Abstract
If a person comes into contact with pathogens on public facilities, there is a threat of contact (skin/wound) infections. More urgently, there are also reports about COVID-19 coronavirus contact infection, which once again reminds that contact infection is a very easily overlooked disease exposure route. Herein, we propose an innovative implantation strategy to fabricate a multi-walled carbon nanotube/polyvinyl alcohol (MWCNT/PVA, MCP) interpenetrating interface to achieve flexibility, anti-damage, and non-contact sensing electronic skin (E-skin). Interestingly, the MCP E-skin had a fascinating non-contact sensing function, which can respond to the finger approaching 0–20 mm through the spatial weak field. This non-contact sensing can be applied urgently to human-machine interactions in public facilities to block pathogen. The scratches of the fruit knife did not damage the MCP E-skin, and can resist chemical corrosion after hydrophobic treatment. In addition, the MCP E-skin was developed to real-time monitor the respiratory and cough for exercise detection and disease diagnosis. Notably, the MCP E-skin has great potential for emergency applications in times of infectious disease pandemics.
Electronic Supplementary Material
Supplementary material (fabrication of MCP E-skin, laser confocal tomography, parameter optimization, mechanical property characterization, finite element simulation, sensing mechanism, signal processing) is available in the online version of this article at 10.1007/s12274-021-3831-z.
Keywords: prevent contact infection, anti-damage sensors, non-contact sensing, respiratory sensing, human-machine interaction
Electronic Supplementary Material
Flexible, anti-damage, and non-contact sensing electronic skin implanted with MWCNT to block public pathogens contact infection
Supplementary material, approximately 3.22 MB.
Supplementary material, approximately 4.43 MB.
Supplementary material, approximately 1.08 MB.
Acknowledgements
The work was supported by Zhejiang Provincial Natural Science Key Foundation of China (No. LZ20E030003), National Science Foundation of China (No. 51673121), Candidates of Young and Middle Aged Academic Leader of Zhejiang Province, the Young Elite Scientists Sponsorship Program by CAST (No. 2018QNRC001), and Excellent Doctoral Thesis Cultivation Fund (No. 2019D01).
Contributor Information
Hou-Yong Yu, Email: phdyu@zstu.edu.cn.
Xinxing Zhang, Email: xxzwwh@scu.edu.cn.
References
- [1].Lee G H, Moon H, Kim H, Lee G H, Kwon W, Yoo S, Myung D, Yun S H, Bao Z N, Hahn S K. Multifunctional materials for implantable and wearable photonic healthcare devices. Nat. Rev. Mater. 2020;5:149–165. doi: 10.1038/s41578-019-0167-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [2].Liu Y Q, He K, Chen G, Leow W R, Chen X D. Nature-inspired structural materials for flexible electronic devices. Chem. Rev. 2017;117:12893–12941. doi: 10.1021/acs.chemrev.7b00291. [DOI] [PubMed] [Google Scholar]
- [3].Xu S Y, Vogt D M, Hsu W H, Osborne J, Walsh T, Foster J R, Sullivan S K, Smith V C, Rousing A W, Goldfield E C, et al. Biocompatible soft fluidic strain and force sensors for wearable devices. Adv. Funct. Mater. 2019;29:1807058. doi: 10.1002/adfm.201807058. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [4].Wang C F, Pan C F, Wang Z L. Electronic skin for closed-loop systems. ACS Nano. 2019;13:12287–12293. doi: 10.1021/acsnano.9b06576. [DOI] [PubMed] [Google Scholar]
- [5].Choi S, Han S I, Jung D, Hwang H J, Lim C, Bae S, Park O K, Tschabrunn C M, Lee M, Bae S Y, et al. Highly conductive, stretchable and biocompatible Ag-Au core-sheath nanowire composite for wearable and implantable bioelectronics. Nat. Nanotechnol. 2018;13:1048–1056. doi: 10.1038/s41565-018-0226-8. [DOI] [PubMed] [Google Scholar]
- [6].Niu S M, Matsuhisa N, Beker L, Li J X, Wang S H, Wang J C, Jiang Y W, Yan X Z, Yun Y J, Burnett W, et al. A wireless body area sensor network based on stretchable passive tags. Nat. Electron. 2019;2:361–368. doi: 10.1038/s41928-019-0286-2. [DOI] [Google Scholar]
- [7].Wang C F, Wang C H, Huang Z L, Xu S. Materials and structures toward soft electronics. Adv. Mater. 2018;30:1801368. doi: 10.1002/adma.201801368. [DOI] [PubMed] [Google Scholar]
- [8].Kang J H, Tok J B H, Bao Z N. Self-healing soft electronics. Nat. Electron. 2019;2:144–150. doi: 10.1038/s41928-019-0235-0. [DOI] [Google Scholar]
- [9].Yu Y, Nassar J, Xu C H, Min J H, Yang Y R, Dai A, Doshi R, Huang A, Song Y, Gehlhar R, et al. Biofuel-powered soft electronic skin with multiplexed and wireless sensing for human-machine interfaces. Sci. Robot. 2020;5:eaaz7946. doi: 10.1126/scirobotics.aaz7946. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [10].Chortos A, Liu J, Bao Z N. Pursuing prosthetic electronic skin. Nat. Mater. 2016;15:937–950. doi: 10.1038/nmat4671. [DOI] [PubMed] [Google Scholar]
- [11].Leber A, Dong C Q, Chandran R, Das Gupta T, Bartolomei N, Sorin F. Soft and stretchable liquid metal transmission lines as distributed probes of multimodal deformations. Nat. Electron. 2020;3:316–326. doi: 10.1038/s41928-020-0415-y. [DOI] [Google Scholar]
- [12].Markvicka E J, Bartlett M D, Huang X N, Majidi C. An autonomously electrically self-healing liquid metal-elastomer composite for robust soft-matter robotics and electronics. Nat. Mater. 2018;17:618–624. doi: 10.1038/s41563-018-0084-7. [DOI] [PubMed] [Google Scholar]
- [13].Boutry, C. M.; Negre, M.; Jorda, M.; Vardoulis, O.; Chortos, A.; Khatib, O.; Bao, Z. N. A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics. Sci. Robot.2018, 3, eaau6914. [DOI] [PubMed]
- [14].Ong S W X, Tan Y K, Chia P Y, Lee T H, Ng O T, Wong M S Y, Marimuthu K. Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a symptomatic patient. JAMA. 2020;323:1610–1612. doi: 10.1001/jama.2020.3227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [15].Han Y, Yang H L. The transmission and diagnosis of 2019 novel coronavirus infection disease (COVID-19): A Chinese perspective. J. Med. Virol. 2020;92:639–644. doi: 10.1002/jmv.25749. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [16].Kaper J B, Nataro J P, Mobley H L T. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2004;2:123–140. doi: 10.1038/nrmicro818. [DOI] [PubMed] [Google Scholar]
- [17].Kretschmer D, Gleske A K, Rautenberg M, Wang R, Köberle M, Bohn E, Schöneberg T, Rabiet M J, Boulay F, Klebanoff S J, et al. Human formyl peptide receptor 2 senses highly pathogenic Staphylococcus aureus. Cell Host Microbe. 2010;7:463–473. doi: 10.1016/j.chom.2010.05.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [18].Hay R, Bendeck S E, Chen S, Estrada R, Haddix A, McLeod T, Mahé A. Skin diseases. In: Jamison D T, Breman J G, editors. Disease Control Priorities in Developing Countries. Washington DC: World Bank Publications; 2006. pp. 707–722. [Google Scholar]
- [19].Malm H, Navin M C. Pox parties for grannies? Chickenpox, exogenous boosting, and harmful injustices. Am. J. Bioeth. 2020;20:45–57. doi: 10.1080/15265161.2020.1795528. [DOI] [PubMed] [Google Scholar]
- [20].Hoang C Q, Nguyen T T T, Ho N X, Nguyen H D, Nguyen A B, Nguyen T H T, Phan H C, Phan L T. Transmission and serotype features of hand foot mouth disease in household contacts in Dong Thap, Vietnam. BMC Infect. Dis. 2019;19:933. doi: 10.1186/s12879-019-4583-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [21].Mina M J, Kula T, Leng Y M, Li M M, de Vries R D, Knip M, Siljander H, Rewers M, Choy D F, Wilson M S, et al. Measles virus infection diminishes preexisting antibodies that offer protection from other pathogens. Science. 2019;366:599–606. doi: 10.1126/science.aay6485. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [22].Sun H L, Zhao Y, Wang C F, Zhou K K, Yan C, Zheng G Q, Huang J J, Dai K, Liu C T, Shen C Y. Ultra-stretchable, durable and conductive hydrogel with hybrid double network as high performance strain sensor and stretchable triboelectric nanogenerator. Nano Energy. 2020;76:105035. doi: 10.1016/j.nanoen.2020.105035. [DOI] [Google Scholar]
- [23].Ye T L, Wang Q, Tian C H, Singh R, Zhang Y P, Liu Z W, Fang X K, He D Q. Multifunctional electronic skin based on perovskite intermediate gels. Adv. Electron. Mater. 2020;6:1901291. doi: 10.1002/aelm.201901291. [DOI] [Google Scholar]
- [24].Zhao D W, Zhu Y, Cheng W K, Xu G W, Wang Q W, Liu S X, Li J, Chen C J, Yu H P, Hu L B. A dynamic gel with reversible and tunable topological networks and performances. Matter. 2020;2:390–403. doi: 10.1016/j.matt.2019.10.020. [DOI] [Google Scholar]
- [25].Qiao Y C, Wang Y F, Tian H, Li M R, Jian J M, Wei Y H, Tian Y, Wang D Y, Pang Y, Geng X S, et al. Multilayer graphene epidermal electronic skin. ACS Nano. 2018;12:8839–8846. doi: 10.1021/acsnano.8b02162. [DOI] [PubMed] [Google Scholar]
- [26].Won S M, Wang H L, Kim B H, Lee K, Jang H, Kwon K, Han M D, Crawford K E, Li H B, Lee Y, et al. Multimodal sensing with a three-dimensional piezoresistive structure. ACS Nano. 2019;13:10972–10979. doi: 10.1021/acsnano.9b02030. [DOI] [PubMed] [Google Scholar]
- [27].Mu C H, Song Y Q, Huang W T, Ran A, Sun R J, Xie W H, Zhang H W. Flexible normal-tangential force sensor with opposite resistance responding for highly sensitive artificial skin. Adv. Funct. Mater. 2018;28:1707503. doi: 10.1002/adfm.201707503. [DOI] [Google Scholar]
- [28].Hong S Y, Lee Y H, Park H, Jin S W, Jeong Y R, Yun J, You I, Zi G, Ha J S. Stretchable active matrix temperature sensor array of polyaniline nanofibers for electronic skin. Adv. Mater. 2016;28:930–935. doi: 10.1002/adma.201504659. [DOI] [PubMed] [Google Scholar]
- [29].Yang J C, Mun J, Kwon S Y, Park S, Bao Z N, Park S. Electronic skin: Recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv. Mater. 2019;31:1904765. doi: 10.1002/adma.201904765. [DOI] [PubMed] [Google Scholar]
- [30].Wu Y H, Deng Z F, Peng Z F, Zheng R M, Liu S Q, Xing S T, Li J Y, Huang D Q, Liu L. A novel strategy for preparing stretchable and reliable biphasic liquid metal. Adv. Funct. Mater. 2019;29:1903840. doi: 10.1002/adfm.201903840. [DOI] [Google Scholar]
- [31].Tang Y J, Zhou H, Sun X P, Diao N H, Wang J B, Zhang B S, Qin C, Liang E J, Mao Y C. Triboelectric touch-free screen sensor for noncontact gesture recognizing. Adv. Funct. Mater. 2020;30:1907893. doi: 10.1002/adfm.201907893. [DOI] [Google Scholar]
- [32].Kang M, Kim J, Jang B, Chae Y, Kim J H, Ahn J H. Graphene-based three-dimensional capacitive touch sensor for wearable electronics. ACS Nano. 2017;11:7950–7957. doi: 10.1021/acsnano.7b02474. [DOI] [PubMed] [Google Scholar]
- [33].Zhao J, Li N, Yu H, Wei Z, Liao M Z, Chen P, Wang S P, Shi D X, Sun Q J, Zhang G Y. Highly sensitive MoS2 humidity sensors array for noncontact sensation. Adv. Mater. 2017;29:1702076. doi: 10.1002/adma.201702076. [DOI] [PubMed] [Google Scholar]
- [34].Feng J, Peng L L, Wu C Z, Sun X, Hu S L, Lin C W, Dai J, Yang J L, Xie Y. Giant moisture responsiveness of VS2 ultrathin nanosheets for novel touchless positioning interface. Adv. Mater. 2012;24:1969–1974. doi: 10.1002/adma.201104681. [DOI] [PubMed] [Google Scholar]
- [35].Jiao J P, Li L, Wu B, He C F. Novel capacitive proximity sensors for assessing the aging of composite insulators. Sens. Actuators A Phys. 2017;253:75–84. doi: 10.1016/j.sna.2016.11.025. [DOI] [Google Scholar]
- [36].Thostenson E T, Ren Z F, Chou T W. Advances in the science and technology of carbon nanotubes and their composites: A review. Compos. Sci. Technol. 2001;61:1899–1912. doi: 10.1016/S0266-3538(01)00094-X. [DOI] [Google Scholar]
- [37].Dasbach M, Pyschik M, Lehmann V, Parey K, Rhinow D, Reinhardt H M, Hampp N A. Assembling carbon nanotube architectures. ACS Nano. 2020;14:8181–8190. doi: 10.1021/acsnano.0c01606. [DOI] [PubMed] [Google Scholar]
- [38].Halima N B. Poly (vinyl alcohol): Review of its promising applications and insights into biodegradation. RSC Adv. 2016;6:39823–39832. doi: 10.1039/C6RA05742J. [DOI] [Google Scholar]
- [39].Peng X, Dong K, Ye C Y, Jiang Y, Zhai S Y, Cheng R W, Liu D, Gao X P, Wang J, Wang Z L. A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators. Sci. Adv. 2020;6:eaba9624. doi: 10.1126/sciadv.aba9624. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [40].Wang Y, Zhang L N, Lu A. Highly stretchable, transparent cellulose/PVA composite hydrogel for multiple sensing and triboelectric nanogenerators. J. Mater. Chem. A. 2020;8:13935–13941. doi: 10.1039/D0TA02010A. [DOI] [Google Scholar]
- [41].Wang X D, Zhang Y F, Zhang X J, Huo Z H, Li X Y, Que M L, Peng Z C, Wang H, Pan C F. A highly stretchable transparent self-powered triboelectric tactile sensor with metallized nanofibers for wearable electronics. Adv. Mater. 2018;30:1706738. doi: 10.1002/adma.201706738. [DOI] [PubMed] [Google Scholar]
- [42].Pizzi A, Mittal K L. Handbook of Adhesive Technology. 3rd ed. Boca Raton: CRC Press; 2017. [Google Scholar]
- [43].Rance G A, Marsh D H, Nicholas R J, Khlobystov A N. UV-vis absorption spectroscopy of carbon nanotubes: Relationship between the π-electron plasmon and nanotube diameter. Chem. Phys. Lett. 2010;493:19–23. doi: 10.1016/j.cplett.2010.05.012. [DOI] [Google Scholar]
- [44].Kaiser A B, Flanagan G U, Stewart D M, Beaglehole D. Heterogeneous model for conduction in conducting polymers and carbon nanotubes. Synth. Met. 2001;117:67–73. doi: 10.1016/S0379-6779(00)00540-3. [DOI] [Google Scholar]
- [45].Kaiser A B. Thermoelectric power and conductivity of heterogeneous conducting polymers. Phys. Rev. B. 1989;40:2806–2813. doi: 10.1103/PhysRevB.40.2806. [DOI] [PubMed] [Google Scholar]
- [46].Li Z D, Liu H, Ouyang C, Wee W H, Cui X Y, Lu T J, Pingguan-Murphy B, Li F, Xu F. Recent advances in pen-based writing electronics and their emerging applications. Adv. Funct. Mater. 2006;26:165–180. doi: 10.1002/adfm.201503405. [DOI] [Google Scholar]
- [47].Wang W Y, Ouaras K, Rutz A L, Li X, Gerigk M, Naegele T E, Malliaras G G, Huang Y Y S. Inflight fiber printing toward array and 3D optoelectronic and sensing architectures. Sci. Adv. 2020;6:eaba0931. doi: 10.1126/sciadv.aba0931. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [48].Shin J, Jeong B, Kim J, Nam V B, Yoon Y, Jung J, Hong S, Lee H, Eom H, Yeo J, et al. Sensitive wearable temperature sensor with seamless monolithic integration. Adv. Mater. 2020;32:1905527. doi: 10.1002/adma.201905527. [DOI] [PubMed] [Google Scholar]
- [49].Rahimabady M, Tan C Y, Tan S Y, Chen S, Zhang L, Chen Y F, Yao K, Zang K Y, Humbert A, Soccol D, et al. Dielectric nanocomposite of diphenylethylenediamine and P-type multi-walled carbon nanotube for capacitive carbon dioxide sensors. Sens. Actuators B Chem. 2017;243:596–601. doi: 10.1016/j.snb.2016.12.023. [DOI] [Google Scholar]
- [50].Liao L, Xiao W, Zhao M, Yu X Z, Wang H T, Wang Q Q, Chu S, Cui Y. Can N95 respirators be reused after disinfection? How many times? ACS Nano. 2020;14:6348–6356. doi: 10.1021/acsnano.0c03597. [DOI] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Flexible, anti-damage, and non-contact sensing electronic skin implanted with MWCNT to block public pathogens contact infection
Supplementary material, approximately 3.22 MB.
Supplementary material, approximately 4.43 MB.
Supplementary material, approximately 1.08 MB.

