Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Sep 3;77(Pt 10):989–993. doi: 10.1107/S2056989021008823

Crystal structures of 6-nitro­quinazolin-4(3H)-one, 6-amino­quinazolin-4(3H)-one and 4-amino­quinazoline hemi­hydro­chloride dihydrate

Kambarali Turgunov a,b,*, Mirjalol Ziyadullaev a, Farkhod Khoshimov c, Rikhsiboy Karimov a, Burkhon Elmuradov a
PMCID: PMC8491522  PMID: 34667624

6-Nitro­quinazolin-4(3H)-one (C8H5N3O3), 6-amino­quinazolin-4(3H)-one (C8H7N3O) and 4-amino­quinazoline hemi­hydro­chloride dihydrate (C16H19N6O2) were synthesized and their structures were determined by single-crystal X-ray analysis.

Keywords: crystal structure, 4-amino­quinazoline, 6-amino­quinazolin-4(3H)-one, 6-nitro­quinazolin-4(3H)-one, hemi­hydro­chloride

Abstract

The title compounds, 6-nitro­quinazolin-4(3H)-one (C8H5N3O3; I), 6-amino­quinazolin-4(3H)-one (C8H7N3O; II) and 4-amino­quinazolin-1-ium chloride–4-amino­quinazoline–water (1/1/2), (C8H8N3 +·Cl·C8H7N3·2H2O; III) were synthesized and their structures were determined by single-crystal X-ray analysis. In the crystals of I and II, the quinazoline mol­ecules form hydrogen-bonded dimers via N—H⋯O inter­actions. The dimers are connected by weak inter­molecular C—H⋯N and C—H⋯O hydrogen bonds, forming a layered structure in the case of I. In the crystal of II, N—H⋯N and C—H⋯O inter­actions link the dimers into a three-dimensional network structure. The asymmetric unit of III consists of two quinazoline mol­ecules, one of which is protonated, a chloride ion, and two water mol­ecules. The chloride anion and the water mol­ecules form hydrogen-bonded chains consisting of fused five-membered rings. The protonated and unprotonated quinazolin mol­ecules are linked to the chloride ions and water mol­ecules of the chain by their amino groups.

Chemical context  

Heterocyclic compounds play an important role in the lives of plant and living organisms because of their properties, including anti-inflammatory (Azab et al., 2016), anti­tumor (Ishikawa et al., 2009), anti­viral (De Clercq & Field, 2006) and other activities (Ding et al., 1999). Quinazoline derivatives occupy a distinct position among nitro­gen-containing heterocycles because of their wide spectrum of pharmaceutical and biopharmaceutical properties, amongst them anti­cancer (Chandregowda et al., 2009), anti­bacterial (Anti­penko et al., 2009), anti-inflammatory (Alagarsamy et al., 2007), anti­tuberculosis (Nandy et al., 2006), anti­hypertension (Hess et al., 1968) and anti­diabetic (Paneersalvam et al., 2010) activities.graphic file with name e-77-00989-scheme1.jpg

In line with this, we synthesized 6-nitro­quinazolin-4(3H)-one (I), 6-amino­quinazolin-4(3H)-one (II) and 4-amino­quinazoline hemi­hydro­chloride dihydrate (III), which are important inter­mediates in drug synthesis, and their crystal structures were determined. The hemi-protonated structures may be useful for the preparation of materials important to various branches of science, ranging from biology to nanodevice fabrication and to pharmaceuticals (Perumalla et al., 2013).

Structural commentary  

Compound I crystallizes in the triclinic space group P Inline graphic with one mol­ecule in the asymmetric unit. As a whole, the mol­ecule is nearly planar. The nitro group is rotated slightly with respect to the quinazoline ring system, the C5—C6—N9—O3 and C7—C6—N9—O2 torsion angles being 6.0 (3) and 4.9 (4)°, respectively. All bond lengths and angles are normal and in good agreement with those reported previously (Liao et al., 2018; Yong et al., 2008). Fig. 1 shows the mol­ecular structure of I in the solid state. Selected geometric parameters are listed in Table 1.

Figure 1.

Figure 1

The mol­ecular structure of 6-nitro­quinazolin-4(3H)-one (I), with displacement ellipsoids drawn at the 50% probability level.

Table 1. Selected bond lengths (Å) for I .

N1—C2 1.287 (3) N3—C4 1.366 (3)
C2—N3 1.354 (3) C6—N9 1.464 (3)

Compound II crystallizes in the ortho­rhom­bic space group Pca21 with two crystallographically independent mol­ecules, A and B, in the asymmetric unit (Fig. 2). All the atoms of the mol­ecule (except the amino-group hydrogens) lie in the same plane. The nitro­gen atom of the amino group is somewhere between the sp2 and sp3 hybridized states, the sum of the valence angles at the nitrogen atom being 349 and 342° in mol­ecules A and B, respectively. All bond lengths and angles are normal. Selected geometric parameters are listed in Table 2.

Figure 2.

Figure 2

The mol­ecular structure of 6-amino­quinazolin-4(3H)-one (II), showing the two independent mol­ecules, with displacement ellipsoids drawn at the 50% probability level.

Table 2. Selected bond lengths (Å) for II .

N1A—C2A 1.291 (5) N1B—C2B 1.290 (5)
C2A—N3A 1.369 (4) C2B—N3B 1.364 (4)
N3A—C4A 1.376 (4) N3B—C4B 1.366 (4)
C6A—N9A 1.374 (4) C6B—N9B 1.392 (5)

In the case of compound III, there are protonated (A) and unprotonated (B) 4-amino­quinazoline mol­ecules (Fig. 3) in the asymmetric unit and they both have a planar structure. Mol­ecule A is protonated at the N1 nitro­gen atom and this leads to an elongation of the N1—C2 and N3—C4 bonds and a shortening of the C2—N3 and C4—N9 bonds with respect to the unprotonated mol­ecule B. In both A and B, the nitro­gen atom of the amino group is in an sp2 hybridized state. The sum of the valence angles around the nitro­gen atoms in mol­ecules A and B are 360 and 359°, respectively, and the carbon-to-amino group nitro­gen bond lengths C4—N9 are shorter than the bond lengths observed in compound II (Table 3).

Figure 3.

Figure 3

The asymmetric unit of compound III with displacement ellipsoids drawn at the 50% probability level.

Table 3. Selected bond lengths (Å) for III .

N1A—C2A 1.315 (4) N1B—C2B 1.309 (4)
C2A—N3A 1.328 (4) C2B—N3B 1.340 (4)
N3A—C4A 1.363 (4) N3B—C4B 1.347 (4)
C4A—N9A 1.293 (4) C4B—N9B 1.323 (4)

Supra­molecular features  

In the crystal of I, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric dimers, forming Inline graphic(8) motifs. Other head-to-head Inline graphic(10) and Inline graphic(8) motifs are formed by weak inter­molecular C—H⋯O and C—H⋯N hydrogen bonds, producing layers parallel to the (1Inline graphic2) plane (Table 4, Fig. 4). In addition, an Inline graphic(8) ring motif is formed by the inter­actions between three adjacent mol­ecules. The layers are linked though π–π stacking inter­actions with centroid–centroid distances of 3.8264 (13) and 3.9600 (14) Å into a three-dimensional network.

Table 4. Hydrogen-bond geometry (Å, °) for I .

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O1i 0.80 (3) 2.02 (3) 2.814 (2) 178 (4)
C8—H8⋯N1ii 0.93 2.53 3.450 (3) 172
C2—H2⋯O2iii 0.93 2.57 3.466 (4) 163
C7—H7⋯O2iv 0.93 2.56 3.437 (3) 158

Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x, -y+1, -z+2; (iii) x-1, y-1, z; (iv) -x+1, -y+2, -z+2.

Figure 4.

Figure 4

Hydrogen bonding in the crystal of 6-nitro­quinazolin-4(3H)-one (I). Colour code: C grey, H green, N blue, O red.

The two independent mol­ecules of compound II are related by a pseudo-center of symmetry and are linked by two N—H⋯O hydrogen bonds, forming an Inline graphic(8) motif. An N—H⋯N hydrogen bond generates a three-dimensional network (Table 5, Fig. 5).

Table 5. Hydrogen-bond geometry (Å, °) for II .

D—H⋯A D—H H⋯A DA D—H⋯A
N9A—H9AA⋯N9B i 0.93 (4) 2.55 (4) 3.435 (5) 160 (4)
N9A—H9AB⋯N1A ii 0.81 (4) 2.34 (4) 3.144 (5) 170 (4)
N9B—H9BB⋯N1B iii 0.91 (4) 2.19 (4) 3.092 (5) 174 (4)
N3A—H3A⋯O1B iv 0.95 (3) 1.89 (3) 2.832 (4) 175 (3)
N3B—H3B⋯O1A v 0.92 (4) 1.93 (4) 2.847 (3) 173 (4)

Symmetry codes: (i) -x+1, -y+1, z-{\script{1\over 2}}; (ii) x-{\script{1\over 2}}, -y+1, z; (iii) x+{\script{1\over 2}}, -y, z; (iv) x, y-1, z; (v) x, y+1, z.

Figure 5.

Figure 5

Hydrogen bonding in the crystal of 6-amino­quinazolin-4(3H)-one (II). Colour code: C grey, H green, N blue, O red.

The packing analysis of III shows that the protonated and unprotonated 4-amino­quinazoline mol­ecules are linked by inter­molecular N—H⋯N hydrogen bonds, forming pseudo-centrosymmetric dimers characterized by a donor–acceptor distance of 2.786 (3) Å. Other N—H⋯N hydrogen bonds form centrosymmetric Inline graphic(8) ring motifs. The chloride anion and water mol­ecules form hydrogen-bonded chains consisting of fused five-membered rings with the participation of two chloride anions and three water mol­ecules. A chain of rings runs through the twofold screw axis parallel to the [010] direction (Fig. 6). The protonated and unprotonated quinazoline mol­ecules link to the chain via N—H⋯Cl and N—H⋯Ow hydrogen bonds from the lower and upper side (Table 6, Fig. 6). The chain direction corresponds to the smallest unit-cell edge and such self-assembly of mol­ecules has also been observed in other quinazoline hydro­chloride crystals (Tashkhodzhaev et al., 1995; Turgunov et al., 1998, 2003). The above mentioned N—H⋯N hydrogen bonds link the mol­ecules into a three-dimensional network. The crystal structure of III is stabilized by π–π inter­actions [centroid–centroid distances in the range 3.4113 (16)–3.9080 (18) Å].

Figure 6.

Figure 6

Part of the crystal structure of III showing the hydrogen-bonding scheme. Colour code: C grey, H light green, Cl bright green, N blue, O red.

Table 6. Hydrogen-bond geometry (Å, °) for III .

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1A⋯N1B i 1.03 (3) 1.76 (3) 2.786 (3) 173 (3)
N9A—H9AA⋯N3B ii 0.91 (4) 2.00 (4) 2.907 (4) 175 (3)
N9A—H9AB⋯Cl1 0.94 (5) 2.34 (5) 3.206 (2) 153 (5)
N9B—H9BA⋯N3A ii 0.96 (4) 2.12 (4) 3.074 (4) 174 (3)
N9B—H9BB⋯O1W 0.79 (4) 2.22 (3) 2.999 (4) 167 (4)
O1W—H1W1⋯Cl1 0.90 (3) 2.25 (3) 3.157 (4) 178 (6)
O1W—H2W1⋯Cl1iii 0.89 (4) 2.37 (4) 3.183 (3) 151 (7)
O2W—H1W2⋯O1W 0.91 (7) 1.96 (7) 2.857 (5) 169 (6)
O2W—H2W2⋯Cl1iv 0.89 (5) 2.40 (5) 3.215 (4) 153 (5)

Symmetry codes: (i) -x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}; (ii) -x+1, -y+1, -z+1; (iii) -x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}; (iv) x, y-1, z.

Database survey  

A search of the Cambridge Structural Database (CSD, version 5.41, including the update of January 2020; Groom et al., 2016) confirmed that three related compounds had been structurally characterized in which the benzene ring of the quinazolin-4(3H)-ones contains a nitro group [refcodes GAPPUK (Yu et al., 2012), GISXOW (Yong et al., 2008) and RUGKEK (Wu et al., 2009)].

The crystal structures of quinazolin-4(3H)-one and its first metal coordination compound have also been reported [BIHJIO (Liao et al., 2018) and NALFEN (Turgunov & Englert, 2010)].

Synthesis and crystallization  

Compound I: In a three-necked flask equipped with a mechanical stirrer and reflux condenser, quinazolin-4(3H)-one (22.5 g, 0.15 mol) was dissolved in 78 ml of concentrated sulfuric acid at 303 K for 1 h. Then a nitrating mixture (21 ml of nitric acid and 18 ml of concentrated sulfuric acid) was added to the flask under vigorous stirring of the mixture. The reaction mixture was stirred for another hour, maintaining a temperature not higher than 303 K, and then for another hour at room temperature. At room temperature, 45 ml of nitric acid were added dropwise to the reaction mixture over a period of 1 h. The reaction mixture was left at room temperature for 10 h. The contents of the flask were poured into a dish containing ice, the resulting precipitate was filtered off, washed with water and dried and recrystallized from ethanol to obtain 25.7 g of pure compound I as single crystals in 87.4% yield, m.p. 560–562 K.

Compound II: In a three-necked flask equipped with a mechanical stirrer and reflux condenser, 12.6 g (56 mmol) of tin (II) chloride dihydrate (SnCl2·2H2O) were cooled in an ice bath and 16.98 ml of concentrated (36%) HCl were added, then 3 g (16 mmol) of quinazolin-4-one as a suspension in 20 ml of ethanol and 7 ml of HCl (36%) were added portionwise with stirring of the mixture. The reaction was carried out for 10-15 minutes at ∼273 K, 30 min at room temperature and 2 h in a water bath (∼363 K). The reaction mixture was left overnight at room temperature, diluted with water, and brought to a strongly alkaline medium (pH = 10–11) with 10% of sodium hydroxide, in which the expected 6-amino-3N-quinazoline-4-one was dissolved, so that the chloride was brought to a neutral medium in the presence of acid, and precipitated when converted to an alkaline medium with ammonia. The precipitate was filtered, washed with water until it reached a neutral medium, and dried at room temperature. The precipitate was recrystallized from ethanol and 6.67 g of pure compound II were obtained representing an 88.1% yield, m.p. 589–591 K.

Compound III: Crystals of compound III were obtained as a minor additional product in the reaction of 4-chloro­quinazoline with ammonia.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 7. C-bound H atoms were placed in calculated positions and refined to ride on their parent atoms: C—H = 0.93 Å with U iso(H) = 1.2U eq(C). Hydrogen atoms of the water mol­ecules and those bonded to nitro­gen atoms were located in electron density difference maps and were freely refined.

Table 7. Experimental details.

  I II III
Crystal data
Chemical formula C8H5N3O3 C8H7N3O C8H8N3 +·Cl·C8H7N3·2H2O
M r 191.15 161.17 362.82
Crystal system, space group Triclinic, P\overline{1} Orthorhombic, P c a21 Monoclinic, P21/n
Temperature (K) 293 293 298
a, b, c (Å) 5.5587 (9), 8.6673 (13), 8.7649 (12) 13.4535 (5), 4.9510 (2), 21.6188 (8) 14.3512 (12), 7.5867 (6), 16.2282 (9)
α, β, γ (°) 105.654 (12), 98.560 (13), 90.784 (13) 90, 90, 90 90, 93.544 (7), 90
V3) 401.45 (11) 1439.99 (10) 1763.5 (2)
Z 2 8 4
Radiation type Cu Kα Cu Kα Cu Kα
μ (mm−1) 1.07 0.86 2.12
Crystal size (mm) 0.45 × 0.30 × 0.25 0.60 × 0.45 × 0.35 0.50 × 0.08 × 0.05
 
Data collection
Diffractometer Rigaku Xcalibur, Ruby Rigaku Xcalibur, Ruby Rigaku Xcalibur, Ruby
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018) Multi-scan (CrysAlis PRO; Rigaku OD, 2018) Multi-scan (CrysAlis PRO; Rigaku OD, 2018)
Tmin, Tmax 0.742, 1.000 0.720, 1.000 0.934, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 2652, 1598, 1124 22195, 2976, 2489 6703, 3563, 2207
R int 0.024 0.070 0.052
(sin θ/λ)max−1) 0.630 0.630 0.629
 
Refinement
R[F2 > 2σ(F 2)], wR(F 2), S 0.047, 0.145, 1.02 0.036, 0.098, 1.02 0.054, 0.151, 1.01
No. of reflections 1598 2976 3563
No. of parameters 132 242 261
No. of restraints 0 2 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.18, −0.17 0.17, −0.15 0.23, −0.22
Absolute structure Flack x determined using 1053 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter 0.2 (2)

Computer programs: CrysAlis PRO (Rigaku OD, 2018), SHELXT2018/2 (Sheldrick, 2015a ), SHELXL2014/7 (Sheldrick, 2015b ), XP in SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, II, III, GLOBAL. DOI: 10.1107/S2056989021008823/dj2030sup1.cif

e-77-00989-sup1.cif (1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021008823/dj2030Isup2.hkl

e-77-00989-Isup2.hkl (128.8KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989021008823/dj2030IIsup3.hkl

e-77-00989-IIsup3.hkl (237.9KB, hkl)

Structure factors: contains datablock(s) III. DOI: 10.1107/S2056989021008823/dj2030IIIsup4.hkl

e-77-00989-IIIsup4.hkl (284.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021008823/dj2030Isup5.cml

Supporting information file. DOI: 10.1107/S2056989021008823/dj2030IIsup6.cml

Supporting information file. DOI: 10.1107/S2056989021008823/dj2030IIIsup7.cml

CCDC references: 2104939, 2104938, 2104937

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

X-ray diffraction studies were performed at the Centre of Collective Usage of Equipment of the Institute of Bioorganic Chemistry of the Uzbekistan Academy of Sciences. Professor Bakhtiyar Ibragimov is acknowledged for support with the diffraction measurements.

supplementary crystallographic information

6-Nitroquinazolin-4(3H)-one (I) . Crystal data

C8H5N3O3 F(000) = 196
Mr = 191.15 Dx = 1.581 Mg m3
Triclinic, P1 Melting point: 560(2) K
a = 5.5587 (9) Å Cu Kα radiation, λ = 1.54184 Å
b = 8.6673 (13) Å Cell parameters from 950 reflections
c = 8.7649 (12) Å θ = 5.3–74.5°
α = 105.654 (12)° µ = 1.07 mm1
β = 98.560 (13)° T = 293 K
γ = 90.784 (13)° Prism, colourless
V = 401.45 (11) Å3 0.45 × 0.30 × 0.25 mm
Z = 2

6-Nitroquinazolin-4(3H)-one (I) . Data collection

Rigaku Xcalibur, Ruby diffractometer 1598 independent reflections
Radiation source: Enhance (Cu) X-ray Source 1124 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.024
Detector resolution: 10.2576 pixels mm-1 θmax = 76.3°, θmin = 5.3°
ω scans h = −6→7
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2018) k = −7→10
Tmin = 0.742, Tmax = 1.000 l = −10→9
2652 measured reflections

6-Nitroquinazolin-4(3H)-one (I) . Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.047 w = 1/[σ2(Fo2) + (0.0615P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.145 (Δ/σ)max < 0.001
S = 1.02 Δρmax = 0.18 e Å3
1598 reflections Δρmin = −0.17 e Å3
132 parameters Extinction correction: SHELXL2014/7 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.012 (3)
Primary atom site location: structure-invariant direct methods

6-Nitroquinazolin-4(3H)-one (I) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

6-Nitroquinazolin-4(3H)-one (I) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.6353 (3) 0.19086 (17) 0.52777 (19) 0.0644 (5)
O2 0.7328 (5) 0.9420 (2) 0.8525 (3) 0.0988 (8)
O3 0.8935 (3) 0.7763 (2) 0.6717 (2) 0.0739 (5)
N1 0.1305 (3) 0.3183 (2) 0.8279 (2) 0.0587 (5)
C2 0.1601 (4) 0.1736 (3) 0.7482 (3) 0.0585 (5)
H2 0.0576 0.0929 0.7592 0.070*
N3 0.3277 (4) 0.1287 (2) 0.6497 (2) 0.0566 (5)
C4 0.4881 (4) 0.2343 (2) 0.6209 (2) 0.0517 (5)
C4A 0.4645 (4) 0.4012 (2) 0.7094 (2) 0.0476 (5)
C5 0.6197 (4) 0.5228 (2) 0.6955 (3) 0.0519 (5)
H5 0.7399 0.4998 0.6306 0.062*
C6 0.5897 (4) 0.6775 (2) 0.7807 (3) 0.0529 (5)
C7 0.4120 (4) 0.7162 (2) 0.8796 (3) 0.0569 (5)
H7 0.3956 0.8224 0.9349 0.068*
C8 0.2626 (4) 0.5968 (2) 0.8944 (3) 0.0567 (5)
H8 0.1446 0.6214 0.9607 0.068*
C8A 0.2866 (4) 0.4359 (2) 0.8092 (2) 0.0507 (5)
N9 0.7504 (4) 0.8071 (2) 0.7678 (3) 0.0635 (5)
H3 0.334 (5) 0.038 (3) 0.598 (3) 0.057 (6)*

6-Nitroquinazolin-4(3H)-one (I) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0731 (10) 0.0452 (8) 0.0736 (11) 0.0019 (7) 0.0352 (9) 0.0014 (7)
O2 0.1272 (18) 0.0417 (9) 0.1230 (17) −0.0165 (10) 0.0525 (15) −0.0014 (9)
O3 0.0730 (11) 0.0618 (10) 0.0918 (13) −0.0050 (8) 0.0287 (10) 0.0215 (9)
N1 0.0605 (10) 0.0490 (9) 0.0681 (11) −0.0004 (7) 0.0260 (9) 0.0102 (8)
C2 0.0621 (12) 0.0457 (11) 0.0690 (14) −0.0031 (9) 0.0213 (11) 0.0126 (9)
N3 0.0674 (11) 0.0368 (8) 0.0646 (11) 0.0004 (7) 0.0226 (9) 0.0058 (8)
C4 0.0553 (11) 0.0431 (10) 0.0557 (11) 0.0035 (8) 0.0169 (9) 0.0073 (8)
C4A 0.0534 (10) 0.0398 (9) 0.0486 (10) 0.0030 (8) 0.0129 (8) 0.0082 (8)
C5 0.0549 (11) 0.0478 (11) 0.0542 (11) 0.0042 (8) 0.0154 (9) 0.0122 (8)
C6 0.0571 (11) 0.0430 (10) 0.0579 (11) −0.0013 (8) 0.0111 (9) 0.0118 (8)
C7 0.0674 (13) 0.0396 (10) 0.0600 (12) 0.0067 (9) 0.0143 (10) 0.0052 (8)
C8 0.0617 (12) 0.0464 (11) 0.0606 (12) 0.0070 (9) 0.0211 (10) 0.0061 (9)
C8A 0.0535 (11) 0.0436 (10) 0.0542 (11) 0.0027 (8) 0.0135 (9) 0.0092 (8)
N9 0.0694 (12) 0.0453 (10) 0.0744 (12) −0.0043 (8) 0.0133 (10) 0.0138 (8)

6-Nitroquinazolin-4(3H)-one (I) . Geometric parameters (Å, º)

O1—C4 1.233 (2) C4A—C5 1.395 (3)
O2—N9 1.218 (2) C4A—C8A 1.399 (3)
O3—N9 1.223 (2) C5—C6 1.374 (3)
N1—C2 1.287 (3) C5—H5 0.9300
N1—C8A 1.388 (3) C6—C7 1.395 (3)
C2—N3 1.354 (3) C6—N9 1.464 (3)
C2—H2 0.9300 C7—C8 1.363 (3)
N3—C4 1.366 (3) C7—H7 0.9300
N3—H3 0.80 (3) C8—C8A 1.412 (3)
C4—C4A 1.463 (3) C8—H8 0.9300
C2—N1—C8A 115.80 (17) C5—C6—C7 122.54 (19)
N1—C2—N3 125.57 (19) C5—C6—N9 118.89 (18)
N1—C2—H2 117.2 C7—C6—N9 118.57 (18)
N3—C2—H2 117.2 C8—C7—C6 119.31 (18)
C2—N3—C4 123.57 (17) C8—C7—H7 120.3
C2—N3—H3 122.0 (18) C6—C7—H7 120.3
C4—N3—H3 114.3 (18) C7—C8—C8A 120.21 (19)
O1—C4—N3 122.34 (17) C7—C8—H8 119.9
O1—C4—C4A 124.23 (18) C8A—C8—H8 119.9
N3—C4—C4A 113.43 (16) N1—C8A—C4A 122.73 (18)
C5—C4A—C8A 120.89 (18) N1—C8A—C8 118.18 (18)
C5—C4A—C4 120.21 (17) C4A—C8A—C8 119.09 (19)
C8A—C4A—C4 118.90 (18) O2—N9—O3 122.9 (2)
C6—C5—C4A 117.95 (18) O2—N9—C6 118.0 (2)
C6—C5—H5 121.0 O3—N9—C6 119.03 (18)
C4A—C5—H5 121.0
C8A—N1—C2—N3 −0.1 (4) C6—C7—C8—C8A −0.5 (4)
N1—C2—N3—C4 −0.7 (4) C2—N1—C8A—C4A 0.5 (3)
C2—N3—C4—O1 −178.3 (2) C2—N1—C8A—C8 −179.8 (2)
C2—N3—C4—C4A 1.0 (3) C5—C4A—C8A—N1 −179.2 (2)
O1—C4—C4A—C5 −2.2 (3) C4—C4A—C8A—N1 0.0 (3)
N3—C4—C4A—C5 178.5 (2) C5—C4A—C8A—C8 1.1 (3)
O1—C4—C4A—C8A 178.6 (2) C4—C4A—C8A—C8 −179.8 (2)
N3—C4—C4A—C8A −0.7 (3) C7—C8—C8A—N1 180.0 (2)
C8A—C4A—C5—C6 −1.0 (3) C7—C8—C8A—C4A −0.2 (3)
C4—C4A—C5—C6 179.8 (2) C5—C6—N9—O2 −175.0 (2)
C4A—C5—C6—C7 0.3 (3) C7—C6—N9—O2 4.9 (4)
C4A—C5—C6—N9 −179.9 (2) C5—C6—N9—O3 6.0 (3)
C5—C6—C7—C8 0.5 (4) C7—C6—N9—O3 −174.2 (2)
N9—C6—C7—C8 −179.3 (2)

6-Nitroquinazolin-4(3H)-one (I) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N3—H3···O1i 0.80 (3) 2.02 (3) 2.814 (2) 178 (4)
C8—H8···N1ii 0.93 2.53 3.450 (3) 172
C2—H2···O2iii 0.93 2.57 3.466 (4) 163
C7—H7···O2iv 0.93 2.56 3.437 (3) 158

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x, −y+1, −z+2; (iii) x−1, y−1, z; (iv) −x+1, −y+2, −z+2.

6-Aminoquinazolin-4(3H)-one (II) . Crystal data

C8H7N3O Dx = 1.487 Mg m3
Mr = 161.17 Melting point: 589(2) K
Orthorhombic, Pca21 Cu Kα radiation, λ = 1.54184 Å
a = 13.4535 (5) Å Cell parameters from 5076 reflections
b = 4.9510 (2) Å θ = 4.1–75.8°
c = 21.6188 (8) Å µ = 0.86 mm1
V = 1439.99 (10) Å3 T = 293 K
Z = 8 Prism, colourless
F(000) = 672 0.60 × 0.45 × 0.35 mm

6-Aminoquinazolin-4(3H)-one (II) . Data collection

Rigaku Xcalibur, Ruby diffractometer 2976 independent reflections
Radiation source: Enhance (Cu) X-ray Source 2489 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.070
Detector resolution: 10.2576 pixels mm-1 θmax = 76.1°, θmin = 4.1°
ω scans h = −16→16
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2018) k = −6→6
Tmin = 0.720, Tmax = 1.000 l = −26→27
22195 measured reflections

6-Aminoquinazolin-4(3H)-one (II) . Refinement

Refinement on F2 H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0516P)2 + 0.144P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.036 (Δ/σ)max = 0.001
wR(F2) = 0.098 Δρmax = 0.17 e Å3
S = 1.02 Δρmin = −0.14 e Å3
2976 reflections Extinction correction: SHELXL-2014/7 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
242 parameters Extinction coefficient: 0.0034 (4)
2 restraints Absolute structure: Flack x determined using 1053 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methods Absolute structure parameter: 0.2 (2)
Hydrogen site location: mixed

6-Aminoquinazolin-4(3H)-one (II) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

6-Aminoquinazolin-4(3H)-one (II) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1A 0.40087 (16) 0.0190 (4) 0.46170 (11) 0.0394 (5)
N1A 0.6791 (2) 0.2101 (6) 0.39888 (13) 0.0427 (7)
C2A 0.6607 (2) 0.0205 (7) 0.43824 (16) 0.0408 (8)
H2A 0.7142 −0.0786 0.4532 0.049*
N3A 0.5680 (2) −0.0455 (6) 0.45958 (13) 0.0373 (6)
C4A 0.4828 (2) 0.0850 (6) 0.44094 (14) 0.0337 (7)
C4AA 0.4994 (2) 0.3010 (6) 0.39636 (14) 0.0338 (7)
C5A 0.4197 (2) 0.4509 (6) 0.37325 (14) 0.0361 (7)
H5A 0.3555 0.4132 0.3867 0.043*
C6A 0.4353 (2) 0.6566 (7) 0.33025 (15) 0.0368 (7)
C7A 0.5343 (3) 0.7079 (7) 0.31113 (15) 0.0394 (8)
H7A 0.5464 0.8449 0.2827 0.047*
C8A 0.6122 (3) 0.5608 (7) 0.33352 (16) 0.0412 (8)
H8A 0.6763 0.5982 0.3198 0.049*
C8AA 0.5971 (3) 0.3541 (6) 0.37691 (15) 0.0364 (7)
N9A 0.3578 (3) 0.8001 (6) 0.30523 (15) 0.0469 (8)
O1B 0.53939 (17) 0.5050 (4) 0.53859 (12) 0.0403 (6)
N1B 0.2624 (2) 0.3084 (6) 0.60178 (14) 0.0451 (7)
C2B 0.2799 (2) 0.4952 (7) 0.56163 (16) 0.0430 (8)
H2B 0.2257 0.5891 0.5458 0.052*
N3B 0.3720 (2) 0.5655 (5) 0.54065 (13) 0.0385 (6)
C4B 0.4570 (3) 0.4384 (6) 0.55929 (14) 0.0332 (7)
C4AB 0.4421 (2) 0.2222 (6) 0.60434 (15) 0.0332 (7)
C5B 0.5223 (3) 0.0742 (6) 0.62695 (14) 0.0367 (7)
H5B 0.5863 0.1136 0.6134 0.044*
C6B 0.5075 (3) −0.1315 (6) 0.66954 (15) 0.0371 (7)
C7B 0.4094 (3) −0.1838 (7) 0.68957 (15) 0.0409 (8)
H7B 0.3983 −0.3203 0.7183 0.049*
C8B 0.3303 (3) −0.0383 (7) 0.66766 (15) 0.0415 (8)
H8B 0.2666 −0.0768 0.6818 0.050*
C8AB 0.3444 (2) 0.1679 (6) 0.62419 (15) 0.0373 (7)
N9B 0.5875 (3) −0.2736 (7) 0.69421 (15) 0.0470 (8)
H3A 0.560 (2) −0.190 (7) 0.4877 (16) 0.039 (10)*
H3B 0.383 (3) 0.702 (7) 0.5125 (17) 0.059 (12)*
H9AA 0.373 (3) 0.957 (9) 0.2838 (19) 0.054 (12)*
H9BB 0.638 (3) −0.297 (10) 0.667 (2) 0.071 (14)*
H9BA 0.571 (3) −0.431 (9) 0.715 (2) 0.062 (12)*
H9AB 0.307 (3) 0.804 (8) 0.3255 (19) 0.050 (12)*

6-Aminoquinazolin-4(3H)-one (II) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1A 0.0381 (13) 0.0371 (12) 0.0429 (11) −0.0020 (9) 0.0049 (10) 0.0039 (10)
N1A 0.0368 (15) 0.0409 (16) 0.0505 (18) −0.0034 (13) 0.0035 (13) 0.0010 (13)
C2A 0.0340 (18) 0.0394 (19) 0.0491 (19) 0.0022 (14) 0.0003 (15) 0.0011 (16)
N3A 0.0399 (15) 0.0334 (14) 0.0385 (15) −0.0004 (11) 0.0010 (13) 0.0035 (13)
C4A 0.0358 (17) 0.0317 (15) 0.0337 (16) −0.0019 (12) 0.0017 (13) −0.0064 (13)
C4AA 0.0376 (17) 0.0307 (15) 0.0332 (16) −0.0035 (13) 0.0013 (12) −0.0058 (12)
C5A 0.0375 (17) 0.0344 (16) 0.0363 (17) −0.0031 (13) 0.0016 (14) −0.0022 (14)
C6A 0.0446 (19) 0.0337 (16) 0.0322 (16) 0.0004 (14) 0.0007 (14) −0.0045 (13)
C7A 0.053 (2) 0.0329 (17) 0.0320 (18) −0.0053 (14) 0.0051 (14) 0.0019 (14)
C8A 0.043 (2) 0.0395 (18) 0.0409 (18) −0.0083 (14) 0.0084 (15) −0.0016 (14)
C8AA 0.0383 (17) 0.0338 (17) 0.0371 (17) −0.0015 (14) 0.0043 (14) −0.0029 (14)
N9A 0.049 (2) 0.0437 (17) 0.0482 (18) 0.0016 (14) −0.0013 (15) 0.0106 (15)
O1B 0.0384 (13) 0.0388 (12) 0.0437 (12) −0.0036 (10) 0.0049 (11) 0.0058 (10)
N1B 0.0365 (15) 0.0463 (17) 0.0525 (17) −0.0017 (12) 0.0019 (13) 0.0057 (13)
C2B 0.0386 (19) 0.0428 (18) 0.0475 (19) 0.0008 (14) −0.0012 (15) 0.0015 (16)
N3B 0.0422 (16) 0.0333 (15) 0.0399 (15) −0.0017 (11) 0.0032 (13) 0.0033 (12)
C4B 0.0393 (19) 0.0291 (16) 0.0313 (16) −0.0029 (12) 0.0016 (13) −0.0014 (13)
C4AB 0.0384 (18) 0.0299 (15) 0.0314 (16) −0.0033 (13) 0.0040 (13) −0.0031 (13)
C5B 0.0389 (19) 0.0350 (16) 0.0361 (17) −0.0041 (14) 0.0047 (14) −0.0041 (13)
C6B 0.0457 (19) 0.0323 (16) 0.0332 (17) −0.0005 (14) −0.0009 (14) −0.0015 (14)
C7B 0.051 (2) 0.0362 (18) 0.0350 (17) −0.0071 (15) 0.0032 (15) 0.0027 (14)
C8B 0.0396 (19) 0.0450 (19) 0.0399 (18) −0.0070 (14) 0.0101 (14) −0.0022 (15)
C8AB 0.0391 (17) 0.0335 (16) 0.0392 (17) −0.0032 (13) 0.0018 (14) −0.0020 (14)
N9B 0.0504 (19) 0.0457 (18) 0.0448 (18) 0.0022 (14) 0.0025 (15) 0.0079 (14)

6-Aminoquinazolin-4(3H)-one (II) . Geometric parameters (Å, º)

O1A—C4A 1.235 (4) O1B—C4B 1.239 (4)
N1A—C2A 1.291 (5) N1B—C2B 1.290 (5)
N1A—C8AA 1.397 (4) N1B—C8AB 1.391 (4)
C2A—N3A 1.369 (4) C2B—N3B 1.364 (4)
C2A—H2A 0.9300 C2B—H2B 0.9300
N3A—C4A 1.376 (4) N3B—C4B 1.366 (4)
N3A—H3A 0.94 (3) N3B—H3B 0.92 (2)
C4A—C4AA 1.457 (4) C4B—C4AB 1.461 (5)
C4AA—C5A 1.397 (4) C4AB—C5B 1.393 (5)
C4AA—C8AA 1.405 (4) C4AB—C8AB 1.408 (4)
C5A—C6A 1.395 (5) C5B—C6B 1.387 (5)
C5A—H5A 0.9300 C5B—H5B 0.9300
C6A—N9A 1.374 (4) C6B—N9B 1.392 (5)
C6A—C7A 1.417 (5) C6B—C7B 1.413 (5)
C7A—C8A 1.365 (5) C7B—C8B 1.370 (5)
C7A—H7A 0.9300 C7B—H7B 0.9300
C8A—C8AA 1.403 (5) C8B—C8AB 1.400 (5)
C8A—H8A 0.9300 C8B—H8B 0.9300
N9A—H9AA 0.93 (4) N9B—H9BB 0.90 (5)
N9A—H9AB 0.81 (4) N9B—H9BA 0.93 (5)
C2A—N1A—C8AA 116.3 (3) C2B—N1B—C8AB 116.6 (3)
N1A—C2A—N3A 124.8 (3) N1B—C2B—N3B 124.9 (3)
N1A—C2A—H2A 117.6 N1B—C2B—H2B 117.6
N3A—C2A—H2A 117.6 N3B—C2B—H2B 117.6
C2A—N3A—C4A 123.2 (3) C2B—N3B—C4B 123.0 (3)
C2A—N3A—H3A 120 (2) C2B—N3B—H3B 123 (2)
C4A—N3A—H3A 117 (2) C4B—N3B—H3B 114 (2)
O1A—C4A—N3A 120.9 (3) O1B—C4B—N3B 121.3 (3)
O1A—C4A—C4AA 124.9 (3) O1B—C4B—C4AB 123.9 (3)
N3A—C4A—C4AA 114.3 (3) N3B—C4B—C4AB 114.7 (3)
C5A—C4AA—C8AA 120.8 (3) C5B—C4AB—C8AB 121.0 (3)
C5A—C4AA—C4A 120.6 (3) C5B—C4AB—C4B 120.9 (3)
C8AA—C4AA—C4A 118.6 (3) C8AB—C4AB—C4B 118.1 (3)
C6A—C5A—C4AA 120.7 (3) C6B—C5B—C4AB 120.6 (3)
C6A—C5A—H5A 119.6 C6B—C5B—H5B 119.7
C4AA—C5A—H5A 119.6 C4AB—C5B—H5B 119.7
N9A—C6A—C5A 121.7 (3) C5B—C6B—N9B 121.0 (3)
N9A—C6A—C7A 120.4 (3) C5B—C6B—C7B 118.1 (3)
C5A—C6A—C7A 117.8 (3) N9B—C6B—C7B 120.8 (3)
C8A—C7A—C6A 121.5 (3) C8B—C7B—C6B 121.6 (3)
C8A—C7A—H7A 119.3 C8B—C7B—H7B 119.2
C6A—C7A—H7A 119.3 C6B—C7B—H7B 119.2
C7A—C8A—C8AA 121.0 (3) C7B—C8B—C8AB 120.7 (3)
C7A—C8A—H8A 119.5 C7B—C8B—H8B 119.7
C8AA—C8A—H8A 119.5 C8AB—C8B—H8B 119.7
N1A—C8AA—C8A 119.0 (3) N1B—C8AB—C8B 119.4 (3)
N1A—C8AA—C4AA 122.8 (3) N1B—C8AB—C4AB 122.6 (3)
C8A—C8AA—C4AA 118.2 (3) C8B—C8AB—C4AB 118.0 (3)
C6A—N9A—H9AA 117 (3) C6B—N9B—H9BB 113 (3)
C6A—N9A—H9AB 116 (3) C6B—N9B—H9BA 116 (3)
H9AA—N9A—H9AB 116 (4) H9BB—N9B—H9BA 113 (4)
C8AA—N1A—C2A—N3A −0.4 (5) C8AB—N1B—C2B—N3B −0.9 (5)
N1A—C2A—N3A—C4A 0.2 (5) N1B—C2B—N3B—C4B 1.6 (5)
C2A—N3A—C4A—O1A −179.7 (3) C2B—N3B—C4B—O1B 178.9 (3)
C2A—N3A—C4A—C4AA −0.1 (4) C2B—N3B—C4B—C4AB −0.8 (4)
O1A—C4A—C4AA—C5A −0.5 (5) O1B—C4B—C4AB—C5B −0.2 (5)
N3A—C4A—C4AA—C5A 179.9 (3) N3B—C4B—C4AB—C5B 179.5 (3)
O1A—C4A—C4AA—C8AA 179.8 (3) O1B—C4B—C4AB—C8AB 179.8 (3)
N3A—C4A—C4AA—C8AA 0.2 (4) N3B—C4B—C4AB—C8AB −0.5 (4)
C8AA—C4AA—C5A—C6A 0.1 (5) C8AB—C4AB—C5B—C6B 0.2 (5)
C4A—C4AA—C5A—C6A −179.6 (3) C4B—C4AB—C5B—C6B −179.8 (3)
C4AA—C5A—C6A—N9A 177.6 (3) C4AB—C5B—C6B—N9B −177.5 (3)
C4AA—C5A—C6A—C7A −0.1 (5) C4AB—C5B—C6B—C7B −0.6 (5)
N9A—C6A—C7A—C8A −177.4 (3) C5B—C6B—C7B—C8B 0.4 (5)
C5A—C6A—C7A—C8A 0.4 (5) N9B—C6B—C7B—C8B 177.3 (3)
C6A—C7A—C8A—C8AA −0.6 (5) C6B—C7B—C8B—C8AB 0.2 (5)
C2A—N1A—C8AA—C8A −179.3 (3) C2B—N1B—C8AB—C8B −179.7 (3)
C2A—N1A—C8AA—C4AA 0.6 (5) C2B—N1B—C8AB—C4AB −0.5 (5)
C7A—C8A—C8AA—N1A −179.6 (3) C7B—C8B—C8AB—N1B 178.6 (3)
C7A—C8A—C8AA—C4AA 0.5 (5) C7B—C8B—C8AB—C4AB −0.6 (5)
C5A—C4AA—C8AA—N1A 179.8 (3) C5B—C4AB—C8AB—N1B −178.8 (3)
C4A—C4AA—C8AA—N1A −0.5 (4) C4B—C4AB—C8AB—N1B 1.2 (5)
C5A—C4AA—C8AA—C8A −0.3 (4) C5B—C4AB—C8AB—C8B 0.4 (4)
C4A—C4AA—C8AA—C8A 179.4 (3) C4B—C4AB—C8AB—C8B −179.6 (3)

6-Aminoquinazolin-4(3H)-one (II) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N9A—H9AA···N9Bi 0.93 (4) 2.55 (4) 3.435 (5) 160 (4)
N9A—H9AB···N1Aii 0.81 (4) 2.34 (4) 3.144 (5) 170 (4)
N9B—H9BB···N1Biii 0.91 (4) 2.19 (4) 3.092 (5) 174 (4)
N3A—H3A···O1Biv 0.95 (3) 1.89 (3) 2.832 (4) 175 (3)
N3B—H3B···O1Av 0.92 (4) 1.93 (4) 2.847 (3) 173 (4)

Symmetry codes: (i) −x+1, −y+1, z−1/2; (ii) x−1/2, −y+1, z; (iii) x+1/2, −y, z; (iv) x, y−1, z; (v) x, y+1, z.

4-Aminoquinazolin-1-ium chloride–4-aminoquinazoline–water (1/1/2) (III). Crystal data

C8H8N3+·Cl·C8H7N3·2H2O F(000) = 760
Mr = 362.82 Dx = 1.367 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.54184 Å
a = 14.3512 (12) Å Cell parameters from 1071 reflections
b = 7.5867 (6) Å θ = 4.0–71.2°
c = 16.2282 (9) Å µ = 2.12 mm1
β = 93.544 (7)° T = 298 K
V = 1763.5 (2) Å3 Needle, colourless
Z = 4 0.50 × 0.08 × 0.05 mm

4-Aminoquinazolin-1-ium chloride–4-aminoquinazoline–water (1/1/2) (III). Data collection

Rigaku Xcalibur, Ruby diffractometer 3563 independent reflections
Radiation source: Enhance (Cu) X-ray Source 2207 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.052
Detector resolution: 10.2576 pixels mm-1 θmax = 75.8°, θmin = 4.0°
ω scans h = −17→15
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2018) k = −9→9
Tmin = 0.934, Tmax = 1.000 l = −15→19
6703 measured reflections

4-Aminoquinazolin-1-ium chloride–4-aminoquinazoline–water (1/1/2) (III). Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.054 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.151 w = 1/[σ2(Fo2) + (0.0514P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max = 0.003
3563 reflections Δρmax = 0.23 e Å3
261 parameters Δρmin = −0.21 e Å3
4 restraints

4-Aminoquinazolin-1-ium chloride–4-aminoquinazoline–water (1/1/2) (III). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

4-Aminoquinazolin-1-ium chloride–4-aminoquinazoline–water (1/1/2) (III). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.38300 (8) 0.88404 (15) 0.76044 (5) 0.0719 (3)
O1W 0.3293 (2) 0.4885 (5) 0.72013 (16) 0.0732 (8)
O2W 0.4789 (2) 0.2659 (6) 0.7806 (2) 0.0896 (10)
N1A 0.28852 (17) 0.9176 (4) 0.34296 (12) 0.0423 (6)
C2A 0.3708 (2) 0.8430 (4) 0.35562 (16) 0.0440 (7)
H2AA 0.4007 0.8052 0.3095 0.053*
N3A 0.41460 (17) 0.8174 (4) 0.42915 (13) 0.0408 (5)
C4A 0.3713 (2) 0.8717 (4) 0.49712 (16) 0.0396 (6)
C4AA 0.28014 (19) 0.9559 (4) 0.48907 (16) 0.0389 (6)
C5A 0.2313 (2) 1.0135 (5) 0.55595 (17) 0.0484 (7)
H5AA 0.2578 1.0010 0.6094 0.058*
C6A 0.1456 (2) 1.0874 (5) 0.5433 (2) 0.0551 (8)
H6AA 0.1133 1.1248 0.5881 0.066*
C7A 0.1056 (2) 1.1074 (5) 0.4628 (2) 0.0527 (7)
H7AA 0.0468 1.1584 0.4546 0.063*
C8A 0.1520 (2) 1.0528 (4) 0.39587 (17) 0.0469 (7)
H8AA 0.1253 1.0664 0.3426 0.056*
C8AA 0.23995 (19) 0.9765 (4) 0.40943 (16) 0.0385 (6)
N9A 0.41535 (19) 0.8422 (4) 0.56770 (14) 0.0505 (7)
N1B 0.28423 (18) 0.4265 (4) 0.32016 (12) 0.0435 (6)
C2B 0.3657 (2) 0.3578 (4) 0.34201 (16) 0.0447 (7)
H2BA 0.4010 0.3203 0.2991 0.054*
N3B 0.40470 (17) 0.3348 (4) 0.41844 (14) 0.0431 (6)
C4B 0.35638 (19) 0.3916 (4) 0.48186 (15) 0.0382 (6)
C4AB 0.26521 (19) 0.4695 (4) 0.46662 (15) 0.0359 (5)
C5B 0.2086 (2) 0.5269 (4) 0.52924 (16) 0.0426 (6)
H5BA 0.2304 0.5181 0.5843 0.051*
C6B 0.1221 (2) 0.5954 (4) 0.50991 (19) 0.0486 (7)
H6BA 0.0856 0.6345 0.5516 0.058*
C7B 0.0883 (2) 0.6069 (4) 0.42737 (19) 0.0481 (7)
H7BA 0.0290 0.6522 0.4146 0.058*
C8B 0.1419 (2) 0.5522 (4) 0.36512 (16) 0.0439 (7)
H8BA 0.1189 0.5615 0.3104 0.053*
C8AB 0.23112 (19) 0.4821 (4) 0.38354 (15) 0.0383 (6)
N9B 0.39542 (19) 0.3709 (4) 0.55724 (14) 0.0493 (7)
H1A 0.259 (3) 0.929 (5) 0.284 (2) 0.060 (10)*
H9AA 0.472 (3) 0.789 (5) 0.569 (2) 0.062 (11)*
H9AB 0.390 (4) 0.880 (7) 0.617 (3) 0.103 (17)*
H9BA 0.453 (3) 0.308 (5) 0.565 (2) 0.057 (10)*
H9BB 0.370 (3) 0.406 (5) 0.596 (2) 0.047 (9)*
H1W1 0.345 (4) 0.601 (4) 0.733 (3) 0.11 (2)*
H2W1 0.271 (2) 0.497 (11) 0.736 (4) 0.19 (4)*
H1W2 0.437 (5) 0.346 (8) 0.759 (5) 0.190*
H2W2 0.437 (4) 0.183 (7) 0.766 (4) 0.15 (3)*

4-Aminoquinazolin-1-ium chloride–4-aminoquinazoline–water (1/1/2) (III). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0881 (7) 0.0841 (7) 0.0431 (4) −0.0031 (6) 0.0015 (4) −0.0039 (4)
O1W 0.082 (2) 0.081 (2) 0.0566 (13) 0.0059 (17) 0.0021 (13) −0.0063 (14)
O2W 0.0612 (18) 0.097 (3) 0.109 (2) 0.0033 (19) −0.0051 (17) −0.011 (2)
N1A 0.0404 (13) 0.0530 (16) 0.0329 (10) −0.0007 (11) −0.0021 (9) 0.0007 (10)
C2A 0.0400 (15) 0.0517 (18) 0.0409 (12) −0.0035 (13) 0.0075 (11) −0.0031 (12)
N3A 0.0333 (11) 0.0498 (15) 0.0396 (10) 0.0055 (10) 0.0051 (9) 0.0006 (10)
C4A 0.0392 (14) 0.0415 (15) 0.0382 (12) −0.0001 (12) 0.0038 (10) −0.0021 (11)
C4AA 0.0346 (14) 0.0380 (15) 0.0439 (13) 0.0001 (12) 0.0013 (10) 0.0021 (11)
C5A 0.0524 (18) 0.0528 (19) 0.0399 (13) 0.0034 (15) 0.0030 (12) 0.0010 (12)
C6A 0.0546 (19) 0.055 (2) 0.0569 (16) 0.0085 (16) 0.0165 (14) −0.0047 (15)
C7A 0.0345 (15) 0.0489 (18) 0.0751 (19) 0.0105 (14) 0.0058 (13) 0.0000 (16)
C8A 0.0469 (17) 0.0473 (18) 0.0453 (13) −0.0030 (14) −0.0075 (12) 0.0040 (12)
C8AA 0.0377 (14) 0.0373 (14) 0.0409 (12) −0.0032 (12) 0.0068 (10) 0.0018 (11)
N9A 0.0406 (14) 0.072 (2) 0.0390 (11) 0.0133 (13) 0.0009 (10) −0.0045 (11)
N1B 0.0443 (13) 0.0537 (16) 0.0320 (9) 0.0025 (12) −0.0013 (9) −0.0011 (10)
C2B 0.0423 (15) 0.0527 (18) 0.0397 (12) 0.0029 (13) 0.0060 (11) −0.0032 (12)
N3B 0.0338 (12) 0.0563 (16) 0.0391 (10) 0.0066 (11) 0.0010 (9) −0.0042 (10)
C4B 0.0340 (13) 0.0436 (15) 0.0368 (11) −0.0008 (12) 0.0008 (10) −0.0041 (11)
C4AB 0.0337 (13) 0.0346 (14) 0.0392 (12) −0.0010 (11) 0.0011 (10) 0.0001 (10)
C5B 0.0418 (15) 0.0499 (17) 0.0367 (12) 0.0016 (13) 0.0065 (10) 0.0000 (12)
C6B 0.0420 (16) 0.0505 (18) 0.0546 (15) 0.0029 (14) 0.0138 (12) −0.0033 (14)
C7B 0.0314 (14) 0.0487 (18) 0.0643 (16) 0.0060 (13) 0.0031 (12) 0.0073 (15)
C8B 0.0398 (15) 0.0471 (17) 0.0441 (13) 0.0003 (13) −0.0042 (11) 0.0064 (12)
C8AB 0.0360 (14) 0.0402 (15) 0.0388 (12) −0.0019 (12) 0.0028 (10) −0.0012 (11)
N9B 0.0391 (14) 0.072 (2) 0.0366 (11) 0.0112 (13) −0.0015 (10) −0.0058 (12)

4-Aminoquinazolin-1-ium chloride–4-aminoquinazoline–water (1/1/2) (III). Geometric parameters (Å, º)

O1W—H1W1 0.91 (2) N9A—H9AA 0.91 (4)
O1W—H2W1 0.89 (2) N9A—H9AB 0.94 (5)
O2W—H1W2 0.91 (2) N1B—C2B 1.309 (4)
O2W—H2W2 0.89 (2) N1B—C8AB 1.383 (4)
N1A—C2A 1.315 (4) C2B—N3B 1.340 (4)
N1A—C8AA 1.393 (4) C2B—H2BA 0.9300
N1A—H1A 1.03 (4) N3B—C4B 1.347 (4)
C2A—N3A 1.328 (4) C4B—N9B 1.323 (4)
C2A—H2AA 0.9300 C4B—C4AB 1.443 (4)
N3A—C4A 1.363 (4) C4AB—C5B 1.408 (4)
C4A—N9A 1.293 (4) C4AB—C8AB 1.409 (4)
C4A—C4AA 1.455 (4) C5B—C6B 1.364 (4)
C4AA—C8AA 1.391 (4) C5B—H5BA 0.9300
C4AA—C5A 1.397 (4) C6B—C7B 1.399 (4)
C5A—C6A 1.356 (5) C6B—H6BA 0.9300
C5A—H5AA 0.9300 C7B—C8B 1.371 (4)
C6A—C7A 1.403 (5) C7B—H7BA 0.9300
C6A—H6AA 0.9300 C8B—C8AB 1.402 (4)
C7A—C8A 1.372 (5) C8B—H8BA 0.9300
C7A—H7AA 0.9300 N9B—H9BA 0.95 (4)
C8A—C8AA 1.394 (4) N9B—H9BB 0.80 (4)
C8A—H8AA 0.9300
H1W1—O1W—H2W1 95 (6) C4A—N9A—H9AB 120 (3)
H1W2—O2W—H2W2 87 (6) H9AA—N9A—H9AB 120 (4)
C2A—N1A—C8AA 120.3 (2) C2B—N1B—C8AB 116.4 (2)
C2A—N1A—H1A 119 (2) N1B—C2B—N3B 128.1 (3)
C8AA—N1A—H1A 120 (2) N1B—C2B—H2BA 115.9
N1A—C2A—N3A 125.0 (3) N3B—C2B—H2BA 115.9
N1A—C2A—H2AA 117.5 C2B—N3B—C4B 117.4 (2)
N3A—C2A—H2AA 117.5 N9B—C4B—N3B 117.4 (3)
C2A—N3A—C4A 118.0 (2) N9B—C4B—C4AB 122.3 (3)
N9A—C4A—N3A 116.2 (3) N3B—C4B—C4AB 120.3 (2)
N9A—C4A—C4AA 122.9 (3) C5B—C4AB—C8AB 119.2 (3)
N3A—C4A—C4AA 120.8 (2) C5B—C4AB—C4B 124.1 (2)
C8AA—C4AA—C5A 119.2 (3) C8AB—C4AB—C4B 116.7 (2)
C8AA—C4AA—C4A 116.8 (2) C6B—C5B—C4AB 120.6 (2)
C5A—C4AA—C4A 124.0 (2) C6B—C5B—H5BA 119.7
C6A—C5A—C4AA 120.4 (3) C4AB—C5B—H5BA 119.7
C6A—C5A—H5AA 119.8 C5B—C6B—C7B 120.1 (3)
C4AA—C5A—H5AA 119.8 C5B—C6B—H6BA 120.0
C5A—C6A—C7A 120.0 (3) C7B—C6B—H6BA 120.0
C5A—C6A—H6AA 120.0 C8B—C7B—C6B 120.6 (3)
C7A—C6A—H6AA 120.0 C8B—C7B—H7BA 119.7
C8A—C7A—C6A 120.9 (3) C6B—C7B—H7BA 119.7
C8A—C7A—H7AA 119.5 C7B—C8B—C8AB 120.3 (2)
C6A—C7A—H7AA 119.5 C7B—C8B—H8BA 119.9
C7A—C8A—C8AA 118.6 (3) C8AB—C8B—H8BA 119.9
C7A—C8A—H8AA 120.7 N1B—C8AB—C8B 119.7 (2)
C8AA—C8A—H8AA 120.7 N1B—C8AB—C4AB 121.1 (3)
C4AA—C8AA—N1A 119.0 (3) C8B—C8AB—C4AB 119.2 (3)
C4AA—C8AA—C8A 120.8 (3) C4B—N9B—H9BA 119 (2)
N1A—C8AA—C8A 120.2 (2) C4B—N9B—H9BB 120 (3)
C4A—N9A—H9AA 120 (2) H9BA—N9B—H9BB 120 (3)
C8AA—N1A—C2A—N3A −0.2 (5) C8AB—N1B—C2B—N3B −0.2 (5)
N1A—C2A—N3A—C4A 0.2 (5) N1B—C2B—N3B—C4B −1.5 (5)
C2A—N3A—C4A—N9A 179.0 (3) C2B—N3B—C4B—N9B −179.1 (3)
C2A—N3A—C4A—C4AA −0.3 (4) C2B—N3B—C4B—C4AB 1.6 (5)
N9A—C4A—C4AA—C8AA −178.8 (3) N9B—C4B—C4AB—C5B −1.5 (5)
N3A—C4A—C4AA—C8AA 0.4 (4) N3B—C4B—C4AB—C5B 177.8 (3)
N9A—C4A—C4AA—C5A 0.2 (5) N9B—C4B—C4AB—C8AB −179.3 (3)
N3A—C4A—C4AA—C5A 179.4 (3) N3B—C4B—C4AB—C8AB 0.0 (4)
C8AA—C4AA—C5A—C6A 0.4 (5) C8AB—C4AB—C5B—C6B −0.6 (5)
C4A—C4AA—C5A—C6A −178.5 (3) C4B—C4AB—C5B—C6B −178.4 (3)
C4AA—C5A—C6A—C7A −0.4 (6) C4AB—C5B—C6B—C7B 0.9 (5)
C5A—C6A—C7A—C8A 0.1 (6) C5B—C6B—C7B—C8B −0.9 (5)
C6A—C7A—C8A—C8AA 0.0 (5) C6B—C7B—C8B—C8AB 0.6 (5)
C5A—C4AA—C8AA—N1A −179.5 (3) C2B—N1B—C8AB—C8B −178.1 (3)
C4A—C4AA—C8AA—N1A −0.4 (4) C2B—N1B—C8AB—C4AB 1.9 (4)
C5A—C4AA—C8AA—C8A −0.2 (5) C7B—C8B—C8AB—N1B 179.7 (3)
C4A—C4AA—C8AA—C8A 178.8 (3) C7B—C8B—C8AB—C4AB −0.3 (5)
C2A—N1A—C8AA—C4AA 0.3 (4) C5B—C4AB—C8AB—N1B −179.7 (3)
C2A—N1A—C8AA—C8A −178.9 (3) C4B—C4AB—C8AB—N1B −1.8 (4)
C7A—C8A—C8AA—C4AA 0.0 (5) C5B—C4AB—C8AB—C8B 0.3 (4)
C7A—C8A—C8AA—N1A 179.2 (3) C4B—C4AB—C8AB—C8B 178.2 (3)

4-Aminoquinazolin-1-ium chloride–4-aminoquinazoline–water (1/1/2) (III). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1A—H1A···N1Bi 1.03 (3) 1.76 (3) 2.786 (3) 173 (3)
N9A—H9AA···N3Bii 0.91 (4) 2.00 (4) 2.907 (4) 175 (3)
N9A—H9AB···Cl1 0.94 (5) 2.34 (5) 3.206 (2) 153 (5)
N9B—H9BA···N3Aii 0.96 (4) 2.12 (4) 3.074 (4) 174 (3)
N9B—H9BB···O1W 0.79 (4) 2.22 (3) 2.999 (4) 167 (4)
O1W—H1W1···Cl1 0.90 (3) 2.25 (3) 3.157 (4) 178 (6)
O1W—H2W1···Cl1iii 0.89 (4) 2.37 (4) 3.183 (3) 151 (7)
O2W—H1W2···O1W 0.91 (7) 1.96 (7) 2.857 (5) 169 (6)
O2W—H2W2···Cl1iv 0.89 (5) 2.40 (5) 3.215 (4) 153 (5)

Symmetry codes: (i) −x+1/2, y+1/2, −z+1/2; (ii) −x+1, −y+1, −z+1; (iii) −x+1/2, y−1/2, −z+3/2; (iv) x, y−1, z.

References

  1. Alagarsamy, V., Solomon, V. R. & Dhanabal, K. (2007). Bioorg. Med. Chem. 15, 235–241. [DOI] [PubMed]
  2. Antipenko, L., Karpenko, A., Kovalenko, S., Katsev, A., Komarovska-Porokhnyavets, E., Novikov, V. & Chekotilo, A. (2009). Chem. Pharm. Bull. 57, 580–585. [DOI] [PubMed]
  3. Azab, A., Nassar, A. & Azab, A. N. (2016). Molecules, 21, 1321–1340. [DOI] [PMC free article] [PubMed]
  4. Chandregowda, V., Kush, A. K. & Chandrasekara Reddy, G. (2009). Eur. J. Med. Chem. 44, 3046–3055. [DOI] [PubMed]
  5. De Clercq, E. & Field, H. J. (2006). Br. J. Pharmacol. 147, 1–11. [DOI] [PMC free article] [PubMed]
  6. Ding, Q., Chichak, K. & Lown, J. W. (1999). Curr. Med. Chem. 6, 1–27. [PubMed]
  7. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  8. Hess, H. J., Cronin, T. H. & Scriabine, A. (1968). J. Med. Chem. 11, 130–136. [DOI] [PubMed]
  9. Ishikawa, H., Colby, D. A., Seto, S., Va, P., Tam, A., Kakei, H., Rayl, T. J., Hwang, I. & Boger, D. L. (2009). J. Am. Chem. Soc. 131, 4904–4916. [DOI] [PMC free article] [PubMed]
  10. Liao, B.-L., Pan, Y.-J., Zhang, W. & Pan, L.-W. (2018). Chem. Biodivers. 15, e1800152. [DOI] [PubMed]
  11. Nandy, P., Vishalakshi, M. T. & Bhat, A. R. (2006). Indian J. Heterocycl. Chem. 15, 293–294.
  12. Paneersalvam, P., Raj, T., Ishar, M. P. S., Singh, B., Sharma, V. & Rather, B. A. (2010). Indian J. Pharm. Sci. 72, 375–378. [DOI] [PMC free article] [PubMed]
  13. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  14. Perumalla, S. R., Pedireddi, V. R. & Sun, C. C. (2013). Cryst. Growth Des. 13, 429–432.
  15. Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  18. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  19. Tashkhodzhaev, B., Molchanov, L. V., Turgunov, K. K., Makhmudov, M. K. & Aripov, Kh. N. (1995). Chem. Nat. Compd. 31, 349–352.
  20. Turgunov, K. & Englert, U. (2010). Acta Cryst. E66, m1457. [DOI] [PMC free article] [PubMed]
  21. Turgunov, K. K., Tashkhodzhaev, B., Molchanov, L. V., Musaeva, G. V. & Aripov, Kh. N. (1998). Chem. Nat. Compd. 34, 300–303.
  22. Turgunov, K. K., Tashkhodzhaev, B., Molchanov, L. V. & Shakhidoyatov, Kh. M. (2003). Chem. Nat. Compd. 39, 379–382.
  23. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  24. Wu, Y., Ji, A., Zhang, A. & Shen, Y. (2009). Acta Cryst. E65, o3075. [DOI] [PMC free article] [PubMed]
  25. Yong, J.-P., Yu, G.-P., Li, J.-M., Hou, X.-L. & Aisa, H. A. (2008). Acta Cryst. E64, o427. [DOI] [PMC free article] [PubMed]
  26. Yu, Y. (2012). Acta Cryst. E68, o304. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, II, III, GLOBAL. DOI: 10.1107/S2056989021008823/dj2030sup1.cif

e-77-00989-sup1.cif (1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021008823/dj2030Isup2.hkl

e-77-00989-Isup2.hkl (128.8KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989021008823/dj2030IIsup3.hkl

e-77-00989-IIsup3.hkl (237.9KB, hkl)

Structure factors: contains datablock(s) III. DOI: 10.1107/S2056989021008823/dj2030IIIsup4.hkl

e-77-00989-IIIsup4.hkl (284.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021008823/dj2030Isup5.cml

Supporting information file. DOI: 10.1107/S2056989021008823/dj2030IIsup6.cml

Supporting information file. DOI: 10.1107/S2056989021008823/dj2030IIIsup7.cml

CCDC references: 2104939, 2104938, 2104937

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES