Abstract
Governments all over the world make their best to fight with Covid-19 pandemic as effectively as possible. Therefore, we observed a growing need of trustworthy data-intensive systems supporting administration in validating their policy decisions. ProMES, the Covasim-based multiagent pandemic simulator, may serve as such a system, adjusted to the specificity of living, working and social conditions in Poland.
The main role of ProMES is to evaluate and compare strategies for reducing Covid-19 transmissions. The strategies include time- and region-dependent combinations of nonpharmaceutical coronavirus-related individual and state interventions, tests and vaccinations. Ultimately, ProMES is meant to serve as a part of data/knowledge intensive decision support system, enhancing administrative reactivity as well as pro-activity in preventing the spread of the coronavirus.
This paper reports a work in progress.
Keywords: Covid-19, multi-agent simulation, synthetic populations, epidemiology software, non-pharmaceutical interventions
References
- 1.Brauer F., Castillo-Chavez C., Feng Z. Mathematical Models in Epidemiology. Springer; 2019. [Google Scholar]
- 2.Brauner J.M., Mindermann S., Sharma M., Johnston D., Salvatier J., Gavenčiak T., Stephenson A.B., Leech G., Altman G., Mikulik V., Norman A.J., Monrad J.T., Besiroglu T., Ge H., Hartwick M.A., Teh Y.W., Chindelevitch L., Gal Y., Kulveit J. Inferring the effectiveness of government interventions against covid-19. Science. 2021:371. doi: 10.1126/science.abd9338. doi:10.1126/science.abd9338. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Buitrago-Garcia D., Egli-Gany D., Counotte M., Hossmann S., Imeri H., Ipekci A., Salanti G., Low N. Occurrence and transmission potential of asymptomatic and presymptomatic SARS-CoV-2 infections: A living systematic review and meta-analysis. PLOS Medicine. 2020;17 doi: 10.1371/journal.pmed.1003346. doi:10.1371/journal.pmed.1003346. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Davies, N., Klepac, P., Liu, Y., Prem, K., Jit, M., Eggo, R., 2020. Age-dependent effects in the transmission and control of COVID-19 epidemics. medRxiv doi:10.1101/2020.03.24.20043018. [DOI] [PubMed]
- 5.Dignum F., Dignum V., Davidsson P., Ghorbani A., van der Hurk M., Jensen M., Kammler C., Lorig F., Ludescher L.G., Melchior A., Mellema R., Pastrav C., Vanhee L., Verhagen H. Analysing the combined health, social and economic impacts of the corovanvirus pandemic using agent-based social simulation. Minds and Machines. 2020;30:177–194. doi: 10.1007/s11023-020-09527-6. doi:10.1007/s11023-020-09527-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Dunin-Kęplicz B., Verbrugge R. Teamwork in Multi-Agent Systems: A Formal Approach. Wiley and Sons; 2010. [Google Scholar]
- 7.Flisiak, R., 2021. Mortality due to COVID-19 based on SARSTer database (in Polish). URL: http://www.pteilchz.org.pl/wp-content/uploads/2021/01/śmiertelność-w-Polsce-26-01-2021.pdf.
- 8.Grefenstette J., Brown S., Rosenfeld R., DePasse J., Stone N., Cooley P., Wheaton W., Fyshe A., Galloway D., Sriram A., Guclu H.T.A., Burke D. FRED (a framework for reconstructing epidemic dynamics): an open-source software system for modeling infectious diseases and control strategies using census-based populations. BMC Public Health. 2013:13. doi: 10.1186/1471-2458-13-940. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Jankowski, M., Pinkas, J., Raciborski, F., 2020. Report on a retrospective analysis of the COVID-19 epidemic in Poland - analysis of occupational risk groups related to SARS-CoV-2 infection and contextual analysis (in Polish).
- 10.Kerr, C., Stuart, R., Mistry, D., Abeysuriya, R., Hart, G., Rosenfeld, K., Selvaraj, P., Nunez, R., Hagedorn, B., George, L., Izzo, A., Palmer, A., Delport, D., Bennette, C., Wagner, B., Chang, S., Cohen, J., Panovska-Griffiths, J., Jastrzebski, M., Oron, A., Wenger, E., Famulare, M., Klein, D., 2020. Covasim: an agent-based model of Covid-19 dynamics and interventions. medRxiv. [DOI] [PMC free article] [PubMed]
- 11.Raciborski, F., Jankowski, M., Pinkas, J., 2020. Analysis of data and conclusions from studies on seropreva-lence SARS-CoV-2 in Poland and in the world (in Polish). URL: https://cnt.edu.pl/projekty/prome/publikacja-prome-systemowe-rozwiazania-zdrowotne-dla-administracji-rzadowej-i-samorzadowej/.
- 12.Rakowski F., Gruziel M., Krych M., Radomski J.P. Large scale daily contacts and mobility model - an individual-based countrywide simulation study for Poland. Journal of Artificial Societies and Social Simulation. 2010:13. doi:10.18564/jasss.1529. [Google Scholar]
- 13.Rüb, I., 2020. Report on Agent Based Modeling and Simulation systems for COVID-19 pandemics (in Polish).
- 14.Willem, L., Abrams, S., Petrof, O., Coletti, P., Kuylen, E., Libin, P., Møgelmose, S., Wambua, J., Herzog, S.A., Faes, C., Beutels, P., Hens, N., 2020. The impact of contact tracing and household bubbles on deconfinement strategies for covid-19: an individual-based modelling study. medRxiv doi:10.1101/2020.07.01.20144444. [DOI] [PMC free article] [PubMed]
- 15.Wooldridge M. An Introduction to MultiAgent Systems. Second Edition. Wiley and Sons; 2009. [Google Scholar]