ABSTRACT
The aim was to summarize pneumococcal disease burden data among adults in Southern Europe and the potential impact of vaccines on epidemiology. Of 4779 identified studies, 272 were selected. Invasive pneumococcal disease (IPD) incidence was 15.08 (95% CI 11.01–20.65) in Spain versus 2.56 (95% CI 1.54–4.24) per 100,000 population in Italy. Pneumococcal pneumonia incidence was 19.59 (95% CI 10.74–35.74) in Spain versus 2.19 (95% CI 1.36–3.54) per 100,000 population in Italy. Analysis of IPD incidence in Spain comparing pre-and post- PCV7 and PCV13 periods unveiled a declining trend in vaccine-type IPD incidence (larger and statistically significant for the elderly), suggesting indirect effects of childhood vaccination programme. Data from Portugal, Greece and, to a lesser extent, Italy were sparse, thus improved surveillance is needed. Pneumococcal vaccination uptake, particularly among the elderly and adults with chronic and immunosuppressing conditions, should be improved, including shift to a higher-valency pneumococcal conjugate vaccine when available.
KEYWORDS: Pneumococcal disease burden, pneumococcal vaccine, PCV13, incidence, surveillance, adults, Spain, Italy, Greece, Portugal
Introduction
Streptococcus pneumoniae infections are a leading cause of morbidity and mortality worldwide and pose a major threat to public health.1 S. pneumoniae produces a polysaccharide capsule essential for its pathogenicity, serving as a virulence factor that hampers host immune clearance mechanisms.2 Currently, there are up to 100 recognized polysaccharide serotypes.3 Pneumococcal conjugate vaccines (PCVs) have successfully targeted several of them reducing the risk of infection by conferring serotype-specific protection.
Streptococcus pneumoniae causes a spectrum of invasive diseases, including sepsis, meningitis, and bacteremic pneumonia,4 and is the most frequent causative agent identified in community-acquired pneumonia (CAP).5 Children under 5 years of age, the elderly population, and people with respiratory disease, diabetes, human immunodeficiency virus (HIV) infection, and immunosuppression are at greater risk of pneumococcal disease.6
The true burden of pneumococcal disease remains undetermined in Europe. Despite the existence of a European enhanced surveillance of the invasive pneumococcal disease, notification rates vary markedly among countries. Apart from diverse population characteristics, the variations in the notification rate are most likely due to differences in medical and surveillance practices, and diverse implementation of pneumococcal vaccination (e.g., date of introduction, vaccine type, and vaccination schedules and policies).7 These differences particularly relate to CAP, as prevalence estimates among adults differ across settings and are affected by under-detection.8
In 2001, the heptavalent pneumococcal conjugate vaccine (PCV7) was first authorized for its use in children in Europe, and the authorization was extended to the ten-, and thirteen-valent pneumococcal conjugate vaccines (PCV10/PCV13) in mid-2010. PCV13 was licensed in 2012 as the first pneumococcal conjugate vaccine for adults. In the Community-Acquired Pneumonia Immunization Trial (CAPiTA study), PCV13 showed an efficacy of 75% in preventing the first vaccine-type IPD episode, whereas efficacy against vaccine-type noninvasive pneumococcal pneumonia was estimated at 45%,9 and at 70% in a real-world effectiveness study.10
Many of the European countries have issued national guidelines for pneumococcal vaccination in adults. Guidelines are either age-based or risk-based11 with Southern European countries, such as Spain, Greece, and Italy implementing advanced age-based PCV13 recommendations at the national level or for many of their regions.12–14 However, PCV13 uptake among adults is still modest in those countries.15,16
We conducted a systematic review and meta-analysis to summarize the evidence of the burden of pneumococcal disease among adults in Southern European countries (Spain, Portugal, Italy, and Greece).
Methods
This manuscript reports a systematic review of observational studies and was conducted and reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.17 For the formulation of the PICO question (Population, Intervention, Comparator, Outcome), the CoCoPop (Condition, Context, Population) model was used.18
Search strategy
A comprehensive search was performed in MEDLINE through OVID, EMBASE, SCOPUS, and SCIELO databases. To search for gray literature, Open Grey and OpenDOAR databases were included. Search terms were (“Streptococcus pneumoniae” OR pneumococcus OR pneumococcal infection) AND (meningitis OR pneumonia OR bacteremia OR “invasive pneumococcal disease”) AND (epidemiolog* OR prevalence OR incidence) LIMITS ([1990– 2019] AND [Spain, Portugal, Greece, Italy]). No language restrictions were applied to the search. Additional articles were identified and retrieved from references of found articles.
Inclusion and exclusion criteria
The review included observational studies (including prospective, retrospective, registry-, and population-based designs) according to the following criteria: (1) studies containing information about adult patients (≥18 years of age); (2) published between 1990 and 2019; (3) referring to settings located in Spain, Italy, Portugal or Greece; (4) studies containing information concerning invasive pneumococcal disease or CAP; and (5) articles reporting on pneumococcal disease prevalence, pneumococcal disease incidence, or vaccine-type related incidence [PCV7, PCV13 or the 23-valent pneumococcal polysaccharide vaccine (PPV23)].
It excluded studies that did not contain information on pneumococcal disease cases; that addressed pneumococcal disease cases having diagnostics other than pneumonia or isolation of S. pneumoniae from a normally sterile site; studies not including adult patients or outside the publication timeframe (1990–2019), or studies that did not have information on prevalence or incidence of pneumococcal disease.
Study selection and data extraction
After deduplication, titles and abstracts were screened by two independent reviewers using the selection criteria. Then, full-text article screening was carried out and the following data were extracted: age group of patients (adult or elderly), time frame of study, country of study, pneumococcal disease type, number of patients with condition and number of them being pneumococcal, incidence rates, number of cases attributed to any of the vaccine serotypes and conditions that might increase susceptibility to pneumococcal infection (i.e., cancer, diabetes, immunosuppression, HIV infection, chronic kidney disease, cirrhosis, COPD). Age cutoffs of either 60 or 65 years were used to define the “elderly” age group.19
Any disagreement between the two reviewers was resolved after discussion and reaching consensus based on the predefined selection criteria.
The quality of the articles was assessed using the Joanna Briggs Institute´s Critical Appraisal Tool for prevalence/incidence systematic reviews. This Critical Appraisal Tool provides a checklist that covers nine domains: appropriateness of sample frame, recruitment of participants, adequacy of sample size, description of study subjects and setting, coverage of identified samples, valid methods for identification of the condition, a standardized and reliable measurement of the condition, appropriateness of the statistical analysis, and adequacy of the response rate.18,20
Data analysis
A pooled analysis of the included papers was performed, and a quantitative synthesis and meta-analyses were undertaken. Prevalence was expressed as the percentage of cases attributed to pneumococcus among all the cases of the disease, and incidence was expressed as cases per 100,000 population. Meta-analyses of the values expressed as a proportion were conducted using the metaprop package in R software (v.3.6.1). Proportions were treated by double arcsin transformation.21 Random effects models were fitted for the global effect size as significant heterogeneity across studies was detected.
Subgroup analyses were pre-specified for different conditions and countries and were included if enough data was available for the indicated subgroup. IPD incidence was also analyzed in subgroups to evaluate differences in reported serotypes causing disease. The year of marketing approval for each vaccine in the different countries was used as cutoff to compare incidence between the pre- (2001 for PCV7, and 2010 for PCV13), and post-vaccine introduction periods. If a manuscript contained values for different times of analysis but that occurred in the same segment respect to the cutoff (for example, both occurred after some vaccine introduction), duplicated labels can appear due to values coming from the same study but from different times of measurement.
To assess the impact of several covariates on estimates from the meta-analyses, a meta-regression method was utilized. Similar to a conventional regression, this method calculates a coefficient for each variable included in the analysis. This coefficient could be either positive, indicating that the estimate value increases as the predictor value increases, or negative, demonstrating a negative correlation, meaning that the estimate value decreases as the predictor value increases.
Results
Study characteristics
Of the 4779 screened studies, 272 were selected according to the eligibility criteria (Figure 1). From these, 232 records were obtained for prevalence analysis, with 182 containing information about pneumonia, 31 about bacteremia, 18 about meningitis and 1 about peritonitis; 108 records were retrieved for the incidence analysis, with 59 about IPD, 15 about pneumonia, 13 about bacteremia, 13 on meningitis and 8 related to other sites.
Information on prevalence were more frequently identified from studies carried out in hospital settings and incidence data were mostly provided by population-, or database-based studies. Most of the studies had an adequate level of quality, although in some studies there was a lack of representativeness of the sample or the information about methods used to diagnose the different conditions was missing.
Funnel plots to assess publication bias showed great variability, as expected from observational studies, with some deviation toward greater values.
The characteristics of the included studies are described in the online supplement (Supplemental material).16,22–286
Prevalence and incidence of pneumococcal disease in Southern European countries
Invasive pneumococcal disease
Frequency of IPD infections was rarely reported as prevalence. Therefore, only IPD incidence data were analyzed. Incidence of IPD was only available for Spain and Italy (Table 1) and no articles were retrieved from Portugal or Greece. The pooled analysis showed significant differences between Spain and Italy, with an incidence of 15.08 per 100,000 population (95% CI 11.01–20.65) in Spain and 2.56 per 100,000 population (95% CI 1.54–4.24) in Italy. Italy contributed with fewer records, but its pooled estimate had a narrow confidence interval (Table 1).
Table 1.
Pneumococcal disease type | Country | Number of records | Incidence (cases per 100.000 person-years) | 95% CI |
---|---|---|---|---|
IPD | Overall | 59 | ||
Spain | 50 | 15.08 | 11.01–20.65 | |
Italy | 9 | 2.56 | 1.54–4.24 | |
Portugal | 0 | - | - | |
Greece | 0 | - | - | |
Bacteremia | Overall | 13 | - | - |
Spain | 13 | 4.13 | 2.38–7.20 | |
Italy | 0 | - | - | |
Portugal | 0 | - | - | |
Greece | 0 | - | - | |
Pneumonia | Overall | 15 | ||
Spain | 13 | 19.59 | 10.74–35.74 | |
Italy | 2 | 2.19 | 1.36–3.54 | |
Portugal | 0 | - | - | |
Greece | 0 | - | - | |
Meningitis | Overall | 13 | ||
Spain | 11 | 1.22 | 0.86–1.73 | |
Italy | 2 | 2.12 | 0.58–7.71 | |
Portugal | 0 | - | - | |
Greece | 0 | - | - |
*Random effects summary estimates from meta-analyses.
Pneumococcal pneumonia
Spain had the highest prevalence of pneumococcal pneumonia with a prevalence of 19% (95% CI 17%-20%) (Table 2) followed by Portugal with 11% (95% CI 5%-18%), Italy with 8% (95% CI 7%-9%), and Greece with 5% (95% CI 2%-10%). Differences were only statistically significant for Spain compared to Italy and Greece, whereas the confidence intervals partially overlapped for Spain and Portugal (Table 2).
Table 2.
Pneumoccocal disease type | Country | Number of records | Prevalence | 95%CI |
---|---|---|---|---|
Bacteremia | Overall | 31 | 6% | 4%-8% |
Spain | 29 | 6% | 4%-8% | |
Italy | 2 | 5% | 0%-24% | |
Portugal | 0 | - | - | |
Greece | 0 | - | - | |
Pneumonia | Overall | 182 | 16% | 15%-18% |
Spain | 140 | 19% | 17%-20% | |
Italy | 26 | 8% | 7%-9% | |
Portugal | 12 | 11% | 5%-18% | |
Greece | 4 | 5% | 2%-10% | |
Noninvasive pneumonia | Overall | 31 | 64% | 56%-71% |
Spain | 28 | 64% | 55%-71% | |
Italy | 2 | 77% | 53%-95% | |
Portugal | 1 | 40% | 21%-60% | |
Meningitis | Overall | 18 | 25% | 17%-35% |
Spain | 11 | 21% | 9%-35% | |
Italy | 6 | 33% | 23%-42% | |
Portugal | 1 | 35% | 29%-42% | |
Greece | 0 | - | - |
*Random effects summary estimates from meta-analyses.
The analysis of the pneumococcal pneumonia incidence data showed an incidence of 19.59 per 100,000 population (95% CI 10.74–35.74) for Spain whereas Italy presented a lower incidence at 2.19 per 100,000 population (95% CI 1.36–3.54). The difference was statistically significant (Table 1). No information was retrieved on pneumococcal pneumonia incidence from Portugal or Greece.
Noninvasive pneumococcal pneumonia
Noninvasive pneumococcal pneumonia was defined as community-acquired pneumonia (CAP) for which the pneumococcus was isolated from sites other than normally sterile sites. The selected studies clearly stated that pneumonia was noninvasive.
Overall, 31 studies were selected, and prevalence was 64% (95% CI 55%-71%), 77% (95% CI 53%-95%), and 40% (95% CI 21%-60%) for Spain, Italy, and Portugal, respectively. Again, differences between any two of the four countries were not statistically significant.
Bacteremia
Portugal and Greece did not contribute records to the pneumococcal bacteremia prevalence pooled estimate whilst Spain had a prevalence of 6% (95% CI 4%-8%) and Italy of 5% (95% CI 0%-24%). Differences were not statistically significant and only two records for Italy were captured (Table 2), thus a higher number of records would be desirable for sound comparisons.
In relation to incidence, Spain was the only country with studies on pneumococcal bacteremia and it was estimated at 4.13 per 100,000 population (95% CI 2.38–7.20).
Meningitis
The summary values for pneumococcal meningitis prevalence were 35% (95% CI 29%-42%), 33% (95% CI 23–42%), and 21% (95% CI 9–35%) for Portugal, Italy, and Spain, respectively. Differences between countries were not statistically significant.
Pneumococcal meningitis incidence was 1.22 per 100,000 population (95% CI 0.86–1.73) for Spain, and 2.12 per 100,000 population (95% CI 0.58–7.71) for Italy with overlapping confidence intervals.
Incidence of invasive pneumococcal disease caused by vaccine serotypes
Data analysis about incidence of IPD stratified by vaccine type was only performed for Spain, as information from Portugal and Greece was not found and there was only one article from Italy. Information on other clinical presentations was very scarce and excluded from the analysis.
The pooled analysis was carried out for the general (≥18 years of age) and the elderly (≥60 years or ≥65 years of age) populations.
Among adults 18 years of age and older, the analysis showed a decrease in PCV7 type IPD incidence from the pre-vaccine introduction period to the post-vaccine introduction period: from 8.00 per 100,000 population (95% CI 3.73–17.18) to 2.85 per 100,000 population (95% CI 2.06–3.94), respectively, and nearly reached statistical significance (Table 3). In the same age group, a non-significant decrease in PCV13 type IPD incidence was observed between the pre-vaccine introduction period and the post-marketing period, from 10.45 per 100,000 population (95% CI 7.12–15.32) to 4.92 per 100,000 population (95% CI 3.17–7.64), respectively. Comparing the pre- and post-periods, non-PCV13 type (serotypes not included in PCV13) IPD incidence increased from 5.25 per 100,000 population (95% CI 3.16–8.74) to 6.79 per 100,000 population (95% CI 4.15–11.12), although confidence intervals overlapped.
Table 3.
IPD vaccine type | Year of introduction of the vaccine | Period | Ns | Nr | Incidence (cases per 100.000) | 95%CI |
---|---|---|---|---|---|---|
≥ 18 years | ||||||
PCV7 | 2001 | Pre | 4 | 6 | 8.00 | 3.73– 17.18 |
Post | 12 | 40 | 2.85 | 2.06– 3.94 | ||
PCV13 | 2010 | Pre | 7 | 14 | 10.45 | 7.12– 15.32 |
Post | 6 | 15 | 4.92 | 3.17– 7.64 | ||
Non-PCV13 | 2010 | Pre | 4 | 9 | 5.25 | 3.16– 8.74 |
Post | 5 | 13 | 6.79 | 4.15– 11.12 | ||
≥ 60 years or ≥ 65 years | ||||||
PCV7 | 2001 | Pre | 3 | 3 | 19.10 | 17.69– 20.62 |
Post | 10 | 21 | 5.50 | 3.84– 7.86 | ||
PCV13 | 2010 | Pre | 6 | 8 | 17.10 | 13.64– 22.96 |
Post | 6 | 8 | 9.55 | 6.97– 13.09 | ||
Non-PCV13 | 2010 | Pre | 4 | 5 | 9.63 | 7.18– 12.91 |
Post | 5 | 7 | 14.04 | 10.41– 18.94 |
PCV7: hepta-valent pneumococcal conjugate Pre: pre-vaccine introduction period
PCV13: thirteen-valent pneumococcal conjugatePost: post-vaccine introduction period
Non-PCV13: non-thirteen-valent pneumococcal conjugate vaccine type Ns: number of studies; Nr: number of records
After age stratification, among the elderly group (≥60 years or ≥65 years of age), there was a significant decrease in PCV7 type IPD incidence from 19.10 per 100,000 population (95% CI 17.69–20.62) to 5.50 per 100,000 population (95% CI 3.84–7.86) comparing the two time periods. PCV13 type IPD incidence also declined from 17.10 per 100,000 population (95% CI 13.64–22.96) to 9.55 per 100,000 population (95% CI 6.97–13.09) (Table 3), reaching statistical significance. However, non-PCV13 type IPD incidence increased non-significantly from 9.63 per 100,000 population (95% CI 7.18–12.91) in the pre-vaccine introduction period to 14.04 per 100,000 population (95% CI 10.41–18.94) in the post-period.
Case fatality ratio
A total of 92 papers contained information that allowed the calculation of the case fatality ratio (CFR) among patients suffering from pneumococcal disease. Overall CFR was 11% (95% CI 10%-12%), 12% (95% CI 10%-14%), and 8% (95% CI 3%-16%) for Spain, Italy, and Portugal, respectively. Differences between countries were not statistically significant.
The CFR analysis by pneumococcal disease type showed statistically significant differences between IPD and pneumonia, at 15% (95% CI 12%-19%) and 8% (95% CI 6%-9%), respectively. CFR due to meningitis at 14% (95% CI 10%-18%) did not differ from bacteremia at 17% (95% CI 11%-23%).
Risk factors for pneumococcal disease
To identify the risk factors for pneumococcal pneumonia prevalence, a meta-regression model was fitted including the country of study, age group, PCV13 authorization period and PPV23 vaccination as covariates. Data coming from Italy and old age (≥60 years or ≥65 years of age) were found to be positive predictors, although non-significantly. PCV13 post-authorization period appeared as negative predictor (albeit non-significantly) whereas both PPV23-vaccinated and PPV23-non-vaccinated were also negative predictors. This apparent contradiction may relate to the fact that those PPV23 studies showed a low prevalence of pneumococcal pneumonia, independently of the vaccination status.
A meta-regression sub-analysis for meningitis prevalence in Spain, Portugal, Italy, and Greece indicated that HIV-positive status was a significant positive predictor, whereas immunosuppressed population, solid organ transplant patients, and data from Spain were negative predictors (the first two being significant).
A meta-regression of overall bacteremia prevalence indicated that mechanical ventilation was the only negative significant predictor. Other negative predictors were old age (≥60 years or ≥65 years of age), immunosuppressed patients, and solid organ transplant patients. The only positive predictor was HIV-positive status, being marginally non-significant.
Discussion
This systematic review highlights the high burden of pneumococcal disease among adults as well as the changes in the epidemiology of pneumococcal disease in Southern European countries. This review has revealed differences in the prevalence and incidence of pneumococcal disease between the Southern European countries. These differences have been previously identified, particularly in relation to the prevalence of CAP in adults, and hold true after adjusting for potential confounders, including patient characteristics, diagnostic tests, antimicrobial resistance, and healthcare setting.8 Geographical variations in the epidemiology of pneumococcal disease have been reported as most likely due to selection of patients, or blood-culture practices,287 but also the spread of resistant clones may have contributed to these differences.288 Apart from clinical practices and patients characteristics, decreasing trends in the incidence of pneumococcal bacteremia or meningitis have been associated with improvement in socioeconomic factors (i.e., reduced crowding), the widespread use of antibiotics, and the introduction of the pneumococcal conjugate vaccines289 in the European countries.7 Records from Portugal, Greece and to some extent from Italy were scarce in this review and it may well correspond to incomplete surveillance systems and not fully developed diagnostics and ascertainment strategies.290–292
This review unveiled significant differences in incidence of IPD between Spain and Italy, with Spain showing a larger disease burden. Divergence in IPD notification rates between both countries has remained constant since the inception of the European IPD surveillance programme.293 The potential reasons have been profusely explained above. Similarly, pneumonia incidence among adults in Spain was significantly higher compared to Italy and consistent with that in other reports.294
A sub-analysis of noninvasive pneumococcal pneumonia revealed a high prevalence in Italy, Spain, and Portugal (77%, 64%, and 40%, respectively). The considerable high prevalence in Italy may reflect that there were only two records identified and the study included special populations, either injection drug users including HIV-positive patients42 or a general HIV-positive cohort.121 Papers from Spain mainly included elderly populations, and HIV or COPD patients.49,263,276,278,279,282
There were no differences in meningitis incidence between Spain and Italy and this was consistent with published figures.295 Unfortunately, the selected articles did not contain enough information to assess pneumococcal serotype distribution before and after the different pneumococcal conjugate vaccines introduction.
Data on incidence of invasive pneumococcal disease from Spain allowed to analyze vaccine-type evolution comparing the pre-, and post-vaccine introduction periods. Among the overall adult population, PCV7 and PCV13 type IPD incidence declined non-significantly between the two periods. These differences were larger and statistically significant after stratifying by age (≥60 years or ≥65 years of age). In the context of recent introduction of PCV13 and a low PCV13 uptake among adults, this decrease may be attributed to indirect effects of the pediatric pneumococcal immunization programmes as reported for other settings.152,296,297 A recent analysis points to the impact of pneumococcal childhood vaccination on the reduction of adult PCV13 type IPD in Spain before the implementation of adult vaccination programmes.298 Regarding any potential impact of direct vaccination of adults with PPV23, we were not able to explore, because there was identified only one article referring to PPV23-specific serotypes, and we decided not to include it in this analysis. Conversely, several articles with information about disease caused by non-PCV13 serotypes were included in this analysis.
The analysis also identified an increasing trend in non-PCV13 type IPD incidence comparing the pre-, and post-vaccine introduction periods, both for the overall adult population and for the elderly. These epidemiological changes showing the emergence of non-vaccine serotypes have been attributed to the implementation of the pneumococcal conjugate vaccines, but this is a complex phenomenon and there are a number of other factors implicated, such as selective pressure of antibiotics and carriage and transmission dynamics. This holds true particularly among children, who are affected by pneumococcal carriage and transmission due to factors, such as child care attendance, crowding, or birth rate.299 Whether the introduction of pneumococcal conjugate vaccines is the sole cause for serotype replacement remains unclear since there are regions with high serotype replacement rate but low vaccine uptake.300 In addition, regional differences in the reporting systems and other non-vaccine environmental factors295 may have contributed to this phenomenon.
Published data show that the case fatality ratio for pneumococcal disease overall has been estimated at 15% whereas it was as high as 10–30% among pneumococcal meningitis patients.301 Results from our review allineate with those figures and do not differ among Spain, Italy, and Portugal at 11%, 12%, and 8%, respectively. As expected, CFR of invasive disease, either overall IPD, meningitis or bacteremia, was considerably higher compared to pneumonia CFR.
An assessment of the risk factors for pneumococcal pneumonia prevalence demonstrated that older age and articles from Italy correlated with higher prevalence. In the elderly, pneumococcal pneumonia is a key contributor to the burden of pneumococcal disease. The presence of underlying conditions and phenomena such as immunosenescence and inflammageing is associated with an increased risk for pneumococcal pneumonia in this age group.302,303 The meta-regression of studies that contained information on PCV13 from the post-authorization period, showed an inverse correlation with pneumococcal pneumonia prevalence pointing to the ability of PCV13 to protect against vaccine-type pneumococcal pneumonia.
HIV-positive status correlated with higher prevalence of pneumococcal meningitis and bacteremia as already highlighted in a recent review.304 In contrast, immunosuppressed patients and patients with solid organ transplant correlated inversely with pneumococcal bacteremia and meningitis. This aligns with some studies that have showed that patients using immunosuppressive treatment are less likely to present with typical characteristics of meningitis, have less alterations in their cerebrospinal fluid (CSF), and often their CFS culture predominantly yields atypical causative microorganisms.305
Previous studies have identified younger age as an independent risk factor for bacteremia in patients with community-acquired pneumonia306,307; although statistically non-significantly, our results are in agreement with this. The reasons for younger patients being at higher risk of bacteremia still need to be elucidated. Pneumococcal vaccination and serotype distribution may be partly responsible for it. The pneumococcal vaccines are recommended in the Southern European countries, depending on the regions, for adults aged ≥60 or ≥65 years to prevent invasive pneumococcal disease and pneumonia. Younger adults are not expected to be vaccinated against pneumococcal disease, except for those with certain at-risk conditions, likely putting them at a higher risk for pneumococcal bacteremia. Unfortunately, sparsity of data on serotype distribution among bacteremic cases did not allow an in-depth analysis of its impact on age distribution. Mechanical ventilation has been associated with pneumococcal bacteremic pneumonia.306 Our data are not consistent with this finding since we found that mechanical ventilation negatively correlated with bacteremia. However, respiratory complications (including mechanical ventilation) have been associated to older age in bacteremic pneumococcal pneumonia.308
This review has strengths and limitations. One key strength of the review is that it consisted of a large number of records for Spain, Italy, Portugal, and Greece, including gray literature sources. One limitation of our study is the heterogeneity observed in the meta-analyses. We applied a quality appraisal tool, and fitted random effects models and subgroup analyses but among the research community, there is still no consensus on the optimal methodology for the conduct of systematic reviews and meta-analyses for observational studies.309,310 Additionally, data from Portugal, Greece, and Italy were scant which may have resulted in the underestimation of the true burden of pneumococcal disease in those countries.
Despite these limitations, this review aims to trigger awareness among policy and decision makers of the need to inform policies and strategies to tackle pneumococcal disease among adults in the Southern European countries.
Conclusions
Despite limitations, the results of this review point to a considerable pneumococcal disease burden and PCV13 type IPD burden among adults even with the indirect effects of the pediatric PCV13 vaccination programmes. It has also unveiled an increase in the incidence of non-PCV13 serotypes over time. Based on this review, we suggest it is worth considering the expansion of pneumococcal vaccination recommendations to the elderly and adults with chronic diseases, HIV-positive, and other immunosuppressing conditions.
Moreover, improving surveillance of pneumococcal disease and the harmonization of reporting systems are warranted among the Southern European countries to ensure close monitoring of changes in the epidemiology of the pneumococcal disease, and the impact of vaccines.
At present, next-generation pneumococcal conjugate vaccines with a wider serotype coverage are being developed. Therefore, switching to extended-valency pneumococcal conjugate vaccines when they become available would be advisable. At the same time, every effort should be made to take advantage of existing recommendations in the Southern European countries and to enhance pneumococcal vaccination uptake both in the elderly and in adults with comorbidities that put them at increased risk for pneumococcal disease.
Supplementary Material
Acknowledgments
We thank Francisco Andrés Fernández and his team from Content Medicine for conducting the systematic review and providing insights in the interpretation of the results.
Funding Statement
Editorial support was provided by Qi Yan at Pfizer, Inc. and was funded by Pfizer.
Highlights
Pneumococcal disease among adults poses a significant burden on Southern European countries
Indirect effects of childhood pneumococcal vaccination are noted among adults in Spain
Pneumococcal surveillance and reporting need improvement in Italy, Greece, and Portugal
Changes in epidemiology suggest the need for higher-valency conjugate vaccines
Contributors
A. Navarro-Torné designed, interpreted data, and drafted the manuscript; Eva Agostina Montuori, Vasiliki Kossyvaki, and Cristina Méndez critically revised the manuscript, contributed comments, and gave final approval to the manuscript.
Disclosure of potential conflicts of interest
All author(s) are Pfizer employees and may hold company stocks.
Supplementary material
Supplemental data for this article can be accessed on the publisher’s website at https://doi.org/10.1080/21645515.2021.1923348
References
- 1.Wang H, Naghavi M, Allen C, Barber RM, Bhutta ZA, Carter A, Casey DC, Charlson FJ, Chen AZ, Coates MM, et al. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388(10053):1459–544. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Paton JC, Trappetti C.. Streptococcus pneumoniae capsular polysaccharide. Microbiol Spectr. 2019;7(2):2. doi: 10.1128/microbiolspec.GPP3-0019-2018. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Ganaie F, Saad JS, McGee L, van Tonder AJ, Bentley SD, Lo SW, Gladstone RA, Turner P, Keenan JD, Breiman RF, et al. A new pneumococcal capsule type, 10D, is the 100th serotype and has a large cps fragment from an oral Streptococcus. mBio. 2020;11(3):e00937–20. doi: 10.1128/mBio.00937-20. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Lynch JP, Zhanel GG.. Streptococcus pneumoniae: epidemiology, risk factors, and strategies for prevention. Semin Respir Crit Care Med. 2009;30(2):189–209. doi: 10.1055/s-0029-1202938. [DOI] [PubMed] [Google Scholar]
- 5.Welte T, Torres A, Nathwani D. Clinical and economic burden of community-acquired pneumonia among adults in Europe. Thorax. 2012;67(1):71–79. doi: 10.1136/thx.2009.129502. [DOI] [PubMed] [Google Scholar]
- 6.Chalmers JD, Campling J, Dicker A, Woodhead M, Madhava H. A systematic review of the burden of vaccine preventable pneumococcal disease in UK adults. BMC Pulm Med. 2016;16(1):77. doi: 10.1186/s12890-016-0242-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Navarro-Torné A, Dias JG, Quinten C, Hruba F, Busana MC, Lopalco PL, Gauci AJA, Pastore-Celentano L. European enhanced surveillance of invasive pneumococcal disease in 2010: data from 26 European countries in the post-heptavalent conjugate vaccine era. Vaccine. 2014;32(29):3644–50. doi: 10.1016/j.vaccine.2014.04.066. [DOI] [PubMed] [Google Scholar]
- 8.Rozenbaum MH, Pechlivanoglou P, van der Werf TS, Lo-Ten-Foe JR, Postma MJ, Hak E. The role of Streptococcus pneumoniae in community-acquired pneumonia among adults in Europe: a meta-analysis. Eur J Clin Microbiol Infect Dis. 2013;32(3):305–16. doi: 10.1007/s10096-012-1778-4. [DOI] [PubMed] [Google Scholar]
- 9.Bonten MJM, Huijts SM, Bolkenbaas M, Webber C, Patterson S, Gault S, Van Werkhoven CH, Van Deursen AMM, Sanders EAM, Verheij TJM, et al. Polysaccharide conjugate vaccine against pneumococcal pneumonia in adults. N Engl J Med. 2015;372(12):1114–25. doi: 10.1056/NEJMoa1408544. [DOI] [PubMed] [Google Scholar]
- 10.McLaughlin JM, Jiang Q, Isturiz RE, Sings HL, Swerdlow DL, Gessner BD, Carrico RM, Peyrani P, Wiemken TL, Mattingly WA, et al. Effectiveness of 13-valent pneumococcal conjugate vaccine against hospitalization for community-acquired pneumonia in older US adults: a test-negative design. Clin Infect Dis. 2018;67(10):1498–506. doi: 10.1093/cid/ciy312. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Bonnave C, Mertens D, Peetermans W, Cobbaert K, Ghesquiere B, Deschodt M, Flamaing J. Adult vaccination for pneumococcal disease: a comparison of the national guidelines in Europe. Eur J Clin Microbiol Infect Dis. 2019;38(4):785–91. doi: 10.1007/s10096-019-03485-3. [DOI] [PubMed] [Google Scholar]
- 12.Greek Ministry of Health . Greek national immunization program for adults 2018–2019. 2020. [accessed 2020 Sept 14]. https://www.moh.gov.gr/articles/health/dieythynsh-dhmosias-ygieinhs/emboliasmoi/ethniko-programma-emboliasmwn-epe-enhlikwn/6356-ethniko-programma-emboliasmwn-epe-enhlikwn-2018-2019.
- 13.Ministry of Health Consumer Affairs and Social Welfare . Vaccination schedules in the Autonomous Communities in Spain. 2020. [accessed 2020 Sept 14]. https://www.mscbs.gob.es/profesionales/saludPublica/prevPromocion/vacunaciones/Calendario_CCAA.htm.
- 14.Italian Ministry of Health . National immunization plan 2017–2019. 2017. [accessed 2020 Sept 16]. http://www.salute.gov.it/imgs/C_17_pubblicazioni_2571_allegato.pdf.
- 15.Bertsias A, Tsiligianni IG, Duijker G, Siafakas N, Lionis C. Studying the burden of community-acquired pneumonia in adults aged ≥50 years in primary health care: an observational study in rural Crete, Greece. NPJ Prim Care Respir Med. 2014;24(1):14017. doi: 10.1038/npjpcrm.2014.17. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Càmara J, Marimón JM, Cercenado E, Larrosa N, Quesada MD, Fontanals D, Cubero M, Pérez-Trallero E, Fenoll A, Liñares J, et al. Decrease of invasive pneumococcal disease (IPD) in adults after introduction of pneumococcal 13-valent conjugate vaccine in Spain. PLoS One. 2017;12(4):e0175224. doi: 10.1371/journal.pone.0175224. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, Clarke M, Devereaux PJ, Kleijnen J, Moher D, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med. 2009;6(7):e1000100. doi: 10.1371/journal.pmed.1000100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Munn Z, Moola S, Lisy K, Riitano D, Tufanaru C. Methodological guidance for systematic reviews of observational epidemiological studies reporting prevalence and cumulative incidence data. Int J Evid Based Healthc. 2015;13(3):147–53. doi: 10.1097/XEB.0000000000000054. [DOI] [PubMed] [Google Scholar]
- 19.World Health Organization. WHO . Proposed working definition of an older person in Africa for the MDS Project. 2002. [accessed 2020 Aug 3]. https://www.who.int/healthinfo/survey/ageingdefnolder/en/.
