Skip to main content
Microbiology Resource Announcements logoLink to Microbiology Resource Announcements
. 2021 Sep 16;10(37):e00751-21. doi: 10.1128/MRA.00751-21

Draft Genome Sequences of Fungi Isolated from the International Space Station during the Microbial Tracking-2 Experiment

Anna C Simpson a, Camilla Urbaniak a, John R Bateh a, Nitin K Singh a, Jason M Wood a,*, Marilyne Debieu b, Niamh B O’Hara b,c, Jos Houbraken d, Christopher E Mason e,f, Kasthuri Venkateswaran a,
Editor: Vincent Brunog
PMCID: PMC8444978  PMID: 34528817

ABSTRACT

As part of the Microbial Tracking-2 study, 94 fungal strains were isolated from surfaces on the International Space Station, and whole-genome sequences were assembled. Characterization of these draft genomes will allow evaluation of microgravity adaption, risks to human health and spacecraft functioning, and biotechnological applications of fungi.

ANNOUNCEMENT

Fungi are potential sources of nutrients and bioactive compounds during long-term spaceflight but also could affect astronaut health through both opportunistic infections and system biofouling (1, 2). As part of a study characterizing fungal responses to the space environment, we report the draft genomes of 94 fungal strains that were isolated from the International Space Station (ISS), representing 10 ascomycetous and 1 basidiomycetous species.

Aspergillus species are environmental fungi and opportunistic pathogens (3). Aspergillus unguis is a member of the ISS microbiome (4) and produces industrially important compounds (5). Aureobasidium pullulans is a black fungus that was previously isolated from the ISS water filtration system (6) and Mars mission spacecraft-associated surfaces (7).

Cladosporium species are dominant fungal contaminants in indoor air (8, 9). Cladosporium sphaerospermum and Cladosporium cladosporioides were detected multiple time on the ISS, and their properties in microgravity were studied (10, 11).

Fusarium veterinarium is a recently described species within the Fusarium oxysporum complex, the species of which are ubiquitous in soil, are known human/plant pathogens (12), and were isolated both from surfaces and from infected Zinnia hybrida plants aboard the ISS (13, 14). Fusarium annulatum, which has been isolated from plant and human tissues on Earth, has not been reported previously in space (15).

Penicillium species produce important bioactive compounds and can contaminate food and cause secondary infections (16). Previously detected on the ISS or Mir (2, 11) are Penicillium citrinum, a common soil and indoor species (17), Penicillium rubens, from which penicillin was isolated (18), and Penicillium corylophilum, which is commonly found in damp buildings (19). Penicillium palitans, which has been reported in cheese (20) and also in a wide range of habitats, including Antarctica (21), has not been reported previously in space.

Rhodotorula mucilaginosa is a ubiquitous environmental (22) and human commensal yeast and opportunistic pathogen (23) that is found in aquatic and built environments, including bathrooms and dishwashers (24, 25). It is the most commonly isolated yeast on the ISS (2628).

Sample collection and fungal isolation steps were described elsewhere (26). For five flight missions, eight surfaces aboard the ISS were sampled with moistened polyester wipes (Table 1). Upon return to Earth, the wipes were agitated in sterile phosphate-buffered saline, which was concentrated using an InnovaPrep CP150 concentrating pipette, and suitable aliquots were spread onto nutrient media (Table 1). Fungal isolates were restreaked on potato-dextrose agar (PDA), and genomic DNA was extracted using the ZymoBIOMICS MagBead DNA kit according to the manufacturer’s instructions. Whole-genome shotgun sequencing libraries were prepared with an Illumina Nextera DNA Flex library preparation kit (29) and were sequenced on the NovaSeq 6000 paired-end 2 × 150-bp platform with a S4 flow cell. After quality filtering and trimming with FastQC v0.11.7 (30) and fastp v0.20.0 (31), genomes were assembled using SPAdes v3.11.1 (32). Assembly quality was assessed with QUAST v5.0.2 (33). Fastp included screening for 512 adapters; otherwise, default settings were used for all steps.

TABLE 1.

Sampling locations, genetic loci used for taxonomic analysis, and WGS assembly quality for fungal species isolated from the ISS during the Microbial Tracking-2 mission

Sample name Fungal species Loci used for identificationa WGS accession no. SRA accession no. Medium and temperatureb Flight no. Location descriptionc No. of contigs Genome size (bp) N50 (bp) Coverage depth (×) G+C content (%) No. of filtered reads
F6_8S_P_2A Aspergillus unguis benA, CaM JAGUQD000000000 SRR14342084 BA, 37°C F6 Crew quarters 22 25,891,216 2,495,528 84.28 50.30 14,548,376
F6_8S_P_4A Aspergillus unguis benA, CaM JAGUQC000000000 SRR14342083 BA, 37°C F6 Crew quarters 19 25,892,532 2,741,542 179.59 50.30 30,999,366
F7_6S_YPD Aureobasidium pullulans ITS JAGUPW000000000 SRR14342072 YPD, 25°C F7 PPM port 1 105 28,552,932 777,727 77.27 50.35 15,555,668
F7_5S_YPD Aureobasidium pullulans ITS JAGUPX000000000 SRR14342073 YPD, 25°C F7 Overhead 4 96 28,546,471 780,810 91.03 50.35 18,326,654
F7_2S_YPD Aureobasidium pullulans ITS JAGUPY000000000 SRR14342074 YPD, 25°C F7 WHC 110 28,545,478 869,212 112.63 50.35 22,675,694
F7_1S_YPD Aureobasidium pullulans ITS JAGUQA000000000 SRR14342076 YPD, 25°C F7 Cupola 103 28,553,405 847,007 148.55 50.34 29,906,446
F7_2A_YPD Aureobasidium pullulans ITS JAGUPZ000000000 SRR14342075 YPD, 25°C F7 WHC 102 28,545,383 869,723 90.19 50.35 18,158,278
F7_1A_YPD Aureobasidium pullulans ITS JAGUQB000000000 SRR14342077 YPD, 25°C F7 Cupola 99 28,555,273 793,969 102.69 50.34 20,674,178
F6_1S_B_1B Aureobasidium pullulans ITS JAGUQJ000000000 SRR14342071 R2A, 25°C F6 Cupola 162 28,763,896 746,636 72.11 50.32 14,517,038
F6_1S_P_3A Aureobasidium pullulans ITS JAGUQI000000000 SRR14342125 BA, 37°C F6 Cupola 142 28,780,047 881,182 177.55 50.32 35,744,148
F6_4S_B_1 Aureobasidium pullulans ITS JAGUQE000000000 SRR14342118 R2A, 25°C F6 Dining table 140 28,772,883 884,258 97.41 50.32 19,610,724
F6_3S_1A_F Aureobasidium pullulans ITS JAGUQH000000000 SRR14342124 PDA, 25°C F6 ARED 156 28,770,985 819,420 133.99 50.32 26,975,786
F6_3S_1B_F Aureobasidium pullulans ITS JAGUQG000000000 SRR14342123 PDA, 25°C F6 ARED 184 28,720,136 734,664 106.49 50.35 21,439,104
F6_3S_1C_F Aureobasidium pullulans ITS JAGUQF000000000 SRR14342122 PDA, 25°C F6 ARED 188 28,737,399 748,713 78.37 50.33 15,778,598
F8_5S_2F Cladosporium cladosporioides TEF JAGUPV000000000 SRR14342051 PDA, 25°C F8 Overhead 4 130 34,025,119 1,102,510 120.93 52.59 26,786,080
F8_5S_3F Cladosporium cladosporioides TEF JAGUPU000000000 SRR14342048 PDA, 25°C F8 Overhead 4 132 34,027,712 965,801 122.78 52.59 27,195,854
F8_5S_4F Cladosporium cladosporioides TEF JAGUPT000000000 SRR14342047 PDA, 25°C F8 Overhead 4 234 33,871,387 634,743 111.02 52.67 24,592,420
F4_7S_F1_F Cladosporium sphaerospermum TEF JAHARS000000000 SRR14342126 PDA, 25°C F4 Lab 3 overhead 573 30,616,838 873,859 135.80 53.05 24,348,718
F8_4S_2B Fusarium annulatum TEF, RPB2 JAHAPR000000000 SRR14342059 R2A, 25°C F8 Dining table 275 45,009,810 1,875,762 42.45d 48.32 21,486,110
F8_4S_3B Fusarium annulatum TEF, RPB2 JAHAPP000000000 SRR14342057 R2A, 25°C F8 Dining table 273 45,012,509 1,556,966 51.28d 48.32 25,765,430
F8_4S_4P Fusarium annulatum TEF, RPB2 JAHAPN000000000 SRR14342055 BA, 37°C F8 Dining table 283 45,010,147 1,599,633 40.99d 48.32 20,595,810
