Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Sep 7;77(Pt 10):994–998. doi: 10.1107/S2056989021009154

Crystal structure and Hirshfeld surface analysis of (E)-4-({2,2-di­chloro-1-[4-(di­methyl­amino)­phen­yl]ethenyl}diazen­yl)benzo­nitrile

Namiq Q Shikhaliyev a, Zeliha Atioğlu b, Mehmet Akkurt c, Gulnar T Suleymanova a, Gulnare V Babayeva a, Sixberth Mlowe d,*
PMCID: PMC8491520  PMID: 34667625

C—H⋯N inter­actions, C—Cl⋯π inter­actions, and π-π stacking inter­actions link mol­ecules in the crystal, forming mol­ecular layers approximately parallel to the (002) plane. The three-dimensional packing is strengthened by additional weak van der Waals inter­actions between the layers.

Keywords: crystal structure, C—H⋯N inter­actions, C—Cl⋯π inter­actions, π–π stacking inter­actions, Hirshfeld surface analysis

Abstract

In the title compound, C17H14Cl2N4, the dihedral angle between the aromatic rings is 50.09 (9)°. The central –N=N– unit shows an E configuration. In the crystal, C—H⋯N inter­actions, C—Cl⋯π and π–π stacking inter­actions [centroid-to-centroid distance = 3.7719 (14) Å] link the mol­ecules, forming mol­ecular layers approximately parallel to the (002) plane. Additional weak van der Waals inter­actions between the layers consolidate the three-dimensional packing. Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are from H⋯H (33.6%), N⋯H/ H⋯N (17.2%), Cl⋯H/H⋯Cl (14.1%) and C⋯H/H⋯C (14.1%) contacts.

Chemical context  

Azo dyes find numerous applications in a diversity of areas, including in mol­ecular recognition, optical data storage, non-linear optics and as mol­ecular switches, anti­microbial agents, colour-changing materials, liquid crystals, dye-sensitized solar cells, mainly because of the ability for cis-to-trans isomerization and the chromophoric properties of the –N=N– synthon (Maharramov et al., 2018; Viswanathan et al., 2019). Not only isomerization, but azo-hydrazone tautomerisim is also an important phenomenon in the coordination chemistry of azo dyes (Mahmoudi et al., 2018a ,b ). Modification of azo dyes with functional groups leads to multifunctional ligands, of which the corresponding metal complexes are effective catalysts in oxidation and in C—C coupling reactions (Ma et al., 2020, 2021; Mahmudov et al., 2013; Mizar et al., 2012). Moreover, the functional properties of azo dyes are dependent on non-covalent bond-donor or -acceptor site(s) attached to the –N=N– synthon (Gurbanov et al., 2020a ,b ; Kopylovich et al., 2011; Mahmudov et al., 2020; Shixaliyev et al., 2014). Thus, we have introduced halogen-bond-donor centres to the –N=N– moiety, leading to a new azo dye, (E)-4-({2,2-di­chloro-1-[4-(di­methyl­amino)­phen­yl]ethen­yl}diazen­yl)benzo­nitrile, which provides multiple inter­molecular non-covalent inter­actions.

Structural commentary  

The aromatic rings C3–C8 and C11–C16 of the title compound (Fig. 1) form a dihedral angle of 50.09 (9)°. In the di­methyl­amino group, the sum of bond angles about N3 is 357.02° and the nitro­gen atom has a flattened trigonal–pyramidal conformation. The atoms of the di­methyl­amino group and those of its attached benzene ring (C3–C8) are nearly coplanar, with maximum deviations of −0.058 (2), 0.179 (2), and 0.087 (2) Å for N3, C9 and C10, respectively. The title mol­ecule adopts an E configuration with respect to the N1=N2 bond. The N1/N2/C1–C3/Cl1/Cl2 unit is approximately planar with a maximum deviation of 0.102 (2) Å, and makes dihedral angles of 55.44 (9) and 5.36 (9)°, respectively, with the C3–C8 and C11–C16 benzene rings.graphic file with name e-77-00994-scheme1.jpg

Figure 1.

Figure 1

The mol­ecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.

Supra­molecular features and Hirshfeld surface analysis  

In the crystal, mol­ecules are linked by C—H⋯N inter­actions (Table 1), C—H⋯π [Cl2⋯Cg2ii = 3.3910 (12) Å, C2⋯Cg2ii = 3.858 (2) Å, C2—Cl2⋯Cg2ii = 92.07 (7)°; symmetry code: (ii) x, 1 + y, z; where Cg2 is the centroid of the C11–C16 benzene ring] and π–π stacking inter­actions [Cg2⋯Cg1iii = 3.7719 (14) Å, slippage = 1.741 Å; Cg1⋯Cg2iv = 3.7719 (14) Å, slippage = 1.336 Å; symmetry codes: (iii) Inline graphic − x, − Inline graphic + y, Inline graphic − z; (iv) Inline graphic − x, Inline graphic + y, Inline graphic − z; where Cg1 and Cg2 are the centroids of the C3—C8 and C11–C16 benzene rings, respectively], forming mol­ecular layers approximately parallel to the (002) plane with the mol­ecules having a bellows-like shape when viewed along the a axis (Figs. 2 and 3). Weak van der Waals inter­actions between these layers increase the stability of the crystal structure.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯N4i 0.95 2.48 3.428 (3) 175

Symmetry code: (i) -x+{\script{5\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}.

Figure 2.

Figure 2

A general view of the C—H⋯N contacts, C—Cl⋯π inter­actions and π–π stacking inter­actions in the crystal packing of the title compound [symmetry codes: (a) −1 + x, y, z; (b) −1 + x, 1 + y, z; (c) x, 1 + y, z; (d) Inline graphic − x, −Inline graphic + y, Inline graphic − z; (e) Inline graphic − x, Inline graphic + y, Inline graphic − z; (f) Inline graphic − x, −Inline graphic + y, Inline graphic − z; (g) Inline graphic − x, Inline graphic + y, Inline graphic − z].

Figure 3.

Figure 3

The crystal packing of the title compound, viewed along the a axis, showing the C—Cl⋯π inter­actions and π–π stacking inter­actions as dashed lines.

To visualize the inter­molecular inter­actions in the title mol­ecule, CrystalExplorer17 (Turner et al., 2017) was used to compute Hirshfeld surfaces (McKinnon et al., 2007) and their corresponding two-dimensional fingerprint plots (Spackman & McKinnon, 2002). The Hirshfeld surface mapped over electrostatic potential (Spackman et al., 2008) is shown in Fig. 4. The positive electrostatic potential (blue region) over the surface indicates hydrogen-bond donors, whereas the hydrogen-bond acceptors are represented by a negative electrostatic potential (red region). In the Hirshfeld surface mapped over d norm (Fig. 5), the bright-red spots near atoms H7, H13, N4 and Cl1 indicate the short C—H⋯N and C—H⋯Cl contacts (Table 2). Other contacts are equal to or longer than the sum of van der Waals radii. The most important inter­action is H⋯H, contributing 33.6% to the overall crystal packing, which is reflected in Fig. 6 b as widely scattered points of high density due to the large hydrogen content of the mol­ecule, with the tip at d e = d i = 1.15 Å. The reciprocal N⋯H/H⋯N inter­actions appear as two symmetrical broad wings with d e + d i = 2.3 Å and contribute 17.2% to the Hirshfeld surface (Fig. 6 c). The reciprocal Cl⋯H/H⋯Cl inter­actions (14.1% contribution) are present as two symmetrical broad wings with d e + d i = 2.7 (Fig. 6 d). The pair of characteristic wings in the fingerprint plot delineated into H⋯C/C⋯H contacts (Fig. 6 e; 14.1% contribution) have the tips at d e + d i = 2.8 Å. The smaller percentage contributions to the Hirshfeld surface from the various other inter­atomic contact are comparatively listed in Table 3.

Figure 4.

Figure 4

View of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory. Hydrogen-bond donors and acceptors are shown as blue and red regions, respectively, around the atoms, corresponding to positive and negative potentials.

Figure 5.

Figure 5

Hirshfeld surface mapped over d norm highlighting the regions of C—H⋯Cl and C—H⋯N inter­molecular contacts.

Table 2. Summary of short inter­atomic contacts (Å) in the title compound.

Contact Distance Symmetry operation
Cl1⋯H4 2.86 x, 1 + y, z
Cl2⋯Cl1 3.60 2 − x, 3 − y, 1 − z
H9C⋯C7 2.95 1 − x, 2 − y, 1 − z
Cl2⋯H10B 3.01 1 + x, y, z
C2⋯C2 3.47 2 − x, 2 − y, 1 − z
N4⋯H13 2.48 {5\over 2} − x, −{1\over 2} + y, {1\over 2} − z
N4⋯H7 2.70 {3\over 2} − x, −{3\over 2} + y, {1\over 2} − z

Figure 6.

Figure 6

(a) The full two-dimensional fingerprint plot for the title compound and those delineated into (b) H⋯H (33.6%), (c) N⋯H/H⋯N (17.2%), (d) Cl⋯H/H⋯Cl (14.1%) and (e) C⋯H/H⋯C (14.1%) contacts.

Table 3. Percentage contributions of inter­atomic contacts to the Hirshfeld surface for the title compound.

Contact Percentage contribution
H⋯H 33.6
N⋯H/H⋯N 17.2
Cl⋯H/H⋯Cl 14.1
C⋯H/H⋯C 14.1
C⋯C 6.7
Cl⋯C/C⋯Cl 6.3
Cl⋯Cl 3.5
Cl⋯N/N⋯Cl 2.5
N⋯C/C⋯N 1.9
N⋯N 0.1

Database survey  

A search of the Cambridge Structural Database (CSD, Version 5.40, update November 2018; Groom et al., 2016) for structures having an (E)-1-(2,2-di­chloro-1-phenylethen­yl)-2-phenyl­diazene unit gave 25 hits. Six compounds closely resemble the title compound, viz. 4-{2,2-di­chloro-1-[(E)-2-(4-methyl­phen­yl)diazen-1-yl]ethen­yl}-N,N-di­methyl­aniline [(I); Özkaraca et al., 2020], 4-{2,2-di­chloro-1-[(E)-(4-fluoro­phen­yl)diazen­yl]ethen­yl}-N,N-di­methyl­aniline [(II); Özkaraca et al., 2020], 1-(4-chloro­phen­yl)-2-[2,2-di­chloro-1-(4-fluoro­phenyl)ethen­yl]diazene [(III); Shikhaliyev et al., 2019], 1-(4-bromo­phen­yl)-2-[2,2-di­chloro-1-(4-nitro­phen­yl)ethen­yl]di­azene [(IV); Akkurt et al., 2019], 1-(4-chloro­phen­yl)-2-[2,2-di­chloro-1-(4-nitro­phen­yl)ethen­yl]diazene [(V); Akkurt et al., 2019] and 1-[2,2-di­chloro-1-(4-nitro­phen­yl)ethen­yl]-2-(4-fluoro­phen­yl)diazene [(VI); Atioğlu et al., 2019].

In the crystal of (I), mol­ecules are linked by pairs of C—Cl⋯π inter­actions, forming inversion dimers. A short inter­molecular Cl⋯Cl contact [3.2555 (9) Å] links the dimers, forming a ribbon along the c-axis direction. The crystal structure of (II) is stabilized by C—Cl⋯π and van der Waals inter­actions. In (III), mol­ecules are stacked in columns along the a axis via weak C—H⋯Cl hydrogen bonds and face-to-face π–π stacking inter­actions. The crystal packing is further stabilized by short Cl⋯Cl contacts. In the crystals of (IV) and (V), mol­ecules are linked through weak X⋯Cl contacts [X = Br for (IV) and Cl for (V)] and C—H⋯Cl and C—Cl⋯π inter­actions into sheets parallel to the ab plane. In (VI), mol­ecules are linked by C—H⋯O hydrogen bonds into zigzag chains running along the c-axis direction. The crystal packing is further stabilized by C—Cl⋯π, C—F⋯π and N—O⋯π inter­actions.

Synthesis and crystallization  

The title compound was synthesized according to a reported method (Shikhaliyev et al., 2018, 2019). A 20 mL screw-neck vial was charged with DMSO (10 mL), (Z)-4-{2-[4-(di­methyl­amino)­benzyl­idene]hydrazin­yl}benzo­nitrile (264 mg, 1 mmol), tetra­methyl­ethylenedi­amine (TMEDA) (295 mg, 2.5 mmol), CuCl (2 mg, 0.02 mmol) and CCl4 (20 mmol, 10 equiv). After 1–3 h (until TLC analysis showed complete consumption of the corresponding Schiff base), the reaction mixture was poured into ∼0.01 M solution of HCl (100 mL, pH = 2–3), and extracted with di­chloro­methane (3 × 20 mL). The combined organic phase was washed with water (3 × 50 mL) and brine (30 mL), dried over anhydrous Na2SO4 and concentrated using a vacuum rotary evaporator. The residue was purified by column chromatography on silica gel using appropriate mixtures of hexane and di­chloro­methane (3/1–1/1). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution. Colourless solid (69%); m.p. 395 K. Analysis calculated for C17H14Cl2N4: C 59.15, H 4.09, N 16.23%; found: C 59.05, H 4.02, N 16.19%. 1H NMR (300 MHz, CDCl3) δ 3.04 (6H, NMe2), 6.75–7.89 (8H, Ar). 13C NMR (75 MHz, CDCl3) δ 162.08, 154.31, 152.59, 146.76, 135.98, 132.50, 131.25, 128.75, 120.90, 117.76, 115.52 and 38.42. ESI–MS: m/z: 346.18 [M + H]+.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 4. The C-bound H atoms were positioned geometrically and treated as riding atoms, C—H = 0.95 Å with U iso(H) = 1.2U eq(C) for aromatic H atoms and C—H = 0.98 Å with U iso(H) = 1.5U eq(C) for methyl H atoms.

Table 4. Experimental details.

Crystal data
Chemical formula C17H14Cl2N4
M r 345.22
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 12.396 (3), 6.5280 (7), 20.758 (3)
β (°) 104.39 (2)
V3) 1627.1 (5)
Z 4
Radiation type Synchrotron, λ = 0.79475 Å
μ (mm−1) 0.54
Crystal size (mm) 0.10 × 0.08 × 0.05
 
Data collection
Diffractometer Rayonix SX165 CCD
Absorption correction Multi-scan (SCALA; Evans, 2006)
Tmin, Tmax 0.939, 0.966
No. of measured, independent and observed [I > 2σ(I)] reflections 21540, 3712, 2913
R int 0.066
(sin θ/λ)max−1) 0.648
 
Refinement
R[F2 > 2σ(F 2)], wR(F 2), S 0.040, 0.110, 1.06
No. of reflections 3712
No. of parameters 211
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.34, −0.36

Computer programs: Marccd(Doyle, 2011), iMosflm (Battye et al., 2011), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2020).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021009154/vm2253sup1.cif

e-77-00994-sup1.cif (667.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021009154/vm2253Isup2.hkl

e-77-00994-Isup2.hkl (296.2KB, hkl)

CCDC reference: 2107472

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors’ contributions are as follows. Conceptualization, NQS, MA and SM; synthesis, GTS and GVB; X-ray analysis, ZA and MA; writing (review and editing of the manuscript), funding acquisition, NQS, GTS and GVB; supervision, NQS, MA and SM.

supplementary crystallographic information

Crystal data

C17H14Cl2N4 F(000) = 712
Mr = 345.22 Dx = 1.409 Mg m3
Monoclinic, P21/n Synchrotron radiation, λ = 0.79475 Å
a = 12.396 (3) Å Cell parameters from 600 reflections
b = 6.5280 (7) Å θ = 2.0–28.0°
c = 20.758 (3) Å µ = 0.54 mm1
β = 104.39 (2)° T = 100 K
V = 1627.1 (5) Å3 Prism, colourless
Z = 4 0.10 × 0.08 × 0.05 mm

Data collection

Rayonix SX165 CCD diffractometer 2913 reflections with I > 2σ(I)
/f scan Rint = 0.066
Absorption correction: multi-scan (SCALA; Evans, 2006) θmax = 31.0°, θmin = 2.0°
Tmin = 0.939, Tmax = 0.966 h = −16→16
21540 measured reflections k = −8→8
3712 independent reflections l = −25→26

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040 H-atom parameters constrained
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0535P)2 + 0.5596P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
3712 reflections Δρmax = 0.34 e Å3
211 parameters Δρmin = −0.36 e Å3
0 restraints Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: difference Fourier map Extinction coefficient: 0.0082 (8)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.88106 (4) 1.32286 (7) 0.48668 (2) 0.03392 (14)
Cl2 1.05932 (4) 1.18867 (7) 0.43125 (2) 0.03201 (14)
N1 0.91524 (13) 0.8624 (3) 0.37007 (8) 0.0292 (3)
N2 0.85729 (13) 0.7167 (3) 0.33932 (8) 0.0300 (3)
N3 0.40040 (13) 0.8913 (3) 0.40216 (9) 0.0380 (4)
N4 1.13398 (14) −0.0162 (3) 0.21331 (9) 0.0398 (4)
C1 0.85825 (15) 0.9987 (3) 0.40327 (9) 0.0284 (4)
C2 0.92392 (15) 1.1508 (3) 0.43572 (9) 0.0295 (4)
C3 0.73981 (15) 0.9728 (3) 0.40425 (9) 0.0291 (4)
C4 0.70143 (15) 0.7904 (3) 0.42580 (9) 0.0310 (4)
H4 0.7525 0.6816 0.4404 0.037*
C5 0.59082 (16) 0.7638 (3) 0.42649 (10) 0.0330 (4)
H5 0.5678 0.6384 0.4421 0.040*
C6 0.51174 (15) 0.9206 (3) 0.40439 (9) 0.0310 (4)
C7 0.55024 (15) 1.1054 (3) 0.38262 (9) 0.0312 (4)
H7 0.4994 1.2145 0.3678 0.037*
C8 0.66197 (15) 1.1295 (3) 0.38267 (9) 0.0294 (4)
H8 0.6859 1.2551 0.3677 0.035*
C9 0.36642 (18) 0.7158 (4) 0.43561 (12) 0.0434 (5)
H9A 0.3835 0.5892 0.4148 0.065*
H9B 0.2862 0.7231 0.4319 0.065*
H9C 0.4067 0.7169 0.4826 0.065*
C10 0.32281 (16) 1.0620 (4) 0.38642 (11) 0.0410 (5)
H10A 0.3390 1.1609 0.4231 0.061*
H10B 0.2465 1.0113 0.3800 0.061*
H10C 0.3307 1.1290 0.3456 0.061*
C11 0.92081 (15) 0.5780 (3) 0.30993 (9) 0.0291 (4)
C12 1.03445 (15) 0.6030 (3) 0.31285 (9) 0.0315 (4)
H12 1.0731 0.7214 0.3330 0.038*
C13 1.08971 (15) 0.4540 (3) 0.28610 (9) 0.0318 (4)
H13 1.1666 0.4692 0.2878 0.038*
C14 1.03148 (15) 0.2803 (3) 0.25645 (9) 0.0297 (4)
C15 0.91773 (15) 0.2583 (3) 0.25146 (9) 0.0308 (4)
H15 0.8784 0.1423 0.2299 0.037*
C16 0.86290 (15) 0.4084 (3) 0.27846 (9) 0.0308 (4)
H16 0.7855 0.3952 0.2754 0.037*
C17 1.08914 (15) 0.1179 (3) 0.23155 (10) 0.0329 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0306 (2) 0.0350 (3) 0.0359 (3) 0.00155 (18) 0.00763 (19) −0.00490 (19)
Cl2 0.0255 (2) 0.0375 (3) 0.0326 (2) −0.00150 (18) 0.00657 (17) 0.00029 (19)
N1 0.0276 (7) 0.0326 (9) 0.0261 (8) 0.0018 (6) 0.0045 (6) 0.0004 (6)
N2 0.0254 (7) 0.0358 (9) 0.0275 (8) 0.0029 (6) 0.0043 (6) −0.0011 (7)
N3 0.0275 (8) 0.0428 (10) 0.0457 (10) 0.0004 (7) 0.0126 (7) 0.0039 (8)
N4 0.0316 (8) 0.0444 (11) 0.0441 (10) 0.0004 (8) 0.0109 (7) −0.0063 (8)
C1 0.0270 (9) 0.0323 (10) 0.0254 (9) 0.0026 (7) 0.0055 (7) 0.0026 (7)
C2 0.0257 (9) 0.0348 (10) 0.0272 (9) 0.0036 (7) 0.0052 (7) 0.0033 (7)
C3 0.0271 (9) 0.0333 (10) 0.0261 (9) 0.0017 (7) 0.0051 (7) −0.0007 (7)
C4 0.0284 (9) 0.0334 (11) 0.0300 (9) 0.0034 (7) 0.0049 (7) 0.0010 (8)
C5 0.0313 (9) 0.0375 (11) 0.0304 (10) −0.0013 (8) 0.0081 (8) 0.0007 (8)
C6 0.0258 (9) 0.0384 (11) 0.0289 (9) −0.0008 (8) 0.0071 (7) −0.0017 (8)
C7 0.0276 (9) 0.0352 (10) 0.0301 (9) 0.0048 (8) 0.0062 (7) −0.0010 (8)
C8 0.0269 (9) 0.0326 (10) 0.0277 (9) 0.0013 (7) 0.0053 (7) 0.0000 (8)
C9 0.0360 (11) 0.0539 (14) 0.0430 (12) −0.0065 (10) 0.0153 (9) 0.0035 (10)
C10 0.0251 (9) 0.0503 (13) 0.0475 (12) 0.0022 (9) 0.0089 (8) −0.0047 (10)
C11 0.0258 (9) 0.0345 (11) 0.0264 (9) 0.0030 (7) 0.0052 (7) 0.0024 (8)
C12 0.0266 (9) 0.0347 (10) 0.0326 (10) −0.0018 (8) 0.0064 (7) 0.0001 (8)
C13 0.0255 (9) 0.0388 (11) 0.0317 (10) −0.0001 (8) 0.0085 (7) 0.0016 (8)
C14 0.0271 (9) 0.0364 (11) 0.0258 (9) 0.0020 (7) 0.0069 (7) 0.0010 (8)
C15 0.0274 (9) 0.0355 (10) 0.0287 (9) −0.0008 (8) 0.0057 (7) 0.0000 (8)
C16 0.0231 (8) 0.0403 (11) 0.0283 (9) −0.0002 (8) 0.0052 (7) −0.0014 (8)
C17 0.0267 (9) 0.0405 (11) 0.0311 (9) −0.0009 (8) 0.0064 (7) −0.0002 (9)

Geometric parameters (Å, º)

Cl1—C2 1.715 (2) C7—H7 0.9500
Cl2—C2 1.7217 (19) C8—H8 0.9500
N1—N2 1.265 (2) C9—H9A 0.9800
N1—C1 1.417 (2) C9—H9B 0.9800
N2—C11 1.432 (2) C9—H9C 0.9800
N3—C6 1.383 (2) C10—H10A 0.9800
N3—C10 1.456 (3) C10—H10B 0.9800
N3—C9 1.455 (3) C10—H10C 0.9800
N4—C17 1.150 (3) C11—C16 1.391 (3)
C1—C2 1.353 (3) C11—C12 1.404 (2)
C1—C3 1.483 (2) C12—C13 1.383 (3)
C3—C4 1.396 (3) C12—H12 0.9500
C3—C8 1.401 (3) C13—C14 1.402 (3)
C4—C5 1.386 (3) C13—H13 0.9500
C4—H4 0.9500 C14—C15 1.395 (3)
C5—C6 1.412 (3) C14—C17 1.444 (3)
C5—H5 0.9500 C15—C16 1.388 (3)
C6—C7 1.412 (3) C15—H15 0.9500
C7—C8 1.394 (3) C16—H16 0.9500
N2—N1—C1 115.36 (15) N3—C9—H9B 109.5
N1—N2—C11 112.77 (15) H9A—C9—H9B 109.5
C6—N3—C10 120.00 (18) N3—C9—H9C 109.5
C6—N3—C9 119.85 (18) H9A—C9—H9C 109.5
C10—N3—C9 117.17 (17) H9B—C9—H9C 109.5
C2—C1—N1 113.08 (16) N3—C10—H10A 109.5
C2—C1—C3 123.52 (17) N3—C10—H10B 109.5
N1—C1—C3 123.36 (17) H10A—C10—H10B 109.5
C1—C2—Cl1 123.19 (15) N3—C10—H10C 109.5
C1—C2—Cl2 123.55 (15) H10A—C10—H10C 109.5
Cl1—C2—Cl2 113.26 (11) H10B—C10—H10C 109.5
C4—C3—C8 117.53 (17) C16—C11—C12 120.54 (17)
C4—C3—C1 121.25 (17) C16—C11—N2 115.41 (16)
C8—C3—C1 121.21 (18) C12—C11—N2 124.03 (17)
C5—C4—C3 121.80 (18) C13—C12—C11 119.48 (18)
C5—C4—H4 119.1 C13—C12—H12 120.3
C3—C4—H4 119.1 C11—C12—H12 120.3
C4—C5—C6 120.97 (19) C12—C13—C14 119.54 (17)
C4—C5—H5 119.5 C12—C13—H13 120.2
C6—C5—H5 119.5 C14—C13—H13 120.2
N3—C6—C5 121.14 (18) C15—C14—C13 121.10 (18)
N3—C6—C7 121.41 (18) C15—C14—C17 118.60 (18)
C5—C6—C7 117.41 (17) C13—C14—C17 120.29 (17)
C8—C7—C6 120.71 (18) C16—C15—C14 118.99 (18)
C8—C7—H7 119.6 C16—C15—H15 120.5
C6—C7—H7 119.6 C14—C15—H15 120.5
C7—C8—C3 121.57 (19) C15—C16—C11 120.29 (17)
C7—C8—H8 119.2 C15—C16—H16 119.9
C3—C8—H8 119.2 C11—C16—H16 119.9
N3—C9—H9A 109.5 N4—C17—C14 177.5 (2)
C1—N1—N2—C11 −176.74 (15) C4—C5—C6—C7 −0.9 (3)
N2—N1—C1—C2 179.58 (16) N3—C6—C7—C8 −177.38 (18)
N2—N1—C1—C3 1.6 (3) C5—C6—C7—C8 0.5 (3)
N1—C1—C2—Cl1 −173.44 (13) C6—C7—C8—C3 −0.1 (3)
C3—C1—C2—Cl1 4.5 (3) C4—C3—C8—C7 0.1 (3)
N1—C1—C2—Cl2 5.4 (2) C1—C3—C8—C7 179.17 (17)
C3—C1—C2—Cl2 −176.62 (14) N1—N2—C11—C16 176.66 (16)
C2—C1—C3—C4 −123.2 (2) N1—N2—C11—C12 −1.9 (3)
N1—C1—C3—C4 54.5 (3) C16—C11—C12—C13 −2.2 (3)
C2—C1—C3—C8 57.7 (3) N2—C11—C12—C13 176.31 (17)
N1—C1—C3—C8 −124.5 (2) C11—C12—C13—C14 0.0 (3)
C8—C3—C4—C5 −0.4 (3) C12—C13—C14—C15 2.2 (3)
C1—C3—C4—C5 −179.54 (18) C12—C13—C14—C17 −176.58 (18)
C3—C4—C5—C6 0.9 (3) C13—C14—C15—C16 −2.2 (3)
C10—N3—C6—C5 173.06 (19) C17—C14—C15—C16 176.56 (18)
C9—N3—C6—C5 13.1 (3) C14—C15—C16—C11 0.0 (3)
C10—N3—C6—C7 −9.1 (3) C12—C11—C16—C15 2.1 (3)
C9—N3—C6—C7 −169.03 (19) N2—C11—C16—C15 −176.47 (17)
C4—C5—C6—N3 177.02 (18)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C13—H13···N4i 0.95 2.48 3.428 (3) 175

Symmetry code: (i) −x+5/2, y+1/2, −z+1/2.

Funding Statement

This work was funded by Science Development Foundation under the President of the Republic of Azerbaijan grant EIF-BGM-4- RFTF-1/2017–21/13/4.

References

  1. Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Niyazova, A. A., Shikhaliyeva, I. M. & Toze, F. A. A. (2019). Acta Cryst. E75, 1199–1204. [DOI] [PMC free article] [PubMed]
  2. Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237–241. [DOI] [PMC free article] [PubMed]
  3. Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271–281. [DOI] [PMC free article] [PubMed]
  4. Doyle, R. A. (2011). Marccd software manual. Rayonix LLC, Evanston, IL 60201, USA.
  5. Evans, P. (2006). Acta Cryst. D62, 72–82. [DOI] [PubMed]
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  8. Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633.
  9. Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837. [DOI] [PubMed]
  10. Kopylovich, M. N., Mahmudov, K. T., Mizar, A. & Pombeiro, A. J. L. (2011). Chem. Commun. 47, 7248–7250. [DOI] [PubMed]
  11. Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.
  12. Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482.
  13. Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141.
  14. Mahmoudi, G., Afkhami, F. A., Castiñeiras, A., García-Santos, I., Gurbanov, A., Zubkov, F. I., Mitoraj, M. P., Kukułka, M., Sagan, F., Szczepanik, D. W., Konyaeva, I. A. & Safin, D. A. (2018a). Inorg. Chem. 57, 4395–4408. [DOI] [PubMed]
  15. Mahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018b). New J. Chem. 42, 4959–4971.
  16. Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 418, 213381.
  17. Mahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108–112.
  18. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  19. Mizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. pp. 2305–2313.
  20. Özkaraca, K., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Suleymanova, G. T., Shikhaliyeva, I. M. & Bhattarai, A. (2020). Acta Cryst. E76, 811–815. [DOI] [PMC free article] [PubMed]
  21. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  22. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  23. Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381.
  24. Shikhaliyev, N. Q., Çelikesir, S. T., Akkurt, M., Bagirova, K. N., Suleymanova, G. T. & Toze, F. A. A. (2019). Acta Cryst. E75, 465–469. [DOI] [PMC free article] [PubMed]
  25. Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038.
  26. Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807–4815.
  27. Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.
  28. Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.
  29. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  30. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.
  31. Viswanathan, A., Kute, D., Musa, A., Mani, S. K., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291–303. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021009154/vm2253sup1.cif

e-77-00994-sup1.cif (667.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021009154/vm2253Isup2.hkl

e-77-00994-Isup2.hkl (296.2KB, hkl)

CCDC reference: 2107472

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES