Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2021 Sep 20;19(3):459–487. doi: 10.1007/s10888-021-09489-4

Distributional effects of macroeconomic shocks in real-time

A novel method applied to the COVID-19 crisis in Germany

Kerstin Bruckmeier 1, Andreas Peichl 2, Martin Popp 1, Jürgen Wiemers 1,, Timo Wollmershäuser 2
PMCID: PMC8452132  PMID: 34566543

Abstract

The highly dynamic nature of the COVID-19 crisis poses an unprecedented challenge to policy makers around the world to take appropriate income-stabilizing countermeasures. To properly design such policy measures, it is important to quantify their effects in real-time. However, data on the relevant outcomes at the micro level is usually only available with considerable time lags. In this paper, we propose a novel method to assess the distributional consequences of macroeconomic shocks and policy responses in real-time and provide the first application to Germany in the context of the COVID-19 pandemic. Specifically, our approach combines different economic models estimated on firm- and household-level data: a VAR-model for output expectations, a structural labor demand model, and a tax-benefit microsimulation model. Our findings show that as of September 2020 the COVID-19 shock translates into a noticeable reduction in gross labor income across the entire income distribution. However, the tax benefit system and discretionary policy responses to the crisis act as important income stabilizers, since the effect on the distribution of disposable household incomes turns progressive: the bottom two deciles actually gain income, the middle deciles are hardly affected, and only the upper deciles lose income.

Supplementary Information

The online version contains supplementary material available at 10.1007/s10888-021-09489-4.

Keywords: Income distribution, Inequality, Recession, COVID-19, Tax-benefit policies, Short-time work, Business survey, Labor demand, Microsimulation

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 231 KB) (231.9KB, pdf)

Funding

Open Access funding enabled and organized by Projekt DEAL.

Footnotes

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Contributor Information

Kerstin Bruckmeier, Email: kerstin.bruckmeier@iab.de.

Andreas Peichl, Email: peichl@econ.lmu.de.

Martin Popp, Email: martin.popp@iab.de.

Jürgen Wiemers, Email: juergen.wiemers@iab.de.

Timo Wollmershäuser, Email: wollmershaeuser@ifo.de.

References

  1. Abowd, J.M., Kramarz, F.: The analysis of labor markets using matched employer-employee data. In: Ashenfelter, O., Card, D (eds.) Handbook of Labor Economics: Vol. 3B, pp 2629–2710. North Holland, Amsterdam (1999)
  2. Almeida, V., Barrios, S., Christl, M., De Poli, S., Tumino, A., van der Wielen, W.: Households’ income and the cushioning effect of fiscal policy measures during great lockdown. Journal of Economic Inequality (forthcoming) (2021) [DOI] [PMC free article] [PubMed]
  3. Bargain O, Immervoll H, Peichl A, Siegloch S. Distributional consequences of labor-demand shocks: The 2008-2009 recession in Germany. Int. Tax Public Financ. 2012;19:118–138. doi: 10.1007/s10797-011-9177-9. [DOI] [Google Scholar]
  4. Bauer, A., Weber, E.: COVID-19: How much unemployment was caused by the shutdown in Germany? Applied Economics Letters Online First (2020)
  5. Becker SO, Wohlrabe K. European data watch: Micro data at the Ifo Institute for Economic Research – the “Ifo Business Survey”, usage and access. Schmollers Jahrbuch: Journal of Applied Social Science Studies / Zeitschrift fü,r Wirtschafts- und Sozialwissenschaften. 2008;128(2):307–319. doi: 10.3790/schm.128.2.307. [DOI] [Google Scholar]
  6. Bellmann L, Bender S, Schank T. Flexibilität der Qualifikationsstruktur aus betrieblicher Sicht: Substitutionalität oder Komplementarität. J Econ Stat. 1999;219(1-2):109–126. [Google Scholar]
  7. Berndt ER, Khaled MS. Parametric productivity measurement and choice among flexible functional forms. J. Polit. Econ. 1979;87(6):1220–1245. doi: 10.1086/260833. [DOI] [Google Scholar]
  8. Berndt ER. The Practice of Econometrics: Classic and Contemporary. Reading: Addison-Wesley; 1991. [Google Scholar]
  9. Beznoska, M., Niehues, J., Stockhausen, M.: Stabil durch die krise: Verteilungsfolgen der corona-pandemie - eine mikrosimulationsanalyse. IW Report 65/2020 (2020)
  10. Brücker, H., Haas, A., Hauptmann, A., Vallizadeh, E.: Zur Steuerung der Erwerbsmigration und zur Arbeitsmarktintegration Geflüchteter. Insitute for Employment Research IAB-Stellungnahme 11/2018 (2018)
  11. Brewer, M., Tasseva, I. V.: Did the UK policy response to COVID-19 protect household incomes? EUROMOD Working Paper Series EM 12/20 (2020) [DOI] [PMC free article] [PubMed]
  12. Bronka, P., Collado, D., Richiardi, M.: The Covid-19 crisis response helps the poor: The distributional and budgetary consequences of the UK lock-down EUROMOD Working Paper Series EM 11/20 (2020)
  13. Bruckmeier, K., Wiemers, J.: A new targeting – a new take-up? Non-take-up of social assistance in Germany after social policy reforms. Institute for Employment Research IAB Discussion Paper 10/2011 (2011)
  14. Card D, Heining J, Kline P. Workplace heterogeneity and the rise of West German wage inequality. Q. J. Econ. 2013;128(3):967–1015. doi: 10.1093/qje/qjt006. [DOI] [Google Scholar]
  15. Christensen LR, Jorgenson DW, Lau LJ. Transcendental logarithmic production frontiers. Rev. Econ. Stat. 1973;55(1):28–45. doi: 10.2307/1927992. [DOI] [Google Scholar]
  16. Diewert WE, Wales TJ. Flexible functional forms and global curvature conditions. Econometrica. 1987;55(1):43–68. doi: 10.2307/1911156. [DOI] [Google Scholar]
  17. Dolls M, Fuest C, Peichl A. Automatic stabilizers and economic crisis: US vs. Europe. J. Public Econ. 2012;96(3):279–294. doi: 10.1016/j.jpubeco.2011.11.001. [DOI] [Google Scholar]
  18. Dorn, F., Khailaie, S., Stoeckli, M., Binder, S.C., Lange, B., Lautenbacher, S., Peichl, A., Vanella, P., Wollmershäuser, T., Fuest, C., Meyer-Hermann, M.: The common interests of health protection and the economy: Evidence from scenario calculations of COVID-19 containment policies. MedRxiv (2020) [DOI] [PMC free article] [PubMed]
  19. Dustmann, C., Lindner, A., Schönberg, U., Umkehrer, M., vom Berge, P.: Reallocation effects of the minimum wage. Centre for Research & Analysis of Migration, CReAM Discussion Paper Series 07/20 (2020)
  20. Eberle, J., Jacobebbinghaus, P., Ludsteck, J., Witter, J.: Generation of time-consistent industry codes in the face of classication changes: Simple heuristic based on the establishment history panel (BHP). Institute for Employment Research FDZ Method Report Series 05/2011 (2011)
  21. Ellguth P, Kohaut S, Möller I. The IAB Establishment Panel: Methodological essentials and data quality. J Labor Market Res. 2014;47(1-2):27–41. doi: 10.1007/s12651-013-0151-0. [DOI] [Google Scholar]
  22. Familienkasse der BA - Direktion: Kindergeld/Kinderzuschlag - Jahreszahlen 2016. Familienkasse Direktion. https://statistik.arbeitsagentur.de/Statistikdaten/Detail/201612/famka/famka-jz/famka-jz-d-0-201612-pdf.pdf?__blob=publicationFile&v=1(2016)
  23. Federal Employment Agency: Ausgaben für aktive und passive Leistungen im SGB II - Deutschland, West/Ost, Länder und Jobcenter (Jahreszahlen). Statistics of the German Federal Employment Agency. https://statistik.arbeitsagentur.de/Statistikdaten/Detail/201612/ausgabenstatistik/ausgaben-sgbii/ausgaben-sgbii-dwoljc-0-201612-xls.xlsm?__blob=publicationFile&v=1 (2016)
  24. Federal Employment Agency: ANBA (Monatszahlen), ausgewählte Regionen, Oktober 2020. Statistics of the German Federal Employment Agency (2020)
  25. Figari, F., Fiori, C.V.: Welfare resilience in the immediate aftermath of the COVID-19 outbreak in Italy. EUROMOD Working Paper Series EM 6/20 (2020)
  26. Goebel J, Grabka MM, Liebig S, Kroh M, Richter D, Schroeder C, Schupp J. The German Socio-Economic Panel (SOEP) J. Econ. Stat. 2018;239(2):345–360. [Google Scholar]
  27. Hamermesh DS. Labor Demand. Princeton: Princeton University Press; 1993. [Google Scholar]
  28. Hans-Böckler-Stiftung: Pressedienst 10.07.2020 (2020)
  29. Jaynes ET. Information theory and statistical mechanics. Phys. Rev. Ser. II. 1957;106(4):620–630. [Google Scholar]
  30. Jaynes ET. Information theory and statistical mechanics II. Phys. Rev. Ser. II. 1957;108(2):171–190. [Google Scholar]
  31. Konle-Seidl, R.: Short-time work in Europe: Rescue in the current COVID -19 crisis. Institute for Employment Research IAB-Forschungsbericht 4/2020 (2020)
  32. Kruppe, T., Osiander, C.: Kurzarbeit in der Corona-Krise: Wer ist wie stark betroffen? Institute for Employment Research. IAB-Forum, 30 June 2020 (2020)
  33. Lehmann, R.: The forecasting power of the ifo Business Survey. Center for Economic Studies, CESifo Working Paper Series 8291 (2020)
  34. Lichter A, Peichl A, Siegloch S. The own-wage elasticity of labor demand: A meta-regression analysis. Eur. Econ. Rev. 2015;80:94–119. doi: 10.1016/j.euroecorev.2015.08.007. [DOI] [Google Scholar]
  35. McElreath R. Statistical Rethinking: A Bayesian Course with Examples in R and Stan. 2edn. Boca Raton: CRC Press; 2020. [Google Scholar]
  36. Müller D, Wolter S. German labour market data: Data provision and access for the international scientific community. German Econ. Rev. 2020;21(3):313–333. doi: 10.1515/ger-2019-0127. [DOI] [Google Scholar]
  37. O’Donoghue C, Sologon DM, Kyzyma I, McHale J. Modelling the distributional impact of the COVID-19 crisis. Fisc. Stud. 2020;41(2):321–336. doi: 10.1111/1475-5890.12231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Palomino, J. C., Rodriguez, J. G., Sebastian, R.: Wage inequality and poverty effects of lockdown and social distancing in Europe. European Economic Review, Online First (2020) [DOI] [PMC free article] [PubMed]
  39. Pudney S, Hancock R, Sutherland H. Simulating the reform of means-tested benefits with endogenous take-up and claim costs. Oxf. Bull. Econ. Stat. 2006;68(2):135–166. doi: 10.1111/j.1468-0084.2006.00156.x. [DOI] [Google Scholar]
  40. Sauer, S., Wohlrabe, K.: ifo Handbuch der Konjunkturumfragen. ifo Beiträge zur Wirtschaftsforschung 88. ifo Institute - Leibniz Institute for Economic Research at the University of Munich, Munich (2020)
  41. Schulten, T., Müller, T.: Kurzarbeitergeld in der Corona-Krise: Aktuelle Regelungen in Deutschland und Europa. Wirtschafts- und Sozialwissenschaftliches Institut, Policy Brief WSI Nr. 38,04/2020 (2020)
  42. Shannon CE. A mathematical theory of communication. Bell Syst. Techn. J. 1948;27(4):623–656. doi: 10.1002/j.1538-7305.1948.tb00917.x. [DOI] [Google Scholar]
  43. Shephard R. Cost and Production Functions. Princeton: Princeton University Press; 1953. [Google Scholar]
  44. Statistisches Bundesamt: Statistisches Jahrbuch 2018. Statistisches Bundesamt (Destatis) (2018)
  45. Statistisches Bundesamt: Wohngeld - Ausgaben im Zeitvergleich am 31.12. https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Soziales/Wohngeld/Tabellen/02-zv-bl-ausg-insg.html (2020)
  46. Wiemers J. Endogenizing take-up of social assistance in a microsimulation model – A case study for Germany. Int. J. Microsimulation. 2015;8(2):4–27. doi: 10.34196/ijm.00115. [DOI] [Google Scholar]
  47. Zellner A. An efficient method of estimating seemingly unrelated regressions and tests for aggregation bias. J. Am. Stat. Assoc. 1962;57(298):348–368. doi: 10.1080/01621459.1962.10480664. [DOI] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

(PDF 231 KB) (231.9KB, pdf)

Articles from Journal of Economic Inequality are provided here courtesy of Nature Publishing Group

RESOURCES