F8_4S_5P Fusarium annulatum TEF, RPB2 JAHAPL000000000 SRR14342053 BA, 37°C F8 Dining table 309 45,001,499 1,598,178 47.32d 48.33 23,616,132
F8_4S_1F Fusarium annulatum TEF, RPB2 JAHAPT000000000 SRR14342062 PDA, 25°C F8 Dining table 341 44,584,936 1,556,345 51.36d 48.62 25,159,054
F5_8S_1A_F Fusarium veterinarium TEF JAHARR000000000 SRR14342093 PDA, 25°C F5 Crew quarters 861 48,079,010 325,419 58.78d 47.63 31,171,132
F5_8S_1B_F Fusarium veterinarium TEF JAHARQ000000000 SRR14342082 PDA, 25°C F5 Crew quarters 925 47,312,867 276,643 44.14d 48.09 23,238,836
F4_1A_F1_F Penicillium citrinum benA, CaM JAHART000000000 SRR14342127 PDA, 25°C F4 Cupola 88 31,021,730 1,108,866 127.62 46.39 26,826,262
F5_1S_1A_F Penicillium corylophilum benA, CaM JAGUQL000000000 SRR14342115 PDA, 25°C F5 Cupola 53 28,229,796 1,725,911 104.56d 50.20 32,206,152
F5_1S_1B_F Penicillium corylophilum benA, CaM JAGUQK000000000 SRR14342104 PDA, 25°C F5 Cupola 53 28,231,333 1,604,566 80.64d 50.20 24,805,488
F6_4S_1A_F Penicillium palitans benA, CaM JAHARM000000000 SRR14342121 PDA, 25°C F6 Dining table 798 36,471,070 281,544 57.4d 47.70 23,233,174
F6_4S_1B_F Penicillium palitans benA, CaM JAHARL000000000 SRR14342120 PDA, 25°C F6 Dining table 806 36,468,364 273,565 58.94d 47.70 24,107,708
F6_4S_1C_F Penicillium palitans benA, CaM JAHARK000000000 SRR14342119 PDA, 25°C F6 Dining table 802 36,477,181 268,530 61.99d 47.70 25,189,046
F6_6S_1_F Penicillium palitans benA, CaM JAHARA000000000 SRR14342107 PDA, 25°C F6 PPM port 1 808 36,467,611 268,531 64.47d 47.70 26,242,930
F6_7S_1A_F Penicillium palitans benA, CaM JAHAQR000000000 SRR14342097 PDA, 25°C F6 Lab 3 overhead 820 36,439,435 268,531 57.88d 47.70 23,443,712
F6_7S_1C_F Penicillium palitans benA, CaM JAHAQQ000000000 SRR14342096 PDA, 25°C F6 Lab 3 overhead 794 36,471,119 303,786 69.09d 47.70 28,047,394
F6_8S_1A_F Penicillium palitans benA, CaM JAHAQI000000000 SRR14342087 PDA, 25°C F6 Crew quarters 828 36,453,009 268,529 57.59d 47.70 23,229,736
F6_8S_1C_F Penicillium palitans benA, CaM JAHAQH000000000 SRR14342086 PDA, 25°C F6 Crew quarters 850 36,588,697 255,978 57.23d 47.70 22,858,702
F8_6S-1F Penicillium palitans benA, CaM JAHAOZ000000000 SRR14342036 PDA, 25°C F8 PPM port 1 987 36,400,448 262,197 53.41d 47.80 21,366,974
F8_6S_2F Penicillium palitans benA, CaM JAHAPD000000000 SRR14342041 PDA, 25°C F8 PPM port 1 943 36,503,579 273,760 70.93d 47.76 28,334,002
F8_6S-3F Penicillium palitans benA, CaM JAHAOY000000000 SRR14342035 PDA, 25°C F8 PPM port 1 799 36,607,893 290,808 60.5d 47.69 24,779,924
F8_6S-4F Penicillium palitans benA, CaM JAHAOX000000000 SRR14342034 PDA, 25°C F8 PPM port 1 827 36,605,405 290,729 60.84d 47.69 24,966,852
F8_6S_5F Penicillium palitans benA, CaM JAHAPC000000000 SRR14342040 PDA, 25°C F8 PPM port 1 808 36,607,101 281,504 73.76d 47.70 30,172,808
F8_6S_6F Penicillium rubens benA, CaM JAHAPB000000000 SRR14342039 PDA, 25°C F8 PPM port 1 182 30,459,701 858,760 118.82 49.00 26,445,782
F8_6S_7F Penicillium rubens benA, CaM JAHAPA000000000 SRR14342037 PDA, 25°C F8 PPM port 1 469 31,558,626 716,780 112.63 48.97 25,069,320
F6_4S_B_2B Rhodotorula mucilaginosa ITS JAHARI000000000 SRR14342116 R2A, 25°C F6 Dining table 199 20,171,565 432,962 132.05 60.55 17,800,488
F6_8S_B_1B Rhodotorula mucilaginosa ITS JAHAQG000000000 SRR14342085 R2A, 25°C F6 Crew quarters 209 20,172,702 367,952 215.04 60.55 28,987,090
