Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Sep 28;77(Pt 10):1048–1053. doi: 10.1107/S2056989021009907

Crystal structure and Hirshfeld surface analysis of 2,2,2-tri­chloro-N,N-bis­{[(1RS,4SR)-1,4-di­hydro-1,4-ep­oxy­naphthalen-1-yl]meth­yl}acetamide

Zeliha Atioğlu a, Mehmet Akkurt b, Gunay Z Mammadova c, Ajaya Bhattarai d,*
PMCID: PMC8491519  PMID: 34667636

In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming layers parallel to the (001) plane. These layers of mol­ecules are connected by C—H⋯π inter­actions along the c-axis direction. Inter­layer van der Waals and inter­halogen inter­actions stabilize the packing.

Keywords: crystal structure, tetra­hydro­furan rings, C—H⋯O hydrogen bonds, C—H⋯π inter­actions, Hirshfeld surface analysis, IMDAF reaction, Diels–Alder reaction

Abstract

In the title compound, C24H18Cl3NO3, the tetra­hydro­furan rings adopt envelope conformations. In the crystal, C—H⋯O hydrogen bonds connect mol­ecules, generating layers parallel to the (001) plane. These layers are connected along the c-axis direction by C—H⋯π inter­actions. The packing is further stabilized by inter­layer van der Waals and inter­halogen inter­actions. The most important contributions to the surface contacts are from H⋯H (36.8%), Cl⋯H/H⋯Cl (26.6%), C⋯H/H⋯C (18.8%) and O⋯H/H⋯O (11.3%) inter­actions, as concluded from a Hirshfeld surface analysis.

Chemical context  

In recent years, the IMDAF cyclo­addition (the intra­molecular furan Diels–Alder reaction) in combination with other known reactions in a tandem or sequential manner is pursued for the construction of several important bicyclic or polycyclic compounds, including natural ones (for some reviews on this topic, see: Zubkov et al., 2005; Takao et al., 2005; Juhl et al., 2009; Padwa et al., 2013; Parvatkar et al., 2014; Krishna et al., 2021). Cascade sequences comprising two or more successive [4 + 2] cyclo­addition steps are a powerful and frequently used protocol in modern syntheses aimed at constructing cyclo­hexene derivatives thanks to their exceptional chemoselectivity, regioselectivity, diastereoselectivity, and capability to create more than four chiral centers in a single synthetic step (Criado et al., 2010, 2013). It has been shown previously that the Diels–Alder reaction of bis-dienes with derivatives of maleic acid, esters of acetyl­ene di­carb­oxy­lic acid and hexa­fluoro-2-butyne proceeds in all cases diastereo- and chemoselectively and leads, depending on the temperature, to annelated di­epoxy­naphthalenes of the ‘domino’ or ‘pincer’ type (Borisova et al., 2018a ,b ; Grudova et al., 2020; Kvyatkovskaya et al., 2020, 2021). In order to expand the limits of the applicability of the IMDAF strategy, we tested in this study de­hydro­benzene generated in situ in the role of dienophile. It was demonstrated that the products of the parallel [4 + 2] cyclo­addition of two aryne moieties to both the furan fragments of the bis-diene system (Fig. 1, 1 and 2) prevails over the adduct (3) of the IMDAF reaction (Fig. 1).graphic file with name e-77-01048-scheme1.jpg

Figure 1.

Figure 1

Synthesis scheme for 2,2,2-tri­chloro-N,N-bis­[(1R,4SR)-1,4-ep­oxy­naphthalen-1(4H)-ylmeth­yl]acetamide (1).

On the other hand, inter­molecular non-covalent inter­actions organize the mol­ecular aggregates, catalytic inter­mediates, etc., which play crucial roles for the functional properties of heterocyclic compounds (Gurbanov et al., 2020a ,b ; Khalilov et al., 2018a ,b ; Ma et al., 2017a ,b , 2020, 2021; Mahmudov et al., 2020; Mizar et al., 2012). Thus, attached –CCl3 and C=O groups can participate in inter­molecular inter­actions and affect the properties of 13.

Structural commentary  

In the title compound (1, Fig. 2), the tetra­hydro­furan rings (O19/C11–C14 and O29/C21–C24) adopt envelope conformations with the O atoms as the flaps. The mol­ecular conformation is stabilized by intra­molecular C10—H10A⋯O29 and C20—H20A⋯O19 hydrogen bonds and C20—H20B⋯Cl1 and C20—H20B⋯Cl3 inter­actions (Table 1).

Figure 2.

Figure 2

The mol­ecule of the title compound 1 with atom-labeling scheme and displacement ellipsoids drawn at the 30% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.

Table 1. Hydrogen-bond geometry (Å, °).

Cg8 is the centroid of the C24A/C25–C28/C28A aromatic ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯O29 0.97 2.35 3.074 (2) 131
C12—H12A⋯O1i 0.93 2.66 3.494 (2) 150
C17—H17A⋯O1ii 0.93 2.51 3.427 (3) 168
C20—H20A⋯O19 0.97 2.39 3.068 (2) 127
C27—H27A⋯O19iii 0.93 2.51 3.438 (3) 175
C20—H20B⋯Cl1 0.97 2.55 3.1744 (18) 122
C20—H20B⋯Cl3 0.97 2.64 3.2921 (19) 125
C13—H13ACg8iv 0.93 2.90 3.633 (2) 136

Symmetry codes: (i) -x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}; (ii) -x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}; (iii) -x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}; (iv) x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}.

Supra­molecular features and Hirshfeld surface analysis  

In the crystal, hydrogen bonds of the C—H⋯O type link the mol­ecules, generating layers parallel to the (001) plane (Table 1; Figs. 3, 4, 5 and 6). These layers are connected by C—H⋯π inter­actions (C13—H13ACg8; Table 1), where Cg8 is the centroid of the C24A/C25–C28/C28A aromatic ring. The inter­molecular inter­actions in the crystal of the title compound (Table 2) were qu­anti­fied using Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) were generated. The calculations and visualization were performed using CrystalExplorer17 (Turner et al., 2017). The three-dimensional Hirshfeld surface mapped over d norm in the range −0.1862 (red) to +1.4233 (blue) a.u. is shown in Fig. 7. The short and long contacts are indicated as red and blue spots, respectively, on the Hirshfeld surfaces, and contacts with distances approximately equal to the sum of the van der Waals radii are represented as white spots. The Cl⋯H and C—H⋯O inter­actions, which play a key role in the mol­ecular packing, can be correlated with the bright-red patches near Cl1, Cl2, O1 and O19 and hydrogen atoms H14A and H16A, which highlight their functions as donors and/or acceptors. Fig. 8 shows the full two-dimensional fingerprint plot (Fig. 8 a) and those delineated into the major contacts: H⋯H (36.8%, Fig. 8 b) inter­actions are the major factor in the crystal packing together with Cl⋯H/H⋯Cl (26.6%, Fig. 8 c), C⋯H/H⋯C (18.8%, Fig. 8 d) and O⋯H/H⋯O (11.3%, Fig. 8 e) inter­actions representing the next highest contributions. The percentage contributions of other weak inter­actions are listed in Table 3.

Figure 3.

Figure 3

A general view of the inter­molecular C—H⋯O hydrogen bonds and C—H⋯π inter­actions (depicted by dashed lines) in the unit cell of the title compound 1. [Symmetry codes: (a) Inline graphic − x, −Inline graphic + y, Inline graphic − z; (b) Inline graphic − x, −Inline graphic + y, Inline graphic − z; (c) Inline graphic − x, Inline graphic + y, Inline graphic − z; (d) Inline graphic + x, Inline graphic − y, Inline graphic + z].

Figure 4.

Figure 4

Packing viewed along the a-axis direction with the inter­molecular C—H⋯O hydrogen bonds and C—H⋯π inter­actions depicted by dashed lines.

Figure 5.

Figure 5

Packing viewed along the b-axis direction with the inter­molecular C—H⋯O hydrogen bonds and C—H⋯π inter­actions depicted by dashed lines.

Figure 6.

Figure 6

Packing viewed along the c-axis direction with the inter­molecular C—H⋯O hydrogen bonds and C—H⋯π inter­actions depicted by dashed lines.

Table 2. Summary of short inter­atomic contacts (Å) in the title compound (1).

Contact Distance Symmetry operation
Cl1⋯H10A 3.10 x, −1 + y, z
H20A⋯H25A 2.44 {1\over 2} − x, −{1\over 2} + y, {1\over 2} − z
H17A⋯O1 2.51 {3\over 2} − x, −{1\over 2} + y, {1\over 2} − z
H23A⋯Cl2 3.07 1 − x, 1 − y, −z
C28⋯H16A 2.96 −{1\over 2} + x, {1\over 2} − y, −{1\over 2} + z
H14A⋯C25 2.90 −{1\over 2} + x, {1\over 2} − y, −{1\over 2} + z
H15A⋯H14A 2.56 1 − x, 1 − y, 1 − z

Figure 7.

Figure 7

Hirshfeld surface of the title mol­ecule 1 mapped with d norm.

Figure 8.

Figure 8

Fingerprint plots showing (a) all inter­molecular inter­actions and resolved into (b) H⋯H, (c) Cl⋯H/H⋯Cl, (d) C⋯H/H⋯C and (e) O⋯H/H⋯O contacts.

Table 3. Percentage contributions of inter­atomic contacts to the Hirshfeld surface for the title compound (1).

Contact Percentage contribution
H⋯H 36.8
Cl⋯H/H⋯Cl 26.6
C⋯H/H⋯C 18.8
O⋯H/H⋯O 11.3
Cl⋯C/C⋯Cl 4.4
Cl⋯O/O⋯Cl 0.8
Cl⋯Cl 0.8
O⋯C/C⋯O 0.4
C⋯C 0.1

Database survey  

A search of the Cambridge Structural Database (CSD version 5.40, update of September 2019; Groom et al., 2016) for structures having the ep­oxy­iso­indole moiety gave ten hits that closely resemble the title compound, viz. 4,5-di­bromo-2-[4-(tri­fluoro­meth­yl)phen­yl]hexa­hydro-3a,6-ep­oxy­isoindol-1(4H)-one (CSD refcode IQOTOA; Mertsalov et al., 2021a ), 3-hy­droxy-2-{[2-(4-methyl­benzene-1-sulfon­yl)-2,3,7,7a-tetra­hydro-3a,6-ep­oxy­isoindol-6(1H)-yl]meth­yl}-2,3-di­hydro-1H-isoindol-1-one (OMUTAU; Mertsalov et al., 2021b ), 2-benzyl-4,5-di­bromo­hexa­hydro-3a,6-ep­oxy­isoindol-1(4H)-one (OME­MAX; Mertsalov et al., 2021c ), 4,5-di­bromo-6-methyl-2-phenyl­hexa­hydro-3a,6-ep­oxy­isoindol-1(4H)-one (IMUBIE; Mertsalov et al., 2021a ), (3aR,6S,7aR)-7a-chloro-2-[(4-nitro­phen­yl)sulfon­yl]-1,2,3,6,7,7a-hexa­hydro-3a,6-ep­oxy­iso­indole (AGONUH; Temel et al., 2013), (3aR,6S,7aR)-7a-chloro-6-methyl-2-[(4-nitro­phen­yl)sulfon­yl]-1,2,3,6,7,7a-hexa­hydro-3a,6-ep­oxy­iso­indole (TIJMIK; Demircan et al., 2013), 5-chloro-7-methyl-3-[(4-methyl-phen­yl)sulfon­yl]-10-oxa-3-aza­tri­cyclo­[5.2.1.01,5]dec-8-ene (YAXCIL; Temel et al., 2012), (3aR,6S,7aR)-7a-bromo-2-[(4-methyl­phen­yl)sulfon­yl]-1,2,3,6,7,7a-hexa­hydro-3a,6-ep­oxy­iso-indole (UPAQEI; Koşar et al., 2011), (3aR,6S,7aR)-7a-bromo-2-methyl­sulfonyl-1,2,3,6,7,7-hexa­hydro-3a,6-ep­oxy­iso­indole (ERIVIL; Temel et al., 2011) and tert-butyl 3a-chloro­per-hydro-2,6a-ep­oxy­oxireno(e)isoindole-5-carboxyl­ate (MIGTIG; Koşar et al., 2007).

In the crystal of IQOTOA, the asymmetric unit consists of two crystallographically independent mol­ecules. In both mol­ecules, the pyrrolidine and tetra­hydro­furan rings adopt envelope conformations. In the crystal, mol­ecules are linked in pairs by C— H⋯O hydrogen bonds. These pairs form a tetra­meric supra­molecular motif, leading to mol­ecular layers parallel to the (100) plane formed by C— H⋯π and C—Br⋯π inter­actions. OMUTAU also crystallizes with two independent mol­ecules in the asymmetric unit. In the central ring systems of both mol­ecules, the tetra­hydro­furan rings adopt envelope conformations, the pyrrolidine rings adopt twisted-envelope conformations and the six-membered ring is in a boat conformation. In both mol­ecules, the nine-membered groups attached to the central ring system are essentially planar. In the crystal, strong inter­molecular O—H⋯O hydrogen bonds and weak inter­molecular C—H⋯O contacts link the mol­ecules, forming a three-dimensional network. In addition, weak π–π stacking inter­actions between the pyrrolidine rings are observed. OMEMAX again crystallizes with two mol­ecules in the asymmetric unit of the unit cell. In both mol­ecules, the tetra­hydro­furan rings adopt envelope conformations with the O atoms as the flaps and the pyrrolidine rings also adopt envelope conformations. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds, forming sheets lying parallel to the (001) plane. These sheets are connected only by weak van der Waals inter­actions. In the crystal of IMUBIE, the mol­ecules are linked into dimers by pairs of C—H⋯O hydrogen bonds, thus generating Inline graphic(18) rings. The crystal packing is dominated by H⋯H, Br⋯H, H⋯π and Br⋯π inter­actions. In the crystal structures of IQOTOA, OMUTAU, OMEMAX, AGONUH, TIJMIK, YAXCIL, UPAQEI and ERIVIL, the mol­ecules are predominantly linked by C—H⋯O hydrogen bonds, giving various hydrogen-bonding pattern connectivities. In the crystal of AGONUH, the mol­ecules are connected in zigzag chains running along the b-axis direction. In TIJMIK, two types of C—H⋯O hydrogen bonds are found, viz. R 2 2(20) and Inline graphic(26) rings, with adjacent rings running parallel to the ac plane. Additionally, C—H⋯O hydrogen bonds form a C(6) chain, linking the mol­ecules in the b-axis direction. In the crystal of ERIVIL, the mol­ecules are connected into Inline graphic(8) and Inline graphic(14) rings along the b-axis direction. In MIGTIG, the mol­ecules are linked only by weak van der Waals inter­actions.

Synthesis and crystallization  

CsF (1.7 g, 0.011 mol) was added to 2,2,2-tri­chloro-N,N-bis­(furan-2-ylmeth­yl)acetamide (0.0022 mol) dissolved in dry CH3CN (20 mL). Then an equivalent of 2-(tri­methyl­sil­yl)phenyl tri­fluoro­methane­sulfonate (0.54 mL, 0.022 mol) was added to the solution under an argon atmosphere. The mixture was refluxed for 4 h (TLC control). After that, one more portion of 2-(tri­methyl­sil­yl)phenyl tri­fluoro­methane­sulfonate (0.27 mL, 0.011 mol) and CsF (1.7 g, 0.011 mol) was added to the mixture, repeating all procedures again. After the mixture was cooled, CsF was filtered off through a thin layer of SiO2, and the resulting solution was concentrated under reduced pressure. The residue (brown oil) was separated using column chromatography on silica gel (a mixture EtOAc/hexane = 1/25 as eluent) to give compounds 13 in the ratio ∼30/25/45. Single crystals of compound 1 was obtained by slow crystallization from a hexa­ne/EtOAc mixture.

Compound 1: white powder (0.29 g, 0.62 mmol, 28%); Rf 0.50 (‘Sorbfil’ plates for thin-layer chromatography, EtOAc/hexane, 1:4, Sorbfil); m.p. 431.7–433.4 K. 1H NMR (600.2 MHz, CDCl3) δ 7.19–7.24 (4H, m, H-Ar), 7.07 (1H, dd, J = 1.5 and J = 5.6 Hz, H-2′), 7.04 (2H, br dd, J = 2.0 and J = 5.0 Hz, H-3,3′), 6.95–6.99 (4H, m, H-Ar), 6.85 (1H, d, J = 5.6 Hz, H-2), 5.73 (1H, d, J = 1.5 Hz, H-4′), 5.71 (1H, d, J = 1.5 Hz, H-4), 5.11 (1H, d, J = 16.2 Hz, H-1′B), 4.87 (1H, d, J = 16.2 Hz, H-1B), 4.76 (1H, d, J = 15.1 Hz, H-1′A), 4.72 (1H, br d, J = 15.1 Hz, H-1A). 13C NMR (150.9 MHz, CDCl3) d 161.5, 150.2, 149.9, 148.7, 148.2, 145.2, 145.1, 143.3, 143.0, 125.5, 125.3, 125.2, 125.1, 120.5, 120.2, 120.0, 119.6, 94.1, 93.3, 92.1, 82.4, 82.2, 49.1, 45.6. IR νmax/cm−1 (tablet KBr): 2953, 2919, 1702, 1632, 1462, 1410, 1236. HRMS (ESI–TOF): calculated for C24H18Cl3NO4 [M + H]+ 473.0352; found 473.0358.

Refinement details  

Crystal data, data collection and structure refinement details are summarized in Table 4. All C-bound H atoms were placed in calculated positions and refined using a riding model, with C—H = 0.93–0.98 Å, and with U iso(H) = 1.2U eq(C). Six reflections (Inline graphic01, 011, 101, 110, 002 and 200), which were obscured by the beam stop, and nine outliers (343, 253, Inline graphic,1,15, 3,6,11, 15,4,4, 072, 4,6,12, Inline graphic,3,22 and 13,6,2) were omitted during the final refinement cycle.

Table 4. Experimental details.

Crystal data
Chemical formula C24H18Cl3NO3
M r 474.74
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 15.0134 (6), 8.1336 (3), 18.2841 (6)
β (°) 104.307 (2)
V3) 2163.48 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.45
Crystal size (mm) 0.34 × 0.18 × 0.14
 
Data collection
Diffractometer Bruker Kappa APEXII area-detector diffractometer
Absorption correction Multi-scan (SADABS; Bruker, 2013)
Tmin, Tmax 0.743, 0.940
No. of measured, independent and observed [I > 2σ(I)] reflections 17833, 4991, 3570
R int 0.030
(sin θ/λ)max−1) 0.652
 
Refinement
R[F2 > 2σ(F 2)], wR(F 2), S 0.041, 0.118, 1.01
No. of reflections 4991
No. of parameters 280
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.30, −0.36

Computer programs: APEX2 and SAINT (Bruker, 2013), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2020).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021009907/yk2156sup1.cif

e-77-01048-sup1.cif (558.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021009907/yk2156Isup2.hkl

e-77-01048-Isup2.hkl (397.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021009907/yk2156Isup3.cml

CCDC reference: 2095762

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors’ contributions are as follows. Conceptualization, MA and AB; synthesis, GZM; X-ray analysis, ZA and GZM; writing (review and editing of the manuscript), ZA, GZM and MA; supervision, MA and AB.

supplementary crystallographic information

Crystal data

C24H18Cl3NO3 F(000) = 976
Mr = 474.74 Dx = 1.458 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 15.0134 (6) Å Cell parameters from 4831 reflections
b = 8.1336 (3) Å θ = 2.8–26.7°
c = 18.2841 (6) Å µ = 0.45 mm1
β = 104.307 (2)° T = 296 K
V = 2163.48 (14) Å3 Fragment, colourless
Z = 4 0.34 × 0.18 × 0.14 mm

Data collection

Bruker Kappa APEXII area-detector diffractometer 3570 reflections with I > 2σ(I)
φ and ω scans Rint = 0.030
Absorption correction: multi-scan (SADABS; Bruker, 2013) θmax = 27.6°, θmin = 3.2°
Tmin = 0.743, Tmax = 0.940 h = −19→19
17833 measured reflections k = −10→10
4991 independent reflections l = −23→23

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041 H-atom parameters constrained
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0576P)2 + 0.6103P] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max < 0.001
4991 reflections Δρmax = 0.30 e Å3
280 parameters Δρmin = −0.36 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.57432 (13) 0.4170 (2) 0.17193 (10) 0.0396 (4)
C2 0.53382 (14) 0.2461 (3) 0.14061 (12) 0.0450 (5)
C10 0.57234 (13) 0.6612 (2) 0.24521 (11) 0.0386 (4)
H10A 0.533570 0.757230 0.231289 0.046*
H10B 0.628106 0.679444 0.228600 0.046*
C11 0.59728 (12) 0.6449 (2) 0.32991 (11) 0.0353 (4)
C12 0.64935 (13) 0.7922 (2) 0.37350 (12) 0.0445 (5)
H12A 0.686507 0.866559 0.356181 0.053*
C13 0.63075 (14) 0.7916 (2) 0.44014 (12) 0.0473 (5)
H13A 0.651717 0.865687 0.479366 0.057*
C14 0.56784 (13) 0.6447 (2) 0.43983 (11) 0.0417 (4)
H14A 0.530748 0.647835 0.477024 0.050*
C14A 0.62536 (12) 0.4899 (2) 0.44023 (11) 0.0390 (4)
C15 0.65706 (14) 0.3678 (3) 0.49181 (12) 0.0466 (5)
H15A 0.643575 0.368000 0.538795 0.056*
C16 0.71008 (15) 0.2436 (3) 0.47154 (13) 0.0531 (5)
H16A 0.731376 0.158196 0.505157 0.064*
C17 0.73137 (15) 0.2450 (3) 0.40299 (13) 0.0521 (5)
H17A 0.767642 0.161342 0.391117 0.062*
C18 0.69959 (13) 0.3700 (2) 0.35035 (12) 0.0436 (4)
H18A 0.714646 0.371239 0.303977 0.052*
C18A 0.64551 (11) 0.4905 (2) 0.36943 (10) 0.0356 (4)
C20 0.42684 (12) 0.5001 (2) 0.20562 (10) 0.0359 (4)
H20A 0.422213 0.498360 0.257597 0.043*
H20B 0.404568 0.395232 0.183106 0.043*
C21 0.36523 (12) 0.6346 (2) 0.16411 (10) 0.0348 (4)
C22 0.37783 (13) 0.7010 (3) 0.08860 (11) 0.0440 (4)
H22A 0.405680 0.647375 0.055171 0.053*
C23 0.34135 (14) 0.8485 (3) 0.08083 (13) 0.0503 (5)
H23A 0.338084 0.920840 0.040843 0.060*
C24 0.30557 (14) 0.8769 (2) 0.15056 (12) 0.0467 (5)
H24A 0.296146 0.991967 0.162742 0.056*
C24A 0.22319 (13) 0.7630 (2) 0.14421 (10) 0.0396 (4)
C25 0.12998 (14) 0.7862 (3) 0.13138 (11) 0.0485 (5)
H25A 0.104624 0.891139 0.125152 0.058*
C26 0.07468 (15) 0.6477 (3) 0.12801 (12) 0.0556 (6)
H26A 0.011307 0.660262 0.118843 0.067*
C27 0.11209 (14) 0.4931 (3) 0.13797 (12) 0.0558 (6)
H27A 0.073843 0.402457 0.136186 0.067*
C28 0.20793 (13) 0.4696 (3) 0.15092 (11) 0.0448 (4)
H28A 0.233674 0.365028 0.157926 0.054*
C28A 0.26130 (12) 0.6058 (2) 0.15276 (9) 0.0350 (4)
N1 0.52425 (10) 0.51733 (18) 0.20508 (8) 0.0353 (3)
O1 0.65181 (10) 0.4475 (2) 0.16809 (9) 0.0594 (4)
O19 0.51694 (8) 0.64419 (16) 0.36140 (7) 0.0389 (3)
O29 0.37315 (9) 0.78716 (15) 0.20640 (7) 0.0431 (3)
Cl1 0.49921 (4) 0.13248 (6) 0.21124 (4) 0.05856 (17)
Cl2 0.61916 (5) 0.13144 (9) 0.11317 (5) 0.0795 (2)
Cl3 0.44055 (5) 0.27068 (8) 0.06047 (4) 0.0719 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0400 (10) 0.0380 (10) 0.0425 (10) −0.0010 (8) 0.0136 (8) 0.0011 (8)
C2 0.0436 (11) 0.0415 (10) 0.0510 (11) 0.0025 (8) 0.0138 (9) −0.0063 (9)
C10 0.0366 (10) 0.0304 (9) 0.0486 (11) −0.0056 (7) 0.0101 (8) 0.0000 (7)
C11 0.0276 (8) 0.0296 (9) 0.0489 (10) −0.0020 (7) 0.0096 (7) −0.0022 (7)
C12 0.0393 (11) 0.0305 (9) 0.0603 (13) −0.0053 (8) 0.0060 (9) −0.0042 (8)
C13 0.0465 (12) 0.0361 (10) 0.0552 (12) −0.0006 (9) 0.0051 (9) −0.0105 (9)
C14 0.0358 (10) 0.0437 (11) 0.0449 (10) −0.0001 (8) 0.0088 (8) −0.0059 (8)
C14A 0.0309 (9) 0.0356 (10) 0.0485 (10) −0.0048 (7) 0.0062 (7) −0.0043 (8)
C15 0.0417 (11) 0.0463 (11) 0.0489 (11) −0.0066 (9) 0.0056 (9) 0.0023 (9)
C16 0.0491 (12) 0.0401 (11) 0.0632 (14) 0.0007 (9) 0.0006 (10) 0.0081 (10)
C17 0.0450 (12) 0.0366 (10) 0.0707 (14) 0.0091 (9) 0.0067 (10) −0.0039 (10)
C18 0.0382 (10) 0.0389 (10) 0.0536 (12) 0.0009 (8) 0.0109 (8) −0.0047 (8)
C18A 0.0266 (8) 0.0312 (9) 0.0473 (10) −0.0040 (7) 0.0060 (7) −0.0008 (7)
C20 0.0323 (9) 0.0329 (9) 0.0431 (10) −0.0024 (7) 0.0102 (7) 0.0010 (7)
C21 0.0346 (9) 0.0309 (9) 0.0383 (9) −0.0023 (7) 0.0082 (7) −0.0031 (7)
C22 0.0381 (10) 0.0508 (12) 0.0455 (11) −0.0010 (9) 0.0150 (8) 0.0056 (9)
C23 0.0445 (11) 0.0458 (12) 0.0601 (13) −0.0024 (9) 0.0118 (9) 0.0166 (10)
C24 0.0445 (11) 0.0323 (10) 0.0595 (13) 0.0040 (8) 0.0058 (9) −0.0005 (9)
C24A 0.0406 (10) 0.0413 (10) 0.0370 (9) 0.0020 (8) 0.0098 (7) −0.0010 (8)
C25 0.0463 (12) 0.0594 (13) 0.0416 (10) 0.0136 (10) 0.0142 (9) 0.0030 (9)
C26 0.0345 (10) 0.0849 (18) 0.0496 (12) 0.0021 (11) 0.0149 (9) 0.0111 (11)
C27 0.0412 (11) 0.0735 (16) 0.0533 (12) −0.0185 (11) 0.0125 (9) 0.0043 (11)
C28 0.0438 (11) 0.0458 (11) 0.0446 (10) −0.0064 (9) 0.0106 (8) 0.0017 (9)
C28A 0.0346 (9) 0.0410 (10) 0.0302 (8) −0.0022 (7) 0.0093 (7) −0.0020 (7)
N1 0.0325 (8) 0.0314 (8) 0.0418 (8) −0.0030 (6) 0.0086 (6) −0.0015 (6)
O1 0.0475 (9) 0.0566 (9) 0.0848 (11) −0.0086 (7) 0.0368 (8) −0.0112 (8)
O19 0.0279 (6) 0.0422 (7) 0.0460 (7) 0.0007 (5) 0.0081 (5) −0.0044 (6)
O29 0.0429 (8) 0.0311 (7) 0.0497 (8) 0.0011 (6) 0.0011 (6) −0.0067 (6)
Cl1 0.0690 (4) 0.0354 (3) 0.0743 (4) −0.0035 (2) 0.0234 (3) 0.0056 (2)
Cl2 0.0716 (4) 0.0686 (4) 0.1080 (6) 0.0077 (3) 0.0409 (4) −0.0319 (4)
Cl3 0.0757 (4) 0.0686 (4) 0.0586 (4) −0.0006 (3) −0.0076 (3) −0.0129 (3)

Geometric parameters (Å, º)

C1—O1 1.209 (2) C17—H17A 0.9300
C1—N1 1.351 (2) C18—C18A 1.372 (3)
C1—C2 1.568 (3) C18—H18A 0.9300
C2—Cl2 1.755 (2) C20—N1 1.472 (2)
C2—Cl1 1.767 (2) C20—C21 1.510 (2)
C2—Cl3 1.770 (2) C20—H20A 0.9700
C10—N1 1.472 (2) C20—H20B 0.9700
C10—C11 1.506 (3) C21—O29 1.451 (2)
C10—H10A 0.9700 C21—C22 1.537 (3)
C10—H10B 0.9700 C21—C28A 1.540 (2)
C11—O19 1.459 (2) C22—C23 1.312 (3)
C11—C18A 1.538 (2) C22—H22A 0.9300
C11—C12 1.540 (2) C23—C24 1.519 (3)
C12—C13 1.316 (3) C23—H23A 0.9300
C12—H12A 0.9300 C24—O29 1.447 (2)
C13—C14 1.522 (3) C24—C24A 1.527 (3)
C13—H13A 0.9300 C24—H24A 0.9800
C14—O19 1.449 (2) C24A—C25 1.374 (3)
C14—C14A 1.526 (3) C24A—C28A 1.394 (3)
C14—H14A 0.9800 C25—C26 1.392 (3)
C14A—C15 1.371 (3) C25—H25A 0.9300
C14A—C18A 1.400 (3) C26—C27 1.371 (3)
C15—C16 1.392 (3) C26—H26A 0.9300
C15—H15A 0.9300 C27—C28 1.412 (3)
C16—C17 1.368 (3) C27—H27A 0.9300
C16—H16A 0.9300 C28—C28A 1.362 (3)
C17—C18 1.400 (3) C28—H28A 0.9300
O1—C1—N1 123.52 (18) C18—C18A—C11 134.72 (18)
O1—C1—C2 116.95 (17) C14A—C18A—C11 104.65 (15)
N1—C1—C2 119.42 (16) N1—C20—C21 114.45 (14)
C1—C2—Cl2 109.31 (13) N1—C20—H20A 108.6
C1—C2—Cl1 110.74 (13) C21—C20—H20A 108.6
Cl2—C2—Cl1 107.36 (11) N1—C20—H20B 108.6
C1—C2—Cl3 110.99 (14) C21—C20—H20B 108.6
Cl2—C2—Cl3 107.91 (11) H20A—C20—H20B 107.6
Cl1—C2—Cl3 110.41 (11) O29—C21—C20 113.09 (14)
N1—C10—C11 114.17 (14) O29—C21—C22 99.57 (14)
N1—C10—H10A 108.7 C20—C21—C22 120.64 (16)
C11—C10—H10A 108.7 O29—C21—C28A 98.57 (13)
N1—C10—H10B 108.7 C20—C21—C28A 115.56 (14)
C11—C10—H10B 108.7 C22—C21—C28A 106.13 (14)
H10A—C10—H10B 107.6 C23—C22—C21 106.13 (18)
O19—C11—C10 112.73 (14) C23—C22—H22A 126.9
O19—C11—C18A 98.64 (13) C21—C22—H22A 126.9
C10—C11—C18A 121.53 (15) C22—C23—C24 105.84 (18)
O19—C11—C12 99.35 (14) C22—C23—H23A 127.1
C10—C11—C12 115.42 (15) C24—C23—H23A 127.1
C18A—C11—C12 105.78 (15) O29—C24—C23 100.59 (15)
C13—C12—C11 106.25 (17) O29—C24—C24A 99.27 (15)
C13—C12—H12A 126.9 C23—C24—C24A 106.97 (16)
C11—C12—H12A 126.9 O29—C24—H24A 115.9
C12—C13—C14 105.83 (17) C23—C24—H24A 115.9
C12—C13—H13A 127.1 C24A—C24—H24A 115.9
C14—C13—H13A 127.1 C25—C24A—C28A 121.17 (18)
O19—C14—C13 100.44 (15) C25—C24A—C24 134.57 (19)
O19—C14—C14A 99.30 (14) C28A—C24A—C24 104.24 (16)
C13—C14—C14A 107.32 (15) C24A—C25—C26 117.9 (2)
O19—C14—H14A 115.8 C24A—C25—H25A 121.0
C13—C14—H14A 115.8 C26—C25—H25A 121.0
C14A—C14—H14A 115.8 C27—C26—C25 121.08 (19)
C15—C14A—C18A 121.38 (18) C27—C26—H26A 119.5
C15—C14A—C14 134.49 (18) C25—C26—H26A 119.5
C18A—C14A—C14 104.12 (16) C26—C27—C28 120.9 (2)
C14A—C15—C16 117.8 (2) C26—C27—H27A 119.6
C14A—C15—H15A 121.1 C28—C27—H27A 119.6
C16—C15—H15A 121.1 C28A—C28—C27 117.6 (2)
C17—C16—C15 121.1 (2) C28A—C28—H28A 121.2
C17—C16—H16A 119.5 C27—C28—H28A 121.2
C15—C16—H16A 119.5 C28—C28A—C24A 121.36 (17)
C16—C17—C18 121.3 (2) C28—C28A—C21 134.20 (17)
C16—C17—H17A 119.4 C24A—C28A—C21 104.43 (15)
C18—C17—H17A 119.4 C1—N1—C20 127.57 (15)
C18A—C18—C17 117.81 (19) C1—N1—C10 116.44 (15)
C18A—C18—H18A 121.1 C20—N1—C10 115.99 (14)
C17—C18—H18A 121.1 C14—O19—C11 96.05 (13)
C18—C18A—C14A 120.62 (17) C24—O29—C21 96.01 (13)
O1—C1—C2—Cl2 4.6 (2) C21—C22—C23—C24 0.0 (2)
N1—C1—C2—Cl2 −171.75 (15) C22—C23—C24—O29 33.4 (2)
O1—C1—C2—Cl1 122.72 (17) C22—C23—C24—C24A −69.8 (2)
N1—C1—C2—Cl1 −53.7 (2) O29—C24—C24A—C25 146.2 (2)
O1—C1—C2—Cl3 −114.28 (18) C23—C24—C24A—C25 −109.7 (2)
N1—C1—C2—Cl3 69.3 (2) O29—C24—C24A—C28A −35.51 (18)
N1—C10—C11—O19 −67.92 (19) C23—C24—C24A—C28A 68.64 (19)
N1—C10—C11—C18A 48.7 (2) C28A—C24A—C25—C26 0.7 (3)
N1—C10—C11—C12 178.87 (15) C24—C24A—C25—C26 178.8 (2)
O19—C11—C12—C13 32.80 (19) C24A—C25—C26—C27 0.7 (3)
C10—C11—C12—C13 153.59 (17) C25—C26—C27—C28 −0.9 (3)
C18A—C11—C12—C13 −69.00 (19) C26—C27—C28—C28A −0.3 (3)
C11—C12—C13—C14 0.4 (2) C27—C28—C28A—C24A 1.7 (3)
C12—C13—C14—O19 −33.89 (19) C27—C28—C28A—C21 −179.31 (18)
C12—C13—C14—C14A 69.4 (2) C25—C24A—C28A—C28 −1.9 (3)
O19—C14—C14A—C15 −144.6 (2) C24—C24A—C28A—C28 179.46 (17)
C13—C14—C14A—C15 111.3 (2) C25—C24A—C28A—C21 178.80 (17)
O19—C14—C14A—C18A 36.13 (17) C24—C24A—C28A—C21 0.19 (18)
C13—C14—C14A—C18A −67.96 (18) O29—C21—C28A—C28 −144.1 (2)
C18A—C14A—C15—C16 −0.1 (3) C20—C21—C28A—C28 −23.4 (3)
C14—C14A—C15—C16 −179.27 (19) C22—C21—C28A—C28 113.2 (2)
C14A—C15—C16—C17 1.3 (3) O29—C21—C28A—C24A 35.00 (16)
C15—C16—C17—C18 −0.9 (3) C20—C21—C28A—C24A 155.77 (15)
C16—C17—C18—C18A −0.6 (3) C22—C21—C28A—C24A −67.64 (17)
C17—C18—C18A—C14A 1.8 (3) O1—C1—N1—C20 172.92 (18)
C17—C18—C18A—C11 −179.78 (19) C2—C1—N1—C20 −10.9 (3)
C15—C14A—C18A—C18 −1.5 (3) O1—C1—N1—C10 −6.9 (3)
C14—C14A—C18A—C18 177.93 (16) C2—C1—N1—C10 169.28 (16)
C15—C14A—C18A—C11 179.68 (16) C21—C20—N1—C1 −114.5 (2)
C14—C14A—C18A—C11 −0.92 (17) C21—C20—N1—C10 65.2 (2)
O19—C11—C18A—C18 147.2 (2) C11—C10—N1—C1 −104.29 (19)
C10—C11—C18A—C18 23.7 (3) C11—C10—N1—C20 75.91 (19)
C12—C11—C18A—C18 −110.5 (2) C13—C14—O19—C11 52.63 (15)
O19—C11—C18A—C14A −34.20 (16) C14A—C14—O19—C11 −57.06 (15)
C10—C11—C18A—C14A −157.68 (16) C10—C11—O19—C14 −174.45 (14)
C12—C11—C18A—C14A 68.14 (18) C18A—C11—O19—C14 55.97 (14)
N1—C20—C21—O29 −76.82 (19) C12—C11—O19—C14 −51.72 (15)
N1—C20—C21—C22 40.7 (2) C23—C24—O29—C21 −52.34 (16)
N1—C20—C21—C28A 170.63 (14) C24A—C24—O29—C21 57.01 (16)
O29—C21—C22—C23 −33.12 (19) C20—C21—O29—C24 −178.99 (15)
C20—C21—C22—C23 −157.33 (17) C22—C21—O29—C24 51.68 (16)
C28A—C21—C22—C23 68.77 (19) C28A—C21—O29—C24 −56.40 (15)

Hydrogen-bond geometry (Å, º)

Cg8 is the centroid of the C24A/C25–C28/C28A aromatic ring.

D—H···A D—H H···A D···A D—H···A
C10—H10A···O29 0.97 2.35 3.074 (2) 131
C12—H12A···O1i 0.93 2.66 3.494 (2) 150
C17—H17A···O1ii 0.93 2.51 3.427 (3) 168
C20—H20A···O19 0.97 2.39 3.068 (2) 127
C27—H27A···O19iii 0.93 2.51 3.438 (3) 175
C20—H20B···Cl1 0.97 2.55 3.1744 (18) 122
C20—H20B···Cl3 0.97 2.64 3.2921 (19) 125
C13—H13A···Cg8iv 0.93 2.90 3.633 (2) 136

Symmetry codes: (i) −x+3/2, y+1/2, −z+1/2; (ii) −x+3/2, y−1/2, −z+1/2; (iii) −x+1/2, y−1/2, −z+1/2; (iv) x−1/2, −y+1/2, z−1/2.

References

  1. Borisova, K. K., Kvyatkovskaya, E. A., Nikitina, E. V., Aysin, R. R., Novikov, R. A. & Zubkov, F. I. (2018a). J. Org. Chem. 83, 4840–4850. [DOI] [PubMed]
  2. Borisova, K. K., Nikitina, E. V., Novikov, R. A., Khrustalev, V. N., Dorovatovskii, P. V., Zubavichus, Y. V., Kuznetsov, M. L., Zaytsev, V. P., Varlamov, A. V. & Zubkov, F. I. (2018b). Chem. Commun. 54, 2850–2853. [DOI] [PubMed]
  3. Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Criado, A., Peña, D., Cobas, A. & Guitián, E. (2010). Chem. Eur. J. 16, 9736–9740. [DOI] [PubMed]
  5. Criado, A., Vilas-Varela, M., Cobas, A., Pérez, D., Peña, D. & Guitián, E. (2013). J. Org. Chem. 78, 12637–12649. [DOI] [PubMed]
  6. Demircan, A., Temel, E., Kandemir, M. K., Çolak, M. & Büyükgüngör, O. (2013). Acta Cryst. E69, o1628–o1629. [DOI] [PMC free article] [PubMed]
  7. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  8. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  9. Grudova, M. V., Gil, D. M., Khrustalev, V. N., Nikitina, E. V., Sinelshchikova, A. A., Grigoriev, M. S., Kletskov, A. V., Frontera, A. & Zubkov, F. I. (2020). New J. Chem. 44, 20167–20180.
  10. Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633.
  11. Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837. [DOI] [PubMed]
  12. Juhl, M. & Tanner, D. (2009). Chem. Soc. Rev. 38, 2983–2992. [DOI] [PubMed]
  13. Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Maharramov, A. M., Nagiyev, F. N. & Brito, I. (2018a). Z. Kristallogr. New Cryst. Struct. 233, 1019–1020.
  14. Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Nagiyev, F. N. & Brito, I. (2018b). Z. Kristallogr. New Cryst. Struct. 233, 947–948.
  15. Koşar, B., Demircan, A., Arslan, H. & Büyükgüngör, O. (2011). Acta Cryst. E67, o994–o995. [DOI] [PMC free article] [PubMed]
  16. Koşar, B., Karaarslan, M., Demir, I. & Büyükgüngör, O. (2007). Acta Cryst. E63, o3323.
  17. Krishna, G., Grudinin, D. G., Nikitina, E. V. & Zubkov, F. I. (2021). Synthesis, 53, https://doi.org/10.1055/s-0040-1705983.
  18. Kvyatkovskaya, E. A., Epifanova, P. P., Nikitina, E. V., Senin, A. A., Khrustalev, V. N., Polyanskii, K. B. & Zubkov, F. I. (2021). New J. Chem. 45, 3400–3407.
  19. Kvyatkovskaya, E. A., Nikitina, E. V., Khrustalev, V. N., Galmés, B., Zubkov, F. I. & Frontera, A. (2020). Eur. J. Org. Chem. pp. 156–161.
  20. Ma, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526–533.
  21. Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). Mol. Catal. 428, 17–23.
  22. Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.
  23. Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482.
  24. Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 418, 213381.
  25. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  26. Mertsalov, D. F., Alekseeva, K. A., Daria, M. S., Cheshigin, M. E., Çelikesir, S. T., Akkurt, M., Grigoriev, M. S. & Mlowe, S. (2021a). Acta Cryst. E77, 466–472. [DOI] [PMC free article] [PubMed]
  27. Mertsalov, D. F., Nadirova, M. A., Sorokina, E. A., Vinokurova, M. A., Çelikesir, S. T., Akkurt, M., Kolesnik, I. A. & Bhattarai, A. (2021b). Acta Cryst. E77, 260–265. [DOI] [PMC free article] [PubMed]
  28. Mertsalov, D. F., Zaytsev, V. P., Pokazeev, K. M., Grigoriev, M. S., Bachinsky, A. V., Çelikesir, S. T., Akkurt, M. & Mlowe, S. (2021c). Acta Cryst. E77, 255–259. [DOI] [PMC free article] [PubMed]
  29. Mizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. pp. 2305–2313.
  30. Padwa, A. & Flick, A. C. (2013). Adv. Heterocycl. Chem. 110, 1–41.
  31. Parvatkar, P. T., Kadam, H. K. & Tilve, S. G. (2014). Tetrahedron, 70, 2857–2888.
  32. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  33. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  34. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  35. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  36. Takao, K., Munakata, R. & Tadano, K. (2005). Chem. Rev. 105, 4779–4807. [DOI] [PubMed]
  37. Temel, E., Demircan, A., Arslan, H. & Büyükgüngör, O. (2011). Acta Cryst. E67, o1304–o1305. [DOI] [PMC free article] [PubMed]
  38. Temel, E., Demircan, A., Beyazova, G. & Büyükgüngör, O. (2012). Acta Cryst. E68, o1102–o1103. [DOI] [PMC free article] [PubMed]
  39. Temel, E., Demircan, A., Kandemir, M. K., Çolak, M. & Büyükgüngör, O. (2013). Acta Cryst. E69, o1551–o1552. [DOI] [PMC free article] [PubMed]
  40. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.
  41. Zubkov, F. I., Nikitina, E. V. & Varlamov, A. V. (2005). Russ. Chem. Rev. 74, 639–669.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021009907/yk2156sup1.cif

e-77-01048-sup1.cif (558.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021009907/yk2156Isup2.hkl

e-77-01048-Isup2.hkl (397.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021009907/yk2156Isup3.cml

CCDC reference: 2095762

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES