Abstract
Since the discovery of anaplastic lymphoma kinase fusion-positive (ALK+) NSCLC in 2007, the methods to detect ALK+ NSCLC have evolved and expanded from fluorescence in situ hybridization and immunohistochemistry to next-generation DNA sequencing, targeted RNA sequencing, and whole transcriptome sequencing. As such, the deep sequencing methods have resulted in the expansion of distinct fusion partners identified in ALK+ NSCLC to 90 (one variant PLEKHM2-ALK is found in small cell lung cancer but included in this catalog) by the end of January 2020; about 65 of them (since 2018) and most of the recent novel fusion partners were reported from China. Thirty-four of the distinct fusion partners are located on the short arm of chromosome 2; 28 of these 34 fusion partners are located on 2p21-25, in which ALK is located on 2p23.2-p23.1. Many of these new ALK+ NSCLC fusion variants have responded to ALK tyrosine kinase inhibitors (TKIs). Several of these novel ALK fusion variants were identified as being resistant to EGFR TKIs or as dual 3’ALK fusions. In addition, at least 28 intergenic ALK rearrangements have also been reported, with three of them reported as responding to crizotinib. This review aims to serve as a central source of reference of fusion partners in ALK+ NSCLC for clinicians and scientists. We aim to update and improve the list going forward.
Keywords: ALK fusion partners, Next-generation sequencing, ALK+ NSCLC, Whole transcriptome sequencing
Introduction
Since the discovery of anaplastic lymphoma kinase fusion-positive (ALK+) NSCLC (EML4-ALK, TPF-ALK) in 2007,1,2 there has been a rapid development of ALK tyrosine kinase inhibitors (TKIs) to treat ALK+ NSCLC with five ALK TKIs approved in the United States (crizotinib, ceritinib, alectinib, brigatinib, and lorlatinib) by 2018. At the same time, the detection of ALK+ NSCLC has expanded and shifted from the original methods of fluorescence in situ hybridization and immunochemistry (IHC) to next-generation sequencing (NGS), targeted RNA seqencing, and even whole transcriptome sequencing being offered by commercial sequencing companies. Targeted RNA sequencing and whole transcriptome sequencing have been used to supplement DNA NGS to detect even rare actionable driver mutations such as NTRK and NRG1.3,4 Although EML4-ALK (with multiple fusion breakpoints in EML4) remains the major fusion variant in ALK+ NSCLC (accounting for approximately 95% of ALK fusion variants5), multiple case reports have reported novel ALK fusion partners in ALK+ NSCLC. In this article, we have compiled a list of the ALK fusion partners including intergenic rearrangements identified in the literature for easy reference.
Methods and Results
We searched PubMed publications, conference/congress abstracts, and presentations extensively to identify novel ALK fusion partners (including noncoding RNAs). We included only those fusion partners that retained the 3’ALK kinase domain. Reciprocal/nonreciprocal ALK translocations involving 5-ALK gene rearrangements (most frequently ALK exons 1-19 fused to a 3’-truncated gene [ALK-XXX]) were not listed although these nonfunctional 5’-ALK fusion variants are usually listed as ALK fusion variants in the literature. Overall, a total of 90 distinct ALK fusion partners (including noncoding RNAs) have been identified in the literature (by the end of January 2020) (Table 1). Many of these novel ALK fusion variants have been reported to respond to ALK TKIs or shown to be ALK IHC positive. Twenty-five intergenic rearrangements to exon 20 of ALK have also been identified and listed separately in Table 2. Three of these intergenic ALK rearrangements have been shown to respond to crizotinib, but the significance of these intergenic rearrangements remains to be determined, including whether functional fusion RNAs are translated from these intergenic rearrangements.
Table 1.
No. | Fusion Partner | Year Published in Print/Presented |
Chromosomal Location | Fusion Breakpoint | Response to ALK TKI at the Time of Publication | Tumor Source | Method of Detection | Variant Frequency in Tumor | FISH/ IHC | Referencesa |
---|---|---|---|---|---|---|---|---|---|---|
1 | EML4 | 2007 | 2p21 | (E13, A21) (E20, A21) |
Not treated with ALK TKI | Tumor | PCR/Sanger sequencing | NR | ND/ND | Soda, 20071 |
2007 | 2p21 | (E13, A20) | Not treated with ALK TKI | Cell line/Tumor | 5’RACE PCR DNA sequencing |
NR | ND/ND | Rikova, ,20072 | ||
2 | TFG | 2007 | 3q12.2 | (T3, A20) | Not treated with ALK TKI | Tumor | 5’RACE PCR DNA sequencing |
NR | ND/ND | Rikova, 20072 |
2007 | 3q12.2 | NR | Not treated with ALK TKI | Tumor | PCR/Sanger sequencing | NR | ND/ND | Soda, 20071 | ||
3 | KIF5B | 2009 | 10p11.22 | (K24, A20) | Not treated with ALK TKI | Tumor | RT-PCR | NR | +/+ | Takeuchi, 20096 |
2011 | 10p11.22 | (K15, A20) | Not treated with ALK TKI | Tumor | RT-PCR | NR | +/+ | Won, 20117 | ||
2012 | 10p11.22 | (K17, A20) | Not treated with ALK TKI | Tumor | RT-PCR | NR | +/+ | Takeuchi, 20128 | ||
4 | KLC1 | 2012 | 14q32.33 | (K9, A 20) | Not treated with ALK TKI | Tumor | RT-PCR | NR | +/ND | Togashi, 20129 |
5 | STRN | 2013 | 2p22.2 | (S3, A20) | NR | Tumor | RT-PCR | NR | +/+ | Majewski, 201310 |
2017 | 2p22.2 | (S3, A20) | PR to crizotinib | Plasma | DNA NGS | 1% | ND/ND | Yang, 201711 | ||
2017 | 2p22.2 | (S3, A20) | PR to alectinib | Tumor | RNA sequencing | NR | +/+ | Nakanishi, 201712 | ||
STRNb | 2019 | 2p22.2 | (S3, A20) | Not treated with ALK TKI | Tumor | DNA NGS | NR | NR/NR | Xu, 201913 | |
6 | HIP1 | 2014 | 7q11.23 | (H2, A20) | Not treated with ALK TKI | Tumor | RNA sequencing | NR | ND/ND | Fang, 201414 |
2014 | 7q11.23 | (H21, A 20) | PR to crizotinib | Tumor | RT-PCR | NR | +/+ | Hong, 201415 | ||
2014 | 7q11.23 | (H30, A20) | PR to crizotinib and alectinib | Tumor | DNA NGS | NR | +/ND | Ou, 201416 | ||
7 | TPR | 2014 | 1q31.1 | (T15, A20) | Not treated with ALK TKI | Tumor | PCR | NR | +/+ | Choi, 201417 |
8 | BIRC6 | 2015 | 2p22.3 | NR | PR to crizotinib | Tumor | DNA NGS | NR | -/+ | Shan 201518 |
9 | DCTN1 | 2015 | 2p13.1 | (D26, A20) | NR | Tumor | DNA NGS | NR | +/ND | Iyevleva, 201519 |
10 | SQSTM1 | 2015 | 5q35.3 | (S5, A20) | NR | Tumor | DNA NGS | NR | +/ND | Iyevleva, 201519 |
11 | SOCS5 | 2015 | 2p21 | NR | NR | Tumor | NGS | NR | -/ND | Drilon, 201520 |
12 | SEC31A | 2016 | 4q21.22 | (S21, A20) | Adjuvant setting, not treated with ALK TKI | Tumor | NGS | NR | +/+ | Kim, 201621 |
13 | CLTC | 2016 | 17q23.1 | (C31, A20) | Unknown | Tumor | NGS | NR | NR/NR | Ali, 201622 |
14 | PRKAR1A | 2016 | 17q24.2 | (P5, A20) | PR to crizotinib | Tumor | NGS | NR | +/+ | Ali, 201622 |
15 | PPM1B | 2016 | 2p21 | (P1, A20) | PR to crizotinib | Tumor | NGS | NR | NR/NR | Ali, 201622 |
16 | EIF2AK3 | 2016 | 2p11.2 | (E2, A20) | PR to crizotinib | Tumor | NGS | NR | -/- | Ali, 201622 |
17 | CRIM1 | 2016 | 2p22.2 | NR | NR | Tumor | NGS | NR | NR/NR | Tan, 201623 |
18 | CEBPZ | 2017 | 2p22.2 | (C2, A20) | Not treated with ALK TKI | Tumor | NGS | 25.3% | +/+ | Li, 201724 |
CEBPZb | 2019 | 2p22.2 | NR | Crizotinib, unknown results | Tumor | NGS | NR | NR/NR | Xu, 201913 | |
19 | PICALM | 2017 | 11q14.2 | (P19, A20) | Not treated with ALK TKI | Tumor | NGS | 10.2% | -/+ | Li, 201724 |
20 | CLIP1 | 2017 | 12q24.31 | (C22, A20) | PR to crizotinib | Tumor | Targeted RNA sequencing | NR | +/+ | Vendrelll, 201725 |
21 | BCL11A | 2017 | 2p16.1 | (B4, A20) | PR to crizotinib | Tumor | DNA and RNA NGS | NR | ND/ND | Tian, 201726 |
BCL11Ac | 2019 | 2p16.1 | (B2, A18) | PR to crizotinib | Tumor and plasma | DNA NGS | 54.2% (PPFE) 14.9% (plasma) |
ND/ND | Qin 201927 | |
22 | GCC2 | 2017 | 2q12.3 | (G12, A20) | NR | Tumor | RT-PCR, NGS | NR | +/+ | Noh, 201728 |
2017 | 2q12.3 | (G19, A20) | Adjuvant setting, not treated with ALK TKI | Tumor | Targeted RNA sequencing | NR | +/+ | Vendrelll, 201725 | ||
2018 | 2q12.3 | (G18, A20) | PR to crizotinib and then ceritinib | Tumor | RT-PCR, sanger sequencing | NR | NR/NR | Jiang, 201829 | ||
23 | LMO7 | 2017 | 13q22.2 | (L15, A20) | NR | Tumor | RT-PCR, NGS | NR | +/+ | Noh, 201728 |
24 | PHACTR1 | 2017 | 6p24.1 | (P7, A20) | NR | Tumor | RT-PCR, NGS | NR | +/+ | Noh, 201728 |
25 | CMTR1 | 2018 | 6p21.2 | (C2, A20) | No with crizotinib, SD with pemetrexed | Tumor | NGS | ∼7.5% | -/- | Du, 201830 |
26 | VIT | 2018 | 2p22.2 | (V7, A20) | PR to alectinib | Tumor | NGS | NR | +/+ | Hu, 201831 |
27 | DYSF | 2018 | 2p13.2 | NR | Extracranial PR but intracranial progression to crizotinib | Pleural effusion | DNA NGS | 23.7% | ND/+ | Yin 201832 |
28 | ITGAV | 2018 | 2q32.1 | NR | Extracranial PR but intracranial progression to crizotinib | Pleural effusion | DNA NGS | 15.2% | ND/+ | Yin, 201832 |
29 | PLEKHA7b | 2018 | 11p15.2-p15.1 | (P26, A19) | PR to alectinib + osimertinib | Plasma | DNA NGS | NR | ND/ND | Schrock, 201833 |
30 | CUX1 | 2018 | 7q22.1 | (C8, A20) | PR to crizotinib | Tumor | NGS | 11% | NR/NR | Zhang 201834 |
31 | VKORC1L1 | 2018 | 7q11.21 | (V1, A20) | PR with crizotinib and alectinib | Plasma | NGS | NR | +/ND | Zhu, 201835 |
32 | FBXO36 | 2018 | 2q36.3 | NR | PR to crizotinib | Tumor | NGS | NR | ND/+ | Xu, 201836 |
33 | SPTBN1c | 2018 | 2p16.2 | NR | NR | Plasma | NGS | NR | NR/NR | Ramalingam, 201837 |
34 | EML6d | 2018 | 2p16.1 | (E1, A20) | PR to crizotinib | Tumor | NGS | NR | ND/+ | Lin, 201838 |
35 | FBXO11d | 2018 | 2p16.3 | (F1, A20) | PR to crizotinib | Tumor | NGS | NR | ND/+ | Lin, 201838 |
36 | CLIP4 | 2018 | 2p23.2 | (C7, A20) | NR | Tumor | NGS | NR | ND/+ | Zhao, 201839 |
37 | CAMKMT | 2019 | 2p21 | (C3, A 20) | Not treated with ALK TKI | Tumor | NGS | NR | +/+ | Hu, 201940 |
38 | NCOA1 | 2019 | 2p23.3 | (N12, A20) | PR to crizotinib, PFS > 18 months | Tumor | NGS | NR | ND/+ | Cao, 201941 |
39 | MYT1L | 2019 | 2p25.3 | (M14, A20) | PR on crizotinib, PD on ceritinib and alectinib | Tumor | NGS | NR | -/ND | Tsou, 201942 |
40 | SRBD1 | 2019 | 2p21 | (S20, A20) | Not treated with ALK TKI | Tumor | NGS | 2.6% | ND/+ | Hou, 201943 |
41 | SRD5A2 | 2019 | 2p23.1 | (S1, A20) | NR | Tumor | NGS | NR | ND/+ | Zhao, 201944 |
42 | NYAP2 (KIAA 1486) | 2019 | 2q36.3 | (N3, A20) | NR | Tumor | NGS | NR | ND/- | Zhao, 201944 |
43 | MPRIP | 2019 | 17p11.2 | (M21, A20) | PR to crizotinib | Tumor | RNA sequencing | NR | +/+ | Fan, 201945 |
44 | ADAM17 | 2019 | 2p25.1 | (A4, A20) | PR to alectinib | Plasma | DNA NGS | 3.68% | NR/NR | Supplee, 201946 |
45 | ALK | 2019 | 2p23.2-p23.1 | (A6, A20) | NR | Plasma | DNA NGS | 26.63% | NR/NR | Supplee, 201946 |
46 | LPIN1b | 2019 | 2p25.1 | NR | Response to crizotinib + erlotinib | Tumor | NR | NR | NR/NR | Supplee 201946 |
47 | WDPCP | 2019 | 2p15 | (W17, A20) | PR to crizotinib | Tumor | DNA NGS | 52.6% | +/+ | He, 201947 |
48 | CEP55 | 2019 | 10q23.33 | (C3, A20) | NR | Tumor | DNA NGS | NR | NR/NR | Couëtoux du Tertr, 201948 |
49 | ERC1e | 2019 | 12p13.33 | (E15, A20) | NR | Tumor | DNA NGS | NR | NR/NR | Couëtoux du Tertr, 201948 |
2019 | 12p13.33 | NR | NR | Tumor/plasma | DNA NGS | NR | NR/NR | Zhou, 201949 | ||
50 | SLC16A7e | 2019 | 12q14.1 | (S1, A 20) | PR to crizotinib prolonged PFS | Tumor | DNA NGS | NR | NR/NR | Couëtoux du Tertr, 201948 |
51 | TNIP2 | 2019 | 4p16.3 | (T5, A20) | PR to crizotinib | Tumor/plasma | DNA NGS | 0.1% (plasma) 3.3% (tumor) |
ND/+ | Feng, 201950 |
52 | ATAD2B | 2019 | 2p24.1-p23.3 | (A1, A20) | Treated with crizotinib | Tumor | DNA NGS | NR | ND/+ | Bai, 201951 |
53 | SLMAP | 2019 | 3p14.3 | (S12, A20) (S13, A20) |
Unknown, adjuvant treatment with crizotinib | Tumor | Anchored Multiplex RNA sequencing | NR | +/+ | Paga, 201952 |
54 | FBN1 | 2019 | 15q21.1 | NR | NR | Tumor/plasma | DNA NGS | NR | NR/NR | Zhou, 201949 |
55 | SWAP70 | 2019 | 11p15.4 | NR | NR | Tumor/plasma | DNA NGS | NR | NR/NR | Zhou, 201949 |
56 | TCF12 | 2019 | 15q21.3 | NR | NR | Tumor/plasma | DNA NGS | NR | NR/NR | Zhou, 201949 |
57 | TRIM66 | 2019 | 11p15.4 | NR | NR | Tumor/plasma | DNA NGS | NR | NR/NR | Zhou, 201949 |
58 | WNK3 | 2019 | Xp11.22 | NR | NR | Tumor/plasma | DNA NGS | NR | NR/NR | Zhou, 201949 |
59 | AKAP8L | 2019 | 19p13.12 | NR | ensartinib | plasma | DNA NGS | NR | NR/NR | Horn,201953 |
60 | SPECC1L | 2019 | 22q11.23 | (S9, A20) | Not treated with ALK TKI | Tumor | DNA NGS | NR | NR/NR | Pan, 201954 |
61 | PRKCBf | 2019 | 16p12.2-p12.1 | (P2, A19) | PR to crizotinib, disappearance of PRKCB-ALK fusion variant | Tumor and plasma | NGS | 2.6% (tumor) 0.8% (plasma) |
NR/NR | Luo, 201955 |
62 | CDK15f | 2019 | 2q33.1 | (C10, A19) | NR | Tumor | DNA NGS | NR | NR/NR | Wen, 201956 |
63 | LCLAT1 | 2019 | 2p23.1 | NR | NR | Tumor | DNA NGS | NR | NR/NR | Wen, 201956 |
64 | YAP1 | 2019 | 11q22.1 | NR | NR | Tumor | DNANGS | NR | NR/NR | Wen, 201956 |
65 | PLEKHM2 (SCLC) | 2020 | 1p36.21 | (P7, A20) | SD to crizotinib and brigatinib | Tumor | NGS | NR | ND/+ | Li, 202057 |
66 | DCHS1 | 2020 | 11p15.4 | NR | PR or SD to ensartinib | Tumor | NGS | NR | NR/NR | Yang, 202058 |
67 | PPFIBP1 | 2020 | 12p11.23-p11.22 | NR | PR or SD to ensartinib | Tumor | NGS | NR | NR/NR | Yang, 202058 |
68 | ATP13A4 | 2020 | 3q29 | (A9, A19) | NR | Tumor | NGS | NR | NR/NR | Tian, 202059 |
69 | C12orf75 | 2020 | 12q23.3 | (C1, A20) | NR | Tumor | NGS | NR | NR/NR | Tian, 202059 |
70 | EPAS1 | 2020 | 2p21 | (E1, A20) | NR | Tumor | NGS | NR | NR/NR | Tian, 202059 |
71 | FAM179A (TOGARAM2) | 2020 | 2p23.2 | (F1, A20) | NR | Tumor | NGS | NR | NR/NR | Tian, 202059 |
2020 | 2p23.2 | (F13, A20) | NR | Plasma | NGS | NR | ND/NR | Zhang, 202060 | ||
72 | FUT8 | 2020 | 14q23.3 | (F3, A20) | NR | Tumor | NGS | NR | NR/NR | Tian, 202059 |
73 | LIMD1 | 2020 | 3p21.31 | (L2, A20) | NR | Tumor | NGS | NR | NR/NR | Tian, 202059 |
74 | LINC00327 | 2020 | 13q12.12 | (L2, A20) | NR | Tumor | NGS | NR | NR/NR | Tian, 202059 |
75 | LOC349160 | 2020 | 7q33 | (L1, A20) | SD to crizotinib | Tumor | NGS | NR | NR/NR | Tian, 202059 |
76 | LYPD1 | 2020 | 2q21.2 | (L3, A20) | NR | Tumor | NGS | NR | NR/NR | Tian, 202059 |
77 | RBM20 | 2020 | 10q25.2 | (R1, A20) | NR | Tumor | NGS | NR | NR/NR | Tian, 202059 |
78 | TACR1 | 2020 | 2p12 | (T1, A20) | PR to crizotinib | Tumor | NGS | NR | NR/NR | Tian, 202059 |
79 | TANC1 | 2020 | 2q24.2 | (T3, A20) | NR | Tumor | NGS | NR | NR/NR | Tian, 202059 |
80 | TTC27 | 2020 | 2p22.3 | (T12, A20) | NR | Tumor | NGS | NR | NR/NR | Tian, 202059 |
81 | TUBBB | 2020 | 6p21.33 | (T3, A20) | NR | Tumor | NGS | NR | NR/NR | Tian, 202059 |
82 | SMPD4 | 2020 | 2q21.1 | (S1, A20) | NR | Tumor | NGS | NR | NR/NR | Tian, 202059 |
83 | SORCS1 | 2020 | 10q25.1 | (S10, A20) | NR | Tumor | NGS | NR | NR/NR | Tian, 202059 |
84 | LINC00211 | 2020 | 2p22.2 | (L?, A20) | PR with crizotinib and alectinib, SD with lorlatinib | CSF | NGS | 33.2% | NR/+ | Li, 202061 |
85 | SOS1 | 2020 | 2p22.1 | (S2, A20) | PR to crizotinib | FFPE | NGS | NR | ND/ND | Chen, 202062 |
86 | C9orf3 | 2020 | 9q22.32 | (C12, A20) | NR | FFPE | NGS | 22.6% | ND/+ | Zhang, 202060 |
87 | CYBRD1 | 2020 | 2q31.1 | (C21, A20) | NR | FFPE | NGS | 12.5% | ND/NR | Zhang, 202060 |
88 | MTA3g | 2020 | 2p21 | (M6, A 20) | SD with crizotinib, no response to alectinib | FFPE | NGS | 15.3% | ND/NR | Zhang, 202060 |
89 | THADA | 2020 | 2p21 | (T25, A20) | SD to crizotinib, PR to ceritinib | Plasma | NGS | 0.3% | ND/NR | Zhang, 202060 |
90 | TSPYL6f | 2020 | 2p16.2 | (T6, A20) | PR to crizotinib, SD to alectinib | FFPE | NGS | 8.5% | ND/NR | Zhang, 202060 |
91 | WDR37 | 2020 | 10p15.3 | (W6, A20) | PR to crizotinib | FFPE | NGS | 30.2% | ND/NR | Zhang, 202060 |
92 | PLEKHH2 | 2020 | 2p21 | (P6, A20) | PR to alectinib | FFPE | Targeted RNA seqencing |
NR | +/+ | M. Nagasaka, written communication, 2020 |
+, positive; -, negative;
ALK, anaplastic lymphoma kinase; CSF, cerebrospinal fluid; FISH, fluorescence in situ hybridization; FFPE, formalin-fixed paraffin embedded; FNA, fine-needle aspiration; IHC, immunohistochemistry; ND, not done; NGS, next-generation sequencing; NR, not reported; PFS, progression-free survival; PR, partial response; SD, stable disease; TKI, tyrosine kinase inhibitor; ADAM17, ADAM metallopeptidase domain 17; AKAP8L, A-kinase anchoring protein 8 like; ATAD2B, ATPase family AAA domain containing 2B; ATP13A4, ATPase 13A4; BCL11A, BAF chromatin remodeling complex subunit; BIRC6, baculoviral IAP repeat containing 6; C12orf75, chromosome 12 open reading frame 75; CAMKMT, calmodulin-lysine N-methyltransferase; CDK15; cyclin dependent kinase 15; CEBPZ, CCAAT enhancer binding protein zeta; CLIP1, CAP-Gly domain containing linker protein family member 1; CLIP4, CAP-Gly domain containing linker protein family member 4; CMTR1, cap methyltransferase 1; CRIM1, cysteine rich transmembrane BMP regulator 1; CUX1, cut like homeobox 1; CYBRD1, cytochrome b reductase 1; DCHS1, dachsous cadherin-related 1; DCTN1, dynactin subunit 1; DYSF, dysferlin; EIF2AK3, eukaryotic translation initiation factor 2 alpha kinase 3; EML4, echinoderm microtubule-associated protein-like 4; EML6, EMAP like 6; EPAS1, endothelial PAS domain protein 1; ERC1, ELKS/RAB6-interacting/CAST family member 1; FAM179A, family with sequence similarity 179 member A; FBN1, fibrillin 1; FBXO11, F-box protein 11; FBXO36, F-box protein 36; FUT8, fucosyltransferase 8; GCC2, GRIP and coiled-coil domain containing 2; HIP1, huntingtin interacting protein 1; ITGAV, integrin subunit alpha V; KLC1, kinesin light chain 1; KIF5B, kinesin family member 5B; LCLAT1, lysocardiolipin acyltransferase 1; LIMD1, LIM domains containing 1; LINC00211, long intergenic non-protein coding RNA 211; LINC00327, long intergenic non-protein coding RNA 327; LMO7, LIM domain 7; LOC349160, uncharacterized LOC349160; LPIN1, lipin 1; LYPD1, LY6/PLAUR domain containing 1; MPRIP, myosin phosphatase Rho interacting protein; MTA3, metastasis associated 1 family member 3; MYT1L, myelin transcription factor 1 like; NCOA1, nuclear receptor coactivator 1; NYAP2, neuronal tyrosine-phosphorylated phosphoinositide-3-kinase adaptor 2; PHACTR1, phosphatase and actin regulator 1; PICALM, phosphatidylinositol binding clathrin assembly protein; PLEKHA7, pleckstrin homology domain containing A7; PLEKHH2, pleckstrin homology, MyTH4 and FERM domain containing H2; PLEKHM2, pleckstrin homology and RUN domain containing M2; PPFIBP1, Liprin-beta-1/PPF1A. binding protein 1; PPM1B, protein phosphatase, Mg2+/Mn2+ dependent 1B; PRKAR1A, protein kinase cAMP-dependent type I regulatory subunit alpha; PRKCB, protein kinase C beta; RBM20, RNA binding motif protein 20; SEC31A, SEC31 homolog A, COPII coat complex component; SLC16A7, solute carrier family 16 member 7; SLMAP, sarcolemma associated protein; SMPD4, sphingomyelin phosphodiesterase 4; SOCS5, suppressor of cytokine signaling 5; SORCS1, sortilin related VPS10 domain containing receptor 1; SOS1, Son of sevenless Ras/Rac guanine nucleotide exchange factor 1; SPECC1L, sperm antigen with calponin homology and coiled-coil domains 1 like; SRBD1, S1 RNA binding domain 1; SRD5A2, steroid 5 alpha-reductase 2; SPTBN1, spectrin beta, non-erythrocytic 1; SQSTM1, sequestosome 1; STRN, Striatin; SWAP70, switching B cell complex subunit SWAP70; TACR1, tachykinin receptor 1; TANC1, tetratricopeptide repeat, ankyrin repeat and coiled-coil containing 1; TCF12, transcription factor 12; TFG, trafficking from ER to golgi regulator; THADA, THADA (thyroid adenoma associated) armadillo repeat containing; TNIP2, TNFAIP3 interacting protein 2; TOGARAM2, TOG array regulator of axonemal microtubules 2; TPR, translocated promoter region, nuclear basket protein; TRIM66, tripartite motif containing 66; TSPYL6, TSPY like 6; TTC27, tetratricopeptide repeat domain 27; TUBB, tubulin beta class I; VIT, vitrin; VKORC1L1, vitamin K epoxide reductase complex subunit 1 like 1; WDR37, WD repeat domain 37; WDPCP, WD repeat containing planar cell polarity effector; WNK3, WNK lysine deficient protein kinase 3; YAP1, Yes1 associated transcriptional regulator.
hThe earlier detected ALK fusion partners were not treated with crizotinib at the time of publication; but all of them have been shown to respond to ALK TKIs. The column entry is for the later discovery of ALK fusion partners.
The first report(s) are cited except when response information from ALK TKIs are from later reports on some of the rare fusion partners, or if the fusion is identified as a resistance mechanism to EGFR TKI.
ALK fusions identified as resistance to EGFR TKIs.
Dual fusion with EML4-ALK (E18, A20).
Dual fusions (EML6 and FBXO11) together.
Dual fusion (ERC1 and SLC16A7) together.
Dual fusion with EML4-ALK (E6, A20)
Dual fusion with EML4-ALK (E7; A18)
Table 2.
No. | Year Published in Print/Presented |
Chromosomal Location | Potential Fusion Partner Gene |
Response to ALK TKI at the Time of Publication | Tumor Source | Method of Detection | Variant Frequency in Tumor | FISH/IHC | References |
---|---|---|---|---|---|---|---|---|---|
1 | 2019 | 12q23.3 | RIC8B | NR | Tumor | NGS | NR | ND/NR | Zhao, 201944 |
2 | 2019 | 2p21 | LOC388942 (LINC01913) | NR | Tumor | NGS | NR | ND/NR | Zhao, 201944 |
2020 | 2p21 | LOC388942 (LINC01913) | NR | Tumor | NGS | NR | NR/NR | Tian, 202059 | |
3 | 2019 | 2q22.1-q22.2 | LRP1B | NR | Tumor | NGS | NR | ND/NR | Zhao, 201944 |
4 | 2019 | 2p16.2 | MIR4431 | NR | Tumor | NGS | NR | ND/NR | Zhao, 201944 |
5 | 2019 | 2p23.3 | CENPA/DPYSL5 | PR to crizotinib | Tumor | NGS | NR | +/+ | Fei, 201963 |
6 | 2020 | 18q12.1 | CDH2 | NR | Tumor | NGS | NR | NR/NR | Tian, 202059 |
7 | 2020 | 18q12.2 | CELF4 | NR | Tumor | NGS | NR | NR/NR | Tian, 202059 |
8 | 2020 | 2p23.3 | CENPA | PR to crizotinib | Tumor | NGS | NR | NR/NR | Tian, 202059 |
9 | 2020 | 15q13.3 | CHRNA7 | PR to crizotinib | Tumor | NGS | NR | NR/NR | Tian, 202059 |
10 | 2020 | 2q14.3 | CNTNAP5 | NR | Tumor | NGS | NR | NR/NR | Tian, 202059 |
11 | 2020 | 2p21 | COX7A2L | NR | Tumor | NGS | NR | NR/NR | Tian, 202059 |
12 | 2020 | 2p13.2 | DYSF | NR | Tumor | NGS | NR | NR/NR | Tian, 202059 |
13 | 2020 | 2p16.3 | FSHR | NR | Tumor | NGS | NR | NR/NR | Tian, 202059 |
14 | 2020 | 13q12.11 | GJB6 | NR | Tumor | NGS | NR | NR/NR | Tian, 202059 |
15 | 2020 | 3q22.3 | LINC01210 | NR | Tumor | NGs | NR | NR/NR | Tian, 202059 |
16 | 2020 | 2p22.3 | MEMO1 | NR | Tumor | NGS | NR | NR/NR | Tian, 202059 |
17 | 2020 | 2p22.3 | MIR548AD | NR | Tumor | NGS | NR | NR/NR | Tian, 202059 |
18 | 2020 | 4q31.1 | MGST2 | NR | Tumor | NGs | NR | NR/NR | Tian, 202059 |
19 | 2020 | 2q11.2 | PDCL3 | NR | Tumor | NGS | NR | NR/NR | Tian, 202059 |
20 | 2020 | 2p22.2 | QPCT | NR | Tumor | NGS | NR | NR/NR | Tian, 202059 |
21 | 2020 | 2p23.3 | RAB10 | NR | Tumor | NGS | NR | NR/NR | Tian, 202059 |
22 | 2020 | 2p22.1 | SLC8A1 | NR | Tumor | NGS | NR | NR/NR | Tian, 202059 |
23 | 2020 | 2q32.3 | STK17B | NR | Tumor | NGS | NR | NR/NR | Tian, 202059 |
24 | 2020 | 6q24.1-q24.2 | VTA1 | NR | Tumor | NGS | NR | NR/NR | Tian, 202059 |
25 | 2020 | 2p22.2 | CDC42EP3a | No response to crizotinib and alectinib | Plasma | NGS | 13.0% | ND/+ | Zhang, 202060 |
26 | 2020 | 19q13.42 | PR11-433C9.2 (PRPF31) | NR | Tumor | NGS | 18.6% | ND/NR | Zhang, 202060 |
27 | 2020 | 3p22.1 | RPSA | NR | Tumor | NGS | 7.9% | ND/+ | Zhang, 202060 |
28 | 2020 | 2p23.3 | UBXN2A | NR | Tumor | NGS | 25.4% | ND/NR | Zhang, 202060 |
ALK, anaplastic lymphoma kinase; FISH, fluorescence in situ hybridization; IHC, immunohistochemistry; ND, not done; NGS, next-generation sequencing; NR, not reported; PR, partial response; SD, stable disease; CENPA, centromere protein A; CDC42EP3, CDC42 effector protein 3; CDH2, cadherin 2; CELF4, CUGBP Elav-like family member 4; CNTNAP5, contactin associated protein family member 5; COX7A2L; cytochrome c oxidase subunit 7A2 like; DPYSL5, dihydropyrimidinase like 5; DYSF, dysferlin; FSHR, follicle stimulating hormone receptor; GJB6, gap junction protein beta 6; LINC01210, long intergenic non-protein coding RNA 1210; LINC01913, long intergenic non-protein coding RNA 1913; LRP1B, LDL receptor related protein 1B; MEMO1, mediator of cell motility 1; MIR4431, microRNA 4431; MIR548AD, microRNA 548ad; MGST2, microsomal glutathione S-transferase 2; PDCL3, phosducin like 3; PRPF31, pre-mRNA processing factor 31; QPCT, glutaminyl-peptide cyclotransferase; RAB10, RAB10, member RAS oncogene family; RIC8B, RIC8 guanine nucleotide exchange factor B; RPSA, ribosomal protein SA; SLC8A1, solute carrier family 8 member A1; STK17B, serine/threonine kinase 17b; UBXN2A, UBX domain protein 2A; VTA1, vesicle trafficking 1.
Together with EML4-ALK (E6, A20) and breakpoint is 3’UTR of CDC43EP3 to exon 20 of ALK. +, positive.
Discussion
With the increasing adoption of NGS for molecular profiling of NSCLC, especially in China, the pace at which new fusion partners are being identified and reported has rapidly increased since 2018. In particular, from 2018 onwards, approximately 65 of the 90 fusion partners reported in the literature (calculated at the time page numbers were assigned for this publication) were almost exclusively identified from China, indicating the widespread use of NGS there. Dual in-frame 3’-ALK fusion variants with different 5’ fusion partners are now being recognized; however, whether the relative contribution of each of the dual ALK fusion variant to oncogenesis depends on the allele frequency of each fusion variant remains to be elucidated. We identified at least 28 intergenic 3’-ALK rearrangements. Whether these translate to a functional (and truncated)? ALK RNA fusion transcript and whether these intergenic rearrangements are related to the isolated 3’-ALK fusion signals remain to be determined.
The concluding perspectives are as follows:
-
1.
ALK+ NSCLC is a heterogeneous disease with at least 90 distinct fusion partners identified in the literature by January 2020;
-
2.
It is likely that many more fusion partners and intergenic rearrangements will continue to be identified with the ever-increasing adoption of targeted RNA sequencing and whole transcriptome sequencing owing to the need to identify rare actionable fusions such as NTRK and NRG1 fusions;
-
3.
The role of individual 3’-ALK fusion variant in a dual 3’-ALK fusion variants will need to be elucidated; and
-
4.
The functional significance of intergenic rearrangements remains to be determined.
We recommend that clinicians from around the world to continue to report these novel fusions or intergenic rearrangements with information on the exon or fusion breakpoints, response to ALK TKIs, allele frequency, and if possible, whether the tumor is ALK fluorescence in situ hybridization and IHC positive.
Footnotes
Disclosure: Dr. Ou has stock ownership and was on the scientific advisory board of Turning Point Therapeutics, Inc. (until Feb 28, 2019). He has received speaker honorarium from Merck, Roche/Genentech, Astra Zeneca, Takeda/ARIAD, and Pfizer and has received advisory fees from Roche/Genentech, Astra Zeneca, Takeda/ARIAD, Pfizer, Foundation Medicine Inc., and Spectrum. Dr. Zhu has received honoraria from AstraZeneca, Biocept, Roche-Foundation Medicine, Roche/Genentech, and Takeda, and has stock ownership of Turning Point Therapeutics, Inc. Dr. Nagasaka has received honorarium from Astra Zeneca and Tempus.
References
- 1.Soda M., Choi Y.L., Enomoto M. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007;448:561–566. doi: 10.1038/nature05945. [DOI] [PubMed] [Google Scholar]
- 2.Rikova K., Guo A., Zeng Q. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell. 2007;131:1190–1203. doi: 10.1016/j.cell.2007.11.025. [DOI] [PubMed] [Google Scholar]
- 3.Benayed R., Offin M., Mullaney K. High yield of RNA sequencing for targetable kinase fusions in lung adenocarcinomas with no mitogenic driver alteration detected by DNA sequencing and low tumor mutation burden. Clin Cancer Res. 2019;25:4712–4722. doi: 10.1158/1078-0432.CCR-19-0225. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Jonna S., Feldman R.A., Swensen J. Detection of NRG1 gene fusions in solid tumors. Clin Cancer Res. 2019;25:4966–4972. doi: 10.1158/1078-0432.CCR-19-0160. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Ross J.S., Ali S.M., Fasan O. ALK. Fusions in a Wide Variety of Tumor Types Respond to Anti-ALK Targeted Therapy. Oncologist. 2017;22:1444–1450. doi: 10.1634/theoncologist.2016-0488. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Takeuchi K., Choi Y.L., Togashi Y. KIF5B-ALK, a novel fusion oncokinase identified by an immunohistochemistry-based diagnostic system for ALK-positive lung cancer. Clin Cancer Res. 2009;15:3143–3149. doi: 10.1158/1078-0432.CCR-08-3248. [DOI] [PubMed] [Google Scholar]
- 7.Wong D.W., Leung E.L., Wong S.K. A novel KIF5B-ALK variant in nonsmall cell lung cancer. Cancer. 2011;117:2709–2718. doi: 10.1002/cncr.25843. [DOI] [PubMed] [Google Scholar]
- 8.Takeuchi K., Soda M., Togashi Y. RET, ROS1 and ALK fusions in lung cancer. Nat Med. 2012;18:378–381. doi: 10.1038/nm.2658. [DOI] [PubMed] [Google Scholar]
- 9.Togashi Y., Soda M., Sakata S. KLC1-ALK: a novel fusion in lung cancer identified using a formalin-fixed paraffin-embedded tissue only. PLoS One. 2012;7 doi: 10.1371/journal.pone.0031323. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Majewski I.J., Mittempergher L., Davidson N.M. Identification of recurrent FGFR3 fusion genes in lung cancer through kinome-centred RNA sequencing. J Pathol. 2013;230:270–276. doi: 10.1002/path.4209. [DOI] [PubMed] [Google Scholar]
- 11.Yang Y., Qin S.K., Zhu J. A rare STRN-ALK fusion in lung adenocarcinoma identified using next-generation sequencing-based circulating tumor DNA profiling exhibits excellent response to crizotinib. Mayo Clin Proc Innov Qual Outcomes. 2017;1:111–116. doi: 10.1016/j.mayocpiqo.2017.04.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Nakanishi Y., Masuda S., Iida Y., Takahashi N., Hashimoto S. Case report of non-small cell lung cancer with STRN-ALK translocation: a nonresponder to alectinib. J Thorac Oncol. 2017;12:e202–e204. doi: 10.1016/j.jtho.2017.08.009. [DOI] [PubMed] [Google Scholar]
- 13.Xu H., Shen J., Xiang J. Characterization of acquired receptor tyrosine-kinase fusions as mechanisms of resistance to EGFR tyrosine-kinase inhibitors. Cancer Manag Res. 2019;11:6343–6351. doi: 10.2147/CMAR.S197337. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Fang D.D., Zhang B., Gu Q. HIP1-ALK, a novel ALK fusion variant that responds to crizotinib. J Thorac Oncol. 2014;9:285–294. doi: 10.1097/JTO.0000000000000087. [DOI] [PubMed] [Google Scholar]
- 15.Hong M., Kim R.N., Song J.Y. HIP1-ALK, a novel fusion protein identified in lung adenocarcinoma. J Thorac Oncol. 2014;9:419–422. doi: 10.1097/JTO.0000000000000061. [DOI] [PubMed] [Google Scholar]
- 16.Ou S.H., Klempner S.J., Greenbowe J.R. Identification of a novel HIP1-ALK fusion variant in non-small-cell lung cancer (NSCLC) and discovery of ALK I1171 (I1171N/S) mutations in two ALK-rearranged NSCLC patients with resistance to alectinib. J Thorac Oncol. 2014;9:1821–1825. doi: 10.1097/JTO.0000000000000368. [DOI] [PubMed] [Google Scholar]
- 17.Choi Y.L., Lira M.E., Hong M. A novel fusion of TPR and ALK in lung adenocarcinoma. J Thorac Oncol. 2014;9:563–566. doi: 10.1097/JTO.0000000000000093. [DOI] [PubMed] [Google Scholar]
- 18.Shan L., Jiang P., Xu F. BIRC6-ALK, a novel fusion gene in ALK break-apart FISH-negative lung adenocarcinoma, responds to crizotinib. J Thorac Oncol. 2015;10:e37–e39. doi: 10.1097/JTO.0000000000000467. [DOI] [PubMed] [Google Scholar]
- 19.Iyevleva A.G., Raskin G.A., Tiurin V.I. Novel ALK fusion partners in lung cancer. Cancer Lett. 2015;362:116–121. doi: 10.1016/j.canlet.2015.03.028. [DOI] [PubMed] [Google Scholar]
- 20.Drilon A., Wang L., Arcila M.E. Broad, hybrid capture-based next-generation sequencing identifies actionable genomic alterations in lung adenocarcinomas otherwise negative for such alterations by other genomic testing approaches. Clin Cancer Res. 2015;21:3631–3639. doi: 10.1158/1078-0432.CCR-14-2683. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Kim R.N., Choi Y.L., Lee M.S. SEC31A-ALK fusion gene in lung adenocarcinoma. Cancer Res Treat. 2016;48:398–402. doi: 10.4143/crt.2014.254. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Ali S.M., Hensing T., Schrock A.B. Comprehensive genomic profiling identifies a subset of crizotinib-responsive ALK-rearranged non-small cell lung cancer not detected by fluorescence in situ hybridization. Oncologist. 2016;21:762–770. doi: 10.1634/theoncologist.2015-0497. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Tan D.S.W., Kim D.W., Thomas M. Genetic landscape of ALK+ non-small cell lung cancer (NSCLC) patients (pts) and response to ceritinib in ASCEND-1. J Clin Oncol. 2016;34(suppl 15):9064. doi: 10.1016/j.lungcan.2021.11.007. [DOI] [PubMed] [Google Scholar]
- 24.Li W., Zhang J., Guo L., Chuai S., Shan L., Ying J. Combinational analysis of FISH and immunohistochemistry reveals rare genomic events in ALK fusion patterns in NSCLC that responds to crizotinib treatment. J Thorac Oncol. 2017;12:94–101. doi: 10.1016/j.jtho.2016.08.145. [DOI] [PubMed] [Google Scholar]
- 25.Vendrell J.A., Taviaux S., Béganton B. Detection of known and novel ALK fusion transcripts in lung cancer patients using next-generation sequencing approaches. Sci Rep. 2017;7:12510. doi: 10.1038/s41598-017-12679-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Tian Q., Deng W.J., Li Z.W. Identification of a novel crizotinib-sensitive BCL11A-ALK gene fusion in a nonsmall cell lung cancer patient. Eur Respir J. 2017;49 doi: 10.1183/13993003.02149-2016. [DOI] [PubMed] [Google Scholar]
- 27.Qin B.D., Jiao X.D., Liu K., Wu Y., Zang Y.S. Identification of a novel EML4-ALK, BCL11A-ALK double-fusion variant in lung adenocarcinoma using next-generation sequencing and response to crizotinib. J Thorac Oncol. 2019;14:e115–e117. doi: 10.1016/j.jtho.2019.01.032. [DOI] [PubMed] [Google Scholar]
- 28.Noh K.W., Lee M.S., Lee S.E. Molecular breakdown: a comprehensive view of anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer. J Pathol. 2017;243:307–319. doi: 10.1002/path.4950. [DOI] [PubMed] [Google Scholar]
- 29.Jiang J., Wu X., Tong X. GCC2-ALK as a targetable fusion in lung adenocarcinoma and its enduring clinical responses to ALK inhibitors. Lung Cancer. 2018;115:5–11. doi: 10.1016/j.lungcan.2017.10.011. [DOI] [PubMed] [Google Scholar]
- 30.Du X., Shao Y., Gao H. CMTR1-ALK: an ALK fusion in a patient with no response to ALK inhibitor crizotinib. Cancer Biol Ther. 2018;19:962–966. doi: 10.1080/15384047.2018.1480282. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Hu S., Li Q., Peng W., Feng C., Zhang S., Li C. VIT-ALK, a novel alectinib-sensitive fusion gene in lung adenocarcinoma. J Thorac Oncol. 2018;13:e72–e74. doi: 10.1016/j.jtho.2017.11.134. [DOI] [PubMed] [Google Scholar]
- 32.Yin J., Zhang Y., Zhang Y., F Peng F., Y Lu Y. Reporting on two novel fusions, DYSF-ALK and ITGAV-ALK, coexisting in one patient with adenocarcinoma of lung, sensitive to crizotinib. J Thorac Oncol. 2018;13:e43–e45. doi: 10.1016/j.jtho.2017.10.025. [DOI] [PubMed] [Google Scholar]
- 33.Schrock A.B., Zhu V.W., Hsieh W.S. Receptor tyrosine kinase fusions and BRAF kinase fusions are rare but actionable resistance mechanisms to EGFR tyrosine kinase inhibitors. J Thorac Oncol. 2018;13:1312–1323. doi: 10.1016/j.jtho.2018.05.027. [DOI] [PubMed] [Google Scholar]
- 34.Zhang M., Wang Q., Ding Y. CUX1-ALK, a novel ALK rearrangement that responds to crizotinib in non-small cell lung cancer. J Thorac Oncol. 2018;13:1792–1797. doi: 10.1016/j.jtho.2018.07.008. [DOI] [PubMed] [Google Scholar]
- 35.Zhu V.W., Schrock A.B., Bosemani T., Benn B.S., Ali S.M., Ou S.I. Dramatic response to alectinib in a lung cancer patient with a novel VKORC1L1-ALK fusion and an acquired ALK T1151K mutation. Lung Cancer (Auckl) 2018;9:111–116. doi: 10.2147/LCTT.S186804. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Xu C.W., Wang W.X., Chen Y.P. Simultaneous VENTANA IHC and RT-PCR testing of ALK status in Chinese non-small cell lung cancer patients and response to crizotinib. J Transl Med. 2018;16:93. doi: 10.1186/s12967-018-1468-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Ramalingam S.S., Cheng Y., Zhou C. Mechanisms of acquired resistance to first-line osimertinib: preliminary data from the phase III FLAURA study. Ann Oncol, LBA50. 2018;29(suppl 8):viii740. [Google Scholar]
- 38.Lin H., Ren G., Liang X. A novel EML6-ALK FBXO11-ALK double fusion variant in lung adenocarcinoma and response to crizotinib. J Thorac Oncol. 2018;13:e234–e236. doi: 10.1016/j.jtho.2018.07.011. [DOI] [PubMed] [Google Scholar]
- 39.Zhao J., Li Q., Lin G. Distribution, differences in clinical characteristics and resistance mechanism of ALK variants in Chinese lung cancer patients. J Thorac Oncol. 2018;13:S584. [Google Scholar]
- 40.Hu X., Cui Q., Wang M. A novel CAMKMT exon3-ALK exon20 fusion variant was identified in a primary pulmonary mucinous adenocarcinoma. J Thorac Oncol. 2019;14:e11–e12. doi: 10.1016/j.jtho.2018.09.020. [DOI] [PubMed] [Google Scholar]
- 41.Cao Q., Liu Z., Huang Y., Qi C., Yin X. NCOA1-ALK: a novel ALK rearrangement in one lung adenocarcinoma patient responding to crizotinib treatment. OncoTargets Ther. 2019;12:1071–1074. doi: 10.2147/OTT.S192367. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Tsou T.C., Gowen K., Ali S.M. Variable response to ALK inhibitors in NSCLC with a novel MYT1L-ALK fusion. J Thorac Oncol. 2019;14:e29–e30. doi: 10.1016/j.jtho.2018.10.169. [DOI] [PubMed] [Google Scholar]
- 43.Hou X., Xu H., Chen L. SRBD1-ALK, a novel ALK fusion gene identified in an adenocarcinoma patient by next-generation sequencing. J Thorac Oncol. 2019;14:e72–e73. doi: 10.1016/j.jtho.2018.11.027. [DOI] [PubMed] [Google Scholar]
- 44.Zhao R., Zhang J., Han Y. Clinicopathological features of ALK expression in 9889 cases of non-small-Cell lung cancer and genomic rearrangements identified by capture-based next-generation sequencing: A Chinese retrospective analysis. Mol Diagn Ther. 2019;23:395–405. doi: 10.1007/s40291-019-00389-y. [DOI] [PubMed] [Google Scholar]
- 45.Fang W., Gan J., Hong S., Lu F., Zhang L. MPRIP-ALK, a novel ALK rearrangement that responds to ALK inhibition in NSCLC. J Thorac Oncol. 2019;14:e148–e151. doi: 10.1016/j.jtho.2019.02.030. [DOI] [PubMed] [Google Scholar]
- 46.Supplee J.G., Milan M.S.D., Lim L.P. Sensitivity of next-generation sequencing assays detecting oncogenic fusions in plasma cell-free DNA. Lung Cancer. 2019;134:96–99. doi: 10.1016/j.lungcan.2019.06.004. [DOI] [PubMed] [Google Scholar]
- 47.He Z., Wu X., Ma S. Next-generation sequencing identified a novel WDPCP-ALK fusion sensitive to crizotinib in lung adenocarcinoma. Clin Lung Cancer. 2019;20:e548–e551. doi: 10.1016/j.cllc.2019.06.001. [DOI] [PubMed] [Google Scholar]
- 48.Couëtoux du Tertre M., Marques M., Tremblay L. Analysis of the genomic landscape in ALK+ NSCLC patients identifies novel aberrations associated with clinical outcomes. Mol Cancer Ther. 2019;18:1628–1636. doi: 10.1158/1535-7163.MCT-19-0105. [DOI] [PubMed] [Google Scholar]
- 49.Zhou X., Shou J., Sheng J. Molecular and clinical analysis of Chinese patients with anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer. Cancer Sci. 2019;110:3382–3390. doi: 10.1111/cas.14177. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50.Feng T., Chen Z., Gu J., Wang Y., Zhang J., Min L. The clinical responses of TNIP2-ALK fusion variants to crizotinib in ALK-rearranged lung adenocarcinoma. Lung Cancer. 2019;137:19–22. doi: 10.1016/j.lungcan.2019.08.032. [DOI] [PubMed] [Google Scholar]
- 51.Bai H., Jia X., Jin X. ATAD2B-ALK, a novel fusion in lung adenocarcinoma identified using next-generation sequencing (NGS) J Thorac Oncol. 2019;14:S844. [Google Scholar]
- 52.Pagan C., Barua S., Hsiao S.J. Targeting SLMAP-ALK-a novel gene fusion in lung adenocarcinoma. Cold Spring Harb Mol Case Stud. 2019;5 doi: 10.1101/mcs.a003939. a003939. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53.Horn L., Whisenant J.G., Wakelee H. Monitoring therapeutic response and resistance: analysis of circulating tumor DNA in patients with ALK+ lung cancer. J Thorac Oncol. 2019;14:1901–1911. doi: 10.1016/j.jtho.2019.08.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54.Pan Y., Zhang Y., Ye T. Detection of novel NRG1, EGFR, and MET Fusions in lung adenocarcinomas in the Chinese population. J Thorac Oncol. 2019;14:2003–2008. doi: 10.1016/j.jtho.2019.07.022. [DOI] [PubMed] [Google Scholar]
- 55.Luo J., Gu D., Lu H., Liu S., Kong J. Coexistence of a novel PRKCB-ALK, EML4-ALK double-fusion in a lung adenocarcinoma patient and response to crizotinib. J Thorac Oncol. 2019;14:e266–e268. doi: 10.1016/j.jtho.2019.07.021. [DOI] [PubMed] [Google Scholar]
- 56.Wen S., Dai L., Wang L. Genomic signature of driver genes identified by target next-generation sequencing in Chinese non-small cell lung cancer. Oncologist. 2019;24:e1070–e1081. doi: 10.1634/theoncologist.2018-0572. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 57.Li T., Zhang F., Wu Z. PLEKHM2-ALK: A novel fusion in small-cell lung cancer and durable response to ALK inhibitors. Lung Cancer. 2020;139:146–150. doi: 10.1016/j.lungcan.2019.11.002. [DOI] [PubMed] [Google Scholar]
- 58.Yang Y., Zhou J., Zhou J. Efficacy, safety, and biomarker analysis of ensartinib in crizotinib-resistant, ALK-positive non-small-cell lung cancer: a multicentre, phase 2 trial. Lancet Respir Med. 2020;8:45–53. doi: 10.1016/S2213-2600(19)30252-8. [DOI] [PubMed] [Google Scholar]
- 59.Tian P, Liu Y, Zeng H, et al: Unique molecular features and clinical outcomes in young patients with non-small cell lung cancer harboring ALK fusion genes [epub ahead of print] J Cancer Res Clin Oncol. https://doi.org/10.1007/s00432-019-03116-6, accessed January 21, 2020. [DOI] [PubMed]
- 60.Zhang Y., Zeng L., Zhou C. Detection of non-reciprocal/reciprocal ALK translocation as poor predictive marker in first-line crizotinib-treated ALK-rearranged non-small cell lung cancer patients. J Thorac Oncol. 2020 doi: 10.1016/j.jtho.2020.02.007. [DOI] [PubMed] [Google Scholar]
- 61.Li Z., Li P., Yan B. Sequential ALK inhibitor treatment benefits patient with leptomeningeal metastasis harboring non-EML4-ALK rearrangements detected from cerebrospinal fluid: A case report. Thorac Cancer. 2020;11:176–180. doi: 10.1111/1759-7714.13259. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 62.Chen H.F., Wang W.X., Xu C.W. A novel SOS1-ALK fusion variant in a metastatic lung adenocarcinoma patient with remarkable response to crizotinib. Lung Cancer. 2020 doi: 10.1016/j.lungcan.2020.02.012. in press. [DOI] [PubMed] [Google Scholar]
- 63.Fei X., Zhu L., Zhou H., Qi C., Wang C. A novel intergenic region between CENPA and DPYSL5-ALK exon 20 fusion variant responding to crizotinib treatment in a patient with lung adenocarcinoma. J Thorac Oncol. 2019;14:e191–e193. doi: 10.1016/j.jtho.2019.04.012. [DOI] [PubMed] [Google Scholar]