Abstract
Since the discovery of RET fusion–positive (RET+) NSCLC around late 2011 to early 2012, clinical trials of multikinase inhibitors and highly potent and selective RET tyrosine kinase inhibitors have indicated that RET fusion is an actionable oncogenic driver in NSCLC. There seems to be a differential response to multikinase inhibitors depending on the fusion partner (KIF5B-RET versus non–KIF5B-RET); thus, knowledge of the fusion partners in RET+ NSCLC is important. To date, we identified 48 unique fusion partners in RET from published literature and congress proceedings. Two of the novel fusion partners (CCNYL2 and TRIM24) were identified in RET fusions that emerged as resistant to EGFR tyrosine kinase inhibitors. In addition, multiple intergenic rearrangements were identified.
Keywords: 5′ fusion partners, RET, NSCLC, Selpercatinib, Pralsetinib, Whole-transcriptome sequencing
Introduction
RET fusion–positive (RET+) NSCLC was discovered in early 2012,1, 2, 3, 4 5 years after the discovery of ALK and ROS1 fusion–positive NSCLC. There have been prospective studies investigating multikinase inhibitors (MKIs) such as vandetanib, cabozantinib, lenvatinib, sorafenib, and RXDX-105, which revealed modest clinical activity.5, 6, 7, 8, 9 More importantly, differential responses were observed on the basis of the specific fusion partner KIF5B verus non-KIF5B in RET+ NSCLC. The KIF5B-RET variant in NSCLC seems to be more resistant to MKIs than the other dominant CCDC6-RET fusion variant.6,9 Two highly potent and selective RET tyrosine kinase inhibitors (TKIs), selpercatinib (LIBRETTO-001, NCT03157128) and pralsetinib (ARROW, NCT03037385),10,11 are undergoing clinical trials for RET+ and RET-mutated tumors. In addition, RET fusion is one of the major receptor tyrosine kinase fusions identified as a resistance mechanism to EGFR TKIs.12 We undertook this review to catalog the fusion partners identified in literature up to April 2020 for easy reference.
Methods and Results
We searched PubMed publications and conference or congress abstracts and presentations extensively to identify novel RET fusion partners (including noncoding RNAs). We also communicated with authors who had presented posters to obtain lists of novel fusion partners. We included only fusion partners that retained the 3′ RET kinase domain. Overall, a total of 48 distinct RET fusion partners have been identified in literature as of April 2020 (Table 1).1, 2, 3, 4, 5,7,9,13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34 The RET gene is located on chromosomal 10q11.21. A total of 11 fusion partners are located on the long arm of chromosome 10 (10q), and three of the fusion partners are located around 10q11. Given the discovery of RET+ NSCLC occurred about 5 years after that of ALK+ and ROS1+ NSCLC, many of these novel RET fusion variants have not been treated with either MKIs or highly selective RET TKIs. Multiple intergenic rearrangements, mostly to exon 12 of RET, have also been identified and listed separately in Table 2.31,35 To date, none of these intergenic RET rearrangements have been reported to respond to RET TKIs; thus, the significance of these intergenic rearrangements remains to be determined, including whether functional fusion RNAs can be transcribed from these intergenic rearrangements.
Table 1.
No. | Fusion Partner | Year Presented/Published in Print With Page Numbers | Chromosomal Location | Fusion Breakpoint | Response to RET TKI at the Time of Publication | Tumor Source | Method of Detection | Variant Frequency in Tumor | FISH/IHC | References |
---|---|---|---|---|---|---|---|---|---|---|
1 | KIF5B | 2012 | 10p11.22 | (K15, R12) (K16, R12) (K23, R12) |
Not treated with RET TKI | FFPE | RNA sequencing | NR | NR/NR | Ju et al.1 |
2012 | 10p11.22 | (K15, R12) (K16, R12) (K23, R12) (K24, R8) |
Not treated with RET TKI | FFPE | RT-PCR, Sanger sequencing | NR | NR/+ | Kohno et al.2 | ||
2012 | 10p11.22 | (K15, R12) (K16, R12) (K23, R12) (K23, R12) (K24, R11) |
Not treated with RET TKI | FFPE | RT-PCR, Sanger sequencing | NR | NR/NR | Takeuchi et al.3 | ||
2012 | 10p11.22 | (K15, R12) | Not treated with RET TKI | FFPE | NGS | NR | NR/NR | Lipson et al.4 | ||
2012 | 10p11.22 | (K15, R12) (K22, R12) |
Not treated with RET TKI | FFPE | RT-PCR, Sanger sequencing | NR | NR/NR | Yokota et al.13 | ||
2 | CCDC6 | 2012 | 10q21.2 | (C1, R12) | Not treated with RET TKI | FFPE | RT-PCR, Sanger sequencing | NR | NR/NR | Takeuchi et al.3 |
10q21.2 | (C1, R12) | Not treated with RET TKI | Cell line | RT-PCR | NR | NR/NR | Matsubara et al.14 | |||
3 | NCOA4 | 2012 | 10q11.22 | (N6, R12) | Not treated with RET TKI | FFPE | RT-PCR | NR | +/+ | Wang et al.15 |
4 | TRIM33 | 2013 | 1p13.2 | (T14, R12) | PR to cabozantinib | FFPE | NGS | NR | +/NR | Drilon et al.16 |
5 | RUFY2 | 2014 | 10q21.3 | (R9, R12) | Not treated with RET TKI | FFPE | Targeted RNA sequencing | NR | +/NR | Zheng et al.17 |
6 | CUX1 | 2014 | 7q22.1 | C10, R12) | Not treated with RET TKI | FFPE | Anchored multiple PCR, NGS | NR | +/NR | Lira et al.18 |
7 | KIAA1468/(RELCH)a | 2014 | 18q21.33 | (K10, R12) | Not treated with RET TKI | FFPE | RT-PCT | NR | NR/NR | Nakaoku et al.19 |
KIAA1468/(RELCH)a | 2019 | 18q21.33 | NR | Treated with selpercatinib | FFPE or plasma | NGS | NR | NR/NR | Drilon et al.20 | |
RELCHa | 2020 | 18q21.33 | (R10, R12) | Not treated with RET TKI | FFPE | NGS | NR | +/NR | Jiang et al.21 | |
8 | MPRIP | 2016 | 17p11.2 | (M19, R12) | Not treated with RET TKI | FFPE | Targeted RNA sequencing | NR | NR/NR | Fang et al.22 |
9 | CLIP1 | 2016 | 12q24.31 | NR | PR to cabozantinib | FFPE | NGS | NR | NR/NR | Drilon et al.5 |
10 | ERC1 | 2016 | 12p13.33 | NR | SD to cabozantinib | FFPE | NGS | NR | NR/NR | Drilon et al.5 |
11 | KIAA1217 | 2016 | 10p12.2-p12.1 | (K11, R10) | Not treated with RET TKI | FFPE | NGS | NR | +/NR | Lee et al.23 |
12 | MYO5C | 2016 | 15q21.2 | (M25, R12) | SD to vandetanib | FFPE | NGS | NR | +/NR | Lee et al.7 |
13 | EPHA5 | 2017 | 4q13.1-q13.2 | NR | Response to RET TKI | FFPE | NGS | NR | NR/NR | Gautschi et al.24 |
14 | PICALM | 2017 | 11q14.2 | NR | NR | FFPE | NGS | NR | NR/NR | Gautschi et al.24 |
15 | FRMDA4 (KIAA1294) | 2017 | 10p13 | (F12, R12) | Not treated with RET TKI | FFPE | NGS | NR | +/NR | Velcheti et al.25 |
16 | RASSF4 | 2017 | 10q11.21 | (R3, R12) | Not treated with RET TKI | FFPE | NGS | NR | NR/NR | Zehir et al.26 |
17 | KIF13A | 2018 | 6p22.3 | (K18, R12) | Not treated with RET TKI | FFPE | NGS | NR | NR/NR | Zhang et al.27 |
18 | WAC | 2018 | 10p12.1-p11.2 | (W3, R12) | Not treated with RET TKI | FFPE | NGS | NR | NR/NR | Velcheti et al.28 |
19 | TBC1D32 (C6orf170) | 2019 | 6q22.31 | (T9, R12) | Not treated with RET TKI | FFPE | NGS | NR | NR/NR | Peng et al.29 |
20 | EML4 | 2019 | 2p21 | NR | PR to RXDX-105 | FFPE | NGS | NR | NR/NR | Drilon et al.9 |
21 | PARD3 | 2019 | 10p11.22-p11.21 | NR | PR to RXDX-105 | FFPE | NGS | NR | NR/NR | Drilon et al.9 |
22 | ARHGAP12 | 2019 | 10p11.22 | NR | Treated with selpercatinib | FFPE or plasma | NGS | NR | NR/NR | Drilon et al.20 |
2019 | 10p11.22 | NR | NR | FFPE | NGS | NR | NR/NR | Liu et al.30 | ||
23 | CCDC88C | 2019 | 14q32.11-q32.12 | NR | Treated with selpercatinib | FFPE or plasma | NGS | NR | NR/NR | Drilon et al.20 |
24 | DOCK1b | 2019 | 10q26.2 | NR | Treated with selpercatinib | FFPE or plasma | NGS | NR | NR/NR | Drilon et al.20 |
25 | RBPMSb | 2019 | 8p12 | NR | Treated with selpercatinib | FFPE or plasma | NGS | NR | NR/NR | Drilon et al.20 |
26 | PRKAR1A | 2019 | 17q24.2 | NR | Treated with selpercatinib | FFPE or plasma | NGS | NR | NR/NR | Drilon et al.20 |
27 | ADD3 | 2019 | 10q25.1-q25.2 | (A1, R12) | NR | FFPE or plasma | NGS | NR | NR/NR | Zhang et al.31 |
28 | ANKS1B | 2019 | 12q23.1 | (A1, R12) | NR | FFPE or plasma | NGS | NR | NR/NR | Zhang et al.31 |
29 | CCDC186 | 2019 | 10q25.3 | (C10, R12) | NR | FFPE or plasma | NGS | NR | NR/NR | Zhang et al.31 |
30 | CCNYL2c | 2019 | 10q11.21 | (C6, R16) | SD to combination of cabozantinib and osimertinib | FFPE or plasma | NGS | NR | NR/NR | Zhang et al.31 |
31 | PCM1 | 2019 | 8p22 | (P29, R12) | NR | FFPE or plasma | NGS | NR | NR/NR | Zhang et al.31 |
32 | PRKG1 | 2019 | 10q11.23-21.1 | (P7, R12) | NR | FFPE or plasma | NGS | NR | NR/NR | Zhang et al.31 |
33 | PTPRK | 2019 | 6q22.33 | (P3, R12) | NR | FFPE or plasma | NGS | NR | NR/NR | Zhang et al.31 |
34 | SIRT1 | 2019 | 10q21.3 | (S8, R12) | NR | FFPE or plasma | NGS | NR | NR/NR | Zhang et al.31 |
35 | SORBS1 | 2019 | 10q24.1 | (S8, R12) | NR | FFPE or plasma | NGS | NR | NR/NR | Zhang et al.31 |
36 | TSSK4 | 2019 | 14q1 | (T1, R12) | NR | FFPE or plasma | NGS | NR | NR/NR | Zhang et al.31 |
37 | TRIM24 | 2019 | 7q33-q34 | NR | Treated with selpercatinib | FFPE or plasma | NGS | NR | NR/NR | Drilon et al.20 |
TRIM24d | 2019 | 7q33-q34 | NR | NR | Plasma | NGS | NR | NR/NR | Rich et al.32 | |
38 | CCDC3 | 2019 | 10p13 | NR | NR | FFPE | NGS | NR | NR/NR | Liu et al.30 |
39 | CTNNA3 | 2019 | 10q21.3 | NR | NR | FFPE | NGS | NR | NR/NR | Liu et al.30 |
