Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2021 Sep 20;171(4):453–457. doi: 10.1007/s10517-021-05248-7

The State of Microcirculatory Hemodynamics in Patients with Moderate and Severe COVID-19

B I Kuznik 1, Yu N Smolyakov 1,, Yu K Shapovalov 1, K G Shapovalov 1, S A Lukyanov 1, D S Parts 1
PMCID: PMC8450309  PMID: 34542748

Abstract

Microcirculatory hemodynamic indexes (HI) were assessed in patients with moderate and severe COVID-19. In both groups, a significant increase in the absolute spectral indexes (HI1, HI2, and HI3) and the ratio of low-frequency to high-frequency component (HI1/HI3) was revealed. In the group of severe infection, only the “slow” index (low-frequency HI1) of microcirculatory hemodynamics was significantly lower. The oscillatory indices MAYER1-3 and RESP1-3 were reduced in patients of both groups. The aggravation of the disease course was accompanied by depression of the low-frequency index HI1. Regulatory shifts compensate for disturbances in microcirculatory processes in moderate COVID-19, but severe course was associated with their decompensation.

Key Words: microcirculation, hemodynamics, hemodynamic indexes, COVID-19

Footnotes

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 171, No. 4, pp. 463-468, April, 2021

References

  • 1.Kuznik BI, Smolyakov YuN, Guseva ES, Davydov SO, Fine IV. Effect of moderate physical exercises on the relationship of variability of the heart rhythm with the level of blood pressure and hemodynamic functions in women with essential hypertension. Patol. Fiziol. Eksp. Ter. 2020;64(3):64-73. 10.25557/0031-2991.2020.03.64-73. Russian.
  • 2.Smolyakov YN, Kuznik BI, Romanyuk SV. Adaptive response of microcirculatory hemodynamics indexes on the state of general dehydration. Zabaikal. Med. Vestn. 2019;2:83–89. [Google Scholar]
  • 3.Barnes BJ, Adrover JM, Baxter-Stoltzfus A, Borczuk A, Cools-Lartigue J, Crawford JM, Daßler-Plenker J, Guerci P, Huynh C, Knight JS, Loda M, Looney MR, McAllister F, Rayes R, Renaud S, Rousseau S, Salvatore S, Schwartz RE, Spicer JD, Yost CC, Weber A, Zuo Y, Egeblad M. Targeting potential drivers of COVID-19: Neutrophil extracellular traps. J. Exp. Med. 2020;217(6):e20200652. doi: 10.1084/jem.20200652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Carsetti A, Damiani E, Casarotta E, Scorcella C, Domizi R, Montomoli J, Gasparri F, Gabbanelli V, Pantanetti S, Carozza R, Adrario E, Donati A. Sublingual microcirculation in patients with SARS-CoV-2 undergoing veno-venous extracorporeal membrane oxygenation. Microvasc. Res. 2020;132:104064. doi: 10.1016/j.mvr.2020.104064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Colantuoni A, Martini R, Caprari P, Ballestri M, Capecchi PL, Gnasso A, Lo Presti R, Marcoccia A, Rossi M, Caimi G. COVID-19 sepsis and microcirculation dysfunction. Front. Physiol. 2020;11:747. doi: 10.3389/fphys.2020.00747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Fine I, Kuznik B, Kaminsky A, Shenkman L. A non-invasive method for the assessment of hemostasis in vivo by using dynamic light scattering. Laser Physics. 2012;22(2):469–475. doi: 10.1134/S1054660X12020090. [DOI] [Google Scholar]
  • 7.Henry BM, Vikse J, Benoit S, Favaloro EJ, Lippi G. Hyperinflammation and derangement of renin-angiotensin-aldosterone system in COVID-19: a novel hypothesis for clinically suspected hypercoagulopathy and microvascular immunothrombosis. Clin. Chim. Acta. 2020;507:167–173. doi: 10.1016/j.cca.2020.04.027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Kanoore Edul VS, Caminos Eguillor JF, Ferrara G, Estenssoro E, Siles DSP, Cesio CE, Dubin A. Microcirculation alterations in severe COVID-19 pneumonia. J. Crit. Care. 2021;61:73–75. doi: 10.1016/j.jcrc.2020.10.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Katarzynska J, Borkowska A, Los A, Marcinek A, Cypryk K, Gebicki J. Flow-mediated skin fluorescence (FMSF) technique for studying vascular complications in type 2 diabetes. J. Diabetes Sci. Technol. 2020;14(3):693–694. doi: 10.1177/1932296819895544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Keragala CB, Draxler DF, McQuilten ZK, Medcalf RL. Haemostasis and innate immunity — a complementary relationship: a review of the intricate relationship between coagulation and complement pathways. Br. J. Haematol. 2018;180(6):782–798. doi: 10.1111/bjh.15062. [DOI] [PubMed] [Google Scholar]
  • 11.Li G, Fan Y, Lai Y, Han T, Li Z, Zhou P, Pan P, Wang W, Hu D, Liu X, Zhang Q, Wu J. Coronavirus infections and immune responses. J. Med. Virol. 2020;92(4):424–432. doi: 10.1002/jmv.25685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost. 2020;18(4):844–847. doi: 10.1111/jth.14768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Tibirica E, De Lorenzo A. Importance of the evaluation of systemic microvascular flow and reactivity in critically ill patients with coronavirus disease 2019 — COVID-19. Microvasc. Res. 2020;131:104028. doi: 10.1016/j.mvr.2020.104028. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Bulletin of Experimental Biology and Medicine are provided here courtesy of Nature Publishing Group

RESOURCES