Abstract
Herein, we design a high sensitivity with a multi-mode plasmonic sensor based on the square ring-shaped resonators containing silver nanorods together with a metal–insulator-metal bus waveguide. The finite element method can analyze the structure's transmittance properties and electromagnetic field distributions in detail. Results show that the coupling effect between the bus waveguide and the side-coupled resonator can enhance by generating gap plasmon resonance among the silver nanorods, increasing the cavity plasmon mode in the resonator. The suggested structure obtained a relatively high sensitivity and acceptable figure of merit and quality factor of about 2473 nm/RIU (refractive index unit), 34.18 1/RIU, and 56.35, respectively. Thus, the plasmonic sensor is ideal for lab-on-chip in gas and biochemical analysis and can significantly enhance the sensitivity by 177% compared to the regular one. Furthermore, the designed structure can apply in nanophotonic devices, and the range of the detected refractive index is suitable for gases and fluids (e.g., gas, isopropanol, optical oil, and glucose solution).
Subject terms: Nanoscience and technology, Nanoscale devices
Introduction
Surface plasmon polaritons (SPPs) are surface electromagnetic (EM) wave modes arising from the coupling of free electrons and incident photons on the surface of metal-dielectric boundary to improve the collective vibration of electrons1–7. SPPs wave rises above the light diffraction limit and can confine the light within nanoscale; consequently, they have wide-ranging applications of SPPs wave in photonic integration circuits8–12. Optical devises depending on SPP waveguides, e.g., filters13,14, modulators15,16, absorbers17,18, demultiplexer19, amplifiers20,21, switches22,23, and sensors24–28 have been investigated and designed. Among them, metal–insulator-metal (MIM) waveguides with long propagation distance, low loss, strong light confinement, inexpensive production, and ease of manufacture and integration have received considerable interest and attention26,29–31.
Plasmonic sensors based on MIM-cavity waveguide configuration are commonly used for refractive index sensing since their feedback feature is a small variation in the surrounding material32,33. Many MIM-cavity designs based on SPPs to improve the sensing performance have been proposed27,34–37. The optimized cavity (or resonator) design can offer the best sensing performance. The device performance is associated with the cavity profile since the light-matter interaction between the bus waveguide and the resonator. Side-coupled or direct-coupled cavities with different aspects suffer an important role in producing a better light-matter interaction in a MIM-cavity waveguide system38,39. The multiple resonance modes receive a wide range of operation wavelengths for designing flexibly adjustable integrated optical circuits (IOCs). Multiple resonance modes can broadly adopt in multi-channel biosensors, enhancing multiband second-harmonic generation, multiband slow-light devices, and multi-wavelength surface-enhanced spectroscopy40. In the past few years, different MIM-cavity patterns of the plasmonic sensors such as rectangular cavities41,42, nanodisk cavities43–45, metallic double-baffle25, crossed ring-shaped metasurface46, gear-shaped nanocavity28, T-shaped resonators47–49, tooth-shaped cavities50, semi-ring cavity24,51 and racetrack ring resonator52, have been proposed. Specifically, certain designs used the nanoscale coupled gap resonators53–56 to design the plasmonic refractive index sensors based on the gap plasmon resonance (GPR) effect, which can significantly enhance the resonator's SPPs mode. P. Albella and co-workers proposed a tunable grating-based plasmonics sensor showing high sensitivity and controlled unidirectionality56. As reported in55, a silver nanorod array embedded into a square resonator was proposed and can apply for blood group identification. Also, M. R. Rakhshani et al. introduced a nanorod array coupled with two slot cavities to detect glucose concentration in water53. In57, the authors designed a metal substrate with two MIM waveguides coupled with an array of hexagonal nanoholes for hemoglobin and DNA quantification. A plasmonic MIM-cavity waveguide consisting of one rectangular cavity and three silver baffles was investigated in our previous work58, acting as a plasmonic sensor with a filter function. The introduction of metal nanorods, nanoholes, or baffles inside the resonator can remarkably improve the sensing performance due to their excellent optical properties in the EM field confinement and low propagation losses. However, it is difficult to implement independent tunability for multiple resonance modes arising from the collective manner in the plasmonic MIM-cavity waveguide system.Besides, the resonance modes found in the resonator greatly impact the coupling efficiency between the bus waveguide and resonance cavity, which is less discussed before and needs to be further studied.
This paper scrutinized a multiband plasmonic sensor based on a side-coupled resonator in a MIM-cavity waveguide with the refractive index sensing capability in the near-infrared wavelength range. We investigated three types of side-coupled cavity configurations, i.e., one square ring, one square ring with silver nanorods, and double square ring with silver nanorods, respectively. Simulations are employed using the two-dimensional (2-D) finite element method (FEM) for resonance mode analysis and sensing performance characterization. We found that the structure with double square rings, including silver nanorods, can significantly increase the coupling effect between the bus waveguide and the side-coupled resonator since the resonators enhanced the GPR modes. Furthermore, the suggested structure improves the sensing performance because of the excellent interaction with the surrounding medium under detecting. Generally, our plasmonic sensor can promote sensitivity through the phenomenon of plasmon exciting among the gap surface of the nanorods and would be beneficial to the application in the biomedical field and the implementation in IOCs. In this work, we show its applicability for the detection of different fluids as well.
Simulation model and analysis method
Figure 1 displays the top view of the investigated plasmonic sensor, consisting of a MIM bus waveguide coupled with one square ring-shaped cavity containing sixteen nanorods (with radius r) uniformly distributed in the resonance ring. We indicated the structural parameters in Fig. 1,i.e., the gap distance between the bus waveguide and the square ring-shaped cavity is g, the outer and inner lengths of the square resonator are a and a-2w, respectively. In Fig. 1, the cyan- and yellow-colored regions stand for the silver and insulator medium (air with the refractive index of n = 1.00), respectively. The investigated structure in the z-direction is infinite in the simulations, and this simulation system is a 2-D model. We employed a commercially available FEM (COMSOL Multiphysics59,60) with perfectly matched layer (PML) absorbing boundary conditions for soaking up the outgoing light. As a result, the investigated structure's subdomains can partition into triangular mesh elements with an “ultra-fine” mesh grid size. This setting permits us to obtain precise simulation results within the available computer resources. A TM-polarized EM wave coupled with the fundamental SPP mode61–63 into the bus waveguide's input port64. In Fig. 1, Hz is the magnetic field component in the z-direction, Ex is the electric field component in the x-direction, and Ey is the electric field component in the y-direction.
Figure 1.
Top view of the investigated plasmonic sensor, consisting of a MIM bus waveguide coupled with one square ring-shaped cavity containing sixteen nanorods (with radius r) uniformly distributed in the resonance ring.
Silver (Ag) was chosen as the plasmonic material to generate an EM wave response within the near-infrared range since its small imaginary part of the relative permittivity and lower power consumption. The relative permittivity (εm) of silver can characterize by the Drude model65.
1 |
where ε∞ = 3.7 (the infinite dielectric constant), ω is the frequency of incident EM wave, ωp = 9.10 eV (bulk plasma frequency), and γ = 18 meV (the electron collision frequency).
The input and output ports are located at the left and right sides of the designed structure with the same length from the center of the bus waveguide to detect the input and output powers. The transmittance (T) can obtain by T = Pout (output power)/Pin (input power), where the Pout and Pin can calculate as integral values of energy-flux density. The square ring can act as a Fabry–Pérot cavity, and the resonance will happen when the SPPs are coupled into the ring resonator and fit the resonance condition. For a MIM waveguide-cavity system, the SPPs can be excited when the incident EM wave approaches the intrinsic resonance wavelength (λres). If Δφ = 2πN (N is an integer), the λres can be expressed by temporal coupled-mode theory66,67.
2 |
Here, N denotes the order of the standing wave resonance, Leff represents the effective length of the cavity, φ stands for the phase shift, and Re(neff) is the real part of the effective refractive index. neff can describe as:
3 |
where k = 2π/λ is the wave vector in the waveguide and k0 is the wave vector in the free space.
The definition of sensitivity (S) is
4 |
The figure of merit (FOM) and quality factor (Q factor) are S/FWHM and λres /FWHM, respectively, where FWHM is the full width at half-maximum of the λres.
Since the fast progress in nanophotonics, the manufacturing of the investigated structure is attainable with current fabrication technologies, allowing cost-effective fabrication over a large region68. The MIM waveguide with a rectangular ring can realize by using stripping and ion beam lithography processes69. The Ag nanorods can be made with high aspect ratios by focus ion beam etching68. However, the object of this paper is not to concentrate on the fabrication procedures. As an alternative, several potential articles that investigated in-depth of this topic are advised70–72.
Results
Figure 2 compares the transmittance spectrum of the SPPs mode for two waveguide-cavity types, i.e., a bus waveguide coupled to one square air ring (black, denoted as case 1), and a bus waveguide coupled to one square air ring containing sixteen nanorods (with radius r) uniformly distributed in an air ring (red, denoted as case 2). To ensure only the TM mode can travel in the designed structure, the bus waveguide and square ring’s widths are w = 50 nm throughout this paper, otherwise specified. The default structural parameters, a, g, b, and r, signify as 300 nm, 10 nm, 50 nm, and 20 nm, respectively. Besides, the difference between the maximum and minimum transmittance is the dip strength (ΔT)73. As shown, an apparent discrepancy of the optical spectrum concerning the different resonance modes can clarify this dissimilarity after the silver nanorods exist in the investigated plasmonic waveguide-cavity system. In case 1, only one available transmittance dip corresponding to an SPP mode at λres = 1376 nm can be observed. This SPP mode is due to the surface plasmon resonance (SPR) and cavity plasmon resonance (CPR) from the coupling effect between the square air ring and the MIM bus waveguide. When the silver nanorods appear in the square air ring, case 2 can generate more SPPs modes because of the enhanced SPR, CPR and GPR effects among the silver nanorods, leading to four available SPPs modes at λres = 2188 nm, 1258 nm, 1037 nm, and 820 nm, respectively. The interference of surface, cavity, and gap plasmon resonances cause the multiple SPPs modes among bus waveguides, square air rings, and silver nanorods74–79. We found that the GPR effect plays a pivotal role in offering more plasmon resonance in the investigated waveguide-cavity system. The resonance dip in case 2 has a muscular dip strength and a narrow FWHM, both beneficial to refractive index sensing performance. This remarkable feature has led to possible applications in IOCs.
Figure 2.
Comparison of the transmittance spectrum of the SPPs modes of two waveguide-cavity types, i.e., a bus waveguide coupled to one square air ring (black, denoted as case 1), and a bus waveguide coupled to one square air ring containing sixteen nanorods (with radius r) uniformly distributed in an air ring (red, denoted as case 2). The structural parameters w, a, g, b, and r are 50 nm, 300 nm, 10 nm, 50 nm, and 20 nm, respectively.
To understand the physical nature, Fig. 3 shows the steady-state of the magnetic field (|H|) and electric field (|E|) patterns at corresponding λres from modes 1 to 4. As seen, the standing wave occurs in the square air ring resonator at λres, and most input EM wave confines in the resonance cavity. The incident wavelength highly influences the |H| patterns of SPPs modes due to the different optical waves80. The light spot number of |H| patterns in square air rings are 2, 4, 4, and 6 when the λres is varied from 2188 nm, 1258 nm, 1037 nm, and 820 nm, respectively. Thus, the square air ring can behave as a Fabry-Pérot cavity in the investigated plasmonic sensor system. According to the |E| field patterns, the SPPs wave can couple well because of the constructive interference between the bus waveguide and the ring resonator, showing significant GPR among the silver nanorods. The |H| and |E| field enhancement of the SPPs modes in the gap space of silver nanorods exhibit an excellent light-matter coupling in the square ring resonator.
Figure 3.
Truncate views of magnetic field (|H|) and electric field (|E|) patterns at the corresponding wavelengths from mode 1 to mode 4 in case 2 structure, respectively.
The investigated case 2 structure can act as a refractive index sensor and inspect by filling a different detecting medium in a plasmonic waveguide-cavity system. Figure 4 shows the transmittance spectra of the case 2 structure with the filling media, n, are 1.00, 1.05, 1.10, 1.15, and 1.20, respectively. The other parameters keep the same as used in Fig. 2. As observed, the transmission dips show a redshift as the increasing refractive index and a linear relationship between the neff and the λres, which reveals a good agreement with Eq. (2). The sensitivity's increment is due to the coupling surface and gap plasmon waves between the bus waveguides and square air ring resonator, which leads to an interaction with the variation in the refractive index81.
Figure 4.
Transmittance spectra of the case 2 structure with the filling media (n) of 1.00, 1.05, 1.10, 1.15, and 1.20, respectively. The other parameters keep the same as used in Fig. 2.
An excellent refractive index sensor should possess a high sensitivity (S) and acceptable FOM and Q-factor. Figure 5 plots the calculated λres versus the refractive index of the proposed structure. We summarize the S, FOM, and Q factor and dip strength (ΔT) of case 1 for mode 1 and case 2 from mode 1 to mode 4 in Table 1. Note that the sensitivity values obtained from case 2 from mode 1 to mode 3 can simultaneously achieve above 1000 nm/RIU, which shows excellent sensitivity and acceptable FOM and Q factor. Compared to its typical structure (case 1), the case 2 structure remarkably enhanced the sensitivity by 157%. These values are more noticeable than the previous literature (e.g.,82–84) and show multiple modes that can fit the requirement of refractive index sensors in the wavelength of visible and near-infrared.
Figure 5.
Calculated resonance wavelength (λres) from mode 1 to mode 4 of case 2 structure versus the refractive index.
Table 1.
The S, FOM, Q factor, and dip strength (ΔT) of case 1 structure for mode 1 and case 2 from modes 1 to 4.
case 1 | Case 2 | ||||
---|---|---|---|---|---|
Mode 1 | Mode 1 | Mode 2 | Mode 3 | Mode 4 | |
S (nm/RIU) | 1400 | 2200 | 1200 | 1000 | 800 |
FOM (RIU-1) | 14.00 | 22.00 | 20.00 | 40.00 | 22.86 |
Q factor | 13.76 | 21.88 | 20.97 | 41.48 | 32.80 |
ΔT | 0.705 | 0.9201 | 0.8185 | 0.9015 | 0.8554 |
The SPPs modes arising from the case 2 structure are due to the coupling effect between bus waveguide and square ring resonator, significantly influenced by the structural size. In case 2 frame, w is fixed at 50 nm to promise that the TM mode can propagate in the bus waveguide. Therefore, in our simulations, we further inspect the other four parameters, i.e., g, b, a, and r. First, Fig. 6a,b depict the influence of g and b of the case 2 structure on the transmittance spectrum. Figure 7a,b also illustrate the dip strength (∆T) and FWHM of the proposed case 2 structure in mode 1 and 2 for varying g and b, respectively. We numbered the available resonance modes in the inset of the figures and listed the structural parameters at the top of the figures. As observed, the transmittance dips blueshifts with the increasing g and b. The transmittance profiles have different behaviors to the change of g and b since their different physical nature. In Fig. 6a, the coupling effect between bus waveguide and side-coupled resonator becomes weaker because of the increase of g. Note that the transmittance dips show a strong oscillation since the more substantial coupling effect when g = 0 nm. Besides, the transmittance dip strength (∆T) and FWHM can significantly reduce with the increase of g due to the more negligible coupling effect of a more significant g. As seen in Fig. 7a, the values of FWHM of mode 1 decline from 1500 to 40 nm, while those of mode 2 decrease from 90 to 25 nm as g varies from 0 to 20 nm. We found that the ∆T of both mode 1 and mode 2 exceeds 0.8122 when g is in the range of 0–20 nm. It is evident from Figs. 6b and 7b, the FWHM presents a minimum value around b = 60 nm, remaining the dip strength almost constant, ranging in 50–65 nm. According to Figs. 6 and 7, we can choose the availed values of g and b when g is in the range of 10–20 nm, and b is in the range of 50–65 nm based on the ∆T, FWHM, transmittance line-shape, and the number of resonance mode.
Figure 6.
Transmission spectra as a function of (a) g variation and (b) b variation of the case 2 structure. The mode number marks in the figures' inset and the structural parameters are at the top of the figures.
Figure 7.
Dip strength (∆T) and FWHM of the proposed type 3 structure in mode 1 and mode 2 for (a) varying g in the range of (0, 5, 10, 12,15, 20) nm, and (b) varying b in the range of 50–75 nm in the step of 5 nm. The other structural parameters are at the top of the figures.
Successively, we show the variation influence of a and r on the transmittance spectrum in Fig. 8a,b, respectively. As shown, the λres redshifts with increasing of a and r. Specifically, the shift of λres by varying a and r is more sensitive than that of g and b, e.g., λres changes from 992 to 3200 nm for mode 1 when a varies from 150 to 400 nm, and λres varies from 1046 to 2948 nm for mode 1 when r varies from 0 to 23 nm, correspondingly. It is evident from Fig. 8a, a more significant a can provide a longer optical path and results in a more GPR effect among silver nanorods in the square air ring cavity. However, a strong coupling effect causes a shortcoming of broad FWHM since the more indirect coupling strategy could give rise to a more ohmic loss in the resonator influenced by the silver nanorods. Accordingly, it is a bargain between a slender FWHM strength and a more muscular dip strength. When a ≥ 300 nm, FWHM increases and declines the FOM. Therefore, we selected a = 300 nm as the starting pointing of the further study. The air gap among adjacent silver nanorods can alter the resonance condition and offer a different optical path in the square air ring cavity. In Fig. 8b, the GPR in the resonator gets more substantial with the increasing of r. This phenomenon is that the balance of strength of the discrete state in the resonator and the continuum state in the bus waveguide can change by varying r, the resonance modes are changed. The FWHM can significantly enlarge with the increasing r since the GPR mode is enhanced by increasing r in the resonator. As a result, the optimum coupling effect is achieved at r = 20 nm based on FWHM and ∆T, as shown in Fig. 8b.
Figure 8.
Transmission spectra as a function of (a) a variation and (b) r variation of the case 2 structure. The mode numbers label in the figures' inset and the structural parameters are at the top of the figures.
Based on the case 2 structure analysis, we found the coupling effect between the bus waveguide and the side-coupled resonator will enhance by generating more GPR effect inside the coupled resonator. To increase the coupling effect and gap plasmon resonance, we proposed a case 3 structure, i.e., the second air ring is added in the case 2 structure. Figure 9 shows the top view of the proposed case 3 structure, containing a MIM bus waveguide coupled with two square ring-shaped cavities with sixteen and eight silver nanorods (with radius r) uniformly distributed and second rings, respectively. The structural perimeters are signified in Fig. 9, i.e., the space between the first and second rings is c, the gap between the bus waveguide and the first square ring cavity is g, the outer lengths of the first and second square rings are a and a-2b-2c, while the inner lengths of first and second square rings are a-2b and a-4b-2c, respectively. For simplicity, we do not discuss the influence of the c value on the plasmonic responses but directly give the optimized value, which is c = 10 nm for the case 3 structure. The rest structural parameters, w, g, r, a, b, are set as 50 nm, 10 nm, 20 nm, 300 nm, and 50 nm. Figure 10 shows the transmittance spectra of case 3 structure at different ambient medium, i.e., air (n = 1.00), water (n = 1.33), isopropanol (n = 1.37) and optical oil (n = 1.63), respectively. This range of detecting fluids is associated with the biological sample analytes. The fluids are located on the entire structure's upper surface in the refractive index sensing process and consider the infinite thickness. It is evident in Fig. 10a that a remarkable redshift of transmittance dip with the increase of the ambient refractive index. Figure 10b illustrates the λres versus the refractive index value (n) from 1.00 to 1.63 of case 3 structure from mode 1 to mode 4. We found a redshift of λres with increases n in the refractive index range of gas and liquid. Figure 10c depicts the S and FOM of case 3 structure from mode 1 to mode 4 and shows a more massive shift in mode 1 than the other modes.
Figure 9.
Top view of the proposed case 3 structure, consisting of a MIM bus waveguide side-coupled with two square ring-shaped cavities with sixteen and eight silver nanorods (with radius r) uniformly distributed in the first and second rings, respectively. The structural perimeters are in the figure, i.e., the space between the first and second rings is c, the gap between the bus waveguide and the first square ring-shaped cavity is g, the outer length of the first and second square rings are a and c, while the internal size of first and second square rings are a-2b and a-2b-2c, respectively.