F6_8S_P_5A Rhodotorula mucilaginosa ITS JAHAQF000000000 SRR14342081 BA, 37°C F6 Crew quarters 199 20,077,383 389,367 212.72 59.99 28,674,716
F6_8S_P_5B Rhodotorula mucilaginosa ITS JAHAQE000000000 SRR14342080 BA, 37°C F6 Crew quarters 194 20,074,587 329,841 244.78 59.99 32,995,640
F6_8S_P_6A Rhodotorula mucilaginosa ITS JAHAQD000000000 SRR14342079 BA, 37°C F6 Crew quarters 201 20,175,089 436,573 227.88 60.55 30,717,298
F6_8S_P_6B Rhodotorula mucilaginosa ITS JAHAQC000000000 SRR14342078 BA, 37°C F6 Crew quarters 213 20,169,473 376,635 52.49 60.55 7,075,538
F8_5S_4P Rhodotorula mucilaginosa ITS JAHAPI000000000 SRR14342046 BA, 37°C F8 Overhead 4 202 20,109,607 317,098 232.29 60.53 31,313,072
F8_5S_5P Rhodotorula mucilaginosa ITS JAHAPH000000000 SRR14342045 BA, 37°C F8 Overhead 4 195 20,116,897 319,540 215.19 60.53 29,006,980
F8_5S_6P Rhodotorula mucilaginosa ITS JAHAPG000000000 SRR14342044 BA, 37°C F8 Overhead 4 190 20,123,419 354,782 251.44 60.53 33,893,490
F6_1S_P_1A Rhodotorula mucilaginosa ITS JAHARP000000000 SRR14342060 BA, 37°C F6 Cupola 179 20,117,026 392,515 180.21 60.53 24,292,752
F6_1S_P_1B Rhodotorula mucilaginosa ITS JAHARO000000000 SRR14342049 BA, 37°C F6 Cupola 182 20,114,730 392,620 225.92 60.53 30,453,336
F6_1S_P_1C Rhodotorula mucilaginosa ITS JAHARN000000000 SRR14342038 BA, 37°C F6 Cupola 200 20,115,701 322,180 218.74 60.53 29,485,618
F6_4S_B_2A Rhodotorula mucilaginosa ITS JAHARJ000000000 SRR14342117 R2A, 25°C F6 Dining table 172 19,998,495 334,411 207.28 60.55 27,941,724
F6_4S_B_2C Rhodotorula mucilaginosa ITS JAHARH000000000 SRR14342114 R2A, 25°C F6 Dining table 200 20,107,055 319,541 200.96 60.53 27,089,466
F6_4S_P_3B Rhodotorula mucilaginosa ITS JAHARG000000000 SRR14342113 BA, 37°C F6 Dining table 184 20,108,582 331,731 105.50 60.53 14,221,722
F6_4S_P_3C Rhodotorula mucilaginosa ITS JAHARF000000000 SRR14342112 BA, 37°C F6 Dining table 196 20,111,077 317,326 150.66 60.53 20,308,150
F6_4S_P_4A Rhodotorula mucilaginosa ITS JAHARE000000000 SRR14342111 BA, 37°C F6 Dining table 175 20,126,113 410,825 121.23 60.52 16,341,478
F6_4S_P_4B Rhodotorula mucilaginosa ITS JAHARD000000000 SRR14342110 BA, 37°C F6 Dining table 206 20,115,791 297,628 230.74 60.53 31,103,222
F6_4S_P_5A Rhodotorula mucilaginosa ITS JAHARC000000000 SRR14342109 BA, 37°C F6 Dining table 195 20,113,572 334,410 220.75 60.53 29,757,146
F6_4S_P_5B Rhodotorula mucilaginosa ITS JAHARB000000000 SRR14342108 BA, 37°C F6 Dining table 210 20,109,987 323,162 141.10 60.53 19,019,728
F6_6S_B_1A Rhodotorula mucilaginosa ITS JAHAQZ000000000 SRR14342106 R2A, 25°C F6 PPM port 1 202 20,109,799 329,302 205.40 60.53 27,687,960
F6_6S_B_1B Rhodotorula mucilaginosa ITS JAHAQY000000000 SRR14342105 R2A, 25°C F6 PPM port 1 199 20,106,114 331,797 130.16 60.53 17,545,556
F6_6S_B_1C Rhodotorula mucilaginosa ITS JAHAQX000000000 SRR14342103 R2A, 25°C F6 PPM port 1 199 20,115,093 335,579 133.73 60.53 18,026,650
F6_6S_P_1A Rhodotorula mucilaginosa ITS JAHAQW000000000 SRR14342102 BA, 37°C F6 PPM port 1 202 20,108,679 319,902 114.06 60.53 15,375,556
F6_6S_P_1B Rhodotorula mucilaginosa ITS JAHAQV000000000 SRR14342101 BA, 37°C F6 PPM port 1 197 20,116,515 323,169 233.47 60.53 31,471,482
F6_6S_P_1C Rhodotorula mucilaginosa ITS JAHAQU000000000 SRR14342100 BA, 37°C F6 PPM port 1 190 20,114,955 329,677 145.50 60.53 19,613,002
F6_6S_P_2A Rhodotorula mucilaginosa ITS JAHAQT000000000 SRR14342099 BA, 37°C F6 PPM port 1 191 20,108,060 323,034 240.93 60.53 32,476,452
F6_6S_P_2B Rhodotorula mucilaginosa ITS JAHAQS000000000 SRR14342098 BA, 37°C F6 PPM port 1 194 20,117,485 323,058 209.85 60.52 28,287,446
F6_7S_B_2A Rhodotorula mucilaginosa ITS JAHAQP000000000 SRR14342095 R2A, 25°C F6 Lab 3 overhead 183 20,055,075 293,584 240.80 60.55 32,459,440
F6_7S_B_2B Rhodotorula mucilaginosa ITS JAHAQO000000000 SRR14342094 R2A, 25°C F6 Lab 3 overhead 192 20,049,052 293,667 138.13 60.55 18,619,460
F6_7S_B_2C Rhodotorula mucilaginosa ITS JAHAQN000000000 SRR14342092 R2A, 25°C F6 Lab 3 overhead 196 20,050,303 292,236 107.06 60.55 14,431,658
F6_7S_P_6B Rhodotorula mucilaginosa ITS JAHAQM000000000 SRR14342091 BA, 37°C F6 Lab 3 overhead 164 20,065,557 369,724 234.38 60.55 31,594,198
F6_7S_P_7A Rhodotorula mucilaginosa ITS JAHAQL000000000 SRR14342090 BA, 37°C F6 Lab 3 overhead 199 20,052,658 311,987 201.97 60.55 27,225,956
F6_7S_P_7B Rhodotorula mucilaginosa ITS JAHAQK000000000 SRR14342089 BA, 37°C F6 Lab 3 overhead 198 20,056,236 284,145 169.60 60.55 22,862,414
F6_7S_P_7C Rhodotorula mucilaginosa ITS JAHAQJ000000000 SRR14342088 BA, 37°C F6 Lab 3 overhead 190 20,058,305 320,873 233.38 60.55 31,459,534
F8_1S_2B Rhodotorula mucilaginosa ITS JAHAQB000000000 SRR14342070 R2A, 25°C F8 Cupola 172 19,998,942 329,308 180.71 60.55 24,358,996
F8_1S_3B Rhodotorula mucilaginosa ITS JAHAQA000000000 SRR14342069 R2A, 25°C F8 Cupola 197 20,118,130 319,542 217.40 60.53 29,305,254
F8_3S_1B Rhodotorula mucilaginosa ITS JAHAPZ000000000 SRR14342068 R2A, 25°C F8 ARED 197 20,118,712 325,275 190.77 60.53 25,716,020
F8_3S_2B Rhodotorula mucilaginosa ITS JAHAPX000000000 SRR14342066 R2A, 25°C F8 ARED 200 20,109,774 323,187 181.13 60.53 24,415,874
F8_3S_3B Rhodotorula mucilaginosa ITS JAHAPV000000000 SRR14342064 R2A, 25°C F8 ARED 189 20,104,868 317,674 194.41 60.53 26,206,654
F8_4S_4B Rhodotorula mucilaginosa ITS JAHAPO000000000 SRR14342056 R2A, 25°C F8 Dining table 172 19,998,636 338,336 224.66 60.54 30,283,760
F8_4S_5B Rhodotorula mucilaginosa ITS JAHAPM000000000 SRR14342054 R2A, 25°C F8 Dining table 172 19,999,954 323,188 197.65 60.55 26,642,384
F8_5S_2B Rhodotorula mucilaginosa ITS JAHAPK000000000 SRR14342052 R2A, 25°C F8 Overhead 4 189 20,113,164 335,288 219.00 60.53 29,520,936
F8_5S_3B Rhodotorula mucilaginosa ITS JAHAPJ000000000 SRR14342050 R2A, 25°C F8 Overhead 4 199 20,113,962 333,776 192.52 60.53 25,952,066
F8_6S_1B Rhodotorula mucilaginosa ITS JAHAPF000000000 SRR14342043 R2A, 25°C F8 PPM port 1 169 19,995,004 329,309 187.59 60.54 25,287,420
F8_6S_2B Rhodotorula mucilaginosa ITS JAHAPE000000000 SRR14342042 R2A, 25°C F8 PPM port 1 179 19,994,438 397,651 188.04 60.55 25,347,104
F8_3S_1P Rhodotorula mucilaginosa ITS JAHAPY000000000 SRR14342067 BA, 37°C F8 ARED 183 19,994,621 322,715 192.67 60.55 25,972,138
F8_3S_2P Rhodotorula mucilaginosa ITS JAHAPW000000000 SRR14342065 BA, 37°C F8 ARED 167 19,991,553 415,431 121.35 60.54 16,358,020
F8_3S_3P Rhodotorula mucilaginosa ITS JAHAPU000000000 SRR14342063 BA, 37°C F8 ARED 193 20,115,201 319,541 196.12 60.53 26,437,390
F8_4S_1P Rhodotorula mucilaginosa ITS JAHAPS000000000 SRR14342061 BA, 37°C F8 Dining table 171 19,999,629 322,714 190.79 60.55 25,717,964
F8_4S_2P Rhodotorula mucilaginosa ITS JAHAPQ000000000 SRR14342058 BA, 37°C F8 Dining table 173 19,998,413 415,991 257.98 60.54 34,775,980
a

benA, β-tubulin; CaM, calmodulin; RPB2, DNA-directed RNA polymerase II subunit; TEF, translation elongation factor 1.

b

BA, blood agar; R2A, Reasoner’s 2A agar; YPD, yeast extract-peptone-dextrose.

c

ARED, advanced resistive exercise device; WHC, waste and hygiene compartment; PMM, permanent multipurpose module.

d

Reference genome was not available; average sequencing depth was calculated from k-mer coverage.

Genus-level identification was made via BLAST searches against the UNITE nuclear ribosomal internal transcribed spacer (ITS) database (34). Species identification was performed using specific loci suitable for species recognition (Table 1) (35). Homology searches were performed with extracted sequences against the NCBI nucleotide database and in-house Westerdijk Fungal Biodiversity Institute databases containing reference sequences; in case of doubt, identification was confirmed by constructing phylograms.

Data availability.

The whole-genome sequences (WGSs) and raw data have been deposited in GenBank under BioProject accession number PRJNA723004. This project has also been deposited in the NASA GeneLab system (36) under project number GLDS-400. The version described in this paper is the first version.

ACKNOWLEDGMENTS

Part of the research described was carried out at the Jet Propulsion Laboratory (JPL) of the California Institute of Technology under a contract with NASA. This research was funded by a 2014 Space Biology NNH14ZTT002N award (grant 80NSSC18K0113) to Crystal Jaing and K.V., which also partially funded postdoctoral fellowships for C.U. and J.M.W. Additionally, A.C.S. was supported by grant 80NM0018D0004, funded to K.V.

We thank astronauts Colonel Jack Fischer, Colonel Mark Vande Hei, Norishige Kanai, and Alexander Gerst for collecting samples aboard the ISS, the implementation team (Fathi Karouia) at NASA Ames Research Center for coordinating this effort, and Crystal Jaing (Lawrence Livermore National Laboratory), principal investigator of the team. We thank Ryan Kemp (Zymo Corp.) for extracting the DNA and Dan Butler (Weill Cornell Medicine) for generating the shotgun sequencing. The JPL supercomputing facility staff is acknowledged, notably, Narendra J. Patel (Jimmy) and Edward Villanueva, for their continuous support in providing the best possible infrastructure for BIG-DATA analysis.

Contributor Information

Kasthuri Venkateswaran, Email: kjvenkat@jpl.nasa.gov.

Vincent Bruno, University of Maryland School of Medicine.

REFERENCES

  • 1.Romsdahl J, Blachowicz A, Chiang AJ, Chiang YM, Masonjones S, Yaegashi J, Countryman S, Karouia F, Kalkum M, Stajich JE, Venkateswaran K, Wang CCC. 2019. International Space Station conditions alter genomics, proteomics, and metabolomics in Aspergillus nidulans. Appl Microbiol Biotechnol 103:1363–1377. doi: 10.1007/s00253-018-9525-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Klintworth R, Reher H, Viktorov A, Bohle D. 1999. Biological induced corrosion of materials II: new test methods and experiences from MIR station. Acta Astronaut 44:569–578. doi: 10.1016/s0094-5765(99)00069-7. [DOI] [PubMed] [Google Scholar]
  • 3.Hogan LH, Klein BS, Levitz SM. 1996. Virulence factors of medically important fungi. Clin Microbiol Rev 9:469–488. doi: 10.1128/CMR.9.4.469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Mora M, Wink L, Kogler I, Mahnert A, Rettberg P, Schwendner P, Demets R, Cockell C, Alekhova T, Klingl A, Krause R, Zolotariof A, Alexandrova A, Moissl-Eichinger C. 2019. Space Station conditions are selective but do not alter microbial characteristics relevant to human health. Nat Commun 10:3990. doi: 10.1038/s41467-019-11682-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Molina G, Contesini F, De Melo R, Sato H, Pastore G. 2016. β-Glucosidase from Aspergillus, p 155–169. In Gupta V (ed), New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, Netherlands. [Google Scholar]
  • 6.La Duc MT, Sumner R, Pierson D, Venkat P, Venkateswaran K. 2004. Evidence of pathogenic microbes in the International Space Station drinking water: reason for concern? Habitation (Elmsford) 10:39–48. doi: 10.3727/154296604774808883. [DOI] [PubMed] [Google Scholar]
  • 7.La Duc MT, Nicholson W, Kern R, Venkateswaran K. 2003. Microbial characterization of the Mars Odyssey spacecraft and its encapsulation facility. Environ Microbiol 5:977–985. doi: 10.1046/j.1462-2920.2003.00496.x. [DOI] [PubMed] [Google Scholar]
  • 8.Bensch K, Groenewald J, Meijer M, Dijksterhuis J, Jurjević Ž, Andersen B, Houbraken J, Crous PW, Samson R. 2018. Cladosporium species in indoor environments. Stud Mycol 89:177–301. doi: 10.1016/j.simyco.2018.03.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Aihara M, Tanaka T, Takatori K. 2001. Cladosporium as the main fungal contaminant of locations in dwelling environments. Biocontrol Sci 6:49–52. doi: 10.4265/bio.6.49. [DOI] [Google Scholar]
  • 10.Singh NK, Blachowicz A, Romsdahl J, Wang C, Torok T, Venkateswaran K. 2017. Draft genome sequences of several fungal strains selected for exposure to microgravity at the International Space Station. Genome Announc 5:e01602-16. doi: 10.1128/genomeA.01602-16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Satoh K, Yamazaki T, Nakayama T, Umeda Y, Alshahni MM, Makimura M, Makimura K. 2016. Characterization of fungi isolated from the equipment used in the International Space Station or Space Shuttle. Microbiol Immunol 60:295–302. doi: 10.1111/1348-0421.12375. [DOI] [PubMed] [Google Scholar]
  • 12.Laurence MH, Summerell BA, Burgess LW, Liew EC. 2014. Genealogical concordance phylogenetic species recognition in the Fusarium oxysporum species complex. Fungal Biol 118:374–384. doi: 10.1016/j.funbio.2014.02.002. [DOI] [PubMed] [Google Scholar]
  • 13.Urbaniak C, van Dam P, Zaborin A, Zaborina O, Gilbert JA, Torok T, Wang CCC, Venkateswaran K. 2019. Genomic characterization and virulence potential of two Fusarium oxysporum isolates cultured from the International Space Station. mSystems 4:e00345-18. doi: 10.1128/mSystems.00345-18. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Schuerger AC, Amaradasa BS, Dufault NS, Hummerick ME, Richards JT, Khodadad CL, Smith TM, Massa GD. 2021. Fusarium oxysporum as an opportunistic fungal pathogen on Zinnia hybrida plants grown on board the International Space Station. Astrobiology doi: 10.1089/ast.2020.2399. [DOI] [PubMed] [Google Scholar]
  • 15.Khazaal FAK, Ameen MKM, Ali HA. 2019. Pathogenic fungi accompanied with sudden decline syndrome (wilting disease) of date palm tree (Phoenix dactylifera L.). Basrah J Sci 37:376–397. [Google Scholar]
  • 16.Visagie CM, Houbraken J, Frisvad JC, Hong SB, Klaassen CH, Perrone G, Seifert KA, Varga J, Yaguchi T, Samson RA. 2014. Identification and nomenclature of the genus Penicillium. Stud Mycol 78:343–371. doi: 10.1016/j.simyco.2014.09.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Houbraken J, Frisvad JC, Samson R. 2011. Taxonomy of Penicillium section Citrina. Stud Mycol 70:53–138. doi: 10.3114/sim.2011.70.02. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Boruta T. 2018. Uncovering the repertoire of fungal secondary metabolites: from Fleming's laboratory to the International Space Station. Bioengineered 9:12–16. doi: 10.1080/21655979.2017.1341022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.McMullin DR, Nsiama TK, Miller JD. 2014. Secondary metabolites from Penicillium corylophilum isolated from damp buildings. Mycologia 106:621–628. doi: 10.3852/13-265. [DOI] [PubMed] [Google Scholar]
  • 20.Kure C, Abeln E, Holst-Jensen A, Skaar I. 2002. Differentiation of Penicillium commune and Penicillium palitans isolates from cheese and indoor environments of cheese factories using M13 fingerprinting. Food Microbiol 19:151–157. doi: 10.1006/fmic.2001.0473. [DOI] [Google Scholar]
  • 21.de Menezes GCA, Porto BA, Amorim SS, Zani CL, de Almeida Alves TM, Junior PAS, Murta SMF, Simões JC, Cota BB, Rosa CA, Rosa LH. 2020. Fungi in glacial ice of Antarctica: diversity, distribution and bioprospecting of bioactive compounds. Extremophiles 24:367–376. doi: 10.1007/s00792-020-01161-5. [DOI] [PubMed] [Google Scholar]
  • 22.Libkind D, Brizzio S, van Broock M. 2004. Rhodotorula mucilaginosa, a carotenoid producing yeast strain from a Patagonian high-altitude lake. Folia Microbiol (Praha) 49:19–25. doi: 10.1007/BF02931640. [DOI] [PubMed] [Google Scholar]
  • 23.Wirth F, Goldani LZ. 2012. Epidemiology of Rhodotorula: an emerging pathogen. Interdiscip Perspect Infect Dis 2012:465717. doi: 10.1155/2012/465717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Gümral R, Özhak-Baysan B, Tümgör A, Saraçlı MA, Yıldıran ŞT, Ilkit M, Zupančič J, Novak-Babič M, Gunde-Cimerman N, Zalar P, de Hoog GS. 2016. Dishwashers provide a selective extreme environment for human-opportunistic yeast-like fungi. Fungal Diversity 76:1–9. doi: 10.1007/s13225-015-0327-8. [DOI] [Google Scholar]
  • 25.Rai S, Singh DK, Kumar A. 2021. Microbial, environmental and anthropogenic factors influencing the indoor microbiome of the built environment. J Basic Microbiol 61:267–292. doi: 10.1002/jobm.202000575. [DOI] [PubMed] [Google Scholar]
  • 26.Checinska Sielaff A, Urbaniak C, Mohan GBM, Stepanov VG, Tran Q, Wood JM, Minich J, McDonald D, Mayer T, Knight R, Karouia F, Fox GE, Venkateswaran K. 2019. Characterization of the total and viable bacterial and fungal communities associated with the International Space Station surfaces. Microbiome 7:50. doi: 10.1186/s40168-019-0666-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Daudu R, Parker CW, Singh NK, Wood JM, Debieu M, O’Hara NB, Mason CE, Venkateswaran K. 2020. Draft genome sequences of Rhodotorula mucilaginosa strains isolated from the International Space Station. Microbiol Resour Announc 9:e00570-20. doi: 10.1128/MRA.00570-20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Sugita T, Yamazaki T, Cho O, Furukawa S, Mukai C. 2021. The skin mycobiome of an astronaut during a 1-year stay on the International Space Station. Med Mycol 59:106–109. doi: 10.1093/mmy/myaa067. [DOI] [PubMed] [Google Scholar]
  • 29.Be NA, Avila-Herrera A, Allen JE, Singh N, Checinska Sielaff A, Jaing C, Venkateswaran K. 2017. Whole metagenome profiles of particulates collected from the International Space Station. Microbiome 5:81. doi: 10.1186/s40168-017-0292-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Andrews S. 2011. FastQC: a quality control tool for high throughput sequence data. Babraham Institute, Cambridge, UK. https://www.bioinformatics.babraham.ac.uk/projects/fastqc. [Google Scholar]
  • 31.Chen S, Zhou Y, Chen Y, Gu J. 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884–i890. doi: 10.1093/bioinformatics/bty560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. doi: 10.1089/cmb.2012.0021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Gurevich A, Saveliev V, Vyahhi N, Tesler G. 2013. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29:1072–1075. doi: 10.1093/bioinformatics/btt086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Nilsson RH, Larsson K-H, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, Schigel D, Kennedy P, Picard K, Glöckner FO, Tedersoo L, Saar I, Kõljalg U, Abarenkov K. 2019. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res 47:D259–D264. doi: 10.1093/nar/gky1022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Samson RA, Houbraken J, Thrane U, Frisvad J, Andersen B. 2019. Food and indoor fungi, 2nd ed. Westerdijk Fungal Diversity Institute, Utrecht, The Netherlands. [Google Scholar]
  • 36.Ray S, Gebre S, Fogle H, Berrios DC, Tran PB, Galazka JM, Costes SV. 2019. GeneLab: omics database for spaceflight experiments. Bioinformatics 35:1753–1759. doi: 10.1093/bioinformatics/bty884. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

The whole-genome sequences (WGSs) and raw data have been deposited in GenBank under BioProject accession number PRJNA723004. This project has also been deposited in the NASA GeneLab system (36) under project number GLDS-400. The version described in this paper is the first version.


Articles from Microbiology Resource Announcements are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES