Skip to main content
Chinese Journal of Reparative and Reconstructive Surgery logoLink to Chinese Journal of Reparative and Reconstructive Surgery
. 2017 Feb;31(2):165–170. [Article in Chinese] doi: 10.7507/1002-1892.201609103

新型股骨近端内侧支撑钢板治疗股骨反转子间骨折的生物力学研究

Biomechanical assessment of newly-designed proximal femoral medial buttress plate for treatment of reverse oblique femoral intertrochanteric fracture

Rui ZHANG 1, Peng LUO 1, Wei HU 1, Chenrong KE 1, Jianshun WANG 1, Xiaoshan GUO 1,*
PMCID: PMC8458133  PMID: 29786247

Abstract

Objective

To evaluate the biomechanical properties of proximal femoral medial buttress plate (PFMBP) for fixing the reverse oblique intertrochanteric fractures by comparing with proximal femoral locking compression plate (PFLCP) and proximal femoral nail antirotation (PFNA).

Methods

Eighteen synthetic femoral bone models (Synbone) were divided into 3 groups (group PFLCP, group PFNA, and group PFMBP), 6 models in each group; an AO 31-A3.1 reverse oblique femoral intertrochanteric fracture was made based on the same criterion. After being fixed and embeded, the axial load testing, torsion testing, and axial load-to-failure testing were performed on each model. The axial displacement of different loads, torque of different torsion angles, and failure load of each model were recorded, and the stiffness of axial load and torsion were calculated.

Results

The axial stiffness in groups PFLCP, PFNA, and PFMBP were (109.42±30.14), (119.13±29.14), and (162.05±22.05) N/mm respectively, showing significant differences between groups (P<0.05). There were significant differences in torque between different torsion angles in the same group, as well as in the torque between groups at the same torsional angle (P<0.05). The torsion stiffness in groups PFLCP, PFNA, and PFMBP were (1.45±0.44), (1.10±0.13), and (1.36±0.32) N·mm/deg respectively; there were significant differences when compared groups PFLCP and PFMBP with group PFNA (P<0.05), but no significant difference was found between group PFLCP and group PFMBP (P>0.05). The failure loads of groups PFLCP, PFNA, and PFMBP were (1 408.88± 0.17), (1 696.56±0.52), and (2 154.65±0.10) N respectively, showing significant differences between groups (P<0.05).

Conclusion

The newly-designed PFMBP is better than PFNA and PFLCP in axial load stiffness and torsion stiffness for fixing reverse oblique intertrochanteric fracture by biomechanical test, indicating that reconstruction of medial stability is a key element for unstable intertrochanteric fracture.

Keywords: Reverse oblique intertrochanteric fracture, proximal femoral medial buttress plate, internal fixation, Biomechanics


股骨反转子间骨折治疗难度较高,目前以髓内固定为主。但随着髓内固定的广泛使用,内固定失效发生率呈上升趋势,术中复位不良和内固定物选择不当是导致失效的重要原因。越来越多的学者提出治疗股骨转子间不稳定型骨折的关键是维持股骨内侧皮质骨稳定的支撑作用[1]。但传统髓外固定主要对抗外侧皮质骨小梁的张应力,髓内固定主要对抗骨折两端部分剪力和张应力。鉴于此,我们设计了一种新型股骨近端内侧支撑钢板(proximal femoral medial buttress plate,PFMBP),主要用以对抗内侧皮质骨小梁压应力。本次研究通过与股骨近端锁定加压钢板(proximal femoral locking compression plate,PFLCP)、股骨近端防旋髓内钉(proximal femoral nail antirotation,PFNA)进行比较,探讨PFMBP固定股骨反转子间骨折的生物力学性能,评估PFBMP治疗股骨反转子间骨折的可行性。报告如下。

1. 材料与方法

1.1. 实验标本及主要器械

实验标本选择第 4 代 Synbone 人工股骨标准试验骨(左侧,以下简称标准骨;Malans Synbone 公司,瑞士)18 具,标准骨全长 337 mm,股骨头直径 48 mm,颈干角 135°,前倾角 15°。标准骨由硬质聚氨酯泡沫塑料制作,其模拟人体骨骼划分为皮质骨和松质骨两部分,内有直径为 15 mm 的空心孔道模拟髓腔,可进行髓内钉植入。

7 孔 PFLCP(厚 5 mm、长 13 cm)、PFNA(直径 9 mm、长 34 cm、厚 9 mm)、8 孔 PFBMP(厚 8 mm、长 10 cm;图 1),均由常州华森医疗器械有限公司提供。Instron E10000 动态万能生物力学测试机(Instron 公司,美国)。

图 1.

图 1

PFMBP reconstruction image in Mimics software

Mimics 软件中 PFMBP 重建图像

1.2. 实验分组及方法

取 18 具标准骨,以股骨小转子顶点为起始点,作 1 条与水平线成 60°角斜向股骨远端外侧皮质的骨折线,模拟 AO 31-A3.1 型股骨反转子间骨折,然后根据内固定不同将骨折模型随机分为 3 组(n=6)。PFLCP 组:首先用 2 枚克氏针临时固定骨折线,于股骨外侧放置钢板,拧入近端 3 枚 4.8 mm 锁定螺钉,然后依次拧入远端 4 枚 4.0 mm 锁定螺钉;PFNA 组:于大转子尖使用开口器开口后,向内、向前植入导针,并沿导针突破皮质后逐级扩髓。将主钉植入合适深度后安装瞄准器,向股骨颈植入导针,C 臂 X 线机透视满意后,拧入螺旋刀片,再于远端拧入锁定螺钉;PFMBP 组:先用 2 枚克氏针临时固定骨折线,于股骨内侧放置钢板后,拧入 2 枚近端 3.5 mm 普通螺钉,再于远端拉力螺钉孔钻孔测深后,拔出克氏针,拧入拉力螺钉,最后依次拧入近端 1 枚 3.5 mm普通螺钉及远端 4 枚 4.5 mm普通螺钉。

1.3. 生物力学测试

各组内固定标本以环氧树酯包埋固定,使其在冠状面保持内收 15°,模拟人单足站立时股骨位置,包埋固定 1 d 后行生物力学测试。

1.3.1 轴向压缩试验 使用压缩夹具将标本与生物力学测试机连接固定,将聚甲醇材料制作的模具放置于股骨头上,模拟髋臼作用,同时使轴向压缩时标本受力均匀。首先以 5 mm/min 速度进行预加载,加载至 100 N 持续 1~2 min,使标本与生物力学测试机紧密接触,并减少因弹性蠕变效应带来的误差。预加载完成后,以 5 mm/min 速度进行轴向载荷加载至 1 400 N,记录标本在 0、200、400、600、800、1 000、1 200、1 400 N 载荷下的轴向位移,并按照以下公式计算轴向压缩刚度:轴向压缩刚度=轴向载荷/轴向位移,利用线性回归方程计算总压缩刚度。见图 2 a

图 2.

图 2

Biomechanical testing a. Axial loading test; b. Torsion test; c. Axial load-to-failure test

生物力学测试 a. 轴向压缩试验; b. 扭转试验; c. 最大轴向压缩破坏试验

1.3.2 扭转试验 完成轴向压缩试验后,取下压缩夹具,更换为扭转夹具,将标本与生物力学测试机连接固定后,以 1 Hz 频率进行扭转,记录标本在扭转角度为 0、1、2、3、4、5°时的扭矩,按照以下公式计算扭转刚度:扭转刚度=扭矩/扭转角,利用线性回归方程计算总扭转刚度。见图 2 b