- 20.Joanna Briggs Institute . Critical appraisal checklist for prevalence studies. 2017. [accessed 2020 Aug 3]. https://jbi.global/critical-appraisal-tools.
- 21.Barendregt JJ, Doi SA, Lee YY, Norman RE, Vos T, Vos T. Meta-analysis of prevalence. J Epidemiol Community Health. 2013;67:974–78. [DOI] [PubMed] [Google Scholar]
- 22.Abdallah Kassab N, Saiz Sánchez-Buitrago M, Pérez Jaén A, Castellanos González M, Ruiz-Giardín J. Bacteriemias en pacientes adultos que acuden a urgencias, estudio descriptivo años 2012–2013. Universidad Rey Juan Carlos; 2014. [accessed 2020 May 21]. https://eciencia.urjc.es/handle/10115/13140.
- 23.Adamuz Tomás J, Viasus D, Campreciós Rodríguez P, Cañavate Jurado O, Jiménez Martínez E, Isla Pera MP, García-vidal C, Carratalà J. A prospective cohort study of healthcare visits and rehospitalizations after hospital discharge in community-acquired pneumonia. Respirology. 2011;16(7):1119–26. doi: 10.1111/j.1440-1843.2011.02017.x. [DOI] [PubMed] [Google Scholar]
- 24.Aguilar-Guisado M, Jiménez-Jambrina M, Espigado I, Rovira M, Martino R, Oriol A, Borrell N, Ruiz I, Martín-Dávila P, de la Cámara R, et al. Pneumonia in allogeneic stem cell transplantation recipients: a multicenter prospective study: pneumonia in allogeneic HSCT recipients. Clin Transplant. 2011;25(6):E629–E38. doi: 10.1111/j.1399-0012.2011.01495.x. [DOI] [PubMed] [Google Scholar]
- 25.Almirall J, Morat I, Riera F, Verdaguer A, Priu R, Coll P, Vidal J, Murgui L, Valls F, Catalan F, et al. Incidence of community-acquired pneumonia and Chlamydia pneumoniae infection: a prospective multicentre study. Eur Respir J. 1993;6(1):14–18. [PubMed] [Google Scholar]
- 26.Almirall J, Bolibar I, Vidal J, Sauca G, Coll P, Niklasson B, Bartolome M, Balanzo X. Epidemiology of community-acquired pneumonia in adults: a population-based study. Eur Respir J. 2000;15(4):757–63. doi: 10.1034/j.1399-3003.2000.15d21.x. [DOI] [PubMed] [Google Scholar]
- 27.Almirall J, Boixeda R, Bolíbar I, Bassa J, Sauca G, Vidal J, Serra-Prat M, Balanzó X. Differences in the etiology of community-acquired pneumonia according to site of care: a population-based study. Respir Med. 2007;101(10):2168–75. doi: 10.1016/j.rmed.2007.05.007. [DOI] [PubMed] [Google Scholar]
- 28.Almirall J, Rofes L, Serra-Prat M, Icart R, Palomera E, Arreola V, Clavé P. Oropharyngeal dysphagia is a risk factor for community-acquired pneumonia in the elderly. Eur Respir J. 2013;41(4):923–28. doi: 10.1183/09031936.00019012. [DOI] [PubMed] [Google Scholar]
- 29.Álvarez Rodríguez V. Manejo en urgencias de las neumonías adquiridas en la comunidad que requieren ingreso hospitalario. Madrid (Spain): Universidad Complutense de Madrid; 2008. [Google Scholar]
- 30.Álvarez-Lerma F, Palomar M, Martínez-Pellús A, Álvarez-Sánchez B, Pérez-Ortiz E, Jordá R. Aetiology and diagnostic techniques in intensive care-acquired pneumonia: a Spanish multi-centre study. Clin Intensive Care. 1997;8(4):7. doi: 10.3109/tcic.8.4.164.170. [DOI] [Google Scholar]
- 31.Amodio E, Costantino C, Boccalini S, Tramuto F, Maida CM, Vitale F. Estimating the burden of hospitalization for pneumococcal pneumonia in a general population aged 50 years or older and implications for vaccination strategies. Hum Vaccin Immunother. 2014;10(5):1337–42. doi: 10.4161/hv.27947. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Ardanuy C, Tubau F, Pallares R, Calatayud L, Domínguez María A, Rolo D, Grau I, Martín R, Liñares J. Epidemiology of invasive pneumococcal disease among adult patients in Barcelona before and after pediatric 7‐valent pneumococcal conjugate vaccine introduction, 1997–2007. Clin Infect Dis. 2009;48(1):57–64. doi: 10.1086/594125. [DOI] [PubMed] [Google Scholar]
- 33.Arencibia Jiménez M, Navarro Gracia JF, Delgado de los Reyes JA, Pérez Torregrosa G, López Parra D, López García P. Missed opportunities in antipneumococcal vaccination. Can something more be done for prevention? Arch Bronchoneumol 2014;50:93–98. [DOI] [PubMed] [Google Scholar]
- 34.Artiles F, Horcajada I, Cañas AM, Álamo I, Bordes A, González A, Santana M, Lafarga B. Aspectos epidemiológicos de la enfermedad neumocócica invasiva antes y después del uso de la vacuna neumocócica conjugada en Gran Canaria. Enferm Infecc Microbiol Clin. 2009;27(1):14–21. doi: 10.1016/j.eimc.2008.03.001. [DOI] [PubMed] [Google Scholar]
- 35.Balaguer Rosello A, Bataller L, Lorenzo I, Jarque I, Salavert M, González E, Piñana JL, Sevilla T, Montesinos P, Iacoboni G, et al. Infections of the central nervous system after unrelated donor umbilical cord blood transplantation or human leukocyte antigen–matched sibling transplantation. Biol Blood Marrow Transplant. 2017;23(1):134–39. doi: 10.1016/j.bbmt.2016.10.005. [DOI] [PubMed] [Google Scholar]
- 36.Baldo V, Cocchio S, Gallo T, Furlan P, Clagnan E, Zotto SD, Saia M, Bertoncello C, Buja A, Baldovin T, et al. Impact of pneumococcal conjugate vaccination: a retrospective study of hospitalization for pneumonia in North-East Italy. J Prev Med Hyg. 2016;57(2):E61–E8. [PMC free article] [PubMed] [Google Scholar]
- 37.Baldovin T, Russo F, Lazzari R, Bertoncello C, Furlan P, Cocchio S, Baldo V. Surveillance of invasive pneumococcal diseases in Veneto region, Italy. Pneumonia. 2014;3:154. [Google Scholar]
- 38.Baldovin T, Lazzari R, Russo F, Bertoncello C, Buja A, Furlan P, Cocchio S, Palù G, Baldo V. A surveillance system of invasive pneumococcal disease in North-Eastern Italy. Ann Ig. 2016;28(1):15–24. doi: 10.7416/ai.2016.2081. [DOI] [PubMed] [Google Scholar]
- 39.Bartoletti M. End-stage liver disease: the hidden immunosuppressive condition. From an epidemiological update to therapeutic management models. Bologna (Italy): University of Bologna; 2018. [Google Scholar]
- 40.Bello S, Mincholé E, Fandos S, Lasierra AB, Ruiz MA, Simon AL, Panadero C, Lapresta C, Menendez R, Torres A, et al. Inflammatory response in mixed viral-bacterial community-acquired pneumonia. BMC Pulm Med. 2014;14(1):123. doi: 10.1186/1471-2466-14-123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41.Bermejo-Martin JF, Cilloniz C, Mendez R, Almansa R, Gabarrus A, Ceccato A, Torres A, Menendez R. Lymphopenic community acquired pneumonia (l-CAP), an immunological phenotype associated with higher risk of mortality. EBioMedicine. 2017;24:231–36. doi: 10.1016/j.ebiom.2017.09.023. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Boschini A, Smacchia C, Di Fine M, Schiesari A, Ballarini P, Arlotti M, Gabrielli C, Castellani G, Genova M, Pantani P, et al. Community-acquired pneumonia in a cohort of former injection drug users with and without human immunodeficiency virus infection: incidence, etiologies, and clinical aspects. Clin Infect Dis. 1996;23(1):107–13. doi: 10.1093/clinids/23.1.107. [DOI] [PubMed] [Google Scholar]
- 43.Bouza E, Pintado V, Rivera S, Blázquez R, Muñoz P, Cercenado E, Loza E, Rodríguez-Créixems M, Moreno S. Nosocomial bloodstream infections caused by Streptococcus pneumoniae. Clin Microbiol Infect. 2005;11(11):919–24. doi: 10.1111/j.1469-0691.2005.01260.x. [DOI] [PubMed] [Google Scholar]
- 44.Bouza E, Arenas C, Cercenado E, Cuevas O, Vicioso D, Fenoll A. Microbiologic workload and clinical significance of Streptococcus pneumoniae isolated during one week in spain. Microbial Drug Resist. 2007;13(1):52–61. doi: 10.1089/mdr.2006.9997. [DOI] [PubMed] [Google Scholar]
- 45.Bruschini L, Fortunato S, Tascini C, Ciabotti A, Leonildi A, Bini B, Giuliano S, Abbruzzese A, Berrettini S, Menichetti F, et al. Otogenic meningitis: a comparison of diagnostic performance of surgery and radiology. Open Forum Infect Dis. 2017;4(2):1–7. doi: 10.1093/ofid/ofx069. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.Burgos J, Lujan M, Falco V, Sanchez A, Puig M, Borrego A, Fontanals D, Planes AM, Pahissa A, Rello J, et al. The spectrum of pneumococcal empyema in adults in the early 21st century. Clin Infect Dis. 2011;53(3):254–61. doi: 10.1093/cid/cir354. [DOI] [PubMed] [Google Scholar]
- 47.Burgos J, Falcó V, Borrego A, Sordé R, Larrosa MN, Martinez X, Planes AM, Sánchez A, Palomar M, Rello J, et al. Impact of the emergence of non-vaccine pneumococcal serotypes on the clinical presentation and outcome of adults with invasive pneumococcal pneumonia. Clin Microbiol Infect. 2013;19(4):385–91. doi: 10.1111/j.1469-0691.2012.03895.x. [DOI] [PubMed] [Google Scholar]
- 48.Pallares R, Viladrich PF, Liñares J, Cabellos C, Gudiol F. Impact of antibiotic resistance on chemotherapy for pneumococcal infections. Microb Drug Resist. 1998;4(4):339–47. doi: 10.1089/mdr.1998.4.339. [DOI] [PubMed] [Google Scholar]
- 49.Camon S, Quiros C, Saubi N, Moreno A, Marcos MA, Eto Y, Rofael S, Monclus E, Brown J, McHugh TD, et al. Full blood count values as a predictor of poor outcome of pneumonia among HIV-infected patients. BMC Infect Dis. 2018;18(1):189. doi: 10.1186/s12879-018-3090-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50.Capdevila O, Pallares R, Grau I, Tubau F, Liñares J, Ariza J, Gudiol F. Pneumococcal peritonitis in adult patients: report of 64 cases with special reference to emergence of antibiotic resistance. Arch Intern Med. 2001;161(14):1742. doi: 10.1001/archinte.161.14.1742. [DOI] [PubMed] [Google Scholar]
- 51.Carabaña S, Pilar M. Presentación clínica, etiología y pronóstico de la bacteriemia extrahospitalaria (1998–2011). Madrid (Spain): Autonomous University of Madrid; 2015. [Google Scholar]
- 52.Cardoso TC, Lopes LM, Carneiro AH. A case-control study on risk factors for early-onset respiratory tract infection in patients admitted in ICU. BMC Pulm Med. 2007;7(1):12. doi: 10.1186/1471-2466-7-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53.de Carlo A, Roda R, Rossi MR, Ceruti S, Ghinelli F, Libanore M. Attuali aspetti epidemiologici e clinici delle meningiti in un’area del Nord-Italia. Infez Med. 2000;3:167–72. [PubMed] [Google Scholar]
- 54.Caro Orozco S. Elaboración de un modelo de predicción de bacteriemia en pacientes con neumonia comunitaria [Ph.D. Thesis]. Leida (Spain): University of Lleida; 2012. [Google Scholar]
- 55.Carratalà J, Mykietiuk A, Fernández-Sabé N, Suárez C, Dorca J, Verdaguer R, Manresa F, Gudiol F. Health care–associated pneumonia requiring hospital admission: epidemiology, antibiotic therapy, and clinical outcomes. Arch Intern Med. 2007;167(13):1393. doi: 10.1001/archinte.167.13.1393. [DOI] [PubMed] [Google Scholar]
- 56.Nuvials Casals X. Infecciones respiratorias relacionadas con la ventilación mecánica. Impacto en el uso de antimicrobianos. Barcelona (Spain): Autonomous University of Barcelona; 2015. [Google Scholar]
- 57.Cascini S, Agabiti N, Incalzi RA, Pinnarelli L, Mayer F, Arcà M, Fusco D, Davoli M. Pneumonia burden in elderly patients: a classification algorithm using administrative data. BMC Infect Dis. 2013;13(1):559. doi: 10.1186/1471-2334-13-559. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 58.Cazzadori A, Perri GD, Vento S, Bonora S, Fendt D, Rossi M, Lanzafame M, Mirandola F, Concia E. Aetiology of pneumonia following isolated closed head injury. Respir Med. 1997;91(4):193–99. doi: 10.1016/S0954-6111(97)90038-X. [DOI] [PubMed] [Google Scholar]
- 59.Ceccato A, Torres A, Cilloniz C, Amaro R, Gabarrus A, Polverino E, Prina E, Garcia-Vidal C, Muñoz-Conejero E, Mendez C, et al. Invasive disease vs urinary antigen-confirmed pneumococcal community-acquired pneumonia. Chest. 2017;151(6):1311–19. doi: 10.1016/j.chest.2017.01.005. [DOI] [PubMed] [Google Scholar]
- 60.Ceccato A, Cilloniz C, Martin-Loeches I, Ranzani OT, Gabarrus A, Bueno L, Garcia-Vidal C, Ferrer M, Niederman MS, Torres A, et al. Effect of combined β-lactam/macrolide therapy on mortality according to the microbial etiology and inflammatory status of patients with community-acquired pneumonia. Chest. 2019;155(4):795–804. doi: 10.1016/j.chest.2018.11.006. [DOI] [PubMed] [Google Scholar]
- 61.Ceccato A, Panagiotarakou M, Ranzani OT, Martin-Fernandez M, Almansa-Mora R, Gabarrus A, Bueno L, Cilloniz C, Liapikou A, Ferrer M, et al. Lymphocytopenia as a predictor of mortality in patients with ICU-acquired pneumonia. J Clin Med. 2019;8(6):843. doi: 10.3390/jcm8060843. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 62.Chiappini E, Inturrisi F, Orlandini E, de Martino M, de Waure C. Hospitalization rates and outcome of invasive bacterial vaccine-preventable diseases in Tuscany: a historical cohort study of the 2000–2016 period. BMC Infect Dis. 2018;18(1):396. doi: 10.1186/s12879-018-3316-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 63.Chiner E, Llombart M, Valls J, Pastor E, Sancho-Chust JN, Andreu AL, Sánchez-de-la-torre M, Barbé F. Association between obstructive sleep apnea and community-acquired pneumonia. PLoS One. 2016;11(4):e0152749. doi: 10.1371/journal.pone.0152749. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 64.Cilloniz C, Ewig S, Polverino E, Marcos MA, Esquinas C, Gabarrus A, Mensa J, Torres A. Microbial aetiology of community-acquired pneumonia and its relation to severity. Thorax. 2011;66(4):340–46. doi: 10.1136/thx.2010.143982. [DOI] [PubMed] [Google Scholar]
- 65.Cilloniz C, Torres A, Polverino E, Gabarrus A, Amaro R, Moreno E, Villegas S, Ortega M, Mensa J, Marcos MA, et al. Community-acquired lung respiratory infections in HIV-infected patients: microbial aetiology and outcome. Eur Respir J. 2014;43(6):1698–708. doi: 10.1183/09031936.00155813. [DOI] [PubMed] [Google Scholar]
- 66.Cilloniz C, Albert RK, Liapikou A, Gabarrus A, Rangel E, Bello S, Marco F, Mensa J, Torres A. The effect of macrolide resistance on the presentation and outcome of patients hospitalized for Streptococcus pneumoniae Pneumonia. Am J Respir Crit Care Med. 2015;191(11):1265–72. doi: 10.1164/rccm.201502-0212OC. [DOI] [PubMed] [Google Scholar]
- 67.Cilloniz C, Ewig S, Gabarrus A, Ferrer M, Puig de la Bella Casa J, Mensa J, Torres A. Seasonality of pathogens causing community-acquired pneumonia: seasonality of pathogens in CAP. Respirology. 2017;22(4):778–85. doi: 10.1111/resp.12978. [DOI] [PubMed] [Google Scholar]
- 68.Cilloniz C, Ferrer M, Liapikou A, Garcia-Vidal C, Gabarrus A, Ceccato A, Puig de la Bellacasa J, Blasi F, Torres A. Acute respiratory distress syndrome in mechanically ventilated patients with community-acquired pneumonia. Eur Respir J. 2018;51(3):1702215. doi: 10.1183/13993003.02215-2017. [DOI] [PubMed] [Google Scholar]
- 69.Cillóniz C, Ewig S, Ferrer M, Polverino E, Gabarrús A, Puig de la Bellacasa J, Mensa J, Torres A. Community-acquired polymicrobial pneumonia in the intensive care unit: aetiology and prognosis. Critical Care. 2011;15(5):R209. doi: 10.1186/cc10444. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 70.Cillóniz C, Ewig S, Polverino E, Muñoz-Almagro C, Marco F, Gabarrús A, Menéndez R, Mensa J, Torres A. Pulmonary complications of pneumococcal community-acquired pneumonia: incidence, predictors, and outcomes. Clin Microbiol Infect. 2012;18(11):1134–42. doi: 10.1111/j.1469-0691.2011.03692.x. [DOI] [PubMed] [Google Scholar]
