C—H⋯N interactions, C—Cl⋯π interactions, and π-π stacking interactions link molecules in the crystal, forming molecular layers approximately parallel to the (002) plane. The three-dimensional packing is strengthened by additional weak van der Waals interactions between the layers.
Keywords: crystal structure, C—H⋯N interactions, C—Cl⋯π interactions, π–π stacking interactions, Hirshfeld surface analysis
Abstract
In the title compound, C17H14Cl2N4, the dihedral angle between the aromatic rings is 50.09 (9)°. The central –N=N– unit shows an E configuration. In the crystal, C—H⋯N interactions, C—Cl⋯π and π–π stacking interactions [centroid-to-centroid distance = 3.7719 (14) Å] link the molecules, forming molecular layers approximately parallel to the (002) plane. Additional weak van der Waals interactions between the layers consolidate the three-dimensional packing. Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are from H⋯H (33.6%), N⋯H/ H⋯N (17.2%), Cl⋯H/H⋯Cl (14.1%) and C⋯H/H⋯C (14.1%) contacts.
Chemical context
Azo dyes find numerous applications in a diversity of areas, including in molecular recognition, optical data storage, non-linear optics and as molecular switches, antimicrobial agents, colour-changing materials, liquid crystals, dye-sensitized solar cells, mainly because of the ability for cis-to-trans isomerization and the chromophoric properties of the –N=N– synthon (Maharramov et al., 2018 ▸; Viswanathan et al., 2019 ▸). Not only isomerization, but azo-hydrazone tautomerisim is also an important phenomenon in the coordination chemistry of azo dyes (Mahmoudi et al., 2018a ▸,b ▸). Modification of azo dyes with functional groups leads to multifunctional ligands, of which the corresponding metal complexes are effective catalysts in oxidation and in C—C coupling reactions (Ma et al., 2020 ▸, 2021 ▸; Mahmudov et al., 2013 ▸; Mizar et al., 2012 ▸). Moreover, the functional properties of azo dyes are dependent on non-covalent bond-donor or -acceptor site(s) attached to the –N=N– synthon (Gurbanov et al., 2020a ▸,b ▸; Kopylovich et al., 2011 ▸; Mahmudov et al., 2020 ▸; Shixaliyev et al., 2014 ▸). Thus, we have introduced halogen-bond-donor centres to the –N=N– moiety, leading to a new azo dye, (E)-4-({2,2-dichloro-1-[4-(dimethylamino)phenyl]ethenyl}diazenyl)benzonitrile, which provides multiple intermolecular non-covalent interactions.
Structural commentary
The aromatic rings C3–C8 and C11–C16 of the title compound (Fig. 1 ▸) form a dihedral angle of 50.09 (9)°. In the dimethylamino group, the sum of bond angles about N3 is 357.02° and the nitrogen atom has a flattened trigonal–pyramidal conformation. The atoms of the dimethylamino group and those of its attached benzene ring (C3–C8) are nearly coplanar, with maximum deviations of −0.058 (2), 0.179 (2), and 0.087 (2) Å for N3, C9 and C10, respectively. The title molecule adopts an E configuration with respect to the N1=N2 bond. The N1/N2/C1–C3/Cl1/Cl2 unit is approximately planar with a maximum deviation of 0.102 (2) Å, and makes dihedral angles of 55.44 (9) and 5.36 (9)°, respectively, with the C3–C8 and C11–C16 benzene rings.
Figure 1.
The molecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.
Supramolecular features and Hirshfeld surface analysis
In the crystal, molecules are linked by C—H⋯N interactions (Table 1 ▸), C—H⋯π [Cl2⋯Cg2ii = 3.3910 (12) Å, C2⋯Cg2ii = 3.858 (2) Å, C2—Cl2⋯Cg2ii = 92.07 (7)°; symmetry code: (ii) x, 1 + y, z; where Cg2 is the centroid of the C11–C16 benzene ring] and π–π stacking interactions [Cg2⋯Cg1iii = 3.7719 (14) Å, slippage = 1.741 Å; Cg1⋯Cg2iv = 3.7719 (14) Å, slippage = 1.336 Å; symmetry codes: (iii)
− x, −
+ y,
− z; (iv)
− x,
+ y,
− z; where Cg1 and Cg2 are the centroids of the C3—C8 and C11–C16 benzene rings, respectively], forming molecular layers approximately parallel to the (002) plane with the molecules having a bellows-like shape when viewed along the a axis (Figs. 2 ▸ and 3 ▸). Weak van der Waals interactions between these layers increase the stability of the crystal structure.
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C13—H13⋯N4i | 0.95 | 2.48 | 3.428 (3) | 175 |
Symmetry code: (i) -x+{\script{5\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}.
Figure 2.
A general view of the C—H⋯N contacts, C—Cl⋯π interactions and π–π stacking interactions in the crystal packing of the title compound [symmetry codes: (a) −1 + x, y, z; (b) −1 + x, 1 + y, z; (c) x, 1 + y, z; (d)
− x, −
+ y,
− z; (e)
− x,
+ y,
− z; (f)
− x, −
+ y,
− z; (g)
− x,
+ y,
− z].
Figure 3.
The crystal packing of the title compound, viewed along the a axis, showing the C—Cl⋯π interactions and π–π stacking interactions as dashed lines.
To visualize the intermolecular interactions in the title molecule, CrystalExplorer17 (Turner et al., 2017 ▸) was used to compute Hirshfeld surfaces (McKinnon et al., 2007 ▸) and their corresponding two-dimensional fingerprint plots (Spackman & McKinnon, 2002 ▸). The Hirshfeld surface mapped over electrostatic potential (Spackman et al., 2008 ▸) is shown in Fig. 4 ▸. The positive electrostatic potential (blue region) over the surface indicates hydrogen-bond donors, whereas the hydrogen-bond acceptors are represented by a negative electrostatic potential (red region). In the Hirshfeld surface mapped over d norm (Fig. 5 ▸), the bright-red spots near atoms H7, H13, N4 and Cl1 indicate the short C—H⋯N and C—H⋯Cl contacts (Table 2 ▸). Other contacts are equal to or longer than the sum of van der Waals radii. The most important interaction is H⋯H, contributing 33.6% to the overall crystal packing, which is reflected in Fig. 6 ▸ b as widely scattered points of high density due to the large hydrogen content of the molecule, with the tip at d e = d i = 1.15 Å. The reciprocal N⋯H/H⋯N interactions appear as two symmetrical broad wings with d e + d i = 2.3 Å and contribute 17.2% to the Hirshfeld surface (Fig. 6 ▸ c). The reciprocal Cl⋯H/H⋯Cl interactions (14.1% contribution) are present as two symmetrical broad wings with d e + d i = 2.7 (Fig. 6 ▸ d). The pair of characteristic wings in the fingerprint plot delineated into H⋯C/C⋯H contacts (Fig. 6 ▸ e; 14.1% contribution) have the tips at d e + d i = 2.8 Å. The smaller percentage contributions to the Hirshfeld surface from the various other interatomic contact are comparatively listed in Table 3 ▸.
Figure 4.
View of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory. Hydrogen-bond donors and acceptors are shown as blue and red regions, respectively, around the atoms, corresponding to positive and negative potentials.
Figure 5.
Hirshfeld surface mapped over d norm highlighting the regions of C—H⋯Cl and C—H⋯N intermolecular contacts.
Table 2. Summary of short interatomic contacts (Å) in the title compound.
| Contact | Distance | Symmetry operation |
|---|---|---|
| Cl1⋯H4 | 2.86 | x, 1 + y, z |
| Cl2⋯Cl1 | 3.60 | 2 − x, 3 − y, 1 − z |
| H9C⋯C7 | 2.95 | 1 − x, 2 − y, 1 − z |
| Cl2⋯H10B | 3.01 | 1 + x, y, z |
| C2⋯C2 | 3.47 | 2 − x, 2 − y, 1 − z |
| N4⋯H13 | 2.48 | {5\over 2} − x, −{1\over 2} + y, {1\over 2} − z |
| N4⋯H7 | 2.70 | {3\over 2} − x, −{3\over 2} + y, {1\over 2} − z |
Figure 6.
(a) The full two-dimensional fingerprint plot for the title compound and those delineated into (b) H⋯H (33.6%), (c) N⋯H/H⋯N (17.2%), (d) Cl⋯H/H⋯Cl (14.1%) and (e) C⋯H/H⋯C (14.1%) contacts.
Table 3. Percentage contributions of interatomic contacts to the Hirshfeld surface for the title compound.
| Contact | Percentage contribution |
|---|---|
| H⋯H | 33.6 |
| N⋯H/H⋯N | 17.2 |
| Cl⋯H/H⋯Cl | 14.1 |
| C⋯H/H⋯C | 14.1 |
| C⋯C | 6.7 |
| Cl⋯C/C⋯Cl | 6.3 |
| Cl⋯Cl | 3.5 |
| Cl⋯N/N⋯Cl | 2.5 |
| N⋯C/C⋯N | 1.9 |
| N⋯N | 0.1 |
Database survey
A search of the Cambridge Structural Database (CSD, Version 5.40, update November 2018; Groom et al., 2016 ▸) for structures having an (E)-1-(2,2-dichloro-1-phenylethenyl)-2-phenyldiazene unit gave 25 hits. Six compounds closely resemble the title compound, viz. 4-{2,2-dichloro-1-[(E)-2-(4-methylphenyl)diazen-1-yl]ethenyl}-N,N-dimethylaniline [(I); Özkaraca et al., 2020 ▸], 4-{2,2-dichloro-1-[(E)-(4-fluorophenyl)diazenyl]ethenyl}-N,N-dimethylaniline [(II); Özkaraca et al., 2020 ▸], 1-(4-chlorophenyl)-2-[2,2-dichloro-1-(4-fluorophenyl)ethenyl]diazene [(III); Shikhaliyev et al., 2019 ▸], 1-(4-bromophenyl)-2-[2,2-dichloro-1-(4-nitrophenyl)ethenyl]diazene [(IV); Akkurt et al., 2019 ▸], 1-(4-chlorophenyl)-2-[2,2-dichloro-1-(4-nitrophenyl)ethenyl]diazene [(V); Akkurt et al., 2019 ▸] and 1-[2,2-dichloro-1-(4-nitrophenyl)ethenyl]-2-(4-fluorophenyl)diazene [(VI); Atioğlu et al., 2019 ▸].
In the crystal of (I), molecules are linked by pairs of C—Cl⋯π interactions, forming inversion dimers. A short intermolecular Cl⋯Cl contact [3.2555 (9) Å] links the dimers, forming a ribbon along the c-axis direction. The crystal structure of (II) is stabilized by C—Cl⋯π and van der Waals interactions. In (III), molecules are stacked in columns along the a axis via weak C—H⋯Cl hydrogen bonds and face-to-face π–π stacking interactions. The crystal packing is further stabilized by short Cl⋯Cl contacts. In the crystals of (IV) and (V), molecules are linked through weak X⋯Cl contacts [X = Br for (IV) and Cl for (V)] and C—H⋯Cl and C—Cl⋯π interactions into sheets parallel to the ab plane. In (VI), molecules are linked by C—H⋯O hydrogen bonds into zigzag chains running along the c-axis direction. The crystal packing is further stabilized by C—Cl⋯π, C—F⋯π and N—O⋯π interactions.
Synthesis and crystallization
The title compound was synthesized according to a reported method (Shikhaliyev et al., 2018 ▸, 2019 ▸). A 20 mL screw-neck vial was charged with DMSO (10 mL), (Z)-4-{2-[4-(dimethylamino)benzylidene]hydrazinyl}benzonitrile (264 mg, 1 mmol), tetramethylethylenediamine (TMEDA) (295 mg, 2.5 mmol), CuCl (2 mg, 0.02 mmol) and CCl4 (20 mmol, 10 equiv). After 1–3 h (until TLC analysis showed complete consumption of the corresponding Schiff base), the reaction mixture was poured into ∼0.01 M solution of HCl (100 mL, pH = 2–3), and extracted with dichloromethane (3 × 20 mL). The combined organic phase was washed with water (3 × 50 mL) and brine (30 mL), dried over anhydrous Na2SO4 and concentrated using a vacuum rotary evaporator. The residue was purified by column chromatography on silica gel using appropriate mixtures of hexane and dichloromethane (3/1–1/1). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution. Colourless solid (69%); m.p. 395 K. Analysis calculated for C17H14Cl2N4: C 59.15, H 4.09, N 16.23%; found: C 59.05, H 4.02, N 16.19%. 1H NMR (300 MHz, CDCl3) δ 3.04 (6H, NMe2), 6.75–7.89 (8H, Ar). 13C NMR (75 MHz, CDCl3) δ 162.08, 154.31, 152.59, 146.76, 135.98, 132.50, 131.25, 128.75, 120.90, 117.76, 115.52 and 38.42. ESI–MS: m/z: 346.18 [M + H]+.
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 4 ▸. The C-bound H atoms were positioned geometrically and treated as riding atoms, C—H = 0.95 Å with U iso(H) = 1.2U eq(C) for aromatic H atoms and C—H = 0.98 Å with U iso(H) = 1.5U eq(C) for methyl H atoms.
Table 4. Experimental details.
| Crystal data | |
| Chemical formula | C17H14Cl2N4 |
| M r | 345.22 |
| Crystal system, space group | Monoclinic, P21/n |
| Temperature (K) | 100 |
| a, b, c (Å) | 12.396 (3), 6.5280 (7), 20.758 (3) |
| β (°) | 104.39 (2) |
| V (Å3) | 1627.1 (5) |
| Z | 4 |
| Radiation type | Synchrotron, λ = 0.79475 Å |
| μ (mm−1) | 0.54 |
| Crystal size (mm) | 0.10 × 0.08 × 0.05 |
| Data collection | |
| Diffractometer | Rayonix SX165 CCD |
| Absorption correction | Multi-scan (SCALA; Evans, 2006 ▸) |
| Tmin, Tmax | 0.939, 0.966 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 21540, 3712, 2913 |
| R int | 0.066 |
| (sin θ/λ)max (Å−1) | 0.648 |
| Refinement | |
| R[F2 > 2σ(F 2)], wR(F 2), S | 0.040, 0.110, 1.06 |
| No. of reflections | 3712 |
| No. of parameters | 211 |
| H-atom treatment | H-atom parameters constrained |
| Δρmax, Δρmin (e Å−3) | 0.34, −0.36 |
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021009154/vm2253sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021009154/vm2253Isup2.hkl
CCDC reference: 2107472
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
The authors’ contributions are as follows. Conceptualization, NQS, MA and SM; synthesis, GTS and GVB; X-ray analysis, ZA and MA; writing (review and editing of the manuscript), funding acquisition, NQS, GTS and GVB; supervision, NQS, MA and SM.
supplementary crystallographic information
Crystal data
| C17H14Cl2N4 | F(000) = 712 |
| Mr = 345.22 | Dx = 1.409 Mg m−3 |
| Monoclinic, P21/n | Synchrotron radiation, λ = 0.79475 Å |
| a = 12.396 (3) Å | Cell parameters from 600 reflections |
| b = 6.5280 (7) Å | θ = 2.0–28.0° |
| c = 20.758 (3) Å | µ = 0.54 mm−1 |
| β = 104.39 (2)° | T = 100 K |
| V = 1627.1 (5) Å3 | Prism, colourless |
| Z = 4 | 0.10 × 0.08 × 0.05 mm |
Data collection
| Rayonix SX165 CCD diffractometer | 2913 reflections with I > 2σ(I) |
| /f scan | Rint = 0.066 |
| Absorption correction: multi-scan (SCALA; Evans, 2006) | θmax = 31.0°, θmin = 2.0° |
| Tmin = 0.939, Tmax = 0.966 | h = −16→16 |
| 21540 measured reflections | k = −8→8 |
| 3712 independent reflections | l = −25→26 |
Refinement
| Refinement on F2 | Secondary atom site location: difference Fourier map |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.040 | H-atom parameters constrained |
| wR(F2) = 0.110 | w = 1/[σ2(Fo2) + (0.0535P)2 + 0.5596P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.06 | (Δ/σ)max < 0.001 |
| 3712 reflections | Δρmax = 0.34 e Å−3 |
| 211 parameters | Δρmin = −0.36 e Å−3 |
| 0 restraints | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
| Primary atom site location: difference Fourier map | Extinction coefficient: 0.0082 (8) |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Cl1 | 0.88106 (4) | 1.32286 (7) | 0.48668 (2) | 0.03392 (14) | |
| Cl2 | 1.05932 (4) | 1.18867 (7) | 0.43125 (2) | 0.03201 (14) | |
| N1 | 0.91524 (13) | 0.8624 (3) | 0.37007 (8) | 0.0292 (3) | |
| N2 | 0.85729 (13) | 0.7167 (3) | 0.33932 (8) | 0.0300 (3) | |
| N3 | 0.40040 (13) | 0.8913 (3) | 0.40216 (9) | 0.0380 (4) | |
| N4 | 1.13398 (14) | −0.0162 (3) | 0.21331 (9) | 0.0398 (4) | |
| C1 | 0.85825 (15) | 0.9987 (3) | 0.40327 (9) | 0.0284 (4) | |
| C2 | 0.92392 (15) | 1.1508 (3) | 0.43572 (9) | 0.0295 (4) | |
| C3 | 0.73981 (15) | 0.9728 (3) | 0.40425 (9) | 0.0291 (4) | |
| C4 | 0.70143 (15) | 0.7904 (3) | 0.42580 (9) | 0.0310 (4) | |
| H4 | 0.7525 | 0.6816 | 0.4404 | 0.037* | |
| C5 | 0.59082 (16) | 0.7638 (3) | 0.42649 (10) | 0.0330 (4) | |
| H5 | 0.5678 | 0.6384 | 0.4421 | 0.040* | |
| C6 | 0.51174 (15) | 0.9206 (3) | 0.40439 (9) | 0.0310 (4) | |
| C7 | 0.55024 (15) | 1.1054 (3) | 0.38262 (9) | 0.0312 (4) | |
| H7 | 0.4994 | 1.2145 | 0.3678 | 0.037* | |
| C8 | 0.66197 (15) | 1.1295 (3) | 0.38267 (9) | 0.0294 (4) | |
| H8 | 0.6859 | 1.2551 | 0.3677 | 0.035* | |
| C9 | 0.36642 (18) | 0.7158 (4) | 0.43561 (12) | 0.0434 (5) | |
| H9A | 0.3835 | 0.5892 | 0.4148 | 0.065* | |
| H9B | 0.2862 | 0.7231 | 0.4319 | 0.065* | |
| H9C | 0.4067 | 0.7169 | 0.4826 | 0.065* | |
| C10 | 0.32281 (16) | 1.0620 (4) | 0.38642 (11) | 0.0410 (5) | |
| H10A | 0.3390 | 1.1609 | 0.4231 | 0.061* | |
| H10B | 0.2465 | 1.0113 | 0.3800 | 0.061* | |
| H10C | 0.3307 | 1.1290 | 0.3456 | 0.061* | |
| C11 | 0.92081 (15) | 0.5780 (3) | 0.30993 (9) | 0.0291 (4) | |
| C12 | 1.03445 (15) | 0.6030 (3) | 0.31285 (9) | 0.0315 (4) | |
| H12 | 1.0731 | 0.7214 | 0.3330 | 0.038* | |
| C13 | 1.08971 (15) | 0.4540 (3) | 0.28610 (9) | 0.0318 (4) | |
| H13 | 1.1666 | 0.4692 | 0.2878 | 0.038* | |
| C14 | 1.03148 (15) | 0.2803 (3) | 0.25645 (9) | 0.0297 (4) | |
| C15 | 0.91773 (15) | 0.2583 (3) | 0.25146 (9) | 0.0308 (4) | |
| H15 | 0.8784 | 0.1423 | 0.2299 | 0.037* | |
| C16 | 0.86290 (15) | 0.4084 (3) | 0.27846 (9) | 0.0308 (4) | |
| H16 | 0.7855 | 0.3952 | 0.2754 | 0.037* | |
| C17 | 1.08914 (15) | 0.1179 (3) | 0.23155 (10) | 0.0329 (4) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Cl1 | 0.0306 (2) | 0.0350 (3) | 0.0359 (3) | 0.00155 (18) | 0.00763 (19) | −0.00490 (19) |
| Cl2 | 0.0255 (2) | 0.0375 (3) | 0.0326 (2) | −0.00150 (18) | 0.00657 (17) | 0.00029 (19) |
| N1 | 0.0276 (7) | 0.0326 (9) | 0.0261 (8) | 0.0018 (6) | 0.0045 (6) | 0.0004 (6) |
| N2 | 0.0254 (7) | 0.0358 (9) | 0.0275 (8) | 0.0029 (6) | 0.0043 (6) | −0.0011 (7) |
| N3 | 0.0275 (8) | 0.0428 (10) | 0.0457 (10) | 0.0004 (7) | 0.0126 (7) | 0.0039 (8) |
| N4 | 0.0316 (8) | 0.0444 (11) | 0.0441 (10) | 0.0004 (8) | 0.0109 (7) | −0.0063 (8) |
| C1 | 0.0270 (9) | 0.0323 (10) | 0.0254 (9) | 0.0026 (7) | 0.0055 (7) | 0.0026 (7) |
| C2 | 0.0257 (9) | 0.0348 (10) | 0.0272 (9) | 0.0036 (7) | 0.0052 (7) | 0.0033 (7) |
| C3 | 0.0271 (9) | 0.0333 (10) | 0.0261 (9) | 0.0017 (7) | 0.0051 (7) | −0.0007 (7) |
| C4 | 0.0284 (9) | 0.0334 (11) | 0.0300 (9) | 0.0034 (7) | 0.0049 (7) | 0.0010 (8) |
| C5 | 0.0313 (9) | 0.0375 (11) | 0.0304 (10) | −0.0013 (8) | 0.0081 (8) | 0.0007 (8) |
| C6 | 0.0258 (9) | 0.0384 (11) | 0.0289 (9) | −0.0008 (8) | 0.0071 (7) | −0.0017 (8) |
| C7 | 0.0276 (9) | 0.0352 (10) | 0.0301 (9) | 0.0048 (8) | 0.0062 (7) | −0.0010 (8) |
| C8 | 0.0269 (9) | 0.0326 (10) | 0.0277 (9) | 0.0013 (7) | 0.0053 (7) | 0.0000 (8) |
| C9 | 0.0360 (11) | 0.0539 (14) | 0.0430 (12) | −0.0065 (10) | 0.0153 (9) | 0.0035 (10) |
| C10 | 0.0251 (9) | 0.0503 (13) | 0.0475 (12) | 0.0022 (9) | 0.0089 (8) | −0.0047 (10) |
| C11 | 0.0258 (9) | 0.0345 (11) | 0.0264 (9) | 0.0030 (7) | 0.0052 (7) | 0.0024 (8) |
| C12 | 0.0266 (9) | 0.0347 (10) | 0.0326 (10) | −0.0018 (8) | 0.0064 (7) | 0.0001 (8) |
| C13 | 0.0255 (9) | 0.0388 (11) | 0.0317 (10) | −0.0001 (8) | 0.0085 (7) | 0.0016 (8) |
| C14 | 0.0271 (9) | 0.0364 (11) | 0.0258 (9) | 0.0020 (7) | 0.0069 (7) | 0.0010 (8) |
| C15 | 0.0274 (9) | 0.0355 (10) | 0.0287 (9) | −0.0008 (8) | 0.0057 (7) | 0.0000 (8) |
| C16 | 0.0231 (8) | 0.0403 (11) | 0.0283 (9) | −0.0002 (8) | 0.0052 (7) | −0.0014 (8) |
| C17 | 0.0267 (9) | 0.0405 (11) | 0.0311 (9) | −0.0009 (8) | 0.0064 (7) | −0.0002 (9) |
Geometric parameters (Å, º)
| Cl1—C2 | 1.715 (2) | C7—H7 | 0.9500 |
| Cl2—C2 | 1.7217 (19) | C8—H8 | 0.9500 |
| N1—N2 | 1.265 (2) | C9—H9A | 0.9800 |
| N1—C1 | 1.417 (2) | C9—H9B | 0.9800 |
| N2—C11 | 1.432 (2) | C9—H9C | 0.9800 |
| N3—C6 | 1.383 (2) | C10—H10A | 0.9800 |
| N3—C10 | 1.456 (3) | C10—H10B | 0.9800 |
| N3—C9 | 1.455 (3) | C10—H10C | 0.9800 |
| N4—C17 | 1.150 (3) | C11—C16 | 1.391 (3) |
| C1—C2 | 1.353 (3) | C11—C12 | 1.404 (2) |
| C1—C3 | 1.483 (2) | C12—C13 | 1.383 (3) |
| C3—C4 | 1.396 (3) | C12—H12 | 0.9500 |
| C3—C8 | 1.401 (3) | C13—C14 | 1.402 (3) |
| C4—C5 | 1.386 (3) | C13—H13 | 0.9500 |
| C4—H4 | 0.9500 | C14—C15 | 1.395 (3) |
| C5—C6 | 1.412 (3) | C14—C17 | 1.444 (3) |
| C5—H5 | 0.9500 | C15—C16 | 1.388 (3) |
| C6—C7 | 1.412 (3) | C15—H15 | 0.9500 |
| C7—C8 | 1.394 (3) | C16—H16 | 0.9500 |
| N2—N1—C1 | 115.36 (15) | N3—C9—H9B | 109.5 |
| N1—N2—C11 | 112.77 (15) | H9A—C9—H9B | 109.5 |
| C6—N3—C10 | 120.00 (18) | N3—C9—H9C | 109.5 |
| C6—N3—C9 | 119.85 (18) | H9A—C9—H9C | 109.5 |
| C10—N3—C9 | 117.17 (17) | H9B—C9—H9C | 109.5 |
| C2—C1—N1 | 113.08 (16) | N3—C10—H10A | 109.5 |
| C2—C1—C3 | 123.52 (17) | N3—C10—H10B | 109.5 |
| N1—C1—C3 | 123.36 (17) | H10A—C10—H10B | 109.5 |
| C1—C2—Cl1 | 123.19 (15) | N3—C10—H10C | 109.5 |
| C1—C2—Cl2 | 123.55 (15) | H10A—C10—H10C | 109.5 |
| Cl1—C2—Cl2 | 113.26 (11) | H10B—C10—H10C | 109.5 |
| C4—C3—C8 | 117.53 (17) | C16—C11—C12 | 120.54 (17) |
| C4—C3—C1 | 121.25 (17) | C16—C11—N2 | 115.41 (16) |
| C8—C3—C1 | 121.21 (18) | C12—C11—N2 | 124.03 (17) |
| C5—C4—C3 | 121.80 (18) | C13—C12—C11 | 119.48 (18) |
| C5—C4—H4 | 119.1 | C13—C12—H12 | 120.3 |
| C3—C4—H4 | 119.1 | C11—C12—H12 | 120.3 |
| C4—C5—C6 | 120.97 (19) | C12—C13—C14 | 119.54 (17) |
| C4—C5—H5 | 119.5 | C12—C13—H13 | 120.2 |
| C6—C5—H5 | 119.5 | C14—C13—H13 | 120.2 |
| N3—C6—C5 | 121.14 (18) | C15—C14—C13 | 121.10 (18) |
| N3—C6—C7 | 121.41 (18) | C15—C14—C17 | 118.60 (18) |
| C5—C6—C7 | 117.41 (17) | C13—C14—C17 | 120.29 (17) |
| C8—C7—C6 | 120.71 (18) | C16—C15—C14 | 118.99 (18) |
| C8—C7—H7 | 119.6 | C16—C15—H15 | 120.5 |
| C6—C7—H7 | 119.6 | C14—C15—H15 | 120.5 |
| C7—C8—C3 | 121.57 (19) | C15—C16—C11 | 120.29 (17) |
| C7—C8—H8 | 119.2 | C15—C16—H16 | 119.9 |
| C3—C8—H8 | 119.2 | C11—C16—H16 | 119.9 |
| N3—C9—H9A | 109.5 | N4—C17—C14 | 177.5 (2) |
| C1—N1—N2—C11 | −176.74 (15) | C4—C5—C6—C7 | −0.9 (3) |
| N2—N1—C1—C2 | 179.58 (16) | N3—C6—C7—C8 | −177.38 (18) |
| N2—N1—C1—C3 | 1.6 (3) | C5—C6—C7—C8 | 0.5 (3) |
| N1—C1—C2—Cl1 | −173.44 (13) | C6—C7—C8—C3 | −0.1 (3) |
| C3—C1—C2—Cl1 | 4.5 (3) | C4—C3—C8—C7 | 0.1 (3) |
| N1—C1—C2—Cl2 | 5.4 (2) | C1—C3—C8—C7 | 179.17 (17) |
| C3—C1—C2—Cl2 | −176.62 (14) | N1—N2—C11—C16 | 176.66 (16) |
| C2—C1—C3—C4 | −123.2 (2) | N1—N2—C11—C12 | −1.9 (3) |
| N1—C1—C3—C4 | 54.5 (3) | C16—C11—C12—C13 | −2.2 (3) |
| C2—C1—C3—C8 | 57.7 (3) | N2—C11—C12—C13 | 176.31 (17) |
| N1—C1—C3—C8 | −124.5 (2) | C11—C12—C13—C14 | 0.0 (3) |
| C8—C3—C4—C5 | −0.4 (3) | C12—C13—C14—C15 | 2.2 (3) |
| C1—C3—C4—C5 | −179.54 (18) | C12—C13—C14—C17 | −176.58 (18) |
| C3—C4—C5—C6 | 0.9 (3) | C13—C14—C15—C16 | −2.2 (3) |
| C10—N3—C6—C5 | 173.06 (19) | C17—C14—C15—C16 | 176.56 (18) |
| C9—N3—C6—C5 | 13.1 (3) | C14—C15—C16—C11 | 0.0 (3) |
| C10—N3—C6—C7 | −9.1 (3) | C12—C11—C16—C15 | 2.1 (3) |
| C9—N3—C6—C7 | −169.03 (19) | N2—C11—C16—C15 | −176.47 (17) |
| C4—C5—C6—N3 | 177.02 (18) |
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| C13—H13···N4i | 0.95 | 2.48 | 3.428 (3) | 175 |
Symmetry code: (i) −x+5/2, y+1/2, −z+1/2.
Funding Statement
This work was funded by Science Development Foundation under the President of the Republic of Azerbaijan grant EIF-BGM-4- RFTF-1/2017–21/13/4.
References
- Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Niyazova, A. A., Shikhaliyeva, I. M. & Toze, F. A. A. (2019). Acta Cryst. E75, 1199–1204. [DOI] [PMC free article] [PubMed]
- Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237–241. [DOI] [PMC free article] [PubMed]
- Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271–281. [DOI] [PMC free article] [PubMed]
- Doyle, R. A. (2011). Marccd software manual. Rayonix LLC, Evanston, IL 60201, USA.
- Evans, P. (2006). Acta Cryst. D62, 72–82. [DOI] [PubMed]
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633.
- Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837. [DOI] [PubMed]
- Kopylovich, M. N., Mahmudov, K. T., Mizar, A. & Pombeiro, A. J. L. (2011). Chem. Commun. 47, 7248–7250. [DOI] [PubMed]
- Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.
- Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482.
- Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141.
- Mahmoudi, G., Afkhami, F. A., Castiñeiras, A., García-Santos, I., Gurbanov, A., Zubkov, F. I., Mitoraj, M. P., Kukułka, M., Sagan, F., Szczepanik, D. W., Konyaeva, I. A. & Safin, D. A. (2018a). Inorg. Chem. 57, 4395–4408. [DOI] [PubMed]
- Mahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018b). New J. Chem. 42, 4959–4971.
- Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 418, 213381.
- Mahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108–112.
- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
- Mizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. pp. 2305–2313.
- Özkaraca, K., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Suleymanova, G. T., Shikhaliyeva, I. M. & Bhattarai, A. (2020). Acta Cryst. E76, 811–815. [DOI] [PMC free article] [PubMed]
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381.
- Shikhaliyev, N. Q., Çelikesir, S. T., Akkurt, M., Bagirova, K. N., Suleymanova, G. T. & Toze, F. A. A. (2019). Acta Cryst. E75, 465–469. [DOI] [PMC free article] [PubMed]
- Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038.
- Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807–4815.
- Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.
- Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.
- Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.
- Viswanathan, A., Kute, D., Musa, A., Mani, S. K., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291–303. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021009154/vm2253sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021009154/vm2253Isup2.hkl
CCDC reference: 2107472
Additional supporting information: crystallographic information; 3D view; checkCIF report