1.3.3 最大轴向压缩破坏试验 完成扭转试验后,取下扭转夹具,更换为压缩夹具,将标本与生物力学测试机连接固定后,以 5 mm/min 速度进行轴向载荷加载,直至标本破坏。见图 2 c。标本破坏标准:① 除原骨折线外,出现新骨折线;② 内固定失效,如钢板或螺钉弯曲、切出以及断裂;③ 轴向位移超过 15 mm;④ 数据采集图像中载荷-位移曲线趋于平缓,即随着轴向载荷的增加,模型轴向位移不发生变化,表明出现屈服。出现上述任意一种情况,即判定破坏成功,记录此时轴向载荷,作为最大轴向载荷。

1.4. 统计学方法

采用 SPSS21.0 统计软件进行分析。数据以均数±标准差表示,组间比较采用方差分析,两两比较采用SNK检验;检验水准 α=0.05。

2. 结果

2.1. 轴向压缩试验

载荷-位移曲线显示,随着载荷增加,3 组标本轴向位移亦随之增加(图 3)。当载荷超过 1 000 N 后,PFNA 组和 PFLCP 组相对 PFMBP 组轴向位移呈大幅度递增。PFLCP 组轴向压缩刚度为(109.42±30.14)N/mm,PFNA 组为(119.13±29.14)N/mm,PFMBP 组为(162.05±22.05)N/mm,组间比较差异均有统计学意义(P<0.05)。

图 3.

图 3

Load-displacement curve of 3 groups

3 组标本载荷-位移曲线

2.2. 扭转试验

3 组标本扭矩均随扭转角度增加而增加(表 1)。同一组中不同扭转角度下扭矩比较,差异有统计学意义(P<0.05);同一扭转角度下各组扭矩比较,差异亦有统计学意义(P<0.05)。 PFLCP 组扭转刚度为(1.45±0.44)N·mm/deg,PFNA 组为(1.10±0.13)N·mm/deg,PFMBP 组为(1.36±0.32)N·mm/deg。PFLCP 组、PFMBP 组与 PFNA 组比较,差异有统计学意义(P<0.05);PFLCP 及 PFMBP 组间比较差异无统计学意义(P>0.05)。

表 1.

Torque in different torsion angles among 3 groups(n=6,N·mm, Inline graphic

3 组不同扭转角度下扭矩比较(n=6,N·mm, Inline graphic

组别
Group
统计值
Statistic
*与PFNA组比较P<0.05,#与PFMBP组比较P<0.05
*Compared with group PFNA, P<0.05; # compared with group PFMBP, P<0.05
PFNA 0 1.09±0.02# 2.16±0.01# 3.28±0.11# 4.33±0.03# 5.47±0.02# F=98.89,P=0.00
PFMBP 0 1.46±0.04* 2.62±0.09* 3.97±0.01* 5.01±0.03* 6.06±0.04* F=75.60,P=0.00
PFLCP 0 1.48±0.09*# 2.67±0.03*# 3.93±0.02*# 5.36±0.04*# 6.51±0.05*# F=76.90,P=0.00
统计值
Statistic
F=85.97
P= 0.00
F=78.43
P= 0.00
F=79.69
P= 0.00
F=84.27
P= 0.00
F=91.27
P= 0.00

2.3. 最大轴向压缩破坏试验

3 组标本均未出现钢板及螺钉弯曲或断裂。PFLCP 组 1 具标本出现新骨折线,其余 5 具均为骨折近端位移超过 15 mm。PFNA 组 2 具远端锁定螺钉周围出现新骨折线,4 具骨折近端位移超过 15 mm。PFMBP 组 3 具钢板远端出现新骨折线,3 具均为轴向位移超过 15 mm。见图 4

图 4.

图 4

Failure of fixation a. Obvious fracture fragment displacement in group PFNA; b. New fracture line in the distal of plate in group PFMBP; c. Obvious fracture fragment displacement in group PFLCP

3 组内固定失效观察 a. PFNA 组骨折端明显移位; b. PFMBP 组钢板远端出现新骨折线; c. PFLCP 组骨折端明显移位

PFLCP 组最大轴向载荷为(1 408.88±0.17)N,PFNA 组为(1 696.56± 0.52)N,PFMBP 组为(2 154.65±0.10)N。3 组间最大轴向载荷比较,差异均有统计学意义(P<0.05)。

3. 讨论

PFNA 最大特点是其螺旋刀片具有宽大表面积和逐渐增加的芯直径,拧入后可以填压松质骨,提高螺旋刀片的锚合力。随着 PFNA 的广泛使用,内固定失效率逐渐升高,据报道可达 3%~40%[2-3]。内固定失效通常表现为螺旋刀片突入髋关节囊或从主钉脱出、发生髋内翻和股骨近端劈裂骨折等,多与患者骨质疏松、术中复位不良及内固定装置选择不当有关。PFLCP 属于髓外固定,治疗股骨转子间不稳定型骨折失败率高达 37%~40%,仅作为一种治疗股骨近端骨折的替代方法[4-6]。一系列关于髓内固定与髓外固定治疗股骨转子间骨折的生物力学研究表明,髓内固定生物力学性能优于髓外固定[7-9]。但临床研究发现,与髓外固定相比,髓内固定具有创伤较小、固定更坚强、术后并发症较少等优势[10-12]

传统髓外固定是置于股骨外侧,而我们设计的 PFMBP 置于股骨内侧,其能与内侧壁达良好贴合,增加了接触面积,提高了内固定物对抗内侧皮质骨小梁压应力的能力[13]。Chang 等[14]提出积极重建股骨近端内侧完整性支撑是治疗股骨转子间不稳定型骨折的关键。为探讨内固定物对抗张应力和压应力对治疗股骨反转子间骨折的重要性,评估 PFBMP 治疗股骨反转子间骨折的可行性,我们进行了本次生物力学试验。本次研究选择了标准骨,研究表明其能较好模拟尸体干骨,且与尸体骨相比具有性质均一、力学性能稳定的优点,可在骨科临床内固定材料力学测试研究中达到良好物理模拟效果[15],目前已有大量生物力学试验选择标准骨作为实验对象[16-18]

本研究轴向压缩试验结果显示,PFMBP 组轴向压缩刚度最大,其次为 PFNA 组、PFLCP 组。但 Forward 等[19]研究显示,髓内钉固定股骨转子间骨折后,其轴向压缩刚度优于锁定钢板和 95°角钢板;Bong 等[20]研究也表明,髓内钉轴向压缩刚度优于滑动髋螺钉。我们分析本研究结果与 Forward 等[19]及 Bong 等[20]存在差异的主要原因为:① 本研究采用的 PFMBP 厚 8 mm,PFNA 为 9 mm,PFLCP 为 5 mm,PFMBP、PFNA 厚于 PFLCP,因而 PFMBP 和 PFNA 的轴向压缩刚度大于 PFLCP;② PFMBP 远、近端连接杆短而粗,缩短了力臂,可以提供更好的生物力学稳定性;③ PFMBP 近端与股骨颈接触面积较大,可承受较大的内侧压应力作用;④ PFMBP 远端设计有两个偏心孔,拧入拉力螺钉后可对骨折断端形成有效加压作用。因而在最大轴向压缩破坏试验中,PFMBP 组最大轴向载荷大于 PFNA 组,也验证了 PFMBP 在轴向载荷下具备强大的抗压性。

Fensky 等[21]报道髓内固定与髓外固定治疗股骨转子间不稳定型骨折的扭转刚度无明显差异。但本研究中 PFLCP 组、PFMBP 组均优于 PFNA 组,且前两者间无明显差异。我们分析主要与以下两点设计有关:① PFMBP 近端植入了 3 枚螺钉,且最外侧的 2 枚螺钉呈“八”字设计;② PFMBP 长10 cm,PFLCP 长 13 cm,两种钢板远端部分均能植入相对较多螺钉,加强了抗扭转能力。

综上述,PFMBP 在轴向压缩刚度、扭转刚度方面与 PFLCP、PFNA 相比具有优越性,提示维持内侧稳定性在治疗股骨反转子间骨折中具有重要意义,PFBMP 治疗此类骨折可行。但本研究也存在以下不足:首先,标准骨上无肌肉等软组织附着,因此不能模拟真实人体下肢力的传导与作用;其次,本研究样本量较少,对测量结果有一定影响;再者,试验中轴向载荷和扭转情形不能完全模拟人体日常活动或受伤时受力机制;最后,本研究仅进行了轴向压缩、扭转及破坏试验。因此,以上结论还需要更大样本量、多项生物力学性能指标以及有限元分析加以验证,也需要临床应用进行检验。

Funding Statement

国家自然科学基金资助项目(81472146)

National Natural Science Foundation of China (81472146)

References

  • 1.SimmermacherRK, LjungqvistJ, BailH The new proximal femoral nail antirotation (PFNA®) in daily practice: results of a multicentre clinical study . Injury. 2008;39(8):932–939. doi: 10.1016/j.injury.2008.02.005. [DOI] [PubMed] [Google Scholar]
  • 2.MakkiD, MatarHE, JacobN Comparison of the reconstruction trochanteric antigrade nail (TAN) with the proximal femoral nail antirotation (PFNA) in the management of reverse oblique intertrochanteric hip fractures. Injury. 2015;46(12):2389–2393. doi: 10.1016/j.injury.2015.09.038. [DOI] [PubMed] [Google Scholar]
  • 3.ChouDT, TaylorAM, BoultonC Reverse oblique intertrochanteric femoral fractures treated with the intramedullary hip screw (IMHS) Injury. 2012;43(6):817–821. doi: 10.1016/j.injury.2011.09.011. [DOI] [PubMed] [Google Scholar]
  • 4.WirtzC, AbbassiF, EvangelopoulosDS High failure rate of trochanteric fracture osteosynthesis with proximal femoral locking compression plate. Injury. 2013;44(6):751–756. doi: 10.1016/j.injury.2013.02.020. [DOI] [PubMed] [Google Scholar]
  • 5.StreubelPN, MoustoukasMJ, ObremskeyWT Mechanical failure after locking plate fixation of unstable intertrochanteric femur fractures. J Orthop Trauma. 2013;27(1):22–28. doi: 10.1097/BOT.0b013e318251930d. [DOI] [PubMed] [Google Scholar]
  • 6.LinSJ, HuangKC, ChuangPY The outcome of unstable proximal femoral fracture treated with reverse LISS plates. Injury. 2016;47(10):2161–2168. doi: 10.1016/j.injury.2016.07.015. [DOI] [PubMed] [Google Scholar]
  • 7.KuzykPR, LoboJ, WhelanD Biomechanical evaluation of extramedullary versus intramedullary fixation for reverse obliquity intertrochanteric fractures. J Orthop Trauma. 2009;23(1):31–38. doi: 10.1097/BOT.0b013e318190ea7d. [DOI] [PubMed] [Google Scholar]
  • 8.WeiserL, RuppelAA, NüchternJV Extra-vs. intramedullary treatment of pertrochanteric fractures: a biomechanical in vitro study comparing dynamic hip screw and intramedullary nail. Arch Orthop Trauma Surg. 2015;135(8):1101–1106. doi: 10.1007/s00402-015-2252-4. [DOI] [PubMed] [Google Scholar]
  • 9.KnobeM, GradlG, BueckingB Locked minimally invasive plating versus fourth generation nailing in the treatment of AO/OTA 31A2.2 fractures: A biomechanical comparison of PCCP(®) and Intertan nail(®) Injury. 2015;46(8):1475–1482. doi: 10.1016/j.injury.2015.05.011. [DOI] [PubMed] [Google Scholar]
  • 10.EvaniewN, BhandariM Cochrane in CORR®: Intramedullary nails for extracapsular hip fractures in adults (review) . Clin Orthop Relat Res. 2015;473(3):767–774. doi: 10.1007/s11999-014-4123-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.MakkiD, MatarHE, JacobN Comparison of the reconstruction trochanteric antigrade nail (TAN) with the proximal femoral nail antirotation (PFNA) in the management of reverse oblique intertrochanteric hip fractures. Injury. 2015;46(12):2389–2393. doi: 10.1016/j.injury.2015.09.038. [DOI] [PubMed] [Google Scholar]
  • 12.IrgitK, RichardRD, BeebeMJ Reverse oblique and transverse intertrochanteric femoral fractures treated with the long cephalomedullary nail. J Orthop Trauma. 2015;29(9):e299–304. doi: 10.1097/BOT.0000000000000340. [DOI] [PubMed] [Google Scholar]
  • 13.PeterRE Open reduction and internal fixation of osteoporotic acetabular fractures through the ilio-inguinal approach: use of buttress plates to control medial displacement of the quadrilateral surface. Injury. 2015;46(Suppl 1):S2–7. doi: 10.1016/S0020-1383(15)70003-3. [DOI] [PubMed] [Google Scholar]
  • 14.ChangSM, ZhangYQ, MaZ Fracture reduction with positive medial cortical support: a key element in stability reconstruction for the unstable pertrochanteric hip fractures. Arch Orthop Trauma Surg. 2015;135(6):811–888. doi: 10.1007/s00402-015-2206-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.HeinerAD, BrownTD Structural properties of a new design of composite replicate femurs and tibias. J Biomech. 2001;34(6):773–781. doi: 10.1016/s0021-9290(01)00015-x. [DOI] [PubMed] [Google Scholar]
  • 16.WangJQ, ZhaoCP, SuYG Computer-assisted navigation systems for insertion of cannulated screws in femoral neck fractures: a comparison of bi-planar robot navigation with optoelectronic navigation in a Synbone hip model trial. Chin Med J (Engl) 2011;124(23):3906–3911. [PubMed] [Google Scholar]
  • 17.张巍, 罗从风, 曾炳芳 四种不同内固定治疗胫骨平台后外侧剪应力骨折的生物力学研究. 中华创伤骨科杂志. 2010;12(11):1069–1073. [Google Scholar]
  • 18.LuoQ, YuenG, LauTW A biomechanical study comparing helical blade with screw design for sliding hip fixations of unstable intertrochanteric fractures. Scientific World Journal. 2013;2013:351936. doi: 10.1155/2013/351936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.ForwardDP, DoroCJ, O’TooleRV A biomechanical comparison of a locking plate, a nail, and a 95° angled blade plate for fixation of subtrochanteric femoral fractures. J Orthop Trauma. 2012;26(6):334–340. doi: 10.1097/BOT.0b013e3182254ea3. [DOI] [PubMed] [Google Scholar]
  • 20.BongMR, PatelV, IesakaK Comparison of a sliding hip screw with a trochanteric lateral support plate to an intramedullary hip screw for fixation of unstable intertrochanteric hip fractures: a cadaver study. J Trauma. 2004;56(4):791–794. doi: 10.1097/01.ta.0000046265.44785.0c. [DOI] [PubMed] [Google Scholar]
  • 21.FenskyF, NüchternJV, KolbJP Cement augmentation of the proximal femoral nail antirotation for the treatment of osteoporotic pertrochanteric fractures-a biomechanical cadaver study. Injury. 2013;44(6):802–807. doi: 10.1016/j.injury.2013.03.003. [DOI] [PubMed] [Google Scholar]

Articles from Chinese Journal of Reparative and Reconstructive Surgery are provided here courtesy of Sichuan University

RESOURCES