- 71.Cillóniz C, Ewig S, Menéndez R, Ferrer M, Polverino E, Reyes S, Gabarrús A, Marcos MA, Cordoba J, Mensa J, et al. Bacterial co-infection with H1N1 infection in patients admitted with community acquired pneumonia. J Infect. 2012;65(3):223–30. doi: 10.1016/j.jinf.2012.04.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 72.Cillóniz C, Gabarrús A, Almirall J, Amaro R, Rinaudo M, Travierso C, Niederman M, Torres A. Bacteraemia in outpatients with community-acquired pneumonia. Eur Respir J. 2016;47(2):654–57. doi: 10.1183/13993003.01308-2015. [DOI] [PubMed] [Google Scholar]
- 73.Cillóniz C, Ceccato A, de la Calle C, Gabarrús A, Garcia-Vidal C, Almela M, Soriano A, Martinez JA, Marco F, Vila J, et al. Time to blood culture positivity as a predictor of clinical outcomes and severity in adults with bacteremic pneumococcal pneumonia. PLoS One. 2017;12(8):e0182436. doi: 10.1371/journal.pone.0182436. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 74.Cillóniz C, Liapikou A, Martin-Loeches I, García-Vidal C, Gabarrús A, Ceccato A, Magdaleno D, Mensa J, Marco F, Torres A, et al. Twenty-year trend in mortality among hospitalized patients with pneumococcal community-acquired pneumonia. PLoS One. 2018;13(7):e0200504. doi: 10.1371/journal.pone.0200504. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 75.Ciruela P, Martínez A, Izquierdo C, Hernández S, Broner S, Muñoz-Almagro C, Domínguez À, Of Catalonia Study Group TMRS. Epidemiology of vaccine-preventable invasive diseases in Catalonia in the era of conjugate vaccines. Hum Vaccin Immunother. 2013;9(3):681–91. doi: 10.4161/hv.23266. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 76.Ciruela P, Broner S, Izquierdo C, Hernández S, Muñoz-Almagro C, Pallarés R, Jané M, Domínguez A. Invasive pneumococcal disease rates linked to meteorological factors and respiratory virus circulation (Catalonia, 2006–2012). BMC Public Health. 2016;16(1):400. doi: 10.1186/s12889-016-3061-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 77.Ciruela P, Izquierdo C, Broner S, Muñoz-Almagro C, Hernández S, Ardanuy C, Pallarés R, Domínguez A, Jané M, Esteva C, et al. The changing epidemiology of invasive pneumococcal disease after PCV13 vaccination in a country with intermediate vaccination coverage. Vaccine. 2018;36(50):7744–52. doi: 10.1016/j.vaccine.2018.05.026. [DOI] [PubMed] [Google Scholar]
- 78.Ciruela P, Broner S, Izquierdo C, Pallarés R, Muñoz-Almagro C, Hernández S, Grau I, Domínguez A, Jané M, Ciruela P, et al. Indirect effects of paediatric conjugate vaccines on invasive pneumococcal disease in older adults. Int J Infect Dis. 2019;86:122–30. doi: 10.1016/j.ijid.2019.06.030. [DOI] [PubMed] [Google Scholar]
- 79.Cisneros JM, Munoz P, Torre‐Cisneros J, Gurgui M, Rodriguez‐Hernandez MJ, Aguado JM, Echaniz A. Pneumonia after heart transplantation: a multiinstitutional study. Clin Infect Dis. 1998;27(2):324–31. doi: 10.1086/514649. [DOI] [PubMed] [Google Scholar]
- 80.Cisterna R, Cabezas V, Gómez E, Busto C, Atutxa I, Ezpeleta C. Community-acquired bacteremia. Rev Esp Quimioter. 2001;14:369–82. [PubMed] [Google Scholar]
- 81.Cobo Martínez F, Manchado Mañas P. Bacteriemia nosocomial: epidemiología y situación actual de resistencias a antimicrobianos. Rev Clin Esp. 2005;205(3):108–12. doi: 10.1157/13072966. [DOI] [PubMed] [Google Scholar]
- 82.Comes Castellano AM, Rodrigo JAL, Alonso AP, Pastor E, Sanz Valero M. Incidencia de las neumonías neumocócicas en el ámbito hospitalario en la comunidad valenciana durante el período 1995–2001. Rev Esp Salud Publica. 2004;78(4):9. doi: 10.1590/S1135-57272004000400009. [DOI] [PubMed] [Google Scholar]
- 83.Cosentini R, Blasi F, Raccanelli R, Rossi S, Arosio C, Tarsia P, Randazzo A, Allegro L. Severe Community-Acquired Pneumonia: a Possible Role for Chlamydia pneumoniae. Respiration. 1996;63(2):61–65. doi: 10.1159/000196519. [DOI] [PubMed] [Google Scholar]
- 84.Crisafulli E, Menéndez R, Huerta A, Martinez R, Montull B, Clini E, Torres A. Systemic inflammatory pattern of patients with community-acquired pneumonia with and without COPD. Chest. 2013;143(4):1009–17. doi: 10.1378/chest.12-1684. [DOI] [PubMed] [Google Scholar]
- 85.Cuomo G, Brancaccio G, Stornaiuolo G, Manno D, Gaeta GL, Mussini C, Puoti M, Gaeta GB. Bacterial pneumonia in patients with liver cirrhosis, with or without HIV co-infection: a possible definition of antibiotic prophylaxis associated pneumonia (APAP). Infect Dis. 2018;50(2):125–32. doi: 10.1080/23744235.2017.1367414. [DOI] [PubMed] [Google Scholar]
- 86.Curran A, Falcó V, Crespo M, Martinez X, Ribera E, Villar del Saz S, Imaz A, Coma E, Ferrer A, Pahissa A, et al. Bacterial pneumonia in HIV-infected patients: use of the pneumonia severity index and impact of current management on incidence, aetiology and outcome. HIV Med. 2008;9(8):609–15. doi: 10.1111/j.1468-1293.2008.00603.x. [DOI] [PubMed] [Google Scholar]
- 87.Dambrava PG, Torres A, Valles X, Mensa J, Marcos MA, Penarroja G, Camps M, Estruch R, Sanchez M, Menendez R, et al. Adherence to guidelines‘ empirical antibiotic recommendations and community-acquired pneumonia outcome. Eur Respir J. 2008;32(4):892–901. doi: 10.1183/09031936.00163407. [DOI] [PubMed] [Google Scholar]
- 88.Dancona F, Salmaso S, Barale A, Boccia D, Lopalco PL, Rizzo C, Monaco M, Massari M, Demicheli V, Pantosti A, et al. Incidence of vaccine preventable pneumococcal invasive infections and blood culture practices in Italy. Vaccine. 2005;23(19):2494–500. doi: 10.1016/j.vaccine.2004.10.037. [DOI] [PubMed] [Google Scholar]
- 89.Dancona F, Caporali MG, Manso MD, Giambi C, Camilli R, D’Ambrosio F, Del Grosso M, Iannazzo S, Rizzuto E, Pantosti A. Invasive pneumococcal disease in children and adults in seven Italian regions after the introduction of the conjugate vaccine, 2008–2014. Epidemiol Prev. 2015;5. [PubMed] [Google Scholar]
- 90.de Egea V, Muñoz P, Valerio M, de Alarcón A, Lepe JA, Miró JM, Gálvez-Acebal J, García-Pavía P, Navas E, Goenaga MA, et al. Characteristics and outcome of Streptococcus pneumoniae endocarditis in the XXI century: a systematic review of 111 cases (2000–2013). Medicine. 2015;94(39):e1562. doi: 10.1097/MD.0000000000001562. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 91.de Oliveira MJMN. Vigilância de infecções associadas aos cuidados de saúde e importância do consumo de anti-microbianos em cuidados intensivos. Lisboa (Portugal): University of Lisboa; 2009. [Google Scholar]
- 92.de Roux A. Mixed community-acquired pneumonia in hospitalised patients. Eur Respir J. 2006;27(4):795–800. doi: 10.1183/09031936.06.00058605. [DOI] [PubMed] [Google Scholar]
- 93.de Roux A, Cavalcanti M, Marcos MA, Garcia E, Ewig S, Mensa J, Torres A. Impact of alcohol abuse in the etiology and severity of community-acquired pneumonia. Chest. 2006;129(5):1219–25. doi: 10.1378/chest.129.5.1219. [DOI] [PubMed] [Google Scholar]
- 94.de Sousa Carlos IS. Demora média no tratamento da pneumonia adquirida na comunidade. Estudo sobre os hospitais públicos portugueses entre 2009 e 2011. Lisboa (Portugal): Escola Nacional de Saúde Pública; 2013. [Google Scholar]
- 95.Díaz-Ravetllat V, Ferrer M, Gimferrer-Garolera JM, Molins L, Torres A. Risk factors of postoperative nosocomial pneumonia after resection of bronchogenic carcinoma. Respir Med. 2012;106(10):1463–71. doi: 10.1016/j.rmed.2012.07.008. [DOI] [PubMed] [Google Scholar]
- 96.Dimakou K, Triantafillidou C, Toumbis M, Tsikritsaki K, Malagari K, Bakakos P. Non CF-bronchiectasis: aetiologic approach, clinical, radiological, microbiological and functional profile in 277 patients. Respir Med. 2016;116:1–7. doi: 10.1016/j.rmed.2016.05.001. [DOI] [PubMed] [Google Scholar]
- 97.Domingo P, Suarez-Lozano I, Torres F, Pomar V, Ribera E, Galindo MJ, Cosin J, Garcia-Alcalde ML, Vidal F, Lopez-Aldeguer J, et al. Bacterial meningitis in HIV-1-infected patients in the era of highly active antiretroviral therapy. J Acquir Immune Defic Syndr. 2009;51(5):582–87. doi: 10.1097/QAI.0b013e3181adcb01. [DOI] [PubMed] [Google Scholar]
- 98.Domingo P, Pomar V, de Benito N, Coll P. The spectrum of acute bacterial meningitis in elderly patients. BMC Infect Dis. 2013;13(1):108. doi: 10.1186/1471-2334-13-108. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 99.Domingo P, Pomar V, Benito N, Coll P. The changing pattern of bacterial meningitis in adult patients at a large tertiary university hospital in Barcelona, Spain (1982–2010). J Infect. 2013;66(2):147–54. doi: 10.1016/j.jinf.2012.10.030. [DOI] [PubMed] [Google Scholar]
- 100.Dominguez A. The epidemiology of invasive Streptococcus pneumoniae disease in Catalonia (Spain). A hospital-based study. Vaccine 2002;20(23–24):2989–94. doi: 10.1016/S0264-410X(02)00222-0. [DOI] [PubMed] [Google Scholar]
- 101.Esperatti M, Ferrer M, Theessen A, Liapikou A, Valencia M, Saucedo LM, Zavala E, Welte T, Torres A. Nosocomial pneumonia in the intensive care unit acquired by mechanically ventilated versus nonventilated patients. Am J Respir Crit Care Med. 2010;182(12):1533–39. doi: 10.1164/rccm.201001-0094OC. [DOI] [PubMed] [Google Scholar]
- 102.Cabezón Estévanez I. Uso de la procalcitonina como marcador pronóstico en la neumonía adquirida en la comunidad. Madrid: Complutense University of Madrid (Spain); 2014. [Google Scholar]
- 103.Ewig S, Torres A, El-Ebiary M, Fàbregas N, Hernández C, González J, Nicolás J, Soto L. Bacterial colonization patterns in mechanically ventilated patients with traumatic and medical head injury: incidence, risk factors, and association with ventilator-associated pneumonia. Am J Respir Crit Care Med. 1999;159(1):188–98. doi: 10.1164/ajrccm.159.1.9803097. [DOI] [PubMed] [Google Scholar]
- 104.Falcón Vega MS. Epidemiología y sensibilidad antibiótica de Streptococcus pneumoniae en muestras invasivas en el HCU “Lozano Blesa” de Zaragoza (2013–2016). Zaragoza (Spain): University of Zaragoza; 2017. [Google Scholar]
- 105.Falcone M, Russo A, Giannella M, Cangemi R, Scarpellini MG, Bertazzoni G, Alarcón JM, Taliani G, Palange P, Farcomeni A, et al. Individualizing risk of multidrug-resistant pathogens in community-onset pneumonia. PLoS One. 2015;10(4):e0119528. doi: 10.1371/journal.pone.0119528. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 106.Falcone M, Tiseo G, Russo A, Giordo L, Manzini E, Bertazzoni G, Palange P, Taliani G, Cangemi R, Farcomeni A, et al. Hospitalization for pneumonia is associated with decreased 1-year survival in patients with type 2 diabetes: results from a prospective cohort study. Medicine. 2016;95(5):e2531. doi: 10.1097/MD.0000000000002531. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 107.Falguera M, Sacristán O, Nogués A, Ruiz-González A, García M, Manonelles A, Rubio-Caballero M. Nonsevere community-acquired pneumonia: correlation between cause and severity or comorbidity. Arch Intern Med. 2001;161(15):1866. doi: 10.1001/archinte.161.15.1866. [DOI] [PubMed] [Google Scholar]
- 108.Falguera M, Ruiz-Gonzalez A, Schoenenberger JA, Touzon C, Gazquez I, Galindo C, Porcel JM. Prospective, randomised study to compare empirical treatment versus targeted treatment on the basis of the urine antigen results in hospitalised patients with community-acquired pneumonia. Thorax. 2010;65(2):101–06. doi: 10.1136/thx.2009.118588. [DOI] [PubMed] [Google Scholar]
- 109.Faustini A, Fabrizi E, Sangalli M, Bordi E, Cipriani P, Fiscarelli E, Perucci C. Role of laboratories in population-based surveillance of invasive diseases in Lazio, Italy, 1998–2000. Eur J Clin Microbiol Infect Dis. 2002;21(11):824–26. doi: 10.1007/s10096-002-0830-1. [DOI] [PubMed] [Google Scholar]
- 110.Fenoll A, Granizo JJ, Aguilar L, Gimenez MJ, Aragoneses-Fenoll L, Hanquet G, Casal J, Tarrago D. Temporal trends of invasive Streptococcus pneumoniae serotypes and antimicrobial resistance patterns in Spain from 1979 to 2007. J Clin Microbiol. 2009;47(4):1012–20. doi: 10.1128/JCM.01454-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 111.Fernández-Sabé N, Carratalà J, Rosón B, Dorca J, Verdaguer R, Manresa F, Gudiol F. Community-acquired pneumonia in very elderly patients: causative organisms, clinical characteristics, and outcomes. Medicine. 2003;82(3):159–69. doi: 10.1097/01.md.0000076005.64510.87. [DOI] [PubMed] [Google Scholar]
- 112.Fernández-Serrano S, Dorca J, Garcia-Vidal C, Fernández-Sabé N, Carratalà J, Fernández-Agüera A, Corominas M, Padrones S, Gudiol F, Manresa F, et al. Effect of corticosteroids on the clinical course of community-acquired pneumonia: a randomized controlled trial. Critical Care. 2011;15(2):R96. doi: 10.1186/cc10103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 113.Fernández-Serrano S, Dorca J, Coromines M, Carratalà J, Gudiol F, Manresa F. Molecular inflammatory responses measured in blood of patients with severe community-acquired pneumonia. Clin Diagn Lab Immunol. 2003;10(5):813–20. doi: 10.1128/CDLI.10.5.813-820.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 114.Fernández Guerrero ML, Ramos JM, Marrero J, Cuenca M, Fernández Roblas R, Górgolas MD. Bacteremic pneumococcal infections in immunocompromised patients without AIDS: the impact of β-lactam resistance on mortality. Int J Infect Dis. 2003;7(1):46–52. doi: 10.1016/S1201-9712(03)90042-7. [DOI] [PubMed] [Google Scholar]
- 115.Ferré C, Llopis Roca F, Jacob J, Juan i Pastor A, Palom X, Bardés I, Salazar Soler A. Evaluación de la uitilidad de la tinción de Gram del esputo para el manejo de la neumonía en urgencias. Emergencias. 2011;23:108–11. [Google Scholar]
- 116.Nogueira Ferreira LM. Características das infecções respiratórias em idosos internados. Coimbra (Portugal): University of Coimbra; 2010. [Google Scholar]
- 117.Ferrer M, Travierso C, Cilloniz C, Gabarrus A, Ranzani OT, Polverino E, Liapikou A, Blasi F, Torres A. Severe community-acquired pneumonia: characteristics and prognostic factors in ventilated and non-ventilated patients. PLoS One. 2018;13(1):e0191721. doi: 10.1371/journal.pone.0191721. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 118.Ferrer M, Sequeira T, Cilloniz C, Dominedo C, Bassi GL, Martin-Loeches I. Ventilator-associated pneumonia and PAO2/FIO2 diagnostic accuracy: changing the paradigm? J Clin Med. 2019;8(8):1217. doi: 10.3390/jcm8081217. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 119.Fiasca F, Necozione S, Mattei A. Analisi epidemiologica delle ospedalizzazioni per meningite batterica in Italia (anni 2006–2015). Società Italiana di Igiene e medicina preventiva; 2017. [accessed 2020 Aug 27]. https://ricerca.univaq.it/handle/11697/121676#.Xsai6BNKg1I.
- 120.Franco Moreno AI, Casallo Blanco S, Marcos Sánchez F, Sánchez Casado M, Gil Ruiz MT, Martínez de la Casa Muñoz AM. Martínez de la Casa Muñoz AM. Estudio de las bacteriemias en el Servicio de Medicina Interna de un hospital de grupo 2: análisis de los tres últimos años. An Med Interna. 2005;22(5):217–21. doi: 10.4321/s0212-71992005000500004. [DOI] [PubMed] [Google Scholar]
- 121.Franzetti F, Grassini A, Piazza M, Degl’Innocenti M, Bandera A, Gazzola L, Marchetti G, Gori A. Nosocomial bacterial pneumonia in HIV-infected patients: risk factors for adverse outcome and implications for rational empiric antibiotic therapy. Infection. 2006;34(1):9–16. doi: 10.1007/s15010-006-5007-x. [DOI] [PubMed] [Google Scholar]
- 122.Fuentes-Antrás J, Ramírez-Torres M, Osorio-Martínez E, Lorente M, Lorenzo-Almorós A, Lorenzo O, Górgolas M. Acute community-acquired bacterial meningitis: update on clinical presentation and prognostic factors. New Microbiol. 2019;41:81–87. [PubMed] [Google Scholar]
- 123.Gagliotti C, Morsillo F, Moro ML, Masiero L, Procaccio F, Vespasiano F, Pantosti A, Monaco M, Errico G, Ricci A, et al. Infections in liver and lung transplant recipients: a national prospective cohort. Eur J Clin Microbiol Infect Dis. 2018;37(3):399–407. doi: 10.1007/s10096-018-3183-0. [DOI] [PubMed] [Google Scholar]
- 124.Garau J, Baquero F, Pérez-Trallero E, Pérez JL, Martín-Sánchez AM, García-Rey C, Martín-Herrero JE, Dal-Ré R. Factors impacting on length of stay and mortality of community-acquired pneumonia. Clin Microbiol Infect. 2008;14(4):322–29. doi: 10.1111/j.1469-0691.2007.01915.x. [DOI] [PubMed] [Google Scholar]
- 125.García López FA. Neumonía asociada a ventilación mecánica: papel de la aspiración de las secreciones subglóticas en su prevención e identificación de factores de riesgo. Madrid (Spain): Autonomous University of Madrid; 2011. [Google Scholar]
- 126.García Ordóñez MA, Moya Benedicto R, López González JJ, Colmenero Castillo JD. Bacteriemia neumocócica en el adulto en un hospital de tercer nivel. An Med Interna. 2003;20:11. [PubMed] [Google Scholar]
- 127.García Vidal C. Optimización del manejo de la neumonía adquirida en la comunidad. Barcelona (Spain): University of Barcelona; 2009. [Google Scholar]
- 128.Garcia-Vidal C, Calbo E, Pascual V, Ferrer C, Quintana S, Garau J. Effects of systemic steroids in patients with severe community-acquired pneumonia. Eur Respir J. 2007;30(5):951–56. doi: 10.1183/09031936.00027607. [DOI] [PubMed] [Google Scholar]
- 129.Garcia-Vidal C, Carratalà J, Fernández-Sabé N, Dorca J, Verdaguer R, Manresa F, Gudiol F. Aetiology of, and risk factors for, recurrent community-acquired pneumonia. Clin Microbiol Infect. 2009;15(11):1033–38. doi: 10.1111/j.1469-0691.2009.02918.x. [DOI] [PubMed] [Google Scholar]
- 130.Garcia-Vidal C, Ardanuy C, Gudiol C, Cuervo G, Calatayud L, Bodro M, Duarte R, Fernández-Sevilla A, Antonio M, Liñares J, et al. Clinical and microbiological epidemiology of Streptococcus pneumoniae bacteremia in cancer patients. J Infect. 2012;65(6):521–27. doi: 10.1016/j.jinf.2012.08.015. [DOI] [PubMed] [Google Scholar]
- 131.Gattarello S, Lagunes L, Vidaur L, Solé-Violán J, Zaragoza R, Vallés J, Torres A, Sierra R, Sebastian R, Rello J, et al. Improvement of antibiotic therapy and ICU survival in severe non-pneumococcal community-acquired pneumonia: a matched case–control study. Critical Care. 2015;19(1):335. doi: 10.1186/s13054-015-1051-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 132.Giannella M. Estudio de neumonía en Medicina Interna en españa. Madrid (Spain): Complutense University of Madrid; 2012. [Google Scholar]
- 133.Giannella M, Pinilla B, Capdevila JA, Alarcón JM, Muñoz P, Álvarez JL, Bouza E. Pneumonia treated in the internal medicine department: focus on healthcare-associated pneumonia. Clin Microbiol Infect. 2012;18(8):786–94. doi: 10.1111/j.1469-0691.2011.03757.x. [DOI] [PubMed] [Google Scholar]
- 134.Gil-Prieto R, García-García L, Álvaro-Meca A, Méndez C, García A, Gil de Miguel Á. The burden of hospitalisations for community-acquired pneumonia (CAP) and pneumococcal pneumonia in adults in Spain (2003–2007). Vaccine. 2011;29(3):412–16. doi: 10.1016/j.vaccine.2010.11.025. [DOI] [PubMed] [Google Scholar]
- 135.Ginesu F, Pirina P, Deiola G, Ostera S, Mele S, Fois AG. Etiology and therapy of community-acquired pneumonia. J Chemother. 1997;9(4):285–92. doi: 10.1179/joc.1997.9.4.285. [DOI] [PubMed] [Google Scholar]
- 136.Gómez J, Baños V, Gómez JR, Herrero F, Núñez ML, Canteras M, Valdés M. Clinical significance of pneumococcal bacteraemias in a general hospital: a prospective study 1989–1993. J Antimicrob Chemother. 1995;36(6):1021–30. doi: 10.1093/jac/36.6.1021. [DOI] [PubMed] [Google Scholar]
- 137.Gómez J, Baños V, Gómez JR, Soto MC, Muñoz L, Nuñez ML, Canteras M, Valdés M. Prospective study of epidemiology and prognostic factors in community-acquired pneumonia. Eur J Clin Microbiol Infect Dis. 1996;15(7):556–60. doi: 10.1007/BF01709363. [DOI] [PubMed] [Google Scholar]
- 138.Gómez CG. Estudio descriptivo y análisis de los factores pronósticos de las bacteriemias en el Hospital José María Morales Meseguer (Murcia). Murcia (Spain): University of Murcia; 2012. [Google Scholar]
- 139.Gómez-Junyent J, Garcia-Vidal C, Viasus D, Millat-Martínez P, Simonetti A, Santos MS, Ardanuy C, Dorca J, Carratalà J. Clinical features, etiology and outcomes of community-acquired pneumonia in patients with chronic obstructive pulmonary disease. PLoS One. 2014;9(8):e105854. doi: 10.1371/journal.pone.0105854. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 140.González-Díaz A, Càmara J, Ercibengoa M, Cercenado E, Larrosa N, Quesada MD, Fontanals D, Cubero M, Marimón JM, Yuste J, et al. Emerging non-13-valent pneumococcal conjugate vaccine (PCV13) serotypes causing adult invasive pneumococcal disease in the late-PCV13 period in Spain. Clin Microbiol Infect. 2020;26(6):753–59. doi: 10.1016/j.cmi.2019.10.034. [DOI] [PubMed] [Google Scholar]
- 141.González-Echavarri C, Capdevila O, Espinosa G, Suárez S, Marín-Ballvé A, González-León R, Rodríguez-Carballeira M, Fonseca-Aizpuru E, Pinilla B, Pallarés L, et al. Infections in newly diagnosed Spanish patients with systemic lupus erythematosus: data from the RELES cohort. Lupus. 2018;27(14):2253–61. doi: 10.1177/0961203318811598. [DOI] [PubMed] [Google Scholar]
- 142.Gordo-Remartínez S, Calderón-Moreno M, Fernández-Herranz J, Castuera-Gil A, Gallego-Alonso-Colmenares M, Puertas-López C, Nuevo-González JA, Sánchez-Sendín D, García-Gámiz M, Sevillano-Fernández JA, et al. Usefulness of midregional proadrenomedullin to predict poor outcome in patients with community acquired pneumonia. PLoS One. 2015;10(6):e0125212. doi: 10.1371/journal.pone.0125212. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 143.Grau I, Ardanuy C, Liñares J, Podzamczer D, Schulze M, Pallares R. Trends in mortality and antibiotic resistance among HIV-infected patients with invasive pneumococcal disease. HIV Med. 2009;10(8):488–95. doi: 10.1111/j.1468-1293.2009.00717.x. [DOI] [PubMed] [Google Scholar]
- 144.Grau I, Ardanuy C, Calatayud L, Rolo D, Domenech A, Liñares J, Pallares R. Invasive pneumococcal disease in healthy adults: increase of empyema associated with the clonal-type Sweden1-ST306. PLoS One. 2012;7(8):e42595. doi: 10.1371/journal.pone.0042595. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 145.Guevara M, Barricarte A, Gil-Setas A, García-Irure JJ, Beristain X, Torroba L, Petit A, Polo Vigas ME, Aguinaga A, Castilla J, et al. Changing epidemiology of invasive pneumococcal disease following increased coverage with the heptavalent conjugate vaccine in Navarre, Spain. Clin Microbiol Infect. 2009;15(11):1013–19. doi: 10.1111/j.1469-0691.2009.02904.x. [DOI] [PubMed] [Google Scholar]
- 146.Guevara M, Ezpeleta C, Gil-Setas A, Torroba L, Beristain X, Aguinaga A, García-Irure JJ, Navascués A, García-Cenoz M, Castilla J, et al. Reduced incidence of invasive pneumococcal disease after introduction of the 13-valent conjugate vaccine in Navarre, Spain, 2001–2013. Vaccine. 2014;32(22):2553–62. doi: 10.1016/j.vaccine.2014.03.054. [DOI] [PubMed] [Google Scholar]
- 147.Guglielmo L, Leone R. Aetiology and therapy of community-acquired pneumonia: a hospital study in northern Italy. Eur J Clin Pharmacol. 1997;51(6):437–43. doi: 10.1007/s002280050227. [DOI] [PubMed] [Google Scholar]
- 148.Gutiérrez F, Masiá M, Rodríguez JC, Mirete C, Soldán B, Padilla S, Hernández I, Ory FD, Royo G, Hidalgo AM, et al. Epidemiology of community-acquired pneumonia in adult patients at the dawn of the 21st century: a prospective study on the Mediterranean coast of Spain. Clin Microbiol Infect. 2005;11(10):788–800. doi: 10.1111/j.1469-0691.2005.01226.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 149.Gutiérrez F, Masiá M, Mirete C, Soldán B, Carlos Rodríguez J, Padilla S, Hernández I, Royo G, Martin-Hidalgo A. The influence of age and gender on the population-based incidence of community-acquired pneumonia caused by different microbial pathogens. J Infect. 2006;53(3):166–74. doi: 10.1016/j.jinf.2005.11.006. [DOI] [PubMed] [Google Scholar]
- 150.Gutiérrez Rodríguez MÁ, Ordobás Gavín M, Ramírez Fernández R, García Comas L, García Fernández C, Rodero Garduño I. Incidencia de enfermedad neumocócica en la Comunidad de Madrid en el período 1998–2006. Med Clin (Barc). 2008;130(2):51–53. doi: 10.1157/13115027. [DOI] [PubMed] [Google Scholar]
- 151.Guzmán Avalos JA. Epidemiología de la infección neumocócica en la población de Tarragona 2002–2009 incidencia, factores de riesgo asociados, distribución de serotipos e impacto de la vacunación. Barcelona (Spain): Autonomous University of Barcelona; 2014. [Google Scholar]
- 152.Hanquet G, Krizova P, Valentiner-Branth P, Ladhani SN, Nuorti JP, Lepoutre A, Mereckiene J, Knol M, Winje BA, Ciruela P, et al. Effect of childhood pneumococcal conjugate vaccination on invasive disease in older adults of 10 European countries: implications for adult vaccination. Thorax. 2019;74(5):473–82. doi: 10.1136/thoraxjnl-2018-211767. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 153.Herrera Lara S. Estacionalidad de la neumonía adquirida en la comunidad (NAC) y su influencia con el clima. Barcelona (Spain): Autonomous University of Barcelona; 2012. [Google Scholar]
- 154.Herrera-Lara S, Fernández-Fabrellas E, Cervera-Juan Á, Blanquer-Olivas R. ¿Influyen la estación y el clima en la etiología de la neumonía adquirida en la comunidad? Arch Bronconeumol. 2013;49(4):140–45. doi: 10.1016/j.arbres.2012.11.001. [DOI] [PubMed] [Google Scholar]
- 155.Hoyo I, Linares L, Cervera C, Almela M, Marcos MA, Sanclemente G, Cofán F, Ricart MJ, Moreno A. Epidemiology of pneumonia in kidney transplantation. Transplant Proc. 2010;42(8):2938–40. doi: 10.1016/j.transproceed.2010.07.082. [DOI] [PubMed] [Google Scholar]
- 156.Javaloyas M, Jarné J, García D, Gudiol F. Bacteriemia en pacientes dados de alta desde el servicio de urgencias. Med Clin (Barc). 2001;116(18):692–93. doi: 10.1016/S0025-7753(01)71954-9. [DOI] [PubMed] [Google Scholar]
- 157.Javaloyas M, Garcia-Somoza D, Gudiol F. Epidemiology and prognosis of bacteremia: a 10-y study in a community hospital. Scand J Infect Dis. 2002;34(6):436–41. doi: 10.1080/00365540110080629. [DOI] [PubMed] [Google Scholar]
- 158.Jiménez AJ. Mejora de la atención del paciente con neumonía adquirida en la comunidad en los servicios de urgencias hospitalarios. Madrid (Spain): Complutense University of Madrid; 2014. [Google Scholar]
- 159.Jiménez Caballero PE, Serviá Candela M. Análisis descriptivo de las meningitis por Streptococcus pneumoniae en un hospital terciario. Neurología Argentina. 2012;4(1):6–10. doi: 10.1016/j.neuarg.2011.05.003. [DOI] [Google Scholar]
- 160.Jordano Q, Falco V, Almirante B, Planes AM, del Valle O, Ribera E, Len O, Pigrau C, Pahissa A. Invasive pneumococcal disease in patients infected with HIV: still a threat in the era of highly active antiretroviral therapy. Clin Infect Dis. 2004;38(11):1623–28. doi: 10.1086/420933. [DOI] [PubMed] [Google Scholar]
- 161.Kammili N, Cherukuri N, Palvai S, Pazhni G, Ramamurthy T, Rao J, Anuradha PR. Molecular epidemiology of extended spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae in a tertiary care hospital. Indian J Med Microbiol. 2014;32(2):205. doi: 10.4103/0255-0857.129856. [DOI] [PubMed] [Google Scholar]
- 162.Kofteridis DP, Giourgouli G, Plataki MN, Andrianaki AM, Maraki S, Papadakis JA, Zacharioudaki ME, Samonis G. Community-acquired pneumonia in elderly adults with type 2 diabetes mellitus. J Am Geriatr Soc. 2016;64(3):649–51. doi: 10.1111/jgs.14011. [DOI] [PubMed] [Google Scholar]
- 163.Lacoma de la Torre A. Utilitat de la determinació sistèmica de nous biomarcadors en el maneig de les infeccions respiratòries. Barcelona (Spain): Autonomous University of Barcelona; 2011. [Google Scholar]
- 164.Latasa Zamalloa P, Sanz Moreno JC, Ordobás Gavín M, Barranco Ordoñez MD, Insúa Marisquerena E, Gil de Miguel Á, Fernández Chávez AC, García-Comas L. Evolución de la enfermedad neumocócica invasora y sus serotipos en la Comunidad de Madrid. Enferm Infecc Microbiol Clin. 2018;36(10):612–20. doi: 10.1016/j.eimc.2017.10.026. [DOI] [PubMed] [Google Scholar]
- 165.Liapikou A. Impact of guidelines for stratification of community acquired and hospital pneumonia severity and treatment. Barcelona (Spain): University of Barcelona; 2012. [Google Scholar]
- 166.Liapikou A, Polverino E, Ewig S, Cillóniz C, Marcos MA, Mensa J, Bello S, Martin-Loeches I, Menéndez R, Torres A, et al. Severity and outcomes of hospitalised community-acquired pneumonia in COPD patients. Eur Respir J. 2012;39(4):855–61. doi: 10.1183/09031936.00067111. [DOI] [PubMed] [Google Scholar]
- 167.Loinaz M, Insausti J, Bermejo B, Villanueva N, Ansotegui A, Osés I, Roldán J. Infecciones bacterianas en la enfermedad pulmonar obstructiva crónica en pacientes que requieren ingreso en la UCI. Med Intensiva. 2003;27(9):585–88. doi: 10.1016/S0210-5691(03)79968-9. [DOI] [Google Scholar]
