Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Sep 14;77(Pt 10):1014–1018. doi: 10.1107/S2056989021009270

Crystal structure of the new palladium complexes tetra­kis­(1,3-di­methyl­imidazolium-2-yl­idene)palladium(II) hexa­deca­carbonyl­tetra­rhenium diethyl ether disolvate and octa-μ-carbonyl-di­carbonyl­tetra­kis­(tri­phenyl­phosphane)palladium­dirhenium (unknown solvate)

Sergey Shapovalov a,*, Olga Tikhonova a, Ivan Skabitsky a
PMCID: PMC8491523  PMID: 34667629

The investigation of the coordination chemistry of heterometallic transition-metal complexes of palladium (Pd) and rhenium (Re) led to the isolation and crystallographic characterization of tetra­kis­(1,3-di­methyl­imidazolium-2-yl­idene)palladium(II) hexa­deca­carbonyl­tetra­rhenium diethyl ether disolvate, [Pd(C5H8N2)4][Re4(CO)16]·2C4H10O or [Pd(IMe)4][Re4(CO)16]·2C4H10O, (1), and di­carbonyl­octa-μ-carbonyl-tetra­kis­(tri­phenyl­phosphane)palladiumdirhenium, [Pd4Re2(C18H15P)4(CO)10] or Pd4Re2(PPh3)4(μ-CO)8(CO)2, (2), from the reaction of Pd(PPh3)4 with 1,3-di­methyl­imidazolium-2-carboxyl­ate and Re2(CO)10 in a toluene–aceto­nitrile mixture.

Keywords: palladium, rhenium, carbon­yl, NHC, tri­phenyl­phospine, crystal structure

Abstract

The investigation of the coordination chemistry of heterometallic transition-metal complexes of palladium (Pd) and rhenium (Re) led to the isolation and crystallographic characterization of tetra­kis­(1,3-di­methyl­imidazolium-2-yl­idene)palladium(II) hexa­deca­carbonyl­tetra­rhenium diethyl ether disolvate, [Pd(C5H8N2)4][Re4(CO)16]·2C4H10O or [Pd(IMe)4][Re4(CO)16]·2C4H10O, (1), and octa-μ-carbonyl-di­carbonyl­tetra­kis­(tri­phenyl­phosphane)palladium­dirhenium, [Pd4Re2(C18H15P)4(CO)10] or Pd4Re2(PPh3)4(μ-CO)8(CO)2, (2), from the reaction of Pd(PPh3)4 with 1,3-di­methyl­imidazolium-2-carboxyl­ate and Re2(CO)10 in a toluene–aceto­nitrile mixture. In complex 1 the Re—Re bond lengths [2.9767 (3)–3.0133 (2) Å] are close to double the covalent Re radii (1.51 Å). The palladium–rhenium carbonyl cluster 2 has not been structurally characterized previously; the Pd—Re bond lengths [2.7582 (2)–2.7796 (2) Å] are about 0.1 Å shorter than the sum of the covalent Pd and Re radii (1.39 + 1.51 = 2.90 Å). One carbene ligand and a diethyl ether mol­ecule are disordered over two positions with occupancy ratios of 0.5:0.5 and 0.625 (15):0.375 (15) in 1. An unidentified solvent is present in compound 2. The given chemical formula and other crystal data do not take into account the unknown solvent mol­ecule(s). The SQUEEZE routine [Spek (2015). Acta Cryst. C71, 9–18] in PLATON was used to remove the contribution of the electron density in the solvent region from the intensity data and the solvent-free model was employed for the final refinement. The cavity with a volume of ca 311 Å3 contains approximately 98 electrons.

Chemical context  

Bimetallic catalysts comprising palladium (Pd) and rhenium (Re) have important applications in alkane reforming, industrial chemical production, hydro­dechlorination and biomass conversion (Thompson & Lamb, 2016; Bonarowska et al., 1999; Malinowski et al., 1998; Juszczyk & Karpiński, 2001). Heterometallic Pd–Re clusters are suitable precursors for such a catalytic system. We found that the reaction of Pd(PPh3)4 with 1,3-di­methyl­imidazolium-2-carboxyl­ate and Re2(CO)10 in a toluene–aceto­nitrile mixture produces a mixture of two compounds: [Pd(IMe)4][Re4(CO)16]·2C4H10O (1) and Pd4Re2(PPh3)4(μ-CO)8(CO)2 (2) where IMe is 1,3-di­methyl­imidazolium-2-yl­idene. Two other products, tri­phenyl­phosphine oxide and the known complex Re2(CO)8(PPh3)2 (Adams et al., 2013) were isolated from the reaction mixture.graphic file with name e-77-01014-scheme1.jpg

Structural commentary  

The displacement ellipsoid plot of 1 is depicted in Fig. 1. The mol­ecular unit of 1 comprises a palladium(II) cation with four coordinated N-heterocyclic carbenes (NHC) lying on a twofold rotoinversion axis, and one [Re4(CO)16] anion. The geometry around the Pd atom is square-planar with one carbene unit being disordered. The C—Pd—C angles range from 86.9 (4) to 97.7 (4)°. The cluster anion lying on the inversion center has a perfectly flat rhombus geometry with the shortest Re—Re bond [2.9767 (3) Å] corresponding to the short diagonal. The other four Re—Re bond lengths [3.001 (2)–3.0132 (2) Å] are also close to double the covalent Re radii (1.51 Å; Cordero et al., 2008). The Re—Re—Re angles are 59.330 (6)–60.542 (6)°.

Figure 1.

Figure 1

Displacement ellipsoid plot of Pd(IMe)4Re4(CO)16·2C4H10O (1), drawn at the 30% probability level. All hydrogen atoms and solvent mol­ecules are omitted for clarity.

The displacement ellipsoid plot of 2 is depicted in Fig. 2. The geometry of the Re2Pd4 core is found to be slightly distorted from that of a D 4h -symmetric tetra­gonal–bipyramidal prism. In complex 2, the Pd—Re bond lengths [2.7582 (2)–2.7796 (2) Å] are close to the sum of the covalent Pd and Re radii (1.39 + 1.51 = 2.90 Å). In comparison, the Pd—Re bond lengths in the PdRe4(CO)16(μ-SbPh2)2(μ-H)2 cluster (Adams et al., 2015) are in the range 2.9348 (18)–2.9823 (19) Å. The Pd4 fragment has an almost square geometry [the Pd—Pd—Pd angles are 89.865 (6)–90.135 (6)° and the Pd—Pd bond lengths are 2.9678 (2)–2.99 (2) Å].

Figure 2.

Figure 2

Displacement ellipsoid plot of Pd4Re2(PPh3)4(μ-CO)8(CO)2 (2), drawn at the 30% probability level. All hydrogen atoms are omitted for clarity.

Supra­molecular features  

In the ionic crystal of 1, each cation is surrounded by six anions and vice versa (Fig. 3). No classical hydrogen-bonding inter­actions are observed between cations and anions, but many carbonyl-O⋯H3C and carbonyl-O⋯HC inter­molecular contacts (Table 1) are present. The diethyl ether mol­ecule resides in voids between four adjacent cations and anions featuring an O⋯HC contact (2.32 Å) with one of the carbenes at the palladium atom. No π–π stacking is observed in structure 2, but several weak C—H⋯π and C—H⋯OC contacts (Fig. 4 and Table 2) are present. The axial CO groups of the Re(CO)5 fragments point towards voids filled with an unidentified solvent (Fig. 5).

