Abstract
An exclusive approach towards the synthesis of novel 3‐(hydroxymethyl)‐2‐phenyl‐2,3 dihydroquinolin‐4(1H)‐one and it's in‐silico evaluation as inhibitor of COVID‐19 main protease. The one‐pot synthesis of an established procedure Claisen ester condensation reaction was sodium hydride mediated with intramolecular cyclization with solvent free conditions. The structures of the synthesized compound were confirmed by IR, 1H,13C NMR, and EI‐MS spectral studies. Chemo‐informatics study showed that the compound obeyed the Lipinski's rule, PASS, Swiss ADME. Computational docking analysis was performed using PyRx, AutoDock Vina option based on scoring functions. In‐silico molecular docking study results demonstrated Greater binding energy and affinity to the active pocket the N3 binding site of the Coronavirus primary protease.
Keywords: Methylantharanate, 2‐Phenylquinoline, Claisen condensation, molecular docking, RNA polymerase, protease Covid‐19
REFERENCES
- 1.Zhu N., Zhang D., Wang W., Li X., Yang B., Song J., Zhao X., Huang B., Shi W., Lu R., Niu P., Zhan F., Ma X., Wang D., Xu W., Wu G., Gao G. F., Tan W. A.. Novel coronavirus from patients with pneumonia in China, N. Engl. J. Med., 2019, 382(8),727‐733. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Wu A., Peng Y., Huang B., Ding X., X, Wang, Niu P., Meng J., Zhu Z., Zhang Z., Wang J., Sheng J., Quan L., Xia Z., Tan W., Cheng G., Jiang T.. Genome Composition and Divergence of the novel coronavirus (2019‐nCoV) originating in China, Cell Host. Microbe. ,2020, 27(3), 325‐328. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.ArcGIS. COVID‐19 Dashboard by the Centre for 2011, Systems Science and Engineering (CSSE), Johns Hopkins University (JHU), 2020.
- 4.Decaro N.. Alphacoronavirus Coronaviridae, The Springer Index of Viruses, 2011, 371‐383. [Google Scholar]
- 5.Decaro N.. Betacoronavirus Coronaviridae, The Springer Index of Viruses, 2011, 385‐401. [Google Scholar]
- 6.Hoffmann M., Kleine‐Weber H., Schroeder S., Krüger N., Herrler T., Erichsen S., Schiergens T. S., Herrler G., Wu N., Nitsche A., Müller M. A., Drosten C., Pöhlmann S.. SARS‐CoV‐2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor, Cell, 2020, 181, 271‐280. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Fehr A. R., Perlman S.. Coronaviruses: An overview of their replication and pathogenesis, Methods. Mol. Biol., 2015, 1282, 1‐23. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Reddy A. D., Suh S. B., Ghaffari R., Singh N. J., Kim D. J., Han J. H., Kim K. S.. Bioinformatics analysis of SARS proteins and molecular dynamics simulated structure of an alpha‐helix motif, Bull. Korean Chem. Soc., 2003, 24, 899‐900. [Google Scholar]
- 9.Jin Z., Du X., Xu Y., Deng Y., Liu M., Zhao Y., Zhang B., Li X., Zhang L., Peng C., Duan Y., Yu J., Wang L., Yang K., Liu K., Jiang R., Yang X., You T., Liu X., Yang X., Bai F., Liu H., Liu X., Guddat L. W., Xu W., Xiao G., Qin C., Shi Z., Jiang H., Rao Z., Yang H.. Structure of Mpro from SARS‐CoV‐2 and discovery of its inhibitors, Nature, 2020, 582, 289‐293. [DOI] [PubMed] [Google Scholar]
- 10.Wu C. H., Yeh S. H., Tsay Y. G.. Y. H. Shieh, C. L. Kao, Y. S. Chen, S. H. Wang, T. J. Kuo, D. S. Chen, P. J. Chen. Glycogen synthase kinase‐3 regulates the phosphorylation of severe acute respiratory syndrome coronavirus nucleocapsid protein and viral replication, J. Biol. Chem., 2009, 284, 5229‐5239. [DOI] [PMC free article] [PubMed]
- 11.Zhou P., Yang X., Wang X. G., Hu B., Zhang L., Zhang W., Si H. R., Zhu Y., Li B., Huang C. L., Chen H. D., Chen J., Luo Y., Guo H., Jiang R. D., Liu M. Q., Chen Y., Shen X. R., Wang X., Zheng X. S., Zhao K., Chen Q. J., Deng F., Liu L. L., Yan B., Zhan F. X., Wang Y. Y., Xiao G. F., Shi Z. L.. Discovery of a novel coronavirus associated with the recent pneumonia outbreak in humans and its potential bat origin, Nature,2020, 579, 270‐273. 10.1038/s41586-020-2012-7 [DOI] [PMC free article] [PubMed]
- 12.Marella A., Tanwar O. P., Saha R., Ali M. R., Srivastava S., Akhter M., Shaquiquzzaman M., Alam M. M.. Quinoline: A versatile heterocyclic, Saudi. Pharm. J, 2013, 21, 1‐12. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Jin X. Y., Chen H., Li D., Li A., Wang W. Y., Design N. Gu., synthesis, and anticancer evaluation of novel quinoline derivatives of ursolic acid with hydrazide, oxadiazole, and thiadiazole moieties as potent MEK inhibitors, J. Enzyme. Inhib. Med. Chem., 2019, 34, 1, 955‐972. [DOI] [PMC free article] [PubMed]
- 14.Nqoro X., Tobeka N.. B. A. Aderibigbe. Quinoline based hybrid compounds with antimalarial activity, Molecules, 2017, 22, 2268. [DOI] [PMC free article] [PubMed]
- 15.Insuasty D., Vidal O., Bernal O.. E. Marquez, J. Guzman, B. Insuasty, J. Quiroga, L. Svetaz, S. Zacchino, G. Puerto, R. Abonia. Antimicrobial activity of quinoline‐based hydroxyimidazolium hybrids, Antibiotics, 2019, 8, 239. [DOI] [PMC free article] [PubMed]
- 16.Muruganantham N., Sivakumar R., Anbalagan N., Gunasekaran V., Leonard J. T.. Synthesis, anticonvulsant and antihypertensive activities of 8‐substituted quinoline derivatives, Biol. Pharm. Bull., 2004, 27, 1683‐1687. [DOI] [PubMed] [Google Scholar]
- 17.Gupta S. K., Mishra A.. Synthesis, Characterization and screening for anti‐inflammatory and analgesic activity of quinoline derivatives bearing azetidinones scaffolds, Anti. Inflamm. Antiallergy Agents. Med. Chem., 2016, 15, 31‐43. [DOI] [PubMed] [Google Scholar]
- 18.Kumar S., Himanshu G.. Biological activities of quinoline derivatives ,Mini‐Rev. Med. Chem. ,2009, 9, 1648. [DOI] [PubMed] [Google Scholar]
- 19.Nikookar H., Mohammadi‐Khanaposhtani M., Imanparast S., Faramarzi M. A., Ranjbar P. R., Mahdavi M., Larijani B.. Design, synthesis and in vitro α‐glucosidase inhibition of novel dihydropyrano[3,2‐c]quinoline derivatives as potential anti‐diabetic agents, Bioorg. Chem., 2018, 77, 280‐286. [DOI] [PubMed] [Google Scholar]
- 20.Upadhyay A., Kushwaha P., Gupta S.Dodda R. P., Ramalingam K., Kant R., Goyal N., Sashidhara K. V.. Synthesis and evaluation of novel triazolyl quinoline derivatives as potential antileishmanial agents, Eur. J. Med. Chem., 2018, 154, 172‐181. [DOI] [PubMed] [Google Scholar]
- 21.Colson P., Rolain J. M., Raoult D.. Chloroquine for the 2019 novel coronavirus SARSCoV‐2, Int. J. Antimicrob. Agents., 2020, 55, 105923. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Cortegiani A., Ingoglia G., Ippolito M., Giarratano A., Einav S. A.. Systematic review on the efficacy and safety of chloroquine for the treatment of COVID‐19, J. Crit. Care., 2020, 57, 279‐283. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Gao J., Tian Z., Yang X.. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID‐19 associated pneumonia in clinical studies, Biosci. Trends., 2020, 14, 72‐73. [DOI] [PubMed] [Google Scholar]
- 24.Mojab F.. Antimalarial natural products: a review, Avicenna. J. Phytomed., 2012, 2, 52‐62. [PMC free article] [PubMed] [Google Scholar]
- 25.Shetty R., Ghosh A., Honavar S. G., Khamar P., Sethu S.. Therapeutic opportunities to manage COVID‐19/SARS‐CoV‐2 infection: Present and future, Indian. J. Ophthalmol., 2020, 68, 693‐702. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Jain S., Chandra V., Jain P. K., Pathak K., Pathak D., Vaidya A.. Comprehensive review on current developments of quinoline‐based anticancer agents, Arab. J. Chem., 2019, 12, 4920‐4946. [Google Scholar]
- 27.Nepolraj A., Pitchai P., Mani P.. One‐pot Synthesis of Pyrono [2,3] Quinoline via the Tandem Cyclization of Algar‐Flyn‐Oyamanda Reactions, Organic Chemistry Research, 2019, 5, 167‐173. [Google Scholar]
- 28.Mekheimer R. A., Al‐Sheikh M. A., Medrasi H. Y., Sadek K. U.. Advancements in the synthesis of fused tetracyclic quinoline derivatives, RSC. Adv., 2020, 10, 19867. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Madapa S., Tusi Z., Batra S.. Advances in the Syntheses of Quinoline and Quinoline‐Annulated Ring Systems, Curr. Org. Chem., 2008, 12, 1116‐1183. [Google Scholar]
- 30.Heindel N. D., Bechara I. S., Kennewell P. D., Molnar J., Ohnmacht C. J., Lemke S. M., Lemke T. F.. Antihypertensive 2‐amino‐4(3H)‐quinazolinones ,J. Med. Chem., 1968, 11, 1218‐1221. [DOI] [PubMed] [Google Scholar]
- 31.Poronik Y. M., Klajn J., Borzęcka W., Gryko D. T.. The Niementowski reaction of anthranilic acid with ethyl acetoacetate revisited: a new access to pyrano[3,2‐c]quinoline‐2,5‐dione, Arkivoc., 2017, 2, 7‐11. [Google Scholar]
- 32.Wu Y. C., Liu L., Li H. J.. Skraup‐Doebner‐Von Miller Quinoline Synthesis Revisited: Reversal of the Regiochemistry for γ‐Aryl‐β,γ‐unsaturated α‐Ketoesters, J. Org. Chem., 2006, 17, 6592 ‐6595. [DOI] [PubMed] [Google Scholar]
- 33.Alonso M. A., Úbeda J. I., Avendaño C., Menéndez C., Villacampa M.. New findings on the Vilsmeier‐Haack approach to quinoline derivatives ,Tetrahedron, 1993, 49, 10997‐11008. [Google Scholar]
- 34.Lv Q., Fang L., Wang P.. A simple one‐pot synthesis of quinoline‐4‐carboxylic acid derivatives by Pfitzinger reaction of isatin with ketones in water, Monatsh. Chem., 2013, 144, 391‐394. [Google Scholar]
- 35.Drwal M. N., Griffith R.. Combination of ligand‐ and structure‐based methods in virtual screening, Drug. Discov. Today. Technol., 2013, 10, 395‐401. [DOI] [PubMed] [Google Scholar]
- 36.Lesher G. Y., Froelich E. J., Gruett M. D., Bailey J. H., Brundage R. P.. 1,8‐naphthyridine derivatives. A new class of chemotherapeutic agents, J. Med. Pharm. Chem., 1962, 91, 1063‐1065. [DOI] [PubMed]
- 37.Jamkhande P. G., Pathan S. K., Wadher S. J.. In silico PASS analysis and determination of antimycobacterial, antifungal, and antioxidant efficacies of maslinic acid in an extract rich in pentacyclic triterpenoids, Int. J. Mycobacteriol., 2016, 5, 417‐25 [DOI] [PubMed] [Google Scholar]
- 38.Lipinski C. A., Lombardo F., Dominy B. W., Feeney P. J.. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Adv. Drug. Deliv. Rev., 2001, 46, 3‐26. [DOI] [PubMed] [Google Scholar]
- 39.Daina A., Michielin O.Zoete V.. Swiss ADME: a free web tool to evaluate pharmacokinetics, drug‐likeness and medicinal chemistry friendliness of small molecules, Sci. Rep., 2017, 7, 42717. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Enmozhi S. K., Raja K., Sebastine I., Joseph J.. Andrographolide as a potential inhibitor of SARS‐CoV‐2 main protease: An in‐silico approach, J. Biomol. Struct. Dyn., 2020, doi: 10.1080/07391102.2020.1760136. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41.Meng X. Y., Zhang H. X., Mezei M., Cui M.. Molecular docking: a powerful approach for structure‐based drug discovery, Curr. Comput Aid. Drug., 2011, 7, 146‐157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Forli S., Huey R., Pique M. E., Sanner M. F., Goodsell D. S., Olson A. J.. Computational protein‐ligand docking and virtual drug screening with the AutoDock suite, Nature protocols, 2016, 11, 905‐919. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43.Hassan N. M., Alhossary A. A., Mu Y.. Protein‐ligand blind docking using Quick Vina‐w with Inter‐Process spatio‐temporal Integration, Sci. Rep., 2017, 7, 15451. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.Saeed A., Ur‐Rehman S., Channar P. A.. Jack bean urease inhibitors, and antioxidant activity based on palmitic acid derived 1‐acyl‐3‐arylthioureas: Synthesis, kinetic mechanism and molecular docking studies, Drug. Res., 2017, 67, 596‐605. [DOI] [PubMed] [Google Scholar]
- 45.Saeed A., Mahesar P. A., Channar P. A.. Hybrid pharmacophoric approach in the design and synthesis of coumarin linked pyrazolinyl as urease inhibitors, kinetic mechanism and molecular docking. Chem Biodivers, Chem. Biodivers., 2017, 14, 1700035. [DOI] [PubMed]
- 46.Saeed A., Rehman S., Channar P. A.. Long chain 1‐acyl‐3‐arylthioureas as jack bean urease inhibitors, synthesis, kinetic mechanism and molecular docking studies, J. Taiwan. Inst. Chem. Eng., 2017, 77, 54‐63. [DOI] [PubMed] [Google Scholar]
- 47.Willard L., Ranjan A., Zhang H.. VADAR: a web server for quantitative evaluation of protein structure quality, Nucleic. Acids. Res., 2003, 31, 3316‐3319. doi: 10.1093/nar/gkg565. [DOI] [PMC free article] [PubMed] [Google Scholar]