- 168.López-de-andrés A, de Miguel-díez J, Jiménez-Trujillo I, Hernández-Barrera V, de Miguel-yanes JM, Méndez-Bailón M, Pérez-Farinós N, Salinero-Fort MÁN, Jiménez-García R. Hospitalisation with community-acquired pneumonia among patients with type 2 diabetes: an observational population-based study in Spain from 2004 to 2013. BMJ Open. 2017;7(1):e013097. doi: 10.1136/bmjopen-2016-013097. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 169.López-Palomo C, Martín-Zamorano M, Benítez E, Fernández-Gutiérrez C, Guerrero F, Rodríguez-Iglesias M, Girón-González JA. Pneumonia in HIV-infected patients in the HAART era: incidence, risk, and impact of the pneumococcal vaccination. J Med Virol. 2004;72(4):517–24. doi: 10.1002/jmv.20045. [DOI] [PubMed] [Google Scholar]
- 170.Lorente Ramos L. Eficacia de los filtros bacterianos y del cambio de tubuladuras para la prevención de la neumonía asociada a la ventilación mecánica. Tenerife, Canary Islands (Spain): University of La Laguna; 2004. [Google Scholar]
- 171.Ludwig G, Garcia-Garcia S, Lanaspa M, Ciruela P, Esteva C, Fernandez De Sevilla M, Diaz-Conradi A, Marti C, Motje M, Galles C, et al. Serotype and clonal distribution dynamics of invasive pneumococcal strains after PCV13 introduction (2011–2016): surveillance data from 23 sites in Catalonia, Spain. PLoS One. 2020;15(2):e0228612. doi: 10.1371/journal.pone.0228612. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 172.Madeddu G, Porqueddu EM, Cambosu F, Saba F, Fois AG, Pirina P, Mura MS. Bacterial community acquired pneumonia in HIV-infected inpatients in the highly active antiretroviral therapy era. Infection. 2008;36(3):231–36. doi: 10.1007/s15010-007-7162-0. [DOI] [PubMed] [Google Scholar]
- 173.Magalhães L, Valadares D, Oliveira JR, Reis E. Abcessos pulmonares: revisão de 60 casos. Rev Port Pneumol. 2009;15(2):165–78. doi: 10.1016/S0873-2159(15)30125-2. [DOI] [PubMed] [Google Scholar]
- 174.Magret Iglesias M. Bacterièmia en la pneumònia nosocomial i pneumònia associada a ventilació mecànica en pacients traumàtics: resultats de l’eu-pneumonia survey 2005. Barcelona (Spain): Autonomous University of Barcelona; 2012. [Google Scholar]
- 175.Mantero M, Aliberti S, Azzari C, Moriondo M, Nieddu F, Blasi F, Di Pasquale M. Role of Streptococcus pneumoniae infection in chronic obstructive pulmonary disease patients in Italy. Ther Adv Respir Dis. 2017;11(10):403–07. doi: 10.1177/1753465817728479. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 176.Marcos MA, Camps M, Pumarola T, Martinez JA, Martinez E, Mensa J, Garcia E, Peñarroja G, Dambrava P, Casas I, et al. The role of viruses in the aetiology of community- acquired pneumonia in adults. Antivir Ther. 2006;9. [PubMed] [Google Scholar]
- 177.Marcos M, Fernández C, Soriano À, Marco F, Martínez J, Almela M, Cervera R, Mensa J, Espinosa G. Epidemiology and clinical outcomes of bloodstream infections among lupus patients. Lupus. 2011;20(9):965–71. doi: 10.1177/0961203311403345. [DOI] [PubMed] [Google Scholar]
- 178.Marimón JM, Alonso M, Rolo D, Ardanuy C, Liñares J, Pérez-Trallero E. Molecular characterization of Streptococcus pneumoniae invasive serotype 19A isolates from adults in two Spanish regions (1994–2009). Eur J Clin Microbiol Infect Dis. 2012;31(6):1009–13. doi: 10.1007/s10096-011-1399-3. [DOI] [PubMed] [Google Scholar]
- 179.Marín M, Gudiol C, Castet F, Oliva M, Peiró I, Royo-Cebrecos C, Carratalà J, Mesia R. Bloodstream infection in patients with head and neck cancer: a major challenge in the cetuximab era. Clin Transl Oncol. 2019;21(2):187–96. doi: 10.1007/s12094-018-1905-5. [DOI] [PubMed] [Google Scholar]
- 180.Martin-Loeches I, Valles X, Menendez R, Sibila O, Montull B, Cilloniz C, Artigas A, Torres A. Predicting treatment failure in patients with community acquired pneumonia: a case-control study. Respir Res. 2014;15(1):75. doi: 10.1186/1465-9921-15-75. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 181.Martin-Loeches I, J Schultz M, Vincent J-L, Alvarez-Lerma F, Bos LD, Solé-Violán J, Torres A, Rodriguez A. Increased incidence of co-infection in critically ill patients with influenza. Intensive Care Med. 2017;43(1):48–58. doi: 10.1007/s00134-016-4578-y. [DOI] [PubMed] [Google Scholar]
- 182.Martín-Loeches I, Solé-Violán J, Rodríguez de Castro F, García-Laorden MI, Borderías L, Blanquer J, Rajas O, Briones ML, Aspa J, Herrera-Ramos E, et al. Variants at the promoter of the interleukin-6 gene are associated with severity and outcome of pneumococcal community-acquired pneumonia. Intensive Care Med. 2012;38(2):256–62. doi: 10.1007/s00134-011-2406-y. [DOI] [PubMed] [Google Scholar]
- 183.Martínez M, Buendía B, Moreno M, Agudo S, López-Brea M. Prevalence of micro-organisms responsible for ventilator associated bacterial pneumonia among patients in intensive care unit of a hospital in Madrid. Comparison with a multicentre study: P1659. Vienna (Austria): ECCMID; 2010. [Google Scholar]
- 184.Matas L, Martí C, Morera MA, Sierra M, Vilamala A, Corcoy F. Bacteremia in 13 general hospitals of the province of Barcelona. Prospective study of 1,674 episodes. Group of Microbiologists of the County Hospitals of Catalonia. Enferm Infecc Microbiol Clin. 1995;13(6):345–55. [PubMed] [Google Scholar]
- 185.Méndez R, Menéndez R, Cillóniz C, Amara-Elori I, Amaro R, González P, Posadas T, Gimeno A, España PP, Almirall J, et al. Initial inflammatory profile in community-acquired pneumonia depends on time since onset of symptoms. Am J Respir Crit Care Med. 2018;198(3):370–78. doi: 10.1164/rccm.201709-1908OC. [DOI] [PubMed] [Google Scholar]
- 186.Méndez-Lage S, Losada-Castillo I, Agulla-Budiño A. Streptococcus pneumoniae: distribución de serotipos, sensibilidad antibiótica, factores de riesgo y mortalidad en Galicia en un periodo de 2 años. Enferm Infecc Microbiol Clin. 2015;33(9):579–84. doi: 10.1016/j.eimc.2015.01.010. [DOI] [PubMed] [Google Scholar]
- 187.Menéndez R, Montull B, Reyes S, Amara-Elori I, Zalacain R, Capelastegui A, Aspa J, Borderías L, Martín-Villasclaras JJ, Bello S, et al. Pneumonia presenting with organ dysfunctions: causative microorganisms, host factors and outcome. J Infect. 2016;73(5):419–26. doi: 10.1016/j.jinf.2016.08.001. [DOI] [PubMed] [Google Scholar]
- 188.Menéndez R, España PP, Pérez-Trallero E, Uranga A, Méndez R, Cilloniz C, Marimón JM, Cifuentes I, Méndez C, Torres A, et al. The burden of PCV13 serotypes in hospitalized pneumococcal pneumonia in Spain using a novel urinary antigen detection test. CAPA study. Vaccine 2017;35(39):5264–70. doi: 10.1016/j.vaccine.2017.08.007. [DOI] [PubMed] [Google Scholar]
- 189.Milito C, Pulvirenti F, Cinetto F, Lougaris V, Soresina A, Pecoraro A, Vultaggio A, Carrabba M, Lassandro G, Plebani A, et al. Double-blind, placebo-controlled, randomized trial on low-dose azithromycin prophylaxis in patients with primary antibody deficiencies. J Allergy Clin Immunol. 2019;144(2):584–93.e7. doi: 10.1016/j.jaci.2019.01.051. [DOI] [PubMed] [Google Scholar]
- 190.Miralles C, Cervera A, Fernandez Fabrellas E, Aguar MC, Sanz Herrero F, Briones ML, Chiner E, Blanquer J, Herrera S, Climent M, et al. Clinical features and outcomes of patients with community acquired pneumonia with a positive pneumococcal urinary antigen test. American Thoracic Society International Conference; 2013; Pennsylvania: American Thoracic Society. [Google Scholar]
- 191.Monsó E, Ruiz J, Rosell A, Manterola J, Fiz J, Morera J, Ausina V. Bacterial infection in chronic obstructive pulmonary disease. A study of stable and exacerbated outpatients using the protected specimen brush. Am J Respir Crit Care Med 1995;152(4):1316–20. doi: 10.1164/ajrccm.152.4.7551388. [DOI] [PubMed] [Google Scholar]
- 192.Montagut LU. Utilidad de la proteína c reactiva en el manejo de infecciones respiratorias. LLeida (Spain): University of Lleida; 2015. [Google Scholar]
- 193.Montoiro R, Plumed E, Giner L, Carmen V, Ridruejo R. Community acute meningitis in adults in our ICU. 23rd ESICM ANNUAL CONGRESS; 201020; Barcelona, Spain. [Google Scholar]
- 194.Montull B, Menéndez R, Torres A, Reyes S, Méndez R, Zalacaín R, Capelastegui A, Rajas O, Borderías L, Martin-Villasclaras J, et al. Predictors of severe sepsis among patients hospitalized for community-acquired pneumonia. PLoS One. 2016;11(1):e0145929. doi: 10.1371/journal.pone.0145929. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 195.Moreno A, Cervera C, Gavaldá J, Rovira M, de la Cámara R, Jarque I, Montejo M, de la Torre-cisneros J, Miguel Cisneros J, Fortún J, et al. Bloodstream infections among transplant recipients: results of a nationwide surveillance in Spain. Am J Transplant. 2007;7(11):2579–86. doi: 10.1111/j.1600-6143.2007.01964.x. [DOI] [PubMed] [Google Scholar]
- 196.Muñoz P, Valerio M, Palomo J, Fernández-Yáñez J, Fernández-Cruz A, Guinea J, Bouza E. Infectious and non-infectious neurologic complications in heart transplant recipients. Medicine. 2010;89(3):166–75. doi: 10.1097/MD.0b013e3181dfa59c. [DOI] [PubMed] [Google Scholar]
- 197.Muñoz-Almagro C, Ciruela P, Esteva C, Marco F, Navarro M, Bartolome R, Sauca G, Gallés C, Morta M, Ballester F, et al. Serotypes and clones causing invasive pneumococcal disease before the use of new conjugate vaccines in Catalonia, Spain. J Infect. 2011;63(2):151–62. doi: 10.1016/j.jinf.2011.06.002. [DOI] [PubMed] [Google Scholar]
- 198.Mussini C, Galli L, Lepri AC, Luca AD, Antinori A, Castagna A. Incidence, timing, and determinants of bacterial pneumonia among HIV-infected patients: data from the ICONA Foundation Cohort. J Acquir Immune Defic Syndr. 2013;63(3):7. [DOI] [PubMed] [Google Scholar]
- 199.Muxella EH, Galindo NS, Leal MS. Estudio prospectivo caso control de los factores de riesgo y pronósticos de la neumonía nosocomial en los enfermos no ventilados. Barcelona (Spain): Autonomous University of Barcelona; 2010. [Google Scholar]
- 200.Neocleou CH, Gerogianni I, Liakopoulos A, Gourgoulianis K, Petinaki E. Bacterial aetiology of community-acquired pneumonia in hospitalised patients with chronic obstructive pulmonary disease in central Greece. Br J Biomed Sci. 2014;71(1):46–47. doi: 10.1080/09674845.2014.11978268. [DOI] [PubMed] [Google Scholar]
- 201.Ochoa-Gondar O, Vila-Corcoles A. Incidence of invasive pneumococcal disease among elderly people in Southern Catalonia, Spain, 2002–2009: an increase in serotypes not contained in the heptavalent conjugate vaccine. J Infect. 2011;63(6):434–40. doi: 10.1016/j.jinf.2011.08.013. [DOI] [PubMed] [Google Scholar]
- 202.Ochoa-Gondar O, Vila-Corcoles A, Rodriguez-Blanco T, Gomez-Bertomeu F, Figuerola-Massana E, Raga-Luria X, Hospital-Guardiola I. Effectiveness of the 23-valent pneumococcal polysaccharide vaccine against community-acquired pneumonia in the general population aged ≥60 years: 3 years of follow-up in the CAPAMIS study. Clin Infect Dis. 2014;58(7):909–17. doi: 10.1093/cid/ciu002. [DOI] [PubMed] [Google Scholar]
- 203.Olivas EG. Utilidad de la definición de neumonía asociada a los cuidados sanitarios, los criterios de Shorr y los criterios de Aliberti, para predecir la presencia de gérmenes resistentes en la neumonía extrahospitalaria en nuestro medio. Barcelona (Spain): Autonomous University of Barcelona; 2012. [Google Scholar]
- 204.Ortega M, Almela M, Soriano A, Marco F, Martínez JA, Muñoz A, Peñarroja G, Mensa J. Bloodstream infections among human immunodeficiency virus-infected adult patients: epidemiology and risk factors for mortality. Eur J Clin Microbiol Infect Dis. 2008;27(10):969–76. doi: 10.1007/s10096-008-0531-5. [DOI] [PubMed] [Google Scholar]
- 205.Pacheco C, Silva I, Carvalho A, Antunes R. Estudo de agentes microbiológicos na patologia respiratória aguda de doentes internados num serviço de Medicina. Jornadas Iberoamericanas de Infecciologia; 2010; Porto. [Google Scholar]
- 206.Pagliano P, Caggiano C, Ascione T, Solari D, Di Flumeri G, Cavallo LM, Tortora F, Cappabianca P. Characteristics of meningitis following transsphenoidal endoscopic surgery: a case series and a systematic literature review. Infection. 2017;45(6):841–48. doi: 10.1007/s15010-017-1056-6. [DOI] [PubMed] [Google Scholar]
- 207.Pedro-Botet M, Mòdol JM, Vallès X, Romeu J, Sopena N, Giménez M, Tor J, Clotet B, Sabrià M. Changes in bloodstream infections in HIV positive patients in a university hospital in Spain (1995–1997). Int J Infect Dis. 2002;6(1):17–22. doi: 10.1016/S1201-9712(02)90130-X. [DOI] [PubMed] [Google Scholar]
- 208.Pedro-Botet ML, Burgos J, Luján M, Gimenez M, Rello J, Planes A, Fontanals D, Casas I, Mateu L, Zuluaga P, et al. Impact of the 2009 influenza A H1N1 pandemic on invasive pneumococcal disease in adults. Scand J Infect Dis. 2014;46(3):185–92. doi: 10.3109/00365548.2013.867072. [DOI] [PubMed] [Google Scholar]
- 209.Pena AD. Dynamics of Streptococcus pneumoniae in patients with chronic obstructive pulmonary disease. Barcelona: Autonomous University of Barcelona; 2013. [Google Scholar]
- 210.Pereira R, Oliveira S, Almeida A. Nursing home-acquired pneumonia presenting at the emergency department. Intern Emerg Med. 2016;11(7):999–1004. doi: 10.1007/s11739-016-1412-z. [DOI] [PubMed] [Google Scholar]
- 211.Perelló R, Miró Ò, Marcos MA, Almela M, Bragulat E, Sánchez M, Agustí C, Miro JM, Moreno A. Predicting bacteremic pneumonia in HIV-1–infected patients consulting the ED. Am J Emerg Med. 2010;28(4):454–59. doi: 10.1016/j.ajem.2009.01.024. [DOI] [PubMed] [Google Scholar]
- 212.Perelló R, Escoda O, Camón S, Miró Ò, Castañeda M, Moreno A, Marcos MÁ, Perea V, Alcolea N, Sánchez M, et al. Changes in the etiology, incidence and prognosis of acute lower respiratory track infections in human immunodeficiency virus patients. Enferm Infecc Microbiol Clin. 2015;33(4):243–47. doi: 10.1016/j.eimc.2014.06.002. [DOI] [PubMed] [Google Scholar]
- 213.Pérez PC. Utilidad de la proteína C reactiva para distinguir fracaso terapéutico de respuesta lenta en pacientes con neumonía adquirida en la comunidad. Lleida: University of Lleida; 2012. [Google Scholar]
- 214.Pérez-López J, San José Laporte A, Pardos-Gea J, Tapia Melenchón E, Lozano Ortín E, Barrio Guirado A, Vilardell Tarrés M. Safety and efficacy of home intravenous antimicrobial infusion therapy in older patients: a comparative study with younger patients: intravenous antimicrobial infusion therapy. Int J Clin Pract. 2008;62(8):1188–92. doi: 10.1111/j.1742-1241.2008.01747.x. [DOI] [PubMed] [Google Scholar]
- 215.Pérez-Trallero E, Marimon JM, Ercibengoa M, Vicente D, Pérez-Yarza EG. Invasive Streptococcus pneumoniae infections in children and older adults in the north of Spain before and after the introduction of the heptavalent pneumococcal conjugate vaccine. Eur J Clin Microbiol Infect Dis. 2009;28(7):731–38. doi: 10.1007/s10096-008-0693-1. [DOI] [PubMed] [Google Scholar]
- 216.Pezzotti P, Bellino S, Riccardo F, Lucaroni F, Cerquetti M, Pantosti A, Rezza G, Stefanelli P. Vaccine preventable invasive bacterial diseases in Italy: a comparison between the national surveillance system and recorded hospitalizations, 2007–2016. Vaccine. 2019;37(1):41–48. doi: 10.1016/j.vaccine.2018.11.047. [DOI] [PubMed] [Google Scholar]
- 217.Poblet-Mas N, DelaTorre M, Calvera J, Garcia-Gil J. Improvement of Legionella pneumophilaearly diagnostics in severe community-acquired pneumonia patients admitted to an intensive care unit: P1823. Vienna (Austria): ECCMID; 2010. [Google Scholar]
- 218.Polverino E, Dambrava P, Cilloniz C, Balasso V, Marcos MA, Esquinas C, Mensa J, Ewig S, Torres A. Nursing home-acquired pneumonia: a 10 year single-centre experience. Thorax. 2010;65(4):354–59. doi: 10.1136/thx.2009.124776. [DOI] [PubMed] [Google Scholar]
- 219.Polverino E, Torres A, Menendez R, Cillóniz C, Valles JM, Capelastegui A, Marcos MA, Alfageme I, Zalacain R, Almirall J, et al. Microbial aetiology of healthcare associated pneumonia in Spain: a prospective, multicentre, case–control study. Thorax. 2013;68(11):1007–14. doi: 10.1136/thoraxjnl-2013-203828. [DOI] [PubMed] [Google Scholar]
- 220.Polverino E, Cilloniz C, Menendez R, Gabarrus A, Rosales-Mayor E, Alcaraz V, Terraneo S, Puig de la Bella Casa J, Mensa J, Ferrer M, et al. Microbiology and outcomes of community acquired pneumonia in non cystic-fibrosis bronchiectasis patients. J Infect. 2015;71(1):28–36. doi: 10.1016/j.jinf.2015.03.009. [DOI] [PubMed] [Google Scholar]
- 221.Prato R, Fortunato F, Cappelli MG, Chironna M, Martinelli D. Effectiveness of the 13-valent pneumococcal conjugate vaccine against adult pneumonia in Italy: a case–control study in a 2-year prospective cohort. BMJ Open. 2018;8(3):e019034. doi: 10.1136/bmjopen-2017-019034. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 222.Quesada Sanz AA. Estudio microbiológico de los aislamientos bacterianos obtenidos en hemocultivos procedentes del Servicio de Urgencias de medicina, de un hospital de tercer nivel en Santa Cruz de Tenerife: caracterización y sensibilidad antibiótica. Granada: University of Granada; 2010. [Google Scholar]
- 223.Ranieri R, Veronelli A, Santambrogio C, Pontiroli AE. Impact of influenza vaccine on response to vaccination with pneumococcal vaccine in HIV patients. AIDS Res Hum Retroviruses. 2005;21(5):407–09. doi: 10.1089/aid.2005.21.407. [DOI] [PubMed] [Google Scholar]
- 224.Rato SMDS. Exacerbações infecciosas na doença pulmonar obstrutiva crónica: realidade do Centro Hospitalar da Cova da Beira em 2007. Beira: University of Beira Interior; 2008. [Google Scholar]
- 225.Rello J, Rodriguez R, Jubert P, Alvarez B. Study group for severe community-acquired P. Severe community-acquired pneumonia in the elderly: epidemiology and prognosis. Clin Infect Dis. 1996;23(4):723–28. doi: 10.1093/clinids/23.4.723. [DOI] [PubMed] [Google Scholar]
- 226.Rello J, Rodríguez A, Ibañez P, Socias L, Cebrian J, Marques A, Guerrero J, Ruiz-Santana S, Marquez E, Del Nogal-Saez F, et al. Intensive care adult patients with severe respiratory failure caused by Influenza A (H1N1)v in Spain. Critical Care. 2009;13(5):R148. doi: 10.1186/cc8044. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 227.Retamar P, López-Prieto MD, Nátera C, de Cueto M, Nuño E, Herrero M, Fernández-Sánchez F, Muñoz A, Téllez F, Becerril B, et al. Reappraisal of the outcome of healthcare-associated and community-acquired bacteramia: a prospective cohort study. BMC Infect Dis. 2013;13(1):344. doi: 10.1186/1471-2334-13-344. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 228.Reyes S, Montull B, Martínez R, Córdoba J, Molina JM, Martí V, Martínez A, Ramírez P, Menéndez R. Risk factors of A/H1N1 etiology in pneumonia and its impact on mortality. Respir Med. 2011;105(9):1404–11. doi: 10.1016/j.rmed.2011.04.011. [DOI] [PubMed] [Google Scholar]
- 229.Ricciardi L, Meini M, Luchi S, Scasso A, Corbisiero R, Mencarelli M, Cellesi C, Aquilini D, Carbonai S, Paladini A, et al. Le meningiti batteriche dell’adulto: studio retrospettivo multicentrico della Toscana. Infez Med. 2006;14(2):77–84. [PubMed] [Google Scholar]
- 230.Rivero-Calle I, Pardo Seco J, Raguindin PF, Alvez F, Gómez-Rial J, Salas A, Martinón Sanchez J, Martinón-Torres F. Routine infant vaccination of pneumococcal conjugate vaccines has decreased pneumonia across all age groups in Northern Spain. Hum Vaccin Immunother. 2019;1–8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 231.Rodríguez MAG, González AV, Gavín MAO, Martínez FM, Marín NG, Blázquez BR, Moreno JCS. Invasive pneumococcal disease: association between serotype, clinical presentation and lethality. Vaccine. 2011;29(34):5740–46. doi: 10.1016/j.vaccine.2011.05.099. [DOI] [PubMed] [Google Scholar]
- 232.Rodríguez PJM. Estudio de los efectos, causas y consecuencias a nivel intrahospitalario de la infección pulmonar de bajo riesgo. Coruña: University of Coruña; 2015. [Google Scholar]
- 233.Rosón B, Carratalà J, Tubau F, Dorca J, Liñares J, Pallares R, Manresa F, Gudiol F. Usefulness of betalactam therapy for community-acquired pneumonia in the era of drug-resistant Streptococcus pneumoniae: a randomized study of amoxicillin-clavulanate and ceftriaxone. Microb Drug Resist. 2001;7(1):85–96. doi: 10.1089/107662901750152864. [DOI] [PubMed] [Google Scholar]
- 234.Giorgi Rossi P, Agabiti N, Faustini A, Ancona C, Tancioni V, Forastiere F, Perucci CA. The burden of hospitalised pneumonia in Lazio, Italy, 1997–1999. Int J Tuberc Lung Dis. 2004;8(5):528–36. [PubMed] [Google Scholar]
- 235.Royo-Cebrecos C, Gudiol C, Ardanuy C, Pomares H, Calvo M, Carratalà J, Galdiero M. A fresh look at polymicrobial bloodstream infection in cancer patients. PLoS One. 2017;12(10):e0185768. doi: 10.1371/journal.pone.0185768. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 236.Martín Rubio AM. Neumonía comunitaria en pacientes usuarios de droga parental infectados por VIH hospitalizados. Granada: University of Granada; 2003. [Google Scholar]
- 237.Ruiz M, Ewig S, Torres A, Arancibia F, Marco F, Mensa J, Sanchez M, Martinez J. Severe community-acquired pneumonia. Risk factors and follow-up epidemiology. Am J Respir Crit Care Med. 1999;160(3):923–29. doi: 10.1164/ajrccm.160.3.9901107. [DOI] [PubMed] [Google Scholar]
- 238.Rumor LMP. Pneumonia adquirida na comunidade. Beira: University of Beira; 2009. [Google Scholar]
- 239.Saiz CM. Influencia del tratamiento antibiotico empírico inapropiado en la mortalidad de pacientes con bacteriemia. Madrid: Autonomous University of Madrid; 2017. [Google Scholar]
- 240.Salmaso S, Mastrantonio P, Scuderi G, Congiu ME, Stroffolini T, Pompa MG, Squarcione S. Pattern of bacterial meningitis in Italy, 1994. Eur J Epidemiol. 1997;13(3):317–21. doi: 10.1023/A:1007303502274. [DOI] [PubMed] [Google Scholar]
- 241.Sangil A, Xercavins M, Rodríguez-Carballeira M, Andrés M, Riera M, Espejo E, Pérez J, Garau J, Calbo E. Impact of vaccination on invasive pneumococcal disease in adults with focus on the immunosuppressed. J Infect. 2015;71(4):422–27. doi: 10.1016/j.jinf.2015.07.004. [DOI] [PubMed] [Google Scholar]
- 242.Sanguinetti CM, Benedetto FD, Miragliotta G. Bacterial agents of lower respiratory tract infections (LRTIs), b-lactamase production, and resistance to antibiotics in elderly people. Int J Antimicrob Agents. 2000;16(4):467–71. doi: 10.1016/S0924-8579(00)00277-6. [DOI] [PubMed] [Google Scholar]
- 243.Sanguinetti CM, Donner CF, De Benedetto F, Nicoletti G, Scatigna M, Schito GC. An investigation of the etiology of community-acquired lower respiratory tract infections (LRTI) and resistance to antibiotics in Italy (the EOLO Study). Monaldi Arch Chest Dis. 2002;57(2):105–06. [PubMed] [Google Scholar]
- 244.Santos ED. Factores de riesgo de neumonia en las primeras 48 horas en pacientes en ventilación mecánica. Barcelona: Autonomous University of Barcelona; 2003. [Google Scholar]
- 245.Santos LC, Simões J, Severo M, Vazquez J, Lecour H. Bacterial meningitis in an urban area: etiologic study and prognostic factors. Infection. 2007;35(6):406–13. doi: 10.1007/s15010-007-7035-6. [DOI] [PubMed] [Google Scholar]
- 246.Santos de Unamuno C, Llorente San Martín MA, Carandell Jäger E, Gutiérrez García M, Riera Jaume M, Ramírez Rosales A, Pareja Bezares A, Corrales Nadal A. Site of care provision, etiology and treatment of community-acquired pneumonia in Palma de Mallorca. Med Clin (Barc). 1998;110(8):290–94. [PubMed] [Google Scholar]
- 247.Sanz F, Restrepo MI, Fernández-Fabrellas E, Cervera Á, Briones ML, Novella L, Aguar MC, Chiner E, Fernandez JF, Blanquer J, et al. Does prolonged onset of symptoms have a prognostic significance in community-acquired pneumonia?: prolonged symptoms onset in pneumonia. Respirology. 2014;19(7):1073–79. doi: 10.1111/resp.12346. [DOI] [PubMed] [Google Scholar]
- 248.Sibila O, Laserna E, Mortensen EM, Anzueto A, Restrepo MI. Effects of inhaled corticosteroids on pneumonia severity and antimicrobial resistance. Respir Care. 2013;58(9):1489–94. doi: 10.4187/respcare.02191. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 249.Sicras-Mainar A, Ibáñez-Nolla J, Cifuentes I, Guijarro P, Navarro-Artieda R, Aguilar L. Retrospective epidemiological study for the characterization of community- acquired pneumonia and pneumococcal pneumonia in adults in a well-defined area of Badalona (Barcelona, Spain). BMC Infect Dis. 2012;12(1):283. doi: 10.1186/1471-2334-12-283. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 250.Simonetti A, Viasus D, Garcia-Vidal C, Adamuz J, Roset A, Manresa F, Dorca J, Gudiol F, Carratalà J. Timing of antibiotic administration and outcomes of hospitalized patients with community-acquired and healthcare-associated pneumonia. Clin Microbiol Infect. 2012;18(11):1149–55. doi: 10.1111/j.1469-0691.2011.03709.x. [DOI] [PubMed] [Google Scholar]
- 251.Simonetti AF, Viasus D, Garcia-Vidal C, Grillo S, Molero L, Dorca J, Carratalà J. Impact of pre-hospital antibiotic use on community-acquired pneumonia. Clin Microbiol Infect. 2014;20(9):O531–O7. doi: 10.1111/1469-0691.12524. [DOI] [PubMed] [Google Scholar]
- 252.Simonetti AF, Garcia-Vidal C, Viasus D, García-Somoza D, Dorca J, Gudiol F, Carratalà J. Declining mortality among hospitalized patients with community-acquired pneumonia. Clin Microbiol Infect. 2016;22(6):567.e1–e7. doi: 10.1016/j.cmi.2016.03.015. [DOI] [PubMed] [Google Scholar]
- 253.Siquier B, Sánchez-Alvarez J, García-Mendez E, Sabriá M, Santos J, Pallarés R, Twynholm M, Dal-Ré R. Efficacy and safety of twice-daily pharmacokinetically enhanced amoxicillin/clavulanate (2000/125 mg) in the treatment of adults with community-acquired pneumonia in a country with a high prevalence of penicillin-resistant Streptococcus pneumoniae. J Antimicrob Chemother. 2006;57(3):536–45. doi: 10.1093/jac/dki480. [DOI] [PubMed] [Google Scholar]
- 254.Sirvent JM, Torres A, Vidaur L, Armengol J, de Batlle J, Bonet A. Tracheal colonisation within 24 h of intubation in patients with head trauma: risk factor for developing early-onset ventilator-associated pneumonia. Intensive Care Med. 2000;26(9):1369–72. doi: 10.1007/s001340000611. [DOI] [PubMed] [Google Scholar]
- 255.Soares Z, Mateus D, Macedo F, Valente L, Pereira EJG. Infeções associadas a cuidados de saúde e resistência aos antibióticos - Estudo piloto. Infecção Sepsis. 2015;2:8–12. [Google Scholar]
- 256.Sopena N, Pedro-Botet ML, Sabrià M, García-Parés D, Reynaga E, García-Nuñez M. Comparative study of community-acquired pneumonia caused by Streptococcus pneumoniae, Legionella pneumophila or Chlamydia pneumoniae. Scand J Infect Dis. 2004;36(5):330–34. doi: 10.1080/00365540410020091. [DOI] [PubMed] [Google Scholar]
- 257.Sopena N, Sabrià M. Multicenter study of hospital-acquired pneumonia in non-ICU patients. Chest. 2005;127(1):213–19. doi: 10.1378/chest.127.1.213. [DOI] [PubMed] [Google Scholar]
- 258.Sousa D, Justo I, Domínguez A, Manzur A, Izquierdo C, Ruiz L, Nebot M, Bayas J-M, Celorrio J-M, Varona W, et al. Community-acquired pneumonia in immunocompromised older patients: incidence, causative organisms and outcome. Clin Microbiol Infect. 2013;19(2):187–92. doi: 10.1111/j.1469-0691.2012.03765.x. [DOI] [PubMed] [Google Scholar]
- 259.Straneo G, Scarpazza G. Efficacy and safety of clarithromycin versus josamycin in the treatment of hospitalized patients with bacterial pneumonia. J Int Med Res. 1990;18(2):164–70. doi: 10.1177/030006059001800211. [DOI] [PubMed] [Google Scholar]
- 260.Tazón-Varela MA, Alonso-Valle H, Muñoz-Cacho P, Gallo-Terán J, Piris-García X, Pérez-Mier LA. Aumento de microorganismos no habituales en la neumonía adquirida en la comunidad. Semergen. 2017;43(6):437–44. doi: 10.1016/j.semerg.2016.07.003. [DOI] [PubMed] [Google Scholar]
- 261.Teira R, Muñoz J, Zubero Z, Rojo P, Cisterna R, Santamaría JM. Epidemiologic characteristics of pneumococcal bacteremia in the era of AIDS. Enferm Infecc Microbiol Clin. 1992;10(3):138–42. [PubMed] [Google Scholar]
- 262.Terradas Robledo M. Estudios de diferentes aspectos clínicos, epidemiológicos y de prevención de las bacteriemias. Barcelona: Autonomous University of Barcelona; 2014. [Google Scholar]
- 263.Torres A, Dorca J, Zalacaín R, Bello S, El-Ebiary M, Molinos L, Arévalo M, Blanquer J, Celis R, Iriberri M, et al. Community-acquired pneumonia in chronic obstructive pulmonary disease: a Spanish multicenter study. Am J Respir Crit Care Med. 1996;154(5):1456–61. doi: 10.1164/ajrccm.154.5.8912764. [DOI] [PubMed] [Google Scholar]
- 264.Torres A, Cillóniz C, Ferrer M, Gabarrús A, Polverino E, Villegas S, Marco F, Mensa J, Menéndez R, Niederman M, et al. Bacteraemia and antibiotic-resistant pathogens in community acquired pneumonia: risk and prognosis. Eur Respir J. 2015;45(5):1353–63. doi: 10.1183/09031936.00152514. [DOI] [PubMed] [Google Scholar]
- 265.Trancón Loureiro J. Incidencia de bacteriemia en la Gerencia de Gestión Integrada de Ferrol: tasa anual y agentes etiológicos principales. Coruña: University of Coruña; 2015. [Google Scholar]
- 266.Vallés X, Marcos A, Pinart M, Piñer R, Marco F, Mensa JM, Torres A. Hospitalized community-acquired pneumonia due to Streptococcus pneumoniae. Chest. 2006;130(3):800–06. doi: 10.1378/chest.130.3.800. [DOI] [PubMed] [Google Scholar]
- 267.Vallés J, Martin-Loeches I, Torres A, Diaz E, Seijas I, López MJ, Garro P, Castillo C, Garnacho-Montero J, Martin MDM, et al. Epidemiology, antibiotic therapy and clinical outcomes of healthcare-associated pneumonia in critically ill patients: a Spanish cohort study. Intensive Care Med. 2014;40(4):572–81. doi: 10.1007/s00134-014-3239-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 268.Vallés J, Diaz E, Martín-Loeches I, Bacelar N, Saludes P, Lema J, Gallego M, Fontanals D, Artigas A. Evolution over a 15-year period of the clinical characteristics and outcomes of critically ill patients with severe community-acquired pneumonia. Med Intensiva. 2016;40(4):238–45. doi: 10.1016/j.medin.2015.07.005. [DOI] [PubMed] [Google Scholar]
- 269.Vaqueiro Subirats M, Sampere Valero M, Font Creus B, Serrate Sanmiguel G, Fontanals Aymerich D, Segura Porta F. Bacteriemia neumocócica en pacientes mayores de 65 años. Estudio de 161 casos. Med Clin (Barc). 2001;117(7):241–45. doi: 10.1016/S0025-7753(01)72076-3. [DOI] [PubMed] [Google Scholar]
- 270.Tazón Varela M. Concentración del fragmento aminoterminal del pro-péptido natriurético cerebral en plasma como marcador biológico predictivo de mortalidad en las neumonías adquiridas en la comunidad. Santander: University of Cantabria; 2014. [Google Scholar]
- 271.Viasus D, Garcia-Vidal C, Castellote J, Adamuz J, Verdaguer R, Gudiol F, Carratalà J. Epidemiology, clinicalfeatures, and outcomes of community- acquired pneumonia in patients with liver cirrhosis. Vienna (Austria): ECCMID; 2010. [Google Scholar]
- 272.Viasus D, Garcia-Vidal C, Cruzado JM, Adamuz J, Verdaguer R, Manresa F, Dorca J, Gudiol F, Carratala J. Epidemiology, clinical features and outcomes of pneumonia in patients with chronic kidney disease. Nephrol Dial Transplant. 2011;26(9):2899–906. doi: 10.1093/ndt/gfq798. [DOI] [PubMed] [Google Scholar]
- 273.Viasus D, Marinescu C, Villoslada A, Cordero E, Gálvez-Acebal J, Fariñas MC, Gracia-Ahufinger I, Fernández-Navarro A, Niubó J, Ortega L, et al. Community-acquired pneumonia during the first post-pandemic influenza season: a prospective, multicentre cohort study. J Infect. 2013;67(3):185–93. doi: 10.1016/j.jinf.2013.05.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 274.Vidal A, Santos L. Comorbidities impact on the prognosis of severe acute community-acquired pneumonia. Porto Biomed J. 2017;2(6):265–72. doi: 10.1016/j.pbj.2017.04.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 275.Vila Córcoles Á, Moreira CD, Cabanes C, Ochoa O, Gutiérrez MR, Bertomeu FG, Raga Luria X, Figuerola Massana E. Epidemiología de la enfermedad neumocócica invasiva en la región de Tarragona, 2012–2015: Incidencia, letalidad y cobertura de serotipos para las distintas formulaciones vacunales antineumocócicas. Rev Esp Salud Pública. 2018;92:e201810073. [PMC free article] [PubMed] [Google Scholar]
- 276.Vila-Corcoles A, Ochoa-Gondar O, Rodriguez-Blanco T, Raga-Luria X, Gomez-Bertomeu F. Epidemiology of community-acquired pneumonia in older adults: a population-based study. Respir Med. 2009;103(2):309–16. doi: 10.1016/j.rmed.2008.08.006. [DOI] [PubMed] [Google Scholar]
- 277.Vila-Corcoles A, Ochoa-Gondar O, Gomez-Bertomeu F, Raga-Luria X. Invasive pneumococcal disease in Catalonian elderly people, 2002–2009: serotype coverage for different anti-pneumococcal vaccine formulations at the beginning of the new conjugate vaccines era. Vaccine. 2011;29(43):7430–34. doi: 10.1016/j.vaccine.2011.07.066. [DOI] [PubMed] [Google Scholar]
- 278.Vila-Corcoles A, Aguirre-Chavarria C, Ochoa-Gondar O, de Diego C, Rodriguez-Blanco T, Gomez F, Raga X, Barnes L, Magarolas R, Esteban L, et al. Influence of chronic illnesses and underlying risk conditions on the incidence of pneumococcal pneumonia in older adults. Infection. 2015;43(6):699–706. doi: 10.1007/s15010-015-0801-y. [DOI] [PubMed] [Google Scholar]
- 279.Vila-Corcoles A, Ansa X, Ochoa-Gondar O, Satue E, de Diego C, Rodriguez-Blanco T. Pneumococcal pneumonia in adults 60 years or older: incidence, mortality and prevention. Med Clin (Barc). 2016;146(5):199–202. doi: 10.1016/j.medcli.2015.09.015. [DOI] [PubMed] [Google Scholar]
- 280.Vila-Corcoles A, Ochoa-Gondar O, de Diego C, Satue E, Aragón M, Vila-Rovira A, Gomez-Bertomeu F, Magarolas R, Figuerola-Massana E, Raga X, et al. Evaluating clinical effectiveness of 13-valent pneumococcal conjugate vaccination against pneumonia among middle-aged and older adults in Catalonia: results from the EPIVAC cohort study. BMC Infect Dis. 2018;18(1):196. doi: 10.1186/s12879-018-3096-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 281.Vila-Corcoles A, Hospital I, Ochoa-Gondar O, Satue E, de Diego C, Vila-Rovira A, Gómez-Bertomeu F, Raga X, Aragón M. Clinical effectiveness of 13-valent and 23-valent pneumococcal vaccination in middle-aged and older adults: the EPIVAC cohort study, 2015–2016. Vaccine. 2020;38(5):1170–80. doi: 10.1016/j.vaccine.2019.11.012. [DOI] [PubMed] [Google Scholar]
- 282.Vila-Córcoles A, Ochoa-Gondar O, Hospital I, Ansa X, Vilanova A, Rodríguez T, Llor C. Protective effects of the 23-valent pneumococcal polysaccharide vaccine in the elderly population: the EVAN-65 study. Clin Infect Dis. 2006;43(7):860–68. doi: 10.1086/507340. [DOI] [PubMed] [Google Scholar]
- 283.Vila-Córcoles Á, Salsench-Serrano E, Ochoa-Gondar O, Aguirre-Chavarría C, Utrera-Aponte J, Guzmán-Ávalos J. Incidencia y letalidad de infecciones neumocócicas invasivas en la región de Tarragona, 2006–2009. Enferm Infecc Microbiol Clin. 2015;33(3):186–89. doi: 10.1016/j.eimc.2014.09.018. [DOI] [PubMed] [Google Scholar]
- 284.Vila-Córcoles Á, Hospital Guardiola I, Ochoa Gondar O, Vila Rovira Á, Aragón Pérez M, Satué Gracia E. Incidencia poblacional de neumonía neumocócica hospitalizada en adultos con distintos niveles de riesgo en cataluña durante 2015, estudio EPIVAC. Rev Esp Salud Pública. 2019;93:e201904025. [PubMed] [Google Scholar]
- 285.Vilaça C, Fidalgo C, Leite A, Oliveira N. Pneumonia adquirida na comunidade e pneumonia severity index 20 (PSI-20): estudo retrospectivo dos doentes internados num serviço de Medicina Interna, entre 2007 e 2008. Med Int. 2014;21:54–60. [Google Scholar]
- 286.Zalacain R, Torres A, Celis R, Blanquer J, Aspa J, Esteban L, Menéndez R, Blanquer R, Borderías L. Community-acquired pneumonia in the elderly: Spanish multicentre study. Eur Respir J. 2003;21(2):294–302. doi: 10.1183/09031936.03.00064102. [DOI] [PubMed] [Google Scholar]
- 287.Hausdorff WP, Siber G, Paradiso PR. Geographical differences in invasive pneumococcal disease rates and serotype frequency in young children. Lancet. 2001;357(9260):950–52. doi: 10.1016/S0140-6736(00)04222-7. [DOI] [PubMed] [Google Scholar]
- 288.Pallares R, Moreno G, Tubau F, Liñares J. Geographical differences for pneumococcal disease. Lancet. 2001;358(9279):419. doi: 10.1016/S0140-6736(01)05566-0. [DOI] [PubMed] [Google Scholar]
- 289.Harboe ZB, Benfield TL, Valentiner-Branth P, Hjuler T, Lambertsen L, Kaltoft M, Krogfelt K, Slotved H, Christensen J, Konradsen H, et al. Temporal trends in invasive pneumococcal disease and pneumococcal serotypes over 7 decades. Clin Infect Dis. 2010;50(3):329–37. doi: 10.1086/649872. [DOI] [PubMed] [Google Scholar]
- 290.Hanquet G, Perrocheau A, Kissling E, Bruhl DL, Tarragó D, Stuart J, Stefanoff P, Heuberger S, Kriz P, Vergison A, et al. Surveillance of invasive pneumococcal disease in 30 EU countries: towards a European system? Vaccine. 2010;28(23):3920–28. doi: 10.1016/j.vaccine.2010.03.069. [DOI] [PubMed] [Google Scholar]
- 291.Moreira M, Castro O, Palmieri M, Efklidou S, Castagna S, Hoet B. A reflection on invasive pneumococcal disease and pneumococcal conjugate vaccination coverage in children in Southern Europe (2009–2016). Hum Vaccin Immunother. 2017;13(6):1–12. doi: 10.1080/21645515.2016.1263409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 292.Istituto Superiore di Sanitá . Sorveglianza delle malattie batteriche invasive in Italia. Rapporto consolidato 2018. 2020. [accessed 2020 Sept 16]. http://old.iss.it/binary/mabi/cont/Rapporto_consolidato_2018__finale.pdf.
- 293.European Centre for Disease Prevention and Control . Surveillance Atlas of infectious diseases. Stockholm, Sweden 2020. [accessed 2020 Sept 7]. https://atlas.ecdc.europa.eu/public/index.aspx.
- 294.Torres A, Cillóniz C, Blasi F, Chalmers JD, Gaillat J, Dartois N, Schmitt H-J, Welte T. Burden of pneumococcal community-acquired pneumonia in adults across Europe: a literature review. Respir Med. 2018;137:6–13. doi: 10.1016/j.rmed.2018.02.007. [DOI] [PubMed] [Google Scholar]
- 295.Koelman DLH, Brouwer MC, van de Beek D. Resurgence of pneumococcal meningitis in Europe and Northern America. Clin Microbiol Infect. 2020;26(2):199–204. doi: 10.1016/j.cmi.2019.04.032. [DOI] [PubMed] [Google Scholar]
- 296.van der Linden M, Imöhl M, Perniciaro S, Melo-Cristino J. Limited indirect effects of an infant pneumococcal vaccination program in an aging population. PLoS One. 2019;14(8):e0220453. doi: 10.1371/journal.pone.0220453. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 297.Moore MR, Link-Gelles R, Schaffner W, Lynfield R, Lexau C, Bennett NM, Petit S, Zansky SM, Harrison LH, Reingold A, et al. Effect of use of 13-valent pneumococcal conjugate vaccine in children on invasive pneumococcal disease in children and adults in the USA: analysis of multisite, population-based surveillance. Lancet Infect Dis. 2015;15(3):301–09. doi: 10.1016/S1473-3099(14)71081-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 298.Navarro-Torné A, Méndez C. The changing epidemiology of invasive pneumococcal disease (IPD) in adults of 65 years or over. Impact of the paediatric pneumococcal vaccination programme, Spain 2010–2017. 12th International Symposium on Pneumococci and Pneumococcal Diseases, June 2020; 2020; Toronto, Canada. [Google Scholar]
- 299.Levy C, Ouldali N, Caeymaex L, Angoulvant F, Varon E, Cohen R. Diversity of serotype replacement after pneumococcal conjugate vaccine implementation in Europe. J Pediatr. 2019;213:252–3.e3. doi: 10.1016/j.jpeds.2019.07.057. [DOI] [PubMed] [Google Scholar]
- 300.Muñoz-Almagro C, Jordan I, Gene A, Latorre C, Garcia-Garcia JJ, Pallares R. Emergence of invasive pneumococcal disease caused by nonvaccine serotypes in the era of 7-valent conjugate vaccine. Clin Infect Dis. 2008;46(2):174–82. doi: 10.1086/524660. [DOI] [PubMed] [Google Scholar]
- 301.European Centre for Disease Prevention and Control . Disease factsheet about pneumococcal disease. Stockholm, Sweden. 2020. [accessed 2020 Sept 9]. https://www.ecdc.europa.eu/en/pneumococcal-disease/facts.
- 302.Drijkoningen JJC, Rohde GGU. Pneumococcal infection in adults: burden of disease. Clin Microbiol Infect. 2014;20:45–51. doi: 10.1111/1469-0691.12461. [DOI] [PubMed] [Google Scholar]
- 303.Krone CL, van de Groep K, Trzciński K, Sanders EA, Bogaert D. Immunosenescence and pneumococcal disease: an imbalance in host-pathogen interactions. Lancet Respir Med. 2014;2(2):141–53. doi: 10.1016/S2213-2600(13)70165-6. [DOI] [PubMed] [Google Scholar]
- 304.van Aalst M, Lötsch F, Spijker R, Jtm VDM, Langendam MW, Goorhuis A, Grobusch MP, de Bree GJ. Incidence of invasive pneumococcal disease in immunocompromised patients: a systematic review and meta-analysis. Travel Med Infect Dis. 2018;24:89–100. doi: 10.1016/j.tmaid.2018.05.016. [DOI] [PubMed] [Google Scholar]
- 305.van Veen KEB, Brouwer MC, van der Ende A, van de Beek D. Bacterial meningitis in patients using immunosuppressive medication: a population-based prospective nationwide study. J Neuroimmune Pharm. 2017;12(2):213–18. doi: 10.1007/s11481-016-9705-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 306.Washio Y, Ito A, Kumagai S, Ishida T, Yamazaki A. A model for predicting bacteremia in patients with community-acquired pneumococcal pneumonia: a retrospective observational study. BMC Pulm Med. 2018;18(1):24. doi: 10.1186/s12890-018-0572-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 307.Kang C-I, Song J-H, Kim SH, Chung DR, Peck KR, Thamlikitkul V, Wang H, So TMK, Hsueh P-R, Yasin RM, et al. Risk factors and pathogenic significance of bacteremic pneumonia in adult patients with community-acquired pneumococcal pneumonia. J Infect. 2013;66(1):34–40. doi: 10.1016/j.jinf.2012.08.011. [DOI] [PubMed] [Google Scholar]
- 308.Sanz-Herrero F, Gimeno-Cardona C, Tormo-Palop N, Fernández-Fabrellas E, Briones ML, Cervera-Juan Á, Blanquer-Olivas J. The potential role of 13-valent pneumococcal conjugate vaccine in preventing respiratory complications in bacteraemic pneumococcal community-acquired pneumonia. Vaccine. 2016;34(15):1847–52. doi: 10.1016/j.vaccine.2016.01.038. [DOI] [PubMed] [Google Scholar]
- 309.Hoffmann F, Eggers D, Pieper D, Zeeb H, Allers K. An observational study found large methodological heterogeneity in systematic reviews addressing prevalence and cumulative incidence. J Clin Epidemiol. 2020;119:92–99. doi: 10.1016/j.jclinepi.2019.12.003. [DOI] [PubMed] [Google Scholar]
- 310.Borges Migliavaca C, Stein C, Colpani V, Barker TH, Munn Z, Falavigna M; Prevalence Estimates Reviews - Systematic Review Methodology Group (PERSyst). How are systematic reviews of prevalence conducted? A methodological study. BMC Med Res Methodol. 2020;20(1):96. doi: 10.1186/s12874-020-00975-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.