40 | DYDC1 | 2019 | 10q23.1 | NR | NR | FFPE | NGS | NR | NR/NR | Liu et al.30 |
41 | EML6 | 2019 | 2p16.1 | NR | NR | FFPE | NGS | NR | NR/NR | Liu et al.30 |
42 | PRKCQ | 2019 | 10p15.1 | NR | NR | FFPE | NGS | NR | NR/NR | Liu et al.30 |
43 | PRPF18 | 2019 | 10p13 | NR | NR | FFPE | NGS | NR | NR/NR | Liu et al.30 |
44 | LSM14A | 2020 | 19q13.11 | (L9, R20) | NR | FFPE | NGS | NR | +/NR | Lv et al.33 |
45 | GPRC5Be | 2020 | 16p12.3 | NR | NR | FFPE or plasma | NGS | NR | NR/NR | Lu et al.34 |
46 | GPR139e | 2020 | 16p12.3 | NR | NR | FFPE or plasma | NGS | NR | NR/NR | Lu et al.34 |
47 | ANK3 | 2020 | 10q21.2 | NR | NR | FFPE or plasma | NGS | NR | NR/NR | Lu et al.34 |
48 | EPC1f | 2020 | 10p11.22 | NR | NR | FFPE or plasma | NGS | NR | NR/NR | Lu et al.34 |
FFPE: formalin-fixed paraffin-embedded; FISH, fluorescence in situ hybridization; IHC, immunohistochemistry; NGS, next-generation sequencing; NR: not reported; PR: partial response; RT-PCR, reverse transcriptase polymerase chain reaction; SD: stable disease; TKI, tyrosine kinase inhibitor.
KIAA1468 is the same as RELCH.
DOCK1-RET and RBPMS-RET occurred in the same tumor.
CCNYL2-RET as resistance to osimertinib (EGFR L858R).
TRIM24-RET as resistance to EGFR del 19.
GPRC5B and GPR139 were detected as dual fusions in one case.
EPC1 was detected as dual fusions in one case with the other fusion partner being KIF5B.
Table 2.
No. | Year Presented/Published in Print |
Chromosomal Location | Potential Fusion Partner Gene |
RET Exon Fusion | Response to RET TKI at the Time of Publication | Tumor Source | Method of Detection | Variant Frequency in Tumor | FISH/IHC | References |
---|---|---|---|---|---|---|---|---|---|---|
1 | 2019 | 10p14-p13 | CDC123a | R12 | Treated with capmatinib, unknown response | FFPE | NGS | NR | NR/NR | Xu et al.35 |
2 | 2019 | 10q11.21 | ALOX5 | R11 | NR | FFPE or plasma | NGS | NR | NR/NR | Zhang et al.31 |
3 | 2019 | 10q21.2 | ANK3 | R11 | NR | FFPE or plasma | NGS | NR | NR/NR | Zhang et al.31 |
4 | 2019 | 10q25.2 | DUSP5 | R12 | NR | FFPE or plasma | NGS | NR | NR/NR | Zhang et al.31 |
5 | 2019 | 10p13 | FAM188A (MINDY3) | R12 | NR | FFPE or plasma | NGS | NR | NR/NR | Zhang et al.31 |
6 | 2019 | 10p15.1 | IL2RA | R12 | NR | FFPE or plasma | NGS | NR | NR/NR | Zhang et al.31 |
7 | 2019 | 10q23.31 | LOC101926942 (LINC02653) | R12 | NR | FFPE or plasma | NGS | NR | NR/NR | Zhang et al.31 |
8 | 2019 | 10p12.1 | LOC105376468 | R12 | NR | FFPE or plasma | NGS | NR | NR/NR | Zhang et al.31 |
9 | 2019 | 10q11.21 | LOC105378269 | R12 | NR | FFPE or plasma | NGS | NR | NR/NR | Zhang et al.31 |
10 | 2019 | 5p12 | MRPS30 | R12 | NR | FFPE or plasma | NGS | NR | NR/NR | Zhang et al.31 |
11 | 2019 | 10p11.22 | NRP1 | R12 | NR | FFPE or plasma | NGS | NR | NR/NR | Zhang et al.31 |
12 | 2019 | 16q23.2 | PRCAT47 (ARLNC1) | R11 | NR | FFPE or plasma | NGS | NR | NR/NR | Zhang et al.31 |
