.4161/epi.23470. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Maksimovic J, Gagnon-Bartsch JA, Speed TP, Oshlack A. Removing unwanted variation in a differential methylation analysis of Illumina HumanMethylation450 array data. Nucleic Acids Res. 2015;43(16):e106. doi: 10.1093/nar/gkv526. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Davidian M, Giltinan DM. Nonlinear models for repeated measurement data: an overview and update. J Agric Biol Environ Stat. 2003;8(4):387. doi: 10.1198/1085711032697. [DOI] [Google Scholar]
- 17.van Iterson M, van Zwet EW, Heijmans BT, BIOS Consortium Controlling bias and inflation in epigenome- and transcriptome-wide association studies using the empirical null distribution. Genome Biol. 2017;18(1):19. doi: 10.1186/s13059-016-1131-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Stouffer SA, Suchman EA, Devinney LC, Star SA, Williams Jr. RM. The American soldier: Adjustment during army life. (Studies in social psychology in World War II), Vol. 1. Oxford, England: Princeton Univ. Press; 1949. xii, 599 p. (The American soldier: Adjustment during army life. (Studies in social psychology in World War II), Vol. 1).
- 19.Price EM, Robinson WP. Adjusting for batch effects in DNA methylation microarray data, a lesson learned. Front Genet. 2018;9:83. doi: 10.3389/fgene.2018.00083. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Jiao C, Zhang C, Dai R, Xia Y, Wang K, Giase G, et al. Positional effects revealed in Illumina methylation array and the impact on analysis. Epigenomics. 2018;10(5):643–659. doi: 10.2217/epi-2017-0105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Belot M-P, Nadéri K, Mille C, Boëlle P-Y, Benachi A, Bougnères P, et al. Role of DNA methylation at the placental RTL1 gene locus in type 1 diabetes. Pediatr Diabetes. 2017;18(3):178–187. doi: 10.1111/pedi.12387. [DOI] [PubMed] [Google Scholar]
- 22.Disanto G, Vcelakova J, Pakpoor J, Elangovan RI, Sumnik Z, Ulmannova T, et al. DNA methylation in monozygotic quadruplets affected by type 1 diabetes. Diabetologia. 2013;56(9):2093–2095. doi: 10.1007/s00125-013-2972-3. [DOI] [PubMed] [Google Scholar]
- 23.Rakyan VK, Beyan H, Down TA, Hawa MI, Maslau S, Aden D, et al. Identification of type 1 diabetes-associated DNA methylation variable positions that precede disease diagnosis. PLoS Genet. 2011;7(9):e1002300. doi: 10.1371/journal.pgen.1002300. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Stefan M, Zhang W, Concepcion E, Yi Z, Tomer Y. DNA methylation profiles in type 1 diabetes twins point to strong epigenetic effects on etiology. J Autoimmun. 2014;50:33–37. doi: 10.1016/j.jaut.2013.10.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Fortin J-P, Labbe A, Lemire M, Zanke BW, Hudson TJ, Fertig EJ, et al. Functional normalization of 450k methylation array data improves replication in large cancer studies. Genome Biol. 2014;15(11):503. doi: 10.1186/s13059-014-0503-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Barton SJ, Melton PE, Titcombe P, Murray R, Rauschert S, Lillycrop KA, et al. In Epigenomic studies, including cell-type adjustments in regression models can introduce multicollinearity, resulting in apparent reversal of direction of association. Front Genet. 2019 doi: 10.3389/fgene.2019.00816. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Titus AJ, Gallimore RM, Salas LA, Christensen BC. Cell-type deconvolution from DNA methylation: a review of recent applications. Hum Mol Genet. 2017;26(R2):R216–R224. doi: 10.1093/hmg/ddx275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics. 2010;26(17):2190–2191. doi: 10.1093/bioinformatics/btq340. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Viechtbauer W. Conducting meta-analyses in R with the metafor Package. J Stat Softw. 2010;36(1):1–48. [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Data Availability Statement
The datasets generated during and/or analysed during the current study are accessible through GEO Series accession number GSE142512 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE142512). All data generated for this study are included in Johnson R.K. and colleagues [4]. This manuscript was based on the preprocessing for the analyses used in the Johnson R.K. publication [4].