Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2021 Sep 9;65(3):540–549. doi: 10.1007/s11427-021-1986-7

A switch-on molecular biosensor for detection of caspase-3 and imaging of apoptosis of cells

Rui Gong 1,2, Dianbing Wang 1, Ghulam Abbas 1,2, Shimin Li 1,2, Qian Liu 1, Mengmeng Cui 1, Xian-En Zhang 1,2,3,
PMCID: PMC8449214  PMID: 34536207

Abstract

Apoptosis is a form of programmed cell death that is essential for maintaining internal environmental stability. Disordered apoptosis can cause a variety of diseases; therefore, sensing apoptosis can provide help in study of mechanism of the relevant diseases and drug development. It is known that caspase-3 is a key enzyme involved in apoptosis and the expression of its activity is an indication of apoptosis. Here, we present a genetically encoded switch-on mNeonGreen2-based molecular biosensor. mNeonGreen2 is the brightest monomeric green fluorescent protein. The substrate of caspase-3, DEVD amino acid residues, is inserted in it, while cyclized by insertion of Nostoc punctiforme DnaE intein to abolish the fluorescence (inactive state). Caspase-3-catalyzed cleavage of DEVD linearizes mNeonGreen2 and rebuilds the natural barrel structure to restore the fluorescence (activated state). The characterization exhibited that the Caspase-3 biosensor has shortened response time, higher sensitivity, and prolonged functional shelf life in detection of caspase-3 amongst the existing counterparts. We also used the Caspase-3 biosensor to evaluate the effect of several drugs on the induction of apoptosis of HeLa and MCF-7 tumor cells and inhibition of Zika virus invasion.

Supporting Information

The supporting information is available online at 10.1007/s11427-021-1986-7. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Keywords: apoptosis, caspase-3, molecular biosensor, molecular imaging, Zika virus

Electronic supplementary material

11427_2021_1986_MOESM1_ESM.docx (1.2MB, docx)

Supplementary material, approximately 1.17 MB.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21890743), National Key Research and Development Program of China (2017YFA0205500, 2018YFA0902702), the Strategic Priority Research Program of the Chinese Academy of Sciences, China (XDB29050100). We thank Yu Hou and Liu Song for their helpful discussions.

Compliance and ethics The author(s) declare that they have no conflict of interest.

References

  1. Al-Abd AM, Mahmoud AM, El-Sherbiny GA, El-Moselhy MA, Nofal SM, El-Latif HA, El-Eraky WI, El-Shemy HA. Resveratrol enhances the cytotoxic profile of docetaxel and doxorubicin in solid tumour cell lines in vitro. Cell Proliferation. 2011;44:591–601. doi: 10.1111/j.1365-2184.2011.00783.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bardet PL, Kolahgar G, Mynett A, Miguel-Aliaga I, Briscoe J, Meier P, Vincent JP. A fluorescent reporter of caspase activity for live imaging. Proc Natl Acad Sci USA. 2008;105:13901–13905. doi: 10.1073/pnas.0806983105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, Kalil AC, Hohmann E, Chu HY, Luetkemeyer A, Kline S, et al. Remdesivir for the treatment of COVID-19—final report. N Engl J Med. 2020;383:1813–1826. doi: 10.1056/NEJMoa2007764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blum RH, Carter SK. Adriamycin. Ann Intern Med. 1974;80:249–259. doi: 10.7326/0003-4819-80-2-249. [DOI] [PubMed] [Google Scholar]
  5. Brisdelli F, Perilli M, Sellitri D, Bellio P, Bozzi A, Amicosante G, Nicoletti M, Piovano M, Celenza G. Protolichesterinic acid enhances doxorubicin-induced apoptosis in hela cells in vitro. Life Sci. 2016;158:89–97. doi: 10.1016/j.lfs.2016.06.023. [DOI] [PubMed] [Google Scholar]
  6. Conrad C, Di Domizio J, Mylonas A, Belkhodja C, Demaria O, Navarini AA, Lapointe AK, French LE, Vernez M, Gilliet M. TNF blockade induces a dysregulated type I interferon response without autoimmunity in paradoxical psoriasis. Nat Commun. 2018;9:1. doi: 10.1038/s41467-017-02466-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cotter TG. Apoptosis and cancer: The genesis of a research field. Nat Rev Cancer. 2009;9:501–507. doi: 10.1038/nrc2663. [DOI] [PubMed] [Google Scholar]
  8. Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, Dawson TM, Dawson VL, El-Deiry WS, Fulda S, et al. Molecular definitions of cell death subroutines: recommendations of the nomenclature committee on cell death 2012. Cell Death Differ. 2012;19:107–120. doi: 10.1038/cdd.2011.96. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Guerreiro MR, Freitas DF, Alves PM, Coroadinha AS. Detection and quantification of label-free infectious adenovirus using a switch-on cell-based fluorescent biosensor. ACS Sens. 2019;4:1654–1661. doi: 10.1021/acssensors.9b00489. [DOI] [PubMed] [Google Scholar]
  10. Gump JM, Thorburn A. Autophagy and apoptosis: What is the connection? Trends Cell Biol. 2011;21:387–392. doi: 10.1016/j.tcb.2011.03.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hellwig CT, Kohler BF, Lehtivarjo AK, Dussmann H, Courtney M J, Prehn JHM, Rehm M. Real time analysis of tumor necrosis factor-related apoptosis-inducing ligand/cycloheximide-induced caspase activities during apoptosis initiation. J Biol Chem. 2008;283:21676–21685. doi: 10.1074/jbc.M802889200. [DOI] [PubMed] [Google Scholar]
  12. Hengartner MO. The biochemistry of apoptosis. Nature. 2000;407:770–776. doi: 10.1038/35037710. [DOI] [PubMed] [Google Scholar]
  13. Jacobson MD, Weil M, Raff MC. Programmed cell death in animal development. Cell. 1997;88:347–354. doi: 10.1016/S0092-8674(00)81873-5. [DOI] [PubMed] [Google Scholar]
  14. Kanno, A., Umezawa, Y., and Ozawa, T. (2009). Detection of apoptosis using cyclic luciferase in living mammals. Bioluminescence, 105–114. [DOI] [PubMed]
  15. Kanno A, Yamanaka Y, Hirano H, Umezawa Y, Ozawa T. Cyclic luciferase for real-time sensing of caspase-3 activities in living mammals. Angew Chem Int Ed. 2007;46:7595–7599. doi: 10.1002/anie.200700538. [DOI] [PubMed] [Google Scholar]
  16. Lee, J.K., Kim, J.A., Oh, S.J., Lee, E.W., and Shin, O.S. (2020). Zika virus induces tumor necrosis factor-related apoptosis inducing ligand (trail)-mediated apoptosis in human neural progenitor cells. 9, 2487. [DOI] [PMC free article] [PubMed]
  17. Lee K, Kim DE, Jang KS, Kim SJ, Cho S, Kim C. Gemcitabine, a broad-spectrum antiviral drug, suppresses enterovirus infections through innate immunity induced by the inhibition of pyrimidine biosynthesis and nucleotide depletion. Oncotarget. 2017;8:115315–115325. doi: 10.18632/oncotarget.23258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Martin JC, Chang C, Boschetti G, Ungaro R, Giri M, Grout JA, Gettler K, Chuang LS, Nayar S, Greenstein AJ, et al. Single-cell analysis of Crohn’s disease lesions identifies a pathogenic cellular module associated with resistance to anti-TNF therapy. Cell. 2019;178:1493–1508. doi: 10.1016/j.cell.2019.08.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mavrikou S, Tsekouras V, Karageorgou MA, Moschopoulou G, Kintzios S. Detection of superoxide alterations induced by 5-fluorouracil on HeLa cells with a cell-based biosensor. Biosensors. 2019;9:126. doi: 10.3390/bios9040126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. McIlwain DR, Berger T, Mak TW. Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol. 2013;5:a008656. doi: 10.1101/cshperspect.a008656. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Miller DK. The role of the caspase family of cysteine proteases in apoptosis. Semin Immunol. 1997;9:35–49. doi: 10.1006/smim.1996.0058. [DOI] [PubMed] [Google Scholar]
  22. Nasu Y, Asaoka Y, Namae M, Nishina H, Yoshimura H, Ozawa T. Genetically encoded fluorescent probe for imaging apoptosis in vivo with spontaneous GFP complementation. Anal Chem. 2016;88:838–844. doi: 10.1021/acs.analchem.5b03367. [DOI] [PubMed] [Google Scholar]
  23. Nicholls SB, Chu J, Abbruzzese G, Tremblay KD, Hardy JA. Mechanism of a genetically encoded dark-to-bright reporter for caspase activity. J Biol Chem. 2011;286:24977–24986. doi: 10.1074/jbc.M111.221648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nijhawan D, Honarpour N, Wang X. Apoptosis in neural development and disease. Annu Rev Neurosci. 2000;23:73–87. doi: 10.1146/annurev.neuro.23.1.73. [DOI] [PubMed] [Google Scholar]
  25. Pham VC, Pitti R, Anania VG, Bakalarski CE, Bustos D, Jhunjhunwala S, Phung QT, Yu K, Forrest WF, Kirkpatrick D S, et al. Complementary proteomic tools for the dissection of apoptotic proteolysis events. J Proteome Res. 2012;11:2947–2954. doi: 10.1021/pr300035k. [DOI] [PubMed] [Google Scholar]
  26. Porter AG, Jänicke RU. Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 1999;6:99–104. doi: 10.1038/sj.cdd.4400476. [DOI] [PubMed] [Google Scholar]
  27. Rechsteiner M, Rogers SW. Pest sequences and regulation by proteolysis. Trends Biochem Sci. 1996;21:267–271. doi: 10.1016/S0968-0004(96)10031-1. [DOI] [PubMed] [Google Scholar]
  28. Rehm M, Dussmann H, Janicke RU, Tavare JM, Kogel D, Prehn JHM. Single-cell fluorescence resonance energy transfer analysis demonstrates that caspase activation during apoptosis is a rapid process. J Biol Chem. 2002;277:24506–24514. doi: 10.1074/jbc.M110789200. [DOI] [PubMed] [Google Scholar]
  29. Sara JD, Kaur J, Khodadadi R, Rehman M, Lobo R, Chakrabarti S, Herrmann J, Lerman A, Grothey A. 5-fluorouracil and cardiotoxicity: a review. Ther Adv Med Oncol. 2018;10:175883591878014. doi: 10.1177/1758835918780140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Shaner NC, Lambert GG, Chammas A, Ni Y, Cranfill PJ, Baird M A, Sell BR, Allen JR, Day RN, Israelsson M, et al. A bright monomeric green fluorescent protein derived from branchiostoma lanceolatum. Nat Methods. 2013;10:407–409. doi: 10.1038/nmeth.2413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Stefanis L, Rideout H. Caspase inhibition: a potential therapeutic strategy in neurological diseases. Histol Histopathol. 2001;16:895–908. doi: 10.14670/HH-16.895. [DOI] [PubMed] [Google Scholar]
  32. Sun C, Zhu L, Zhang C, Song C, Wang C, Zhang M, Xie Y, Schaefer HF., III Conformers, properties, and docking mechanism of the anticancer drug docetaxel: DFT and molecular dynamics studies. J Comput Chem. 2018;39:889–900. doi: 10.1002/jcc.25165. [DOI] [PubMed] [Google Scholar]
  33. Valentin G, Verheggen C, Piolot T, Neel H, Coppey-Moisan M, Bertrand E. Photoconversion of YFP into a CFP-like species during acceptor photobleaching FRET experiments. Nat Methods. 2005;2:801. doi: 10.1038/nmeth1105-801. [DOI] [PubMed] [Google Scholar]
  34. Wang G, Chen S, Edwards H, Cui X, Cui LI, Ge Y. Combination of chloroquine and GX15–070 (obatoclax) results in synergistic cytotoxicity against pancreatic cancer cells. Oncol Rep. 2014;32:2789–2794. doi: 10.3892/or.2014.3525. [DOI] [PubMed] [Google Scholar]
  35. Xu Z, Song Y, Wang F. Rational design of genetically encoded reporter genes for optical imaging of apoptosis. Apoptosis. 2020;25:459–473. doi: 10.1007/s10495-020-01621-5. [DOI] [PubMed] [Google Scholar]
  36. Yang S, Gorshkov K, Lee EM, Xu M, Cheng YS, Sun N, Soheilian F, de Val N, Ming G, Song H, et al. Zika virus-induced neuronal apoptosis via increased mitochondrial fragmentation. Front Microbiol. 2020;11:598203. doi: 10.3389/fmicb.2020.598203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Zhang, J., Wang, X., Cui, W., Wang, W., Zhang, H., Liu, L., Zhang, Z., Li, Z., Ying, G., Zhang, N., et al. (2013). Visualization of caspase-3-like activity in cells using a genetically encoded fluorescent biosensor activated by protein cleavage. Nat Commun 2157. [DOI] [PubMed]
  38. Zhang Q, Schepis A, Huang H, Yang J, Ma W, Torra J, Zhang SQ, Yang L, Wu H, Nonell S, et al. Designing a green fluorogenic protease reporter by flipping a beta strand of GFP for imaging apoptosis in animals. J Am Chem Soc. 2019;141:4526–4530. doi: 10.1021/jacs.8b13042. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

11427_2021_1986_MOESM1_ESM.docx (1.2MB, docx)

Supplementary material, approximately 1.17 MB.


Articles from Science China. Life Sciences are provided here courtesy of Nature Publishing Group

RESOURCES