Figure 10.
(a) Transmittance spectra of case 3 structure at different ambient medium, i.e., water (n = 1.33), isopropanol (n = 1.37) and optical oil (n = 1.63), respectively. (b) λres versus the refractive index value (n) from 1.00 to 1.63 of case 3 structure for mode 1 to mode 4. (c) S and FOM of case 3 structure from mode 1 to mode 4.
We summarized the calculated S, FOM, and Q factor of case 3 structure from modes 1 to 4 in Table 2. The sensitivity obtained from modes 1 to 3 of case 3 configuration simultaneously exceeds 1160 nm/RIU, revealing more excellent sensitivity, acceptable FOM, and Q factor than cases 1 and 2 frames. The proposed case 3 structure can significantly improve 177% and 112% sensitivity compared to cases 1 and 2. Furthermore, the combination of the first and second square air rings, including the silver nanorods in case 3 structure, offers a better sensing performance, as shown in Fig. 10b,c and Table 2. In addition, a more quantity of detecting medium can participate in the case 3 structure due to the longer optical path, resulting in more GPR and SPR effects and enhancing the cavity plasmon resonance in the resonator. Therefore, it will significantly benefit the interaction between the testing sample and the proposed plasmonic sensing system.
Table 2.
The S, FOM, and Q factor of case 3 structure from mode 1 to mode 4.
Mode 1 | Mode 2 | Mode 3 | Mode 4 | |
---|---|---|---|---|
S (nm/RIU) | 2473 | 1367 | 1160 | 887 |
FOM (RIU−1) | 16.78 | 34.18 | 23.20 | 22.18 |
Q factor | 20.18 | 56.35 | 27.34 | 30.05 |
When the fluid is resonant with the case 3 structure, the transmittance spectrum varies with the refractive index increase, showing an excellent exciton-plasmon coupling and generating a deep bonding mode based on GPR in the resonator. This phenomenon can interpret by the magnetic field intensity (|H|) (including the surface electric force lines (green lines), Fig. 11), electric field intensity (|E|, Fig. 12), and time-average power flow (green lines) with arrows (red arrows) (Fig. 13), respectively. Figures 11, 12, 13 show the occurrence of resonant fluids (e.g., n = 1.33 as an example) around the case 3 structure from modes 1 to 4. The cavity resonance in case 3 structure is highly sensitive to the changes in the refractive index. The presence of fluids affects the fluid-field interaction and the spatial distribution of the E-field intensity and the power flows (time average, W/m2) across the interface between bus waveguide and resonator of the case 3 structure. Concerning the electric force lines and the power flow arrows, as shown in Figs. 11 and 13, it raises a robust EM Feld localization and enhancement (see Fig. 12) and the power flows in the first and second square air rings. As a result, the effect of the accumulated GPR at λres meets the Fabry–Pérot resonance condition and forms a strong cavity resonance in the side-coupled resonator. Besides, the EM waves and energy flows show that the enhanced surface plasmon among the gaps of silver nanorods, revealing a broad range of interactions with analytes, thereby demonstrating the potential of the case 3 structure for sensing applications.
Figure 11.
The magnetic field intensity (|H|, including the surface electric force lines (green lines)) of resonant fluids (n = 1.33 as an example) around the case 3 structure from modes 1 to 4, respectively.
Figure 12.
The electric field intensity (|E|) of resonant fluids (n = 1.33 as an example) around the case 3 structure from mode 1 to mode 4, respectively.
Figure 13.
Time average power flow (green lines) with arrows (red arrows) of resonant fluids (n = 1.33 as an example) around the case 3 structure from modes 1 to mode 4, respectively.
The recorded sensitivity and FOM in the case 3 structure are superior to those of previous MIM-cavity systems. We summarize S and FOM comparing this work and other reported similar SPR sensors in Table 3.
Table 3.
Comparison of the best sensitivity and FOM between this work and some selected published articles.
Reference/year | Cavity Structure | Sensitivity (nm/RIU) | FOM (1/RIU) |
---|---|---|---|
85/2015 | Induced transparency resonator | 733 | 30.50 |
86/2016 | Nanowall side-coupled resonator | 985 | 28.20 |
84/2017 | Triangle and ellipse-ring resonators | 860 | 31.60 |
87/2018 | Tangent-Ring Resonators | 880 | 964.00 |
88/2018 | X-shaped resonator cavities | 1303 | 3113 (FOM*) |
89/2019 | Ring shape resonator | 636 | 211.30 |
90/2019 | Two side-coupled semi-ring cavities | 1405 | 3.62 × 105 (FOM*) |
91/2020 | Semi-ring shape resonator | 1084 | 57.06 |
92/2020 | Double concentric square ring | 1270 | 58.00 |
51/2021 | A semi-ring cavity | 1550 | 7358 (FOM*) |
93/2021 | Racetrack ring resonator | 1774 | 61.00 |
This work | Double square rings with nanorods | 2473 | 34.18 |
P. S. FOM* = max(|dT(λ)/dn(λ)/T(λ) |), where T (λ) is the transmittance, and dT(λ)∕dn(λ) is the transmittance change at a fixed wavelength induced by a refractive index change.
The case 3 frame can apply for sensing biological parameters, e.g., glucose concentration, verifying the refractive index. To imitate the real situation in the simulations, we can describe the refractive index of the glucose solution as94,95:
5 |
where cg is the glucose concentration (g/L). Equation (5) elucidates the linear relationship between the ng and λres.
Figure 14a reveals the transmittance spectrum of the glucose solution in case 3 structure from modes 1 to 4 when the glucose concentration, cg, varies from 0 g/L, 100 g/L, 200 g/L to 300 g/L, respectively. The structural parameters are the same as Fig. 10a. As observed, the λres of the transmittance dips exhibits a redshift and all curves show the linear relations with cg, which is good agreement with Eq. (5). Figure 14b shows the approximately linear relationships between the cg and the λres. Thus, the sensitivity of glucose solution sensing is Sg = ∆λ/∆cg. In these cases, the obtained sensitivity from modes 1 to mode 4 can reach 0.19 nm·L/g, 0.16 nm·L/g, 0.14 nm·L/g and 0.14 nm·L/g from modes 1 to mode 4, respectively.
Figure 14.
(a) Transmittance spectrum of the solution in case 3 structure from mode 1 to mode 4 when the glucose concentration, cg, varies from 0 g/L, 100 g/L, 200 g/L to 300 g/L, respectively. (b) Calculated resonance wavelength (λres) from modes 1 to mode 4 versus the glucose concentration (cg) range from 0 to 300 g/L. The structural parameters are the same as Fig. 10a.
Conclusion
This study proposed a plasmonic sensor based on a side-coupled resonator in a MIM-cavity waveguide system for refractive index and biomedical sensor applications. We scrutinized and compared three patterns of resonators, i.e., case 1 (one square ring), case 2 (one square ring with silver nanorods), and case 3 (double square rings with silver nanorods), respectively. The designed structure's EM field distributions and transmittance spectra are studied using 2-D FEM for resonance mode analysis and sensing capability characterization. Results show that the suggested case 3 structure greatly contributes to gap plasmon resonance modes for improving sensing performance. The case 3 structure can significantly improve the sensitivity by 177% compared to its traditional design (i.e., case 1). The best sensitivity and FOM of the sensing devices in mode 1 are 1400 nm/ RIU and 14.00 1/RIU for case 1, 2200 nm/ RIU and 40.00 for case 2, and 2473 nm/ RIU and 34.18 for case 3, respectively, while the maximum recorded Q factor are 13.76, 41.48 and 56.35 for case 1, 2, and 3, respectively. This sensor can widely use in gas and biochemistry since its ease of preparation, excellent sensing performance, and broad working wavelengths with multiple modes.
Acknowledgements
This research was supported by the University Research Grant of Universiti Brunei Darussalam (Grant No. UBD/RSCH/1.9/FICBF(b)/2021/009) and the Ministry of Science and Technology of Taiwan (MOST 109-2112-M-019-001).
Author contributions
Y.F.C.C., C.M.L. and H.P.C. designed the work and wrote the paper, Y.F.C.C., T.Y.M. and C.T.C.C. carried out the simulations, Y.F.C.C., H.J.H., R.T. and M.R.R.K. created the fgures and analysis. All the authors reviewed the manuscript.
Data availability
The authors declare that all data supporting the findings of this study are available from the corresponding author upon reasonable request.
Competing interests
The authors declare no competing interests.
Footnotes
Publisher's note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Contributor Information
Yuan-Fong Chou Chau, Email: chou.fong@und.edu.bn.
Hai-Pang Chiang, Email: hpchiang@mail.ntou.edu.tw.
References
- 1.Wang K, et al. Plasmon-enhanced optical nonlinearity for femtosecond all-optical switching. Appl. Phys. Lett. 2017;111:181102. doi: 10.1063/1.5002581. [DOI] [Google Scholar]
- 2.Chau Y-F, et al. Localized resonance of composite core-shell nanospheres, nanobars and nanospherical chains. Prog. Electromagn. Res. B. 2011;28:183–199. doi: 10.2528/PIERB10102705. [DOI] [Google Scholar]
- 3.Chen MW, Chau Y-F, Tsai DP. Three-dimensional analysis of scattering field interactions and surface plasmon resonance in coupled silver nanospheres. Plasmonics. 2008;3:157. doi: 10.1007/s11468-008-9069-8. [DOI] [Google Scholar]
- 4.Chau Y-F. Surface plasmon effects excited by the dielectric hole in a silver-shell nanospherical pair. Plasmonics. 2009;4:253. doi: 10.1007/s11468-009-9100-8. [DOI] [Google Scholar]
- 5.Ho YZ, et al. Tunable plasmonic resonance arising from broken-symmetric silver nanobeads with dielectric cores. J. Opt. 2012;14:114010. doi: 10.1088/2040-8978/14/11/114010. [DOI] [Google Scholar]
- 6.Sung M-J, Ma Y-F, Chau Y-F, Huang D-W. Surface plasmon resonance in a hexagonal nanostructure formed by seven core shell nanocylinders. Appl. Opt. 2010;49:920–926. doi: 10.1364/AO.49.000920. [DOI] [PubMed] [Google Scholar]
- 7.Peng T-C, Lin W-C, Chen C-W, Tsai DP, Chiang H-P. Enhanced sensitivity of surface plasmon resonance phase-interrogation biosensor by using silver nanoparticles. Plasmonics. 2011;6:29–34. doi: 10.1007/s11468-010-9165-4. [DOI] [Google Scholar]
- 8.Shen L, Yang T-J, Chau Y-F. 50∕50 beam splitter using a one-dimensional metal photonic crystal with parabolalike dispersion. Appl. Phys. Lett. 2007;90:251909. doi: 10.1063/1.2750385. [DOI] [Google Scholar]
- 9.Zhang J, Zhang L. Nanostructures for surface plasmons. Adv. Opt. Photonics. 2012;4:157–321. doi: 10.1364/AOP.4.000157. [DOI] [Google Scholar]
- 10.Singh L, Maccaferri N, Garoli D, Gorodetski Y. Directional plasmonic excitation by helical nanotips. Nanomaterials. 2021;11:1333. doi: 10.3390/nano11051333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Zhu J, Wang G, Jiang F, Qin Y, Cong H. Temperature sensor of mos2 based on hybrid plasmonic waveguides. Plasmonics. 2019;14:1863–1870. doi: 10.1007/s11468-019-00988-9. [DOI] [Google Scholar]
- 12.Hsieh L-Z, et al. Metal nano-particles sizing by thermal annealing for the enhancement of surface plasmon effects in thin-film solar cells application. Opt. Commun. 2016;370:85–90. doi: 10.1016/j.optcom.2016.03.009. [DOI] [Google Scholar]
- 13.Neutens P, Lagae L, Borghs G, Van Dorpe P. Plasmon filter and resonator in metal-insulator-metal waveguides. Opt. Express. 2012;20:3408–3423. doi: 10.1364/OE.20.003408. [DOI] [PubMed] [Google Scholar]
- 14.Lin J-M, Chau Y-F. Radome slope compensation using multiple-model Kalman filters. J. Guid. Control Dyn. 1995;18:637–640. doi: 10.2514/3.21438. [DOI] [Google Scholar]
- 15.Wei Q, Xiao J, Yang D, Cai K. Ultra-compact electro-optic modulator based on alternative plasmonicmaterial. Appl. Opt. 2021;60:5252–5257. doi: 10.1364/AO.425679. [DOI] [PubMed] [Google Scholar]
- 16.Ansell D, et al. Hybrid graphene plasmonic waveguide modulators. Nat. Commun. 2015;6:8846. doi: 10.1038/ncomms9846. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Wu P, Zhang C, Tang Y, Liu B, Lv L. A perfect absorber based on similar fabry-perot four-band in the visible range. Nanomaterials. 2020;10:488. doi: 10.3390/nano10030488. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Chou Chau Y-F, et al. Perfect dual-band absorber based on plasmonic effect with the cross-hair/nanorod combination. Nanomaterials. 2020 doi: 10.3390/nano10030493. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Shibayama J, Kawai H, Yamauchi J, Nakano H. Analysis of a 3D MIM waveguide-based plasmonic demultiplexer using the TRC-FDTD method. Opt. Commun. 2019;452:360–365. doi: 10.1016/j.optcom.2019.07.069. [DOI] [Google Scholar]
- 20.Zhang T, Shan F. Development and application of surface plasmon polaritons on optical amplification. J. Nanomater. 2014;2014:495381. doi: 10.1155/2014/495381. [DOI] [Google Scholar]
- 21.Izadi MA, Nouroozi R. Adjustable propagation length enhancement of the surface plasmon polariton wave via phase sensitive optical parametric amplification. Sci. Rep. 2018;8:15495. doi: 10.1038/s41598-018-33831-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Sahu PP. Optical switch based on graphene clad two surface plasmonic polariton mode coupler. Optik. 2021;227:166026. doi: 10.1016/j.ijleo.2020.166026. [DOI] [Google Scholar]
- 23.Bashiri S, Fasihi K. An all-optical 1× 2 demultiplexer using kerr nonlinear nano-plasmonic switches. Plasmonics. 2020;15:449–456. doi: 10.1007/s11468-019-01068-8. [DOI] [Google Scholar]
- 24.Zhu J, Li N. MIM waveguide structure consisting of a semicircular resonant cavity coupled with a key-shaped resonant cavity. Opt. Express. 2020;28:19978–19987. doi: 10.1364/OE.395696. [DOI] [PubMed] [Google Scholar]
- 25.Chen Y, et al. Sensing performance analysis on Fano resonance of metallic double-baffle contained MDM waveguide coupled ring resonator. Opt. Laser Technol. 2018;101:273–278. doi: 10.1016/j.optlastec.2017.11.022. [DOI] [Google Scholar]
- 26.Rahmatiyar M, Afsahi M, Danaie M. Design of a refractive index plasmonic sensor based on a ring resonator coupled to a mim waveguide containing tapered defects. Plasmonics. 2020;15:2169–2176. doi: 10.1007/s11468-020-01238-z. [DOI] [Google Scholar]
- 27.Wen K, et al. Fano resonance with ultra-high figure of merits based on plasmonic metal-insulator-metal waveguide. Plasmonics. 2014;10:27–32. doi: 10.1007/s11468-014-9772-6. [DOI] [Google Scholar]
- 28.Zhang ZD, Wang HY, Zhang ZY. Fano resonance in a gear-shaped nanocavity of the metal–insulator–metal waveguide. Plasmonics. 2013;8:797–801. doi: 10.1007/s11468-012-9475-9. [DOI] [Google Scholar]
- 29.Jankovic N, Cselyuszka N. Multiple fano-like MIM plasmonic structure based on triangular resonator for refractive index sensing. Sensors. 2018;18:287. doi: 10.3390/s18010287. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Zhu J, Wu C. Optical refractive index sensor with Fano resonance based on original MIM waveguide structure. Results Phys. 2021;21:103858. doi: 10.1016/j.rinp.2021.103858. [DOI] [Google Scholar]
- 31.Sagor RH, Hassan MF, Sharmin S, Adry TZ, Emon MAR. Numerical investigation of an optimized plasmonic on-chip refractive index sensor for temperature and blood group detection. Results Phys. 2020;19:103611. doi: 10.1016/j.rinp.2020.103611. [DOI] [Google Scholar]
- 32.Khonina SN, Kazanskiy NL, Butt MA, Kaźmierczak A, Piramidowicz R. Plasmonic sensor based on metal-insulator-metal waveguide square ring cavity filled with functional material for the detection of CO2 gas. Opt. Express. 2021;29:16584–16594. doi: 10.1364/OE.423141. [DOI] [PubMed] [Google Scholar]
- 33.Mahmud R, Faruque MO, Sagor R. Plasmonic refractive index sensor based on ring-type pentagonal resonator with high sensitivity. Plasmonics. 2021 doi: 10.1007/s11468-020-01357-7. [DOI] [Google Scholar]
- 34.Zhou YJ, Xiao QX, Jia Yang B. Spoof localized surface plasmons on ultrathin textured MIM ring resonator with enhanced resonances. Sci. Rep. 2015;5:14819. doi: 10.1038/srep14819. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.Chau Y-FC. Mid-infrared sensing properties of a plasmonic metal–insulator–metal waveguide with a single stub including defects. J. Phys. D: Appl. Phys. 2020;53:115401. doi: 10.1088/1361-6463/ab5ec3. [DOI] [Google Scholar]
- 36.Li D, Du K, Liang S, Zhang W, Mei T. Wide band dispersionless slow light in hetero-MIM plasmonic waveguide. Opt. Express. 2016;24:22432–22437. doi: 10.1364/OE.24.022432. [DOI] [PubMed] [Google Scholar]
- 37.Kurokawa Y. Metal-insulator-metal plasmon nanocavities: Analysis of optical properties. Phys. Rev. B. 2007 doi: 10.1103/PhysRevB.75.035411. [DOI] [Google Scholar]
- 38.Chen Y, Liu Y, Chen Z, Jiao R, Yu L. Fano resonance in a symmetric waveguide system with different filled insulators. Opt. Commun. 2016;371:184–188. doi: 10.1016/j.optcom.2016.03.049. [DOI] [Google Scholar]
- 39.Butt MA, Kazanskiy NL, Khonina SN. Highly integrated plasmonic sensor design for the simultaneous detection of multiple analytes. Curr. Appl. Phys. 2020;20:1274–1280. doi: 10.1016/j.cap.2020.08.020. [DOI] [Google Scholar]
- 40.Zhang Y, et al. High-quality-factor multiple Fano resonances for refractive index sensing. Opt. Lett. 2018;43:1842–1845. doi: 10.1364/OL.43.001842. [DOI] [PubMed] [Google Scholar]
- 41.Chen Z, et al. Sensing characteristics based on Fano resonance in rectangular ring waveguide. Opt. Commun. 2015;356:373–377. doi: 10.1016/j.optcom.2015.08.020. [DOI] [Google Scholar]
- 42.Wu T, et al. A nanometeric temperature sensor based on plasmonic waveguide with an ethanol-sealed rectangular cavity. Opt. Commun. 2015;339:1–6. doi: 10.1016/j.optcom.2014.11.064. [DOI] [Google Scholar]
- 43.Wang Q, Ouyang Z, Sun Y, Lin M, Liu Q. Linearly tunable fano resonance modes in a plasmonic nanostructure with a waveguide loaded with two rectangular cavities coupled by a circular cavity. Nanomaterials. 2019;9:678. doi: 10.3390/nano9050678. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.Chen J, et al. Fano resonance in a MIM waveguide with double symmetric rectangular stubs and its sensing characteristics. Opt. Commun. 2021;482:126563. doi: 10.1016/j.optcom.2020.126563. [DOI] [Google Scholar]
- 45.Chen Y, Xu Y, Cao J. Fano resonance sensing characteristics of MIM waveguide coupled square convex ring resonator with metallic baffle. Results Phys. 2019;14:102420. doi: 10.1016/j.rinp.2019.102420. [DOI] [Google Scholar]
- 46.He Z, et al. Dual-Fano resonances and sensing properties in the crossed ring-shaped metasurface. Results Phys. 2020;16:103140. doi: 10.1016/j.rinp.2020.103140. [DOI] [Google Scholar]
- 47.Chou Chau Y-F, et al. Ultra-high refractive index sensing structure based on a metal-insulator-metal waveguide-coupled T-shape cavity with metal nanorod defects. Nanomaterials. 2019;9:1433. doi: 10.3390/nano9101433. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.Liu H, Gao Y, Zhu B, Ren G, Jian S. A T-shaped high resolution plasmonic demultiplexer based on perturbations of two nanoresonators. Opt. Commun. 2015;334:164–169. doi: 10.1016/j.optcom.2014.08.039. [DOI] [Google Scholar]
- 49.Kamari M, Hayati M, Khosravi S. Tunable infrared wide band-stop plasmonic filter using T-shaped resonators. Mat. Sci. Semicon. Proc. 2021;133:105983. doi: 10.1016/j.mssp.2021.105983. [DOI] [Google Scholar]
- 50.Xiang Z, et al. Tuning bandgap of a double-tooth-shaped MIM waveguide filter by control widths of the teeth. J Opt. 2013;15:5008. doi: 10.1088/2040-8978/15/5/055008. [DOI] [Google Scholar]
- 51.Liu X, et al. Independently tunable triple Fano resonances based on MIM waveguide structure with a semi-ring cavity and its sensing characteristics. Opt. Express. 2021;29:20829–20838. doi: 10.1364/OE.428355. [DOI] [PubMed] [Google Scholar]
- 52.Abdulla SMC, et al. Tuning a racetrack ring resonator by an integrated dielectric MEMS cantilever. Opt. Express. 2011;19:15864–15878. doi: 10.1364/OE.19.015864. [DOI] [PubMed] [Google Scholar]
- 53.Rakhshani MR, Tavousi A, Mansouri-Birjandi MA. Design of a plasmonic sensor based on a square array of nanorods and two slot cavities with a high figure of merit for glucose concentration monitoring. Appl. Opt. 2018;57:7798–7804. doi: 10.1364/AO.57.007798. [DOI] [PubMed] [Google Scholar]
- 54.Rahmatiyar M, Afsahi M, Danaie M. Design of a refractive index plasmonic sensor based on a ring resonator coupled to a mim waveguide containing tapered defects. Plasmonics. 2020 doi: 10.1007/s11468-020-01238-z. [DOI] [Google Scholar]
- 55.Rakhshani MR, Mansouri-Birjandi MA. High sensitivity plasmonic refractive index sensing and its application for human blood group identification. Sensors Actuat. B: Chem. 2017;249:168–176. doi: 10.1016/j.snb.2017.04.064. [DOI] [Google Scholar]
- 56.Matsuzaki Y, Okamoto T, Haraguchi M, Fukui M, Nakagaki M. Characteristics of gap plasmon waveguide with stub structures. Opt. Express. 2008;16:16314–16325. doi: 10.1364/OE.16.016314. [DOI] [PubMed] [Google Scholar]
- 57.Rakhshani MR, Mansouri-Birjandi MA. Engineering hexagonal array of nanoholes for high sensitivity biosensor and application for human blood group detection. IEEE Trans. Nanotechnol. 2018;17:475–481. doi: 10.1109/TNANO.2018.2811800. [DOI] [Google Scholar]
- 58.Chou Chau Y-F, et al. Ultrawide bandgap and high sensitivity of a plasmonic metal-insulator-metal waveguide filter with cavity and baffles. Nanomaterials. 2020;10:2030. doi: 10.3390/nano10102030. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 59.Chau Y-FC, Syu J-Y, Chao C-TC, Chiang H-P, Lim CM. Design of crossing metallic metasurface arrays based on high sensitivity of gap enhancement and transmittance shift for plasmonic sensing applications. J. Phys. D Appl. Phys. 2016;50:045105. doi: 10.1088/1361-6463/aa506b. [DOI] [Google Scholar]
- 60.Chou Chao C-T, Chou Chau Y-F, Chiang H-P. Highly sensitive metal-insulator-metal plasmonic refractive index sensor with a centrally coupled nanoring containing defects. J. Phys. D Appl. Phys. 2021;54:115301. doi: 10.1088/1361-6463/abce7f. [DOI] [Google Scholar]
- 61.Chen W-C, et al. Role of surface electromagnetic waves in metamaterial absorbers. Opt. Express. 2016;24:6783–6792. doi: 10.1364/OE.24.006783. [DOI] [PubMed] [Google Scholar]
- 62.Chau Y-F, Yeh H-H, Tsai DP. Surface plasmon effects excitation from three-pair arrays of silver-shell nanocylinders. Phys. Plasmas. 2009;16:022303. doi: 10.1063/1.3068469. [DOI] [Google Scholar]
- 63.Chau Y-FC, et al. Plasmonic effects in composite metal nanostructures for sensing applications. J. Nanoparticle Res. 2018;20:190. doi: 10.1007/s11051-018-4293-4. [DOI] [Google Scholar]
- 64.Chau Y-F, Liu C-Y, Yeh H-H, Tsai DP. A comparative study of high birefringence and low confinement loss photonic crystal fiber employing elliptical air holes in fiber cladding with tetragonal lattice. Progr. Electromagn. Res. 2010;22:39–52. doi: 10.2528/PIERB10042405. [DOI] [Google Scholar]
- 65.Johnson PB, Christy RW. Optical constants of the noble metals. Phys. Rev. B. 1972;6:4370–4379. doi: 10.1103/PhysRevB.6.4370. [DOI] [Google Scholar]
- 66.Chen C, Oh S-H, Li M. Coupled-mode theory for plasmonic resonators integrated with silicon waveguides towards mid-infrared spectroscopic sensing. Opt. Express. 2020;28:2020–2036. doi: 10.1364/OE.28.002020. [DOI] [PubMed] [Google Scholar]
- 67.Lu H, Liu X, Mao D, Wang G. Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators. Opt. Lett. 2012;37:3780–3782. doi: 10.1364/OL.37.003780. [DOI] [PubMed] [Google Scholar]
- 68.Jiang X, Hu S, Li Z, Lv J, Si G. Fabrication and characterization of plasmonic nanorods with high aspect ratios. Opt. Mater. 2016;58:323–326. doi: 10.1016/j.optmat.2016.05.013. [DOI] [Google Scholar]
- 69.Li M, Wang J, Zhuang L, Chou SY. Fabrication of circular optical structures with a 20 nm minimum feature size using nanoimprint lithography. Appl. Phys. Lett. 2000;76:673–675. doi: 10.1063/1.125896. [DOI] [Google Scholar]
- 70.Kamada S, Okamoto T, El-Zohary SE, Haraguchi M. Design optimization and fabrication of Mach-Zehnder interferometer based on MIM plasmonic waveguides. Opt. Express. 2016;24:16224–16231. doi: 10.1364/OE.24.016224. [DOI] [PubMed] [Google Scholar]
- 71.Kuttge M, García de Abajo FJ, Polman A. Ultrasmall mode volume plasmonic nanodisk resonators. Nano Lett. 2010;10:1537–1541. doi: 10.1021/nl902546r. [DOI] [PubMed] [Google Scholar]
- 72.Walther C, Scalari G, Amanti MI, Beck M, Faist J. Microcavity laser oscillating in a circuit-based resonator. Science. 2010;327:1495–1497. doi: 10.1126/science.1183167%JScience. [DOI] [PubMed] [Google Scholar]
- 73.Yu J, Zhu J, Ye S, Wang X. Ultra-wide sensing range plasmonic refractive index sensor based on a two-dimensional circular-hole grating engraved on a gold film. Results Phys. 2021;26:104396. doi: 10.1016/j.rinp.2021.104396. [DOI] [Google Scholar]
- 74.Chau Y-F, Jiang Z-H. Plasmonics effects of nanometal embedded in a dielectric substrate. Plasmonics. 2011;6:581–589. doi: 10.1007/s11468-011-9238-z. [DOI] [Google Scholar]
- 75.Chau Y-F, Lin Y-J, Tsai DP. Enhanced surface plasmon resonance based on the silver nanoshells connected by the nanobars. Opt. Express. 2010;18:3510–3518. doi: 10.1364/OE.18.003510. [DOI] [PubMed] [Google Scholar]
- 76.Chau YF, Yeh HH, Tsai DP. Surface plasmon resonances effects on different patterns of solid-silver and silver-shell nanocylindrical pairs. J. Electromagn. Waves Appl. 2010;24:1005–1014. doi: 10.1163/156939310791586098. [DOI] [Google Scholar]
- 77.Chau YF, Yeh HH, Tsai DP. A new type of optical antenna: Plasmonics nanoshell bowtie antenna with dielectric hole. J. Electromagn. Waves Appl. 2010;24:1621–1632. doi: 10.1163/156939310792149588. [DOI] [Google Scholar]
- 78.Lin W-C, et al. SERS study of tetrodotoxin (TTX) by using silver nanoparticle arrays. Plasmonics. 2009;4:187–192. doi: 10.1007/s11468-009-9090-6. [DOI] [Google Scholar]
- 79.Tseng ML, et al. Multi-level surface enhanced Raman scattering using AgOx thin film. Opt. Express. 2013;21:24460–24467. doi: 10.1364/OE.21.024460. [DOI] [PubMed] [Google Scholar]
- 80.Chau Y-F, et al. Controlling surface plasmon of several pair arrays of silver-shell nanocylinders. Appl. Opt. 2010;49:1163–1169. doi: 10.1364/AO.49.001163. [DOI] [PubMed] [Google Scholar]
- 81.Wei W, Zhang X, Ren X. Plasmonic circular resonators for refractive index sensors and filters. Nanoscale Res. Lett. 2015;10:1–6. doi: 10.1186/1556-276X-10-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 82.Luo S, Li B, Xiong D, Zuo D, Wang X. A high performance plasmonic sensor based on metal-insulator-metal waveguide coupled with a double-cavity structure. Plasmonics. 2017 doi: 10.1007/s11468-016-0253-y. [DOI] [Google Scholar]
- 83.Zhang Z, et al. Electromagnetically induced transparency and refractive index sensing for a plasmonic waveguide with a stub coupled ring resonator. Plasmonics. 2017;12:1007–1013. doi: 10.1007/s11468-016-0352-9. [DOI] [Google Scholar]
- 84.Akhavan A, Ghafoorifard H, Abdolhosseini S, Habibiyan H. Plasmon-induced transparency based on a triangle cavity coupled with an ellipse-ring resonator. Appl. Opt. 2017;56:9556–9563. doi: 10.1364/AO.56.009556. [DOI] [PubMed] [Google Scholar]
- 85.Ni B, et al. Infrared plasmonic refractive index-sensitive nanosensor based on electromagnetically induced transparency of waveguide resonator systems. Opt. Quant. Electron. 2015;47:1339–1346. doi: 10.1007/s11082-014-0059-0. [DOI] [Google Scholar]
- 86.Zhang Z, Luo L, Xue C, Zhang W, Yan S. Fano Resonance based on metal-insulator-metal waveguide-coupled double rectangular cavities for plasmonic nanosensors. Sensors. 2016;16:642. doi: 10.3390/s16050642. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 87.Guo Z, et al. Plasmonic multichannel refractive index sensor based on subwavelength tangent-ring metal–insulator–metal waveguide. Sensors. 2018;18:1348. doi: 10.3390/s18051348. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 88.Li J, et al. Optical sensing based on multimode Fano resonances in metal-insulator-metal waveguide systems with X-shaped resonant cavities. Appl. Opt. 2021;60:5312–5319. doi: 10.1364/AO.427862. [DOI] [PubMed] [Google Scholar]
- 89.Danaie M, Shahzadi A. Design of a high-resolution metal–insulator–metal plasmonic refractive index sensor based on a ring-shaped Si resonator. Plasmonics. 2019;14:1453–1465. doi: 10.1007/s11468-019-00926-9. [DOI] [Google Scholar]
- 90.Li Z, et al. Refractive index sensor based on multiple Fano resonances in a plasmonic MIM structure. Appl. Opt. 2019;58:4878–4883. doi: 10.1364/AO.58.004878. [DOI] [PubMed] [Google Scholar]
- 91.Kazanskiy NL, Butt MA, Khonina SN. Nanodots decorated MIM semi-ring resonator cavity for biochemical sensing applications. Photonics Nanostruct. Fundam. Appl. 2020;42:100836. doi: 10.1016/j.photonics.2020.100836. [DOI] [Google Scholar]
- 92.Asgari S, Pooretemad S, Granpayeh N. Plasmonic refractive index sensor based on a double concentric square ring resonator and stubs. Photonics Nanostruct. Fundam. Appl. 2020;42:100857. doi: 10.1016/j.photonics.2020.100857. [DOI] [Google Scholar]
- 93.Shi H, et al. A nanosensor based on a metal-insulator-metal bus waveguide with a stub coupled with a racetrack ring resonator. Micromachines. 2021;12:495. doi: 10.3390/mi12050495. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 94.Yeh Y-L. Real-time measurement of glucose concentration and average refractive index using a laser interferometer. Opt. Lasers Eng. 2008;46:666–670. doi: 10.1016/j.optlaseng.2008.04.008. [DOI] [Google Scholar]
- 95.Lo Y-L, Yu T-C. A polarimetric glucose sensor using a liquid-crystal polarization modulator driven by a sinusoidal signal. Opt. Commun. 2006;259:40–48. doi: 10.1016/j.optcom.2005.08.061. [DOI] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Data Availability Statement
The authors declare that all data supporting the findings of this study are available from the corresponding author upon reasonable request.