13 | 2019 | 10p13 | PTER | R12 | NR | FFPE or plasma | NGS | NR | NR/NR | Zhang et al.31 |
14 | 2019 | 10q21.1 | UBE2D1 | R12 | NR | FFPE or plasma | NGS | NR | NR/NR | Zhang et al.31 |
15 | 2019 | 19p12 | ZNF43 | R12 | NR | FFPE or plasma | NGS | NR | NR/NR | Zhang et al.31 |
16 | 2019 | 10p11.23 | ZNF438 | R11 | NR | FFPE or plasma | NGS | NR | NR/NR | Zhang et al.31 |
FFPE: formalin-fixed paraffin-embedded; FISH, fluorescence in situ hybridization; IHC, immunohistochemistry; NGS, next-generation sequencing; NR, not reported; TKI, tyrosine kinase inhibitor.
RET fusion as potential resistance to osimertinib for EGFR (del 19, T790M, C797G/S)
Discussion
The number of RET fusion partners identified in RET+ NSCLC as of April 2020 is about 48, which is fewer than the number of ALK fusion partners identified.36 Again, we expect that more fusion partners in RET+ NSCLC will be identified with the continual use of next-generation sequencing (NGS), including whole-transcriptome sequencing as the diagnostic platform migrates to exhaustively identify all the actionable driver mutations in NSCLC, particularly RET fusions, given the impending approval of selpercatinib and pralsetinib. Furthermore, not all the fusion partners identified in other tumor types such as thyroid cancer have been identified in RET+ NSCLC.26,37 Currently, only the KIF5B fusion partner in KIF5B-RET has been reported to confer poor response to MKIs,6,9 because the kinesin domain of KIF5B interacts with the kinase domain of RET to create a signaling hub rendering resistance to RET inhibition alone.38 With this catalog of 5′ fusion partners in RET+ NSCLC, we hope to increase awareness of the various fusion partners in RET+ NSCLC and stimulate further translational research.
Concluding Perspectives
-
1.
RET+ NSCLC is a heterogeneous disease with at least 48 distinct fusion partners identified in the literature as of April 2020.
-
2.
With the anticipated approval of selpercatinib and pralsetinib for RET+ NSCLC, many more fusion partners and intergenic rearrangements will likely be identified with the ever-increasing adoption of targeted RNA sequencing and whole-transcriptome sequencing because of the need to identify rare actionable fusions such as NTRK and NRG1 fusions in general, and also RET fusions in particular.
-
3.
RET fusions are also common receptor tyrosine kinase fusions identified as acquired resistance to EGFR TKIs. Two novel fusion partners (CCNYL2 and TRIM24) were identified as resistance mechanisms to EGFR TKI in EGFR+ NSCLC.
-
4.
The functional significance of intergenic rearrangements remains to be determined. In one study, intergenic rearrangements accounted for 7.7% of the RET fusions identified. However, it is yet to be determined whether these intergenic rearrangements are transcribed into functional RET RNA fusions.
-
5.
We recommend that clinicians from all over the world continue to report these novel fusions and intergenic rearrangements with information on the following: (1) exon or fusion breakpoints; (2) response to RET TKIs; (3) allele frequency; and (4) whether the tumor is RET-positive on fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC), if possible. Although RET TKIs are being developed after ALK and ROS1 TKIs, RET detection by IHC and FISH has not gone through health agency regulations given that NGS is the primary companion diagnostic platform used to detect RET fusions; thus, not much is known about the sensitivity and specificity as well as the positive and negative predictive values of these two testing modalities. We do realize that the uptake and utility of IHC and FISH for RET detection may be limited when NGS is likely the first approved companion diagnostic platform for RET fusions and increasing uptake to identify even rarer actionable driver alterations such as NRG fusions.
Footnotes
Disclosure: Dr. Ou has stock ownership and was on the scientific advisory board of Turning Point Therapeutics, Inc. (until February 28, 2019); has received speaker honoraria from Merck, Roche/Genentech, AstraZeneca, Takeda/ARIAD, and Pfizer; and has received advisory fees from Roche/Genentech, AstraZeneca, Daiiki Sankyo, Takeda/ARIAD, Pfizer, Foundation Medicine, Inc., and Spectrum. Dr. Zhu has received honoraria from AstraZeneca, Biocept, Roche-Foundation Medicine, Roche/Genentech, and Takeda, and has stock ownership of Turning Point Therapeutics Inc.
References
- 1.Ju Y.S., Lee W.C., Shin J.Y. Fusion of KIF5B and RET transforming gene in lung adenocarcinoma revealed from whole-genome and transcriptome sequencing. Genome Res. 2012;22:436–445. doi: 10.1101/gr.133645.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Kohno T., Ichikawa H., Totoki Y. KIF5B-RET fusions in lung adenocarcinoma. Nat Med. 2012;18:375–377. doi: 10.1038/nm.2644. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Takeuchi K., Soda M., Togashi Y. RET, ROS1 and ALK fusions in lung cancer. Nat Med. 2012;18:378–381. doi: 10.1038/nm.2658. [DOI] [PubMed] [Google Scholar]
- 4.Lipson D., Capelletti M., Yelensky R. Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies. Nat Med. 2012;18:382–384. doi: 10.1038/nm.2673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Drilon A., Rekhtman N., Arcila M. Cabozantinib in patients with advanced RET-rearranged non-small-cell lung cancer: an open-label, single-centre, phase 2, single-arm trial. Lancet Oncol. 2016;17:1653–1660. doi: 10.1016/S1470-2045(16)30562-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Yoh K., Seto T., Satouchi M. Vandetanib in patients with previously treated RET-rearranged advanced non-small-cell lung cancer (LURET): an open-label, multicentre phase 2 trial. Lancet Respir Med. 2017;5:42–50. doi: 10.1016/S2213-2600(16)30322-8. [DOI] [PubMed] [Google Scholar]
- 7.Lee S.H., Lee J.K., Ahn M.J. Vandetanib in pretreated patients with advanced non-small cell lung cancer-harboring RET rearrangement: a phase II clinical trial. Ann Oncol. 2017;28:292–297. doi: 10.1093/annonc/mdw559. [DOI] [PubMed] [Google Scholar]
- 8.Hida T., Velcheti V., Reckamp K.L. A phase 2 study of lenvatinib in patients with RET fusion-positive lung adenocarcinoma. Lung Cancer. 2019;138:124–130. doi: 10.1016/j.lungcan.2019.09.011. [DOI] [PubMed] [Google Scholar]
- 9.Drilon A., Fu S., Patel M.R. A phase I/Ib trial of the VEGFR-sparing multikinase RET inhibitor RXDX-105. Cancer Discov. 2019;9:384–395. doi: 10.1158/2159-8290.CD-18-0839. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Subbiah V., Gainor J.F., Rahal R. Precision targeted therapy with BLU-667 for RET-driven cancers. Cancer Discov. 2018;8:836–849. doi: 10.1158/2159-8290.CD-18-0338. [DOI] [PubMed] [Google Scholar]
- 11.Subbiah V., Velcheti V., Tuch B.B. Selective RET kinase inhibition for patients with RET-altered cancers. Ann Oncol. 2018;29:1869–1876. doi: 10.1093/annonc/mdy137. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Zhu V.W., Klempner S.J., Ou S.I. Receptor tyrosine kinase fusions as an actionable resistance mechanism to EGFR TKIs in EGFR-mutant non-small-cell lung cancer. Trends Cancer. 2019;5:677–692. doi: 10.1016/j.trecan.2019.09.008. [DOI] [PubMed] [Google Scholar]
- 13.Yokota K., Sasaki H., Okuda K. KIF5B/RET fusion gene in surgically-treated adenocarcinoma of the lung. Oncol Rep. 2012;28:1187–1192. doi: 10.3892/or.2012.1908. [DOI] [PubMed] [Google Scholar]
- 14.Matsubara D., Kanai Y., Ishikawa S. Identification of CCDC6-RET fusion in the human lung adenocarcinoma cell line, LC-2/ad. J Thorac Oncol. 2012;7:1872–1876. doi: 10.1097/JTO.0b013e3182721ed1. [DOI] [PubMed] [Google Scholar]
- 15.Wang R., Hu H., Pan Y. RET fusions define a unique molecular and clinicopathologic subtype of non-small-cell lung cancer. J Clin Oncol. 2012;30:4352–4359. doi: 10.1200/JCO.2012.44.1477. [DOI] [PubMed] [Google Scholar]
- 16.Drilon A., Wang L., Hasanovic A. Response to cabozantinib in patients with RET fusion-positive lung adenocarcinomas. Cancer Discov. 2013;3:630–635. doi: 10.1158/2159-8290.CD-13-0035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Zheng Z., Liebers M., Zhelyazkova B. Anchored multiplex PCR for targeted next-generation sequencing. Nat Med. 2014;20:1479–1484. doi: 10.1038/nm.3729. [DOI] [PubMed] [Google Scholar]
- 18.Lira M.E., Choi Y.L., Lim S.M. A single-tube multiplexed assay for detecting ALK, ROS1, and RET fusions in lung cancer. J Mol Diagn. 2014;16:229–243. doi: 10.1016/j.jmoldx.2013.11.007. [DOI] [PubMed] [Google Scholar]
- 19.Nakaoku T., Tsuta K., Ichikawa H. Druggable oncogene fusions in invasive mucinous lung adenocarcinoma. Clin Cancer Res. 2014;20:3087–3093. doi: 10.1158/1078-0432.CCR-14-0107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Drilon A., Oxnard G., Wirth L. Registrational results of LIBRETTO-001: A phase 1/2 trial of LOXO-292 in patients with RET fusion-positive lung cancers. J Thorac Oncol. 2019;14(suppl 10):S6–S7. [Google Scholar]
- 21.Jiang H., Xiao M., Qi C., Cai S., Liu F. A novel oncogenic RET fusion variant in non–small cell lung cancer: RELCH-RET. J Thorac Oncol. 2020;15:e27–e28. doi: 10.1016/j.jtho.2019.08.2510. [DOI] [PubMed] [Google Scholar]
- 22.Fang P., Yan Z., Liu W. Detection of a novel RET gene fusion in a non-small cell lung cancer patient using AMP chemistry. J Thorac Oncol. 2016;11:S21–S22. [Google Scholar]
- 23.Lee M.S., Kim R.N., I H. Identification of a novel partner gene, KIAA1217, fused to RET: functional characterization and inhibitor sensitivity of two isoforms in lung adenocarcinoma. Oncotarget. 2016;7:36101–36114. doi: 10.18632/oncotarget.9137. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Gautschi O., Milia J., Filleron T. Targeting RET in patients with RET-rearranged lung cancers: results from the global, multicenter RET registry. J Clin Oncol. 2017;35:1403–1410. doi: 10.1200/JCO.2016.70.9352. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Velcheti V., Thawani R., Khunger M. FRMD4A/RET: A novel RET oncogenic fusion variant in non–small cell lung carcinoma. J Thorac Oncol. 2017;12:e15–e16. doi: 10.1016/j.jtho.2016.11.274. [DOI] [PubMed] [Google Scholar]
- 26.Zehir A., Benayed R., Shah R.H. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat Med. 2017;23:703–713. doi: 10.1038/nm.4333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Zhang X., Li Y., Liu C. Identification of a novel KIF13A-RET fusion in lung adenocarcinoma by next-generation sequencing. Lung Cancer. 2018;118:27–29. doi: 10.1016/j.lungcan.2017.08.019. [DOI] [PubMed] [Google Scholar]
- 28.Velcheti V., Madison R., Alim S.M., Schrock A.B. WAC/RET: A novel RET oncogenic fusion variant in non–small cell lung carcinoma. J Thorac Oncol. 2018;13:e122–e123. doi: 10.1016/j.jtho.2018.03.003. [DOI] [PubMed] [Google Scholar]
- 29.Peng P., Zheng Y., Lv J. TBC1D32-RET: A novel RET oncogenic fusion in lung adenocarcinoma. J Thorac Oncol. 2019;14:e7–e9. doi: 10.1016/j.jtho.2018.08.2029. [DOI] [PubMed] [Google Scholar]
- 30.Liu X., Wei Y., Fan X. The landscape of RET genomic alterations in Chinese non-small cell lung cancer patients. J Thorac Oncol. 2019;14:S556. [Google Scholar]
- 31.Zhang K., Chen H., Wang Y. Clinical characteristics and molecular patterns of RET-rearranged lung cancer in Chinese patients. Oncol Res. 2019;27:575–582. doi: 10.3727/096504018X15344979253618. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Rich T.A., Reckamp K.L., Chae Y.K. Analysis of cell-free DNA from 32,989 advanced cancers reveals novel co-occurring activating RET alterations and oncogenic signaling pathway aberrations. Clin Cancer Res. 2019;25:5832–5842. doi: 10.1158/1078-0432.CCR-18-4049. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Lv Y., Ling F., Zhang J. A novel intergenic LSM14A-RET fusion variant in a patient with lung adenocarcinoma. J Thorac Oncol. 2020;15:e52–e53. doi: 10.1016/j.jtho.2019.11.025. [DOI] [PubMed] [Google Scholar]
- 34.Lu C., Dong X.R., Zhao J. Association of genetic and immuno-characteristics with clinical outcomes in patients with RET-rearranged non-small cell lung cancer: a retrospective multicenter study. J Hematol Oncol. 2020;13:37. doi: 10.1186/s13045-020-00866-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.Xu H., Shen J., Xiang J. Characterization of acquired receptor tyrosine-kinase fusions as mechanisms of resistance to EGFR tyrosine-kinase inhibitors. Cancer Manag Res. 2019;11:6343–6351. doi: 10.2147/CMAR.S197337. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Ou S.I., Zhu V.W., Nagasaka M. Catalog of 5’ Fusion Partners in ALK-Positive NSCLC Circa 2020. JTO Clin Res Rep. 2020;1:1–10. doi: 10.1016/j.jtocrr.2020.100015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Staubitz J.I., Musholt T.J., Schad A. ANKRD26-RET - A novel gene fusion involving RET in papillary thyroid carcinoma. Cancer Genet. 2019;238:10–17. doi: 10.1016/j.cancergen.2019.07.002. [DOI] [PubMed] [Google Scholar]
- 38.Das T.K., Cagan R.L. KIF5B-RET oncoprotein signals through a multi-kinase signaling hub. Cell Rep. 2017;20:2368–2383. doi: 10.1016/j.celrep.2017.08.037. [DOI] [PMC free article] [PubMed] [Google Scholar]