Figure 3.

Figure 3

A view of the packing of compound 1.

Table 1. Hydrogen-bond geometry (Å, °) for 1 .

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯O4i 0.98 2.49 3.436 (6) 161
C13—H13⋯O9ii 0.95 2.44 3.36 (3) 165
C13—H13⋯O9A ii 0.95 2.32 3.25 (5) 163
C15—H15A⋯O6iii 0.98 2.44 3.326 (5) 150
C16—H16B⋯O9 0.98 2.57 3.49 (3) 158
C18—H18⋯O7iv 0.95 2.43 3.230 (9) 141
C19—H19⋯O7iii 0.95 2.56 3.483 (16) 163
C20—H20C⋯O5v 0.98 2.35 3.203 (12) 145
C21—H21A⋯O2vi 0.98 2.54 3.413 (11) 149
C21—H21C⋯O5 0.98 2.59 3.494 (12) 153
C24—H24B⋯O8vii 0.99 2.58 3.473 (12) 150

Symmetry codes: (i) -x, -y+1, -z; (ii) -x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1; (iii) x, -y+2, z+{\script{1\over 2}}; (iv) -x, -y+2, -z; (v) -x, y, -z+{\script{1\over 2}}; (vi) -x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}; (vii) x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}.

Figure 4.

Figure 4

A view of the packing of compound 2.

Table 2. Hydrogen-bond geometry (Å, °) for 2 .

Cg1 and Cg3 are the centroids of the C6–C11 and C18–C23 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O5i 0.95 2.49 3.188 (3) 130
C39—H39⋯O2ii 0.95 2.60 3.491 (4) 157
C20—H20⋯Cg1iii 0.95 2.84 3.635 (3) 142
C34—H34⋯Cg3iv 0.95 2.90 3.683 (3) 140

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z+2; (iii) -x+1, -y+2, -z+1; (iv) x, y-1, z.

Figure 5.

Figure 5

The axial CO groups of the Re(CO)5 fragments in 2 point towards voids filled with an unidentified solvent.

Database survey  

A search for related structures of palladium cations in the Cambridge Structural Database (CSD Version 5.42, update of November 2020; Groom et al., 2016) resulted in 27 hits. Of the structures found, the closest structures considering the connectivity of the atoms are tetra­kis­(N-methyl­imidazolin-2-yl­idene)palladium(II) diiodide (JOKCIV; Fehlhammer et al., 1992) and bis­[methyl­enebis(3-methyl­imidazol-2-yl­idene)]palladium(II) diiodide di­methyl­sulfoxide solvate (REFQID; Heckenroth et al., 2006). The cation in 1 is the first structurally characterized palladium complex ion containing four NHC ligands with substituents at the 1,3 positions of the imidazole ring. There are a number of compounds containing the tetra­nuclear [Re4(CO)16]2− anion, which is also found in the compound reported here. A search of the CSD found two closely related cluster compounds, viz. bis­(tetra­ethyl­ammo­nium) hexa­deca­carbonyl-tetra­rhenium (EAMCRE; Ciani et al., 1978) and bis­(tetra-n-butyl­ammonium)­hexa­deca­carbonyl­tetra­rhenium (BATCRE10; Churchill & Bau, 1968). The palladium–rhenium carbonyl cluster in 2 has not been structurally characterized previously.

Synthesis and crystallization  

Under a nitro­gen atmosphere, Pd(PPh3)4 (241 mg, 0.185 mmol) was added to a toluene–aceto­nitrile mixture (8 and 6 mL, respectively) and 1,3-di­methyl­imidazolium-2-carboxyl­ate (104 mg, 0.704 mmol). The reaction mixture was refluxed for 1.5 h, then Re2(CO)10 (242 mg, 0.141 mmol) was added, the solution turned dark red and the solvents were removed in vacuo. The solid was washed with benzene (3 × 5 ml) and recrystallized from an aceto­nitrile–di­ethyl­ether mixture. X-ray quality crystals of Pd(IMe)4Re4(CO)16·2C4H10O (37 mg, 13%) were grown from a di­chloro­methane–di­ethyl­ether mixture at 277 K. 1HNMR (300.13 MHz, DMSO-d 6, ppm): 3.41 (s, 24H, 8Me), 7.37 (s, 8H, 8CH). 13C{H} NMR (75.4 MHz, DMSO-d 6, ppm): 36.9 (Me, IMe), 123.5 (CH, IMe), 168.0 (C, IMe), 197.7 (CO), 198.7 (CO), 201.1 (CO), 218.6 (CO) IR (ATR, ν, cm−1): 3152 (w, br), 1998 (vw), 1974 (vw), 1955 (m), 1927 (vw), 1912 (vw), 1881 (vs, br), 1858 (vw), 1575 (vw), 1465 (w), 1400 (vw), 1332 (vw), 1229 (m), 1131 (vw), 1083 (vw), 1013 (vw), 845 (vw), 736 (s), 701 (vw), 681 (m), 600 (w), 577 (s), 560 (vw), 508 (vw), 496 (vw), 464 (w), 436 (vw), 411 (w).

A few crystals of Pd4Re2(PPh3)4(m-CO)8(CO)2 suitable for X-ray diffraction analysis were obtained from a yellow benzene solution, after several days, by slow ether diffusion into a concentrated solution of benzene at 277 K. IR (ATR, ν, cm−1): 3850 (vw), 3054 (vw, br), 2955 (vw, br), 1986 (s), 1821 (vs, br), 1585 (vw), 1571 (vw), 1515 (vw), 1477 (w), 1434 (m), 1307 (vw), 1263 (vw), 1236 (vw, br), 1182 (vw), 1159 (vw), 1119 (vw), 1092 (m), 1071 (vw), 1026 (vw), 997 (w), 907 (vw), 846 (vw), 741 (m), 690 (vs), 618 (vw), 565 (w), 541 (vw), 496 (m), 412 (vw).

Tri­phenyl­phosphine oxide (14 mg, 28%) and Re2(CO)8(PPh3)2 (29 mg, 14%) were also isolated from this crystallization.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å (sp 2), 0.98 Å (meth­yl) and 0.99 Å (methyl­ene), with common isotropic temperature factors for all hydrogen atoms of the aromatic rings and methyl groups. SADI restraints on bond lengths and DELU restraints on anisotropic thermal parameters were used to model the disordered carbene ligand and diethyl ether mol­ecule over two positions. For the refinement of 2, four reflections (100, 010, 200, 0Inline graphic1) were omitted because they showed a significantly lower intensity than calculated, most probably caused by obstruction from the beam stop. The residual electron density in 2 was difficult to model and therefore, the SQUEEZE routine (Spek, 2015) in PLATON (Spek, 2020) was used to remove the contribution of the electron density in the solvent region from the intensity data and the solvent-free model was employed for the final refinement. The cavity with a volume of ca 311 Å3 contains approximately 98 electrons.

Table 3. Experimental details.

  1 2
Crystal data
Chemical formula [Pd(C5H8N2)4][Re4(CO)16]·2C4H10O [Pd4Re2(C18H15P)4(CO)10]
M r 1832.13 2127.18
Crystal system, space group Monoclinic, C2/c Triclinic, P\overline{1}
Temperature (K) 100 100
a, b, c (Å) 21.1079 (9), 14.0026 (6), 19.4346 (8) 12.9278 (4), 13.5132 (5), 14.1184 (5)
α, β, γ (°) 90, 109.342 (1), 90 105.983 (1), 108.510 (1), 106.129 (1)
V3) 5420.0 (4) 2060.09 (12)
Z 4 1
Radiation type Mo Kα Mo Kα
μ (mm−1) 9.30 3.91
Crystal size (mm) 0.17 × 0.11 × 0.03 0.23 × 0.18 × 0.18
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015) Multi-scan (SADABS; Krause et al., 2015)
Tmin, Tmax 0.285, 0.746 0.515, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 128368, 9046, 7392 151194, 11588, 10906
R int 0.087 0.042
(sin θ/λ)max−1) 0.736 0.696
 
Refinement
R[F2 > 2σ(F 2)], wR(F 2), S 0.028, 0.065, 1.06 0.018, 0.042, 1.10
No. of reflections 9046 11588
No. of parameters 427 461
No. of restraints 45 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.43, −1.83 0.95, −0.70

Computer programs: APEX2 and SAINT (Bruker, 2015), SHELXT2014/5 (Sheldrick, 2015a ), SHELXL2014/7 (Sheldrick, 2015b ) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, 1, 2. DOI: 10.1107/S2056989021009270/tx2041sup1.cif

e-77-01014-sup1.cif (8.3MB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S2056989021009270/tx20411sup2.hkl

e-77-01014-1sup2.hkl (718.4KB, hkl)

Structure factors: contains datablock(s) 2. DOI: 10.1107/S2056989021009270/tx20412sup3.hkl

e-77-01014-2sup3.hkl (919KB, hkl)

CCDC references: 2108168, 2108167

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was carried out on equipment of the Center for Collective Use of the Kurnakov Institute of General and Inorganic Chemistry (Russian Academy of Sciences).

supplementary crystallographic information

Tetrakis(1,3-dimethylimidazolium-2-ylidene)palladium(II) hexadecacarbonyltetrarhenium diethyl ether disolvate (1). Crystal data

[Pd(C5H8N2)4][Re4(CO)16]·2C4H10O F(000) = 3448
Mr = 1832.13 Dx = 2.245 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 21.1079 (9) Å Cell parameters from 9678 reflections
b = 14.0026 (6) Å θ = 2.9–31.5°
c = 19.4346 (8) Å µ = 9.30 mm1
β = 109.342 (1)° T = 100 K
V = 5420.0 (4) Å3 Plate, brownish yellow
Z = 4 0.17 × 0.11 × 0.03 mm

Tetrakis(1,3-dimethylimidazolium-2-ylidene)palladium(II) hexadecacarbonyltetrarhenium diethyl ether disolvate (1). Data collection

Bruker APEXII CCD diffractometer 7392 reflections with I > 2σ(I)
φ and ω scans Rint = 0.087
Absorption correction: multi-scan (SADABS; Krause et al., 2015) θmax = 31.5°, θmin = 1.8°
Tmin = 0.285, Tmax = 0.746 h = −31→31
128368 measured reflections k = −20→20
9046 independent reflections l = −28→28

Tetrakis(1,3-dimethylimidazolium-2-ylidene)palladium(II) hexadecacarbonyltetrarhenium diethyl ether disolvate (1). Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.0239P)2 + 18.7547P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.065 (Δ/σ)max = 0.002
S = 1.06 Δρmax = 1.43 e Å3
9046 reflections Δρmin = −1.83 e Å3
427 parameters Extinction correction: SHELXL-2014/7 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
45 restraints Extinction coefficient: 0.000167 (12)
Primary atom site location: dual

Tetrakis(1,3-dimethylimidazolium-2-ylidene)palladium(II) hexadecacarbonyltetrarhenium diethyl ether disolvate (1). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Tetrakis(1,3-dimethylimidazolium-2-ylidene)palladium(II) hexadecacarbonyltetrarhenium diethyl ether disolvate (1). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Re1 0.24123 (2) 0.64550 (2) 0.00757 (2) 0.01933 (4)
Re2 0.12119 (2) 0.77460 (2) −0.02794 (2) 0.01862 (4)
O1 0.26345 (18) 0.6591 (2) 0.17414 (18) 0.0402 (8)
O2 0.33004 (14) 0.4665 (2) 0.04457 (16) 0.0282 (6)
O3 0.21798 (18) 0.6155 (2) −0.15832 (16) 0.0395 (8)
O4 0.12446 (17) 0.5083 (3) −0.0062 (3) 0.0723 (15)
O5 0.14525 (17) 0.7926 (3) 0.13868 (17) 0.0467 (9)
O6 0.02877 (15) 0.9489 (2) −0.05934 (19) 0.0360 (7)
O7 0.09872 (16) 0.7518 (2) −0.19407 (16) 0.0298 (6)
O8 0.00308 (15) 0.6418 (2) −0.03953 (18) 0.0344 (7)
C1 0.2553 (2) 0.6594 (3) 0.1126 (2) 0.0259 (8)
C2 0.30013 (19) 0.5380 (3) 0.0300 (2) 0.0222 (7)
C3 0.2273 (2) 0.6311 (3) −0.0977 (2) 0.0265 (8)
C4 0.1656 (2) 0.5633 (3) −0.0026 (3) 0.0436 (13)
C5 0.1390 (2) 0.7867 (3) 0.0783 (2) 0.0284 (8)
C6 0.06388 (19) 0.8834 (3) −0.0472 (2) 0.0265 (8)
C7 0.10950 (19) 0.7595 (3) −0.1328 (2) 0.0203 (7)
C8 0.0477 (2) 0.6912 (3) −0.0359 (2) 0.0240 (7)
Pd1 0.0000 0.73266 (3) 0.2500 0.01708 (8)
N1 0.01104 (15) 0.5294 (2) 0.20006 (16) 0.0208 (6)
N2 0.08671 (16) 0.7599 (2) 0.40944 (16) 0.0207 (6)
N3 0.14126 (16) 0.6837 (3) 0.35200 (18) 0.0264 (7)
C9 0.0000 0.5885 (3) 0.2500 0.0163 (9)
C10 0.0072 (2) 0.4355 (3) 0.2188 (2) 0.0291 (8)
H10 0.0135 0.3810 0.1927 0.035*
C11 0.0244 (2) 0.5602 (3) 0.1342 (2) 0.0280 (8)
H11A −0.0169 0.5553 0.0921 0.042*
H11B 0.0591 0.5194 0.1264 0.042*
H11C 0.0399 0.6266 0.1400 0.042*
C12 0.08194 (18) 0.7269 (3) 0.34247 (19) 0.0197 (7)
C13 0.1480 (2) 0.7374 (3) 0.4598 (2) 0.0272 (8)
H13 0.1630 0.7529 0.5102 0.033*
C14 0.1825 (2) 0.6895 (3) 0.4242 (2) 0.0306 (9)
H14 0.2265 0.6643 0.4445 0.037*
C15 0.0357 (2) 0.8150 (3) 0.4261 (2) 0.0263 (8)
H15A 0.0515 0.8807 0.4381 0.040*
H15B 0.0265 0.7864 0.4678 0.040*
H15C −0.0055 0.8154 0.3837 0.040*
C16 0.1617 (2) 0.6371 (4) 0.2951 (3) 0.0372 (11)
H16A 0.1578 0.5677 0.2988 0.056*
H16B 0.2084 0.6538 0.3015 0.056*
H16C 0.1327 0.6587 0.2471 0.056*
N4 −0.0689 (5) 0.9322 (6) 0.2333 (5) 0.0253 (17) 0.5
N5 0.0364 (4) 0.9444 (6) 0.2548 (5) 0.0250 (16) 0.5
C17 −0.0127 (4) 0.8789 (5) 0.2461 (10) 0.0184 (18) 0.5
C18 −0.0558 (5) 1.0282 (6) 0.2331 (5) 0.038 (2) 0.5
H18 −0.0875 1.0788 0.2239 0.045* 0.5
C19 0.0112 (8) 1.0359 (6) 0.2485 (19) 0.037 (4) 0.5
H19 0.0361 1.0935 0.2541 0.044* 0.5
C20 −0.1373 (5) 0.8957 (8) 0.2173 (6) 0.034 (2) 0.5
H20A −0.1550 0.8755 0.1662 0.051* 0.5
H20B −0.1659 0.9462 0.2261 0.051* 0.5
H20C −0.1367 0.8411 0.2491 0.051* 0.5
C21 0.1067 (6) 0.9243 (7) 0.2723 (6) 0.030 (2) 0.5
H21A 0.1261 0.9091 0.3243 0.045* 0.5
H21B 0.1295 0.9803 0.2612 0.045* 0.5
H21C 0.1126 0.8698 0.2433 0.045* 0.5
O9 0.3252 (14) 0.7269 (9) 0.3616 (17) 0.034 (3) 0.625 (15)
C23 0.3548 (9) 0.5629 (10) 0.3719 (8) 0.038 (3) 0.625 (15)
H23A 0.3132 0.5457 0.3330 0.057* 0.625 (15)
H23B 0.3473 0.5604 0.4191 0.057* 0.625 (15)
H23C 0.3903 0.5177 0.3721 0.057* 0.625 (15)
C22 0.3752 (7) 0.6610 (9) 0.3592 (8) 0.027 (3) 0.625 (15)
H22A 0.4184 0.6774 0.3970 0.033* 0.625 (15)
H22B 0.3815 0.6642 0.3110 0.033* 0.625 (15)
C24 0.3390 (5) 0.8233 (8) 0.3464 (6) 0.032 (2) 0.625 (15)
H24A 0.3523 0.8250 0.3021 0.038* 0.625 (15)
H24B 0.3766 0.8490 0.3877 0.038* 0.625 (15)
C25 0.2780 (5) 0.8827 (7) 0.3352 (5) 0.045 (2) 0.625 (15)
H25A 0.2418 0.8594 0.2924 0.068* 0.625 (15)
H25B 0.2881 0.9493 0.3274 0.068* 0.625 (15)
H25C 0.2639 0.8784 0.3783 0.068* 0.625 (15)
O9A 0.333 (3) 0.7156 (16) 0.371 (3) 0.033 (6) 0.375 (15)
C22A 0.3655 (13) 0.6404 (13) 0.3477 (13) 0.029 (5) 0.375 (15)
H22C 0.4123 0.6592 0.3540 0.035* 0.375 (15)
H22D 0.3422 0.6280 0.2952 0.035* 0.375 (15)
C24A 0.3289 (11) 0.8017 (10) 0.3296 (9) 0.027 (4) 0.375 (15)
H24C 0.2916 0.7966 0.2827 0.032* 0.375 (15)
H24D 0.3712 0.8108 0.3188 0.032* 0.375 (15)
C23A 0.3655 (13) 0.5520 (12) 0.3901 (11) 0.020 (3) 0.375 (15)
H23D 0.3939 0.5037 0.3783 0.030* 0.375 (15)
H23E 0.3195 0.5277 0.3776 0.030* 0.375 (15)
H23F 0.3831 0.5665 0.4424 0.030* 0.375 (15)
C25A 0.3175 (8) 0.8841 (9) 0.3715 (8) 0.037 (4) 0.375 (15)
H25D 0.3118 0.9421 0.3419 0.056* 0.375 (15)
H25E 0.3562 0.8918 0.4161 0.056* 0.375 (15)
H25F 0.2770 0.8731 0.3844 0.056* 0.375 (15)

Tetrakis(1,3-dimethylimidazolium-2-ylidene)palladium(II) hexadecacarbonyltetrarhenium diethyl ether disolvate (1). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Re1 0.01832 (7) 0.01206 (7) 0.02740 (8) 0.00109 (5) 0.00727 (5) −0.00045 (5)
Re2 0.01763 (7) 0.01595 (7) 0.02291 (7) 0.00130 (5) 0.00757 (5) −0.00270 (5)
O1 0.053 (2) 0.039 (2) 0.0373 (17) 0.0041 (16) 0.0264 (16) 0.0060 (14)
O2 0.0337 (15) 0.0177 (14) 0.0362 (15) 0.0062 (12) 0.0156 (12) 0.0079 (12)
O3 0.052 (2) 0.0295 (17) 0.0295 (16) 0.0116 (15) 0.0032 (14) −0.0019 (13)
O4 0.0295 (17) 0.0229 (19) 0.163 (5) −0.0023 (14) 0.029 (2) −0.004 (2)
O5 0.0373 (18) 0.075 (3) 0.0284 (16) 0.0133 (18) 0.0116 (14) −0.0083 (17)
O6 0.0276 (14) 0.0205 (15) 0.059 (2) 0.0059 (12) 0.0128 (14) −0.0041 (14)
O7 0.0361 (16) 0.0266 (16) 0.0279 (15) 0.0001 (12) 0.0122 (12) 0.0020 (12)
O8 0.0324 (15) 0.0296 (17) 0.0465 (18) −0.0084 (13) 0.0202 (14) −0.0073 (14)
C1 0.0295 (19) 0.0196 (19) 0.035 (2) 0.0015 (15) 0.0191 (17) 0.0027 (16)
C2 0.0258 (17) 0.0211 (19) 0.0217 (16) −0.0004 (14) 0.0107 (14) 0.0010 (14)
C3 0.0299 (19) 0.0134 (18) 0.032 (2) 0.0042 (15) 0.0052 (16) −0.0015 (15)
C4 0.026 (2) 0.016 (2) 0.088 (4) 0.0035 (17) 0.018 (2) 0.001 (2)
C5 0.0239 (18) 0.030 (2) 0.032 (2) 0.0046 (16) 0.0101 (16) −0.0061 (17)
C6 0.0214 (17) 0.023 (2) 0.036 (2) −0.0010 (15) 0.0117 (16) −0.0049 (17)
C7 0.0233 (17) 0.0119 (16) 0.0270 (18) 0.0007 (13) 0.0099 (14) 0.0018 (13)
C8 0.0289 (18) 0.0175 (18) 0.0281 (19) 0.0023 (15) 0.0127 (15) −0.0021 (15)
Pd1 0.02756 (18) 0.00932 (17) 0.01613 (16) 0.000 0.00962 (14) 0.000
N1 0.0257 (15) 0.0122 (14) 0.0230 (14) −0.0005 (12) 0.0062 (12) −0.0024 (12)
N2 0.0265 (15) 0.0175 (16) 0.0190 (14) −0.0068 (12) 0.0085 (12) −0.0013 (11)
N3 0.0223 (15) 0.0286 (19) 0.0294 (17) −0.0082 (13) 0.0101 (13) −0.0123 (14)
C9 0.015 (2) 0.012 (2) 0.020 (2) 0.000 0.0026 (17) 0.000
C10 0.042 (2) 0.0100 (17) 0.033 (2) 0.0016 (16) 0.0093 (18) −0.0034 (15)
C11 0.036 (2) 0.022 (2) 0.0274 (19) 0.0000 (17) 0.0123 (17) −0.0041 (16)
C12 0.0253 (17) 0.0152 (17) 0.0201 (16) −0.0068 (14) 0.0096 (14) −0.0023 (13)
C13 0.031 (2) 0.026 (2) 0.0219 (17) −0.0112 (16) 0.0042 (15) −0.0039 (15)
C14 0.0220 (18) 0.031 (2) 0.034 (2) −0.0065 (16) 0.0023 (16) −0.0061 (18)
C15 0.033 (2) 0.026 (2) 0.0236 (18) −0.0035 (17) 0.0148 (16) −0.0063 (16)
C16 0.025 (2) 0.047 (3) 0.041 (2) −0.0039 (19) 0.0137 (18) −0.019 (2)
N4 0.035 (4) 0.023 (4) 0.021 (4) 0.014 (4) 0.012 (5) 0.004 (3)
N5 0.041 (4) 0.020 (4) 0.019 (4) −0.005 (3) 0.017 (4) −0.004 (3)
C17 0.030 (6) 0.015 (3) 0.013 (4) 0.004 (3) 0.011 (7) 0.000 (3)
C18 0.074 (6) 0.019 (4) 0.026 (5) 0.018 (4) 0.024 (5) 0.010 (3)
C19 0.068 (9) 0.016 (3) 0.029 (4) −0.001 (5) 0.020 (12) −0.001 (5)
C20 0.039 (5) 0.041 (7) 0.027 (5) 0.018 (4) 0.017 (5) 0.009 (5)
C21 0.043 (5) 0.020 (5) 0.032 (5) −0.017 (5) 0.018 (6) −0.003 (4)
O9 0.038 (5) 0.033 (5) 0.037 (9) −0.011 (5) 0.021 (6) −0.010 (5)
C23 0.043 (8) 0.046 (5) 0.022 (7) 0.000 (5) 0.008 (6) 0.001 (4)
C22 0.021 (4) 0.036 (5) 0.026 (5) −0.005 (4) 0.010 (4) −0.005 (4)
C24 0.035 (4) 0.036 (5) 0.023 (5) −0.008 (4) 0.006 (4) −0.006 (4)
C25 0.050 (6) 0.043 (5) 0.038 (5) 0.002 (4) 0.008 (4) −0.006 (4)
O9A 0.055 (15) 0.022 (5) 0.028 (9) 0.000 (6) 0.022 (10) 0.002 (5)
C22A 0.037 (11) 0.028 (8) 0.019 (8) 0.001 (7) 0.005 (7) 0.003 (7)
C24A 0.044 (9) 0.016 (6) 0.015 (7) −0.005 (6) 0.002 (6) −0.006 (4)
C23A 0.023 (7) 0.023 (6) 0.009 (8) −0.007 (5) −0.001 (6) −0.005 (5)
C25A 0.044 (8) 0.024 (6) 0.046 (8) 0.005 (5) 0.016 (7) −0.006 (5)

Tetrakis(1,3-dimethylimidazolium-2-ylidene)palladium(II) hexadecacarbonyltetrarhenium diethyl ether disolvate (1). Geometric parameters (Å, º)

Re1—Re1i 2.9767 (3) C16—H16B 0.9800
Re1—Re2i 3.0133 (2) C16—H16C 0.9800
Re1—Re2 3.0011 (2) N4—C17 1.353 (9)
Re1—C1 1.973 (4) N4—C18 1.373 (11)
Re1—C2 1.909 (4) N4—C20 1.464 (11)
Re1—C3 1.978 (4) N5—C17 1.352 (9)
Re1—C4 1.925 (5) N5—C19 1.378 (11)
Re2—Re1i 3.0134 (2) N5—C21 1.436 (11)
Re2—C5 1.980 (4) C18—H18 0.9500
Re2—C6 1.904 (4) C18—C19 1.349 (15)
Re2—C7 1.982 (4) C19—H19 0.9500
Re2—C8 1.908 (4) C20—H20A 0.9800
O1—C1 1.150 (5) C20—H20B 0.9800
O2—C2 1.167 (5) C20—H20C 0.9800
O3—C3 1.150 (5) C21—H21A 0.9800
O4—C4 1.145 (6) C21—H21B 0.9800
O5—C5 1.139 (5) C21—H21C 0.9800
O6—C6 1.153 (5) O9—C22 1.415 (12)
O7—C7 1.140 (5) O9—C24 1.431 (12)
O8—C8 1.151 (5) C23—H23A 0.9800
Pd1—C9 2.019 (5) C23—H23B 0.9800
Pd1—C12ii 2.042 (4) C23—H23C 0.9800
Pd1—C12 2.042 (4) C23—C22 1.486 (12)
Pd1—C17 2.064 (6) C22—H22A 0.9900
N1—C9 1.353 (4) C22—H22B 0.9900
N1—C10 1.375 (5) C24—H24A 0.9900
N1—C11 1.464 (5) C24—H24B 0.9900
N2—C12 1.353 (4) C24—C25 1.488 (12)
N2—C13 1.375 (5) C25—H25A 0.9800
N2—C15 1.446 (5) C25—H25B 0.9800
N3—C12 1.347 (5) C25—H25C 0.9800
N3—C14 1.387 (5) O9A—C22A 1.413 (16)
N3—C16 1.467 (5) O9A—C24A 1.439 (16)
C9—N1ii 1.353 (4) C22A—H22C 0.9900
C10—C10ii 1.343 (8) C22A—H22D 0.9900
C10—H10 0.9500 C22A—C23A 1.487 (15)
C11—H11A 0.9800 C24A—H24C 0.9900
C11—H11B 0.9800 C24A—H24D 0.9900
C11—H11C 0.9800 C24A—C25A 1.479 (14)
C13—H13 0.9500 C23A—H23D 0.9800
C13—C14 1.338 (6) C23A—H23E 0.9800
C14—H14 0.9500 C23A—H23F 0.9800
C15—H15A 0.9800 C25A—H25D 0.9800
C15—H15B 0.9800 C25A—H25E 0.9800
C15—H15C 0.9800 C25A—H25F 0.9800
C16—H16A 0.9800
Re1i—Re1—Re2 60.542 (6) H15B—C15—H15C 109.5
Re1i—Re1—Re2i 60.127 (5) N3—C16—H16A 109.5
Re2—Re1—Re2i 120.669 (6) N3—C16—H16B 109.5
C1—Re1—Re1i 91.41 (12) N3—C16—H16C 109.5
C1—Re1—Re2i 91.11 (12) H16A—C16—H16B 109.5
C1—Re1—Re2 90.28 (12) H16A—C16—H16C 109.5
C1—Re1—C3 179.77 (18) H16B—C16—H16C 109.5
C2—Re1—Re1i 134.85 (11) C17—N4—C18 112.1 (9)
C2—Re1—Re2 164.59 (11) C17—N4—C20 126.2 (8)
C2—Re1—Re2i 74.73 (11) C18—N4—C20 121.7 (9)
C2—Re1—C1 88.73 (16) C17—N5—C19 111.2 (8)
C2—Re1—C3 91.05 (15) C17—N5—C21 125.8 (8)
C2—Re1—C4 90.39 (17) C19—N5—C21 122.9 (9)
C3—Re1—Re1i 88.79 (11) N4—C17—Pd1 130.5 (6)
C3—Re1—Re2 89.91 (11) N5—C17—Pd1 125.7 (6)
C3—Re1—Re2i 88.89 (12) N5—C17—N4 103.8 (8)
C4—Re1—Re1i 134.75 (13) N4—C18—H18 127.0
C4—Re1—Re2i 165.04 (13) C19—C18—N4 105.9 (9)
C4—Re1—Re2 74.23 (13) C19—C18—H18 127.0
C4—Re1—C1 90.0 (2) N5—C19—H19 126.5
C4—Re1—C3 89.9 (2) C18—C19—N5 107.0 (9)
Re1—Re2—Re1i 59.330 (6) C18—C19—H19 126.5
C5—Re2—Re1i 89.40 (12) N4—C20—H20A 109.5
C5—Re2—Re1 87.57 (12) N4—C20—H20B 109.5
C5—Re2—C7 176.24 (15) N4—C20—H20C 109.5
C6—Re2—Re1 163.81 (12) H20A—C20—H20B 109.5
C6—Re2—Re1i 104.51 (12) H20A—C20—H20C 109.5
C6—Re2—C5 91.43 (17) H20B—C20—H20C 109.5
C6—Re2—C7 91.67 (16) N5—C21—H21A 109.5
C6—Re2—C8 91.55 (16) N5—C21—H21B 109.5
C7—Re2—Re1 88.86 (10) N5—C21—H21C 109.5
C7—Re2—Re1i 87.76 (11) H21A—C21—H21B 109.5
C8—Re2—Re1i 163.93 (12) H21A—C21—H21C 109.5
C8—Re2—Re1 104.61 (12) H21B—C21—H21C 109.5
C8—Re2—C5 90.28 (17) C22—O9—C24 113.7 (13)
C8—Re2—C7 91.76 (15) H23A—C23—H23B 109.5
O1—C1—Re1 174.2 (4) H23A—C23—H23C 109.5
O2—C2—Re1 172.3 (3) H23B—C23—H23C 109.5
O3—C3—Re1 174.7 (4) C22—C23—H23A 109.5
O4—C4—Re1 174.2 (4) C22—C23—H23B 109.5
O5—C5—Re2 175.9 (4) C22—C23—H23C 109.5
O6—C6—Re2 179.4 (4) O9—C22—C23 109.7 (11)
O7—C7—Re2 175.8 (3) O9—C22—H22A 109.7
O8—C8—Re2 178.7 (4) O9—C22—H22B 109.7
C9—Pd1—C12 87.72 (10) C23—C22—H22A 109.7
C9—Pd1—C12ii 87.72 (10) C23—C22—H22B 109.7
C9—Pd1—C17 173.0 (2) H22A—C22—H22B 108.2
C12ii—Pd1—C12 175.4 (2) O9—C24—H24A 109.8
C12ii—Pd1—C17 86.9 (4) O9—C24—H24B 109.8
C12—Pd1—C17 97.7 (4) O9—C24—C25 109.4 (11)
C9—N1—C10 110.8 (3) H24A—C24—H24B 108.2
C9—N1—C11 125.2 (3) C25—C24—H24A 109.8
C10—N1—C11 124.0 (3) C25—C24—H24B 109.8
C12—N2—C13 111.0 (3) C24—C25—H25A 109.5
C12—N2—C15 125.0 (3) C24—C25—H25B 109.5
C13—N2—C15 123.9 (3) C24—C25—H25C 109.5
C12—N3—C14 110.9 (3) H25A—C25—H25B 109.5
C12—N3—C16 126.1 (3) H25A—C25—H25C 109.5
C14—N3—C16 123.1 (4) H25B—C25—H25C 109.5
N1ii—C9—Pd1 127.7 (2) C22A—O9A—C24A 113 (2)
N1—C9—Pd1 127.7 (2) O9A—C22A—H22C 109.5
N1—C9—N1ii 104.6 (4) O9A—C22A—H22D 109.5
N1—C10—H10 126.6 O9A—C22A—C23A 110.6 (16)
C10ii—C10—N1 106.9 (2) H22C—C22A—H22D 108.1
C10ii—C10—H10 126.6 C23A—C22A—H22C 109.5
N1—C11—H11A 109.5 C23A—C22A—H22D 109.5
N1—C11—H11B 109.5 O9A—C24A—H24C 109.8
N1—C11—H11C 109.5 O9A—C24A—H24D 109.8
H11A—C11—H11B 109.5 O9A—C24A—C25A 109.5 (18)
H11A—C11—H11C 109.5 H24C—C24A—H24D 108.2
H11B—C11—H11C 109.5 C25A—C24A—H24C 109.8
N2—C12—Pd1 127.2 (3) C25A—C24A—H24D 109.8
N3—C12—Pd1 128.1 (3) C22A—C23A—H23D 109.5
N3—C12—N2 104.6 (3) C22A—C23A—H23E 109.5
N2—C13—H13 126.5 C22A—C23A—H23F 109.5
C14—C13—N2 107.0 (3) H23D—C23A—H23E 109.5
C14—C13—H13 126.5 H23D—C23A—H23F 109.5
N3—C14—H14 126.7 H23E—C23A—H23F 109.5
C13—C14—N3 106.6 (4) C24A—C25A—H25D 109.5
C13—C14—H14 126.7 C24A—C25A—H25E 109.5
N2—C15—H15A 109.5 C24A—C25A—H25F 109.5
N2—C15—H15B 109.5 H25D—C25A—H25E 109.5
N2—C15—H15C 109.5 H25D—C25A—H25F 109.5
H15A—C15—H15B 109.5 H25E—C25A—H25F 109.5
H15A—C15—H15C 109.5
N2—C13—C14—N3 0.1 (5) C16—N3—C14—C13 179.1 (4)
C9—N1—C10—C10ii 0.6 (6) N4—C18—C19—N5 2 (3)
C10—N1—C9—Pd1 179.8 (2) C17—N4—C18—C19 −2 (2)
C10—N1—C9—N1ii −0.2 (2) C17—N5—C19—C18 −2 (3)
C11—N1—C9—Pd1 −1.0 (4) C18—N4—C17—Pd1 −178.0 (11)
C11—N1—C9—N1ii 179.0 (4) C18—N4—C17—N5 0.7 (17)
C11—N1—C10—C10ii −178.6 (4) C19—N5—C17—Pd1 179.6 (18)
C12—N2—C13—C14 0.0 (5) C19—N5—C17—N4 1 (2)
C12—N3—C14—C13 −0.3 (5) C20—N4—C17—Pd1 −1 (2)
C13—N2—C12—Pd1 175.6 (3) C20—N4—C17—N5 177.6 (9)
C13—N2—C12—N3 −0.2 (4) C20—N4—C18—C19 −179.0 (17)
C14—N3—C12—Pd1 −175.4 (3) C21—N5—C17—Pd1 −4 (2)
C14—N3—C12—N2 0.3 (4) C21—N5—C17—N4 177.6 (9)
C15—N2—C12—Pd1 −6.8 (5) C21—N5—C19—C18 −179.0 (14)
C15—N2—C12—N3 177.5 (3) C22—O9—C24—C25 168.3 (18)
C15—N2—C13—C14 −177.7 (4) C24—O9—C22—C23 −177.2 (18)
C16—N3—C12—Pd1 5.2 (6) C22A—O9A—C24A—C25A −160 (3)
C16—N3—C12—N2 −179.1 (4) C24A—O9A—C22A—C23A −177 (3)

Symmetry codes: (i) −x+1/2, −y+3/2, −z; (ii) −x, y, −z+1/2.

Tetrakis(1,3-dimethylimidazolium-2-ylidene)palladium(II) hexadecacarbonyltetrarhenium diethyl ether disolvate (1). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C11—H11A···O4iii 0.98 2.49 3.436 (6) 161
C13—H13···O9iv 0.95 2.44 3.36 (3) 165
C13—H13···O9Aiv 0.95 2.32 3.25 (5) 163
C15—H15A···O6v 0.98 2.44 3.326 (5) 150
C16—H16B···O9 0.98 2.57 3.49 (3) 158
C18—H18···O7vi 0.95 2.43 3.230 (9) 141
C19—H19···O7v 0.95 2.56 3.483 (16) 163
C20—H20C···O5ii 0.98 2.35 3.203 (12) 145
C21—H21A···O2vii 0.98 2.54 3.413 (11) 149
C21—H21C···O5 0.98 2.59 3.494 (12) 153
C24—H24B···O8viii 0.99 2.58 3.473 (12) 150

Symmetry codes: (ii) −x, y, −z+1/2; (iii) −x, −y+1, −z; (iv) −x+1/2, −y+3/2, −z+1; (v) x, −y+2, z+1/2; (vi) −x, −y+2, −z; (vii) −x+1/2, y+1/2, −z+1/2; (viii) x+1/2, −y+3/2, z+1/2.

Octa-µ-carbonyl-dicarbonyltetrakis(triphenylphosphane)palladiumdirhenium (2). Crystal data

[Pd4Re2(C18H15P)4(CO)10] Z = 1
Mr = 2127.18 F(000) = 1026
Triclinic, P1 Dx = 1.715 Mg m3
a = 12.9278 (4) Å Mo Kα radiation, λ = 0.71073 Å
b = 13.5132 (5) Å Cell parameters from 9325 reflections
c = 14.1184 (5) Å θ = 2.8–29.6°
α = 105.983 (1)° µ = 3.91 mm1
β = 108.510 (1)° T = 100 K
γ = 106.129 (1)° Block, red
V = 2060.09 (12) Å3 0.23 × 0.18 × 0.18 mm

Octa-µ-carbonyl-dicarbonyltetrakis(triphenylphosphane)palladiumdirhenium (2). Data collection

Bruker APEXII CCD diffractometer 10906 reflections with I > 2σ(I)
φ and ω scans Rint = 0.042
Absorption correction: multi-scan (SADABS; Krause et al., 2015) θmax = 29.7°, θmin = 2.8°
Tmin = 0.515, Tmax = 0.746 h = −17→17
151194 measured reflections k = −18→18
11588 independent reflections l = −19→19

Octa-µ-carbonyl-dicarbonyltetrakis(triphenylphosphane)palladiumdirhenium (2). Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.018 w = 1/[σ2(Fo2) + (0.0148P)2 + 2.1161P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.042 (Δ/σ)max = 0.005
S = 1.10 Δρmax = 0.95 e Å3
11588 reflections Δρmin = −0.70 e Å3
461 parameters Extinction correction: SHELXL-2014/7 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.00119 (9)
Primary atom site location: dual

Octa-µ-carbonyl-dicarbonyltetrakis(triphenylphosphane)palladiumdirhenium (2). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Octa-µ-carbonyl-dicarbonyltetrakis(triphenylphosphane)palladiumdirhenium (2). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Re1 −0.03789 (2) 0.58284 (2) 0.59592 (2) 0.01288 (3)
Pd1 0.11939 (2) 0.64837 (2) 0.50923 (2) 0.01377 (3)
Pd2 0.13798 (2) 0.50124 (2) 0.63029 (2) 0.01360 (3)
P1 0.27753 (4) 0.79978 (4) 0.52970 (4) 0.01537 (9)
P2 0.27280 (5) 0.48255 (4) 0.77255 (4) 0.01634 (10)
O1 −0.11990 (18) 0.71938 (18) 0.74578 (16) 0.0433 (5)
O2 −0.12746 (15) 0.42760 (14) 0.70708 (13) 0.0266 (3)
O3 0.18975 (14) 0.70585 (13) 0.81880 (12) 0.0236 (3)
O4 0.03880 (14) 0.82425 (13) 0.59258 (13) 0.0240 (3)
O5 0.30356 (13) 0.45945 (14) 0.53745 (13) 0.0236 (3)
C1 −0.0874 (2) 0.66930 (19) 0.69145 (18) 0.0246 (4)
C2 −0.10429 (18) 0.45891 (18) 0.64488 (17) 0.0198 (4)
C3 0.12010 (18) 0.64157 (17) 0.73175 (16) 0.0178 (4)
C4 0.03254 (17) 0.73328 (17) 0.57964 (16) 0.0175 (4)
C5 0.20750 (18) 0.45438 (17) 0.51815 (16) 0.0174 (4)
C6 0.37893 (17) 0.75557 (17) 0.48099 (17) 0.0188 (4)
C7 0.4316 (2) 0.69504 (19) 0.53169 (19) 0.0242 (4)
H7 0.4156 0.6822 0.5894 0.029*
C8 0.5067 (2) 0.65387 (19) 0.4984 (2) 0.0270 (5)
H8 0.5409 0.6118 0.5322 0.032*
C9 0.5315 (2) 0.6744 (2) 0.41544 (19) 0.0283 (5)
H9 0.5830 0.6464 0.3924 0.034*
C10 0.4819 (2) 0.7353 (2) 0.36630 (19) 0.0278 (5)
H10 0.5008 0.7504 0.3106 0.033*
C11 0.40389 (18) 0.77520 (18) 0.39750 (17) 0.0215 (4)
H11 0.3683 0.8154 0.3619 0.026*
C12 0.38172 (18) 0.90224 (17) 0.66794 (16) 0.0180 (4)
C13 0.34659 (19) 0.91169 (18) 0.75257 (17) 0.0216 (4)
H13 0.2686 0.8649 0.7381 0.026*
C14 0.4253 (2) 0.9896 (2) 0.85853 (18) 0.0264 (5)
H14 0.4004 0.9956 0.9156 0.032*
C15 0.5392 (2) 1.0578 (2) 0.88081 (19) 0.0299 (5)
H15 0.5922 1.1113 0.9527 0.036*
C16 0.5758 (2) 1.0476 (2) 0.7971 (2) 0.0292 (5)
H16 0.6544 1.0935 0.8122 0.035*
C17 0.49795 (19) 0.97081 (18) 0.69209 (18) 0.0230 (4)
H17 0.5237 0.9645 0.6356 0.028*
C18 0.22924 (18) 0.88071 (17) 0.45395 (16) 0.0184 (4)
C19 0.3060 (2) 0.98359 (18) 0.46489 (18) 0.0229 (4)
H19 0.3875 1.0152 0.5148 0.027*
C20 0.2634 (2) 1.0399 (2) 0.4029 (2) 0.0281 (5)
H20 0.3162 1.1093 0.4102 0.034*
C21 0.1449 (2) 0.9955 (2) 0.3312 (2) 0.0347 (6)
H21 0.1161 1.0346 0.2897 0.042*
C22 0.0676 (2) 0.8933 (3) 0.3198 (2) 0.0387 (6)
H22 −0.0139 0.8622 0.2699 0.046*
C23 0.1098 (2) 0.8368 (2) 0.3815 (2) 0.0282 (5)
H23 0.0566 0.7676 0.3742 0.034*
C24 0.42622 (18) 0.57138 (19) 0.80973 (17) 0.0208 (4)
C25 0.5207 (2) 0.5376 (2) 0.8357 (2) 0.0294 (5)
H25 0.5070 0.4651 0.8366 0.035*
C26 0.6346 (2) 0.6093 (2) 0.8602 (2) 0.0401 (6)
H26 0.6982 0.5855 0.8774 0.048*
C27 0.6561 (2) 0.7155 (3) 0.8598 (2) 0.0409 (6)
H27 0.7342 0.7642 0.8765 0.049*
C28 0.5630 (2) 0.7502 (3) 0.8347 (3) 0.0415 (7)
H28 0.5776 0.8233 0.8353 0.050*
C29 0.4486 (2) 0.6779 (2) 0.8087 (2) 0.0326 (5)
H29 0.3850 0.7015 0.7901 0.039*
C30 0.26705 (19) 0.34177 (18) 0.75156 (17) 0.0199 (4)
C31 0.3181 (2) 0.3138 (2) 0.83814 (19) 0.0296 (5)
H31 0.3604 0.3699 0.9103 0.036*
C32 0.3073 (3) 0.2043 (2) 0.8192 (2) 0.0365 (6)
H32 0.3425 0.1860 0.8784 0.044*
C33 0.2453 (2) 0.1214 (2) 0.7143 (2) 0.0335 (5)
H33 0.2382 0.0465 0.7018 0.040*
C34 0.1937 (2) 0.1477 (2) 0.6279 (2) 0.0280 (5)
H34 0.1506 0.0909 0.5561 0.034*
C35 0.20507 (19) 0.25749 (18) 0.64649 (17) 0.0213 (4)
H35 0.1702 0.2754 0.5869 0.026*
C36 0.25498 (19) 0.52324 (18) 0.89861 (16) 0.0201 (4)
C37 0.1507 (2) 0.4569 (2) 0.8988 (2) 0.0303 (5)
H37 0.0943 0.3913 0.8359 0.036*
C38 0.1295 (3) 0.4865 (3) 0.9907 (2) 0.0414 (7)
H38 0.0592 0.4403 0.9910 0.050*
C39 0.2099 (3) 0.5825 (3) 1.0819 (2) 0.0443 (7)
H39 0.1948 0.6030 1.1446 0.053*
C40 0.3120 (3) 0.6484 (2) 1.0815 (2) 0.0407 (7)
H40 0.3671 0.7148 1.1441 0.049*
C41 0.3356 (2) 0.6192 (2) 0.99088 (18) 0.0277 (5)
H41 0.4070 0.6649 0.9920 0.033*

Octa-µ-carbonyl-dicarbonyltetrakis(triphenylphosphane)palladiumdirhenium (2). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Re1 0.01245 (4) 0.01357 (4) 0.01647 (4) 0.00659 (3) 0.00863 (3) 0.00710 (3)
Pd1 0.01249 (7) 0.01311 (7) 0.01861 (7) 0.00468 (5) 0.00858 (5) 0.00854 (5)
Pd2 0.01236 (7) 0.01464 (7) 0.01648 (7) 0.00662 (5) 0.00670 (5) 0.00807 (5)
P1 0.0134 (2) 0.0141 (2) 0.0215 (2) 0.00506 (18) 0.00935 (18) 0.00943 (19)
P2 0.0163 (2) 0.0175 (2) 0.0174 (2) 0.00879 (19) 0.00679 (18) 0.00836 (19)
O1 0.0443 (11) 0.0454 (11) 0.0439 (11) 0.0246 (9) 0.0282 (9) 0.0054 (9)
O2 0.0308 (8) 0.0263 (8) 0.0236 (7) 0.0053 (7) 0.0156 (7) 0.0124 (6)
O3 0.0248 (8) 0.0196 (7) 0.0221 (7) 0.0100 (6) 0.0058 (6) 0.0062 (6)
O4 0.0241 (8) 0.0162 (7) 0.0341 (8) 0.0097 (6) 0.0128 (7) 0.0111 (6)
O5 0.0180 (7) 0.0314 (8) 0.0300 (8) 0.0145 (6) 0.0135 (6) 0.0156 (7)
C1 0.0216 (10) 0.0260 (11) 0.0263 (10) 0.0104 (9) 0.0120 (9) 0.0075 (9)
C2 0.0168 (9) 0.0221 (10) 0.0220 (9) 0.0069 (8) 0.0104 (8) 0.0090 (8)
C3 0.0190 (9) 0.0182 (9) 0.0213 (9) 0.0089 (8) 0.0109 (8) 0.0109 (8)
C4 0.0138 (8) 0.0190 (9) 0.0199 (9) 0.0070 (7) 0.0074 (7) 0.0073 (7)
C5 0.0190 (9) 0.0161 (9) 0.0218 (9) 0.0082 (7) 0.0109 (8) 0.0101 (7)
C6 0.0142 (9) 0.0151 (9) 0.0270 (10) 0.0041 (7) 0.0108 (8) 0.0079 (8)
C7 0.0234 (10) 0.0231 (10) 0.0361 (12) 0.0112 (9) 0.0180 (9) 0.0177 (9)
C8 0.0252 (11) 0.0224 (11) 0.0411 (13) 0.0132 (9) 0.0172 (10) 0.0163 (10)
C9 0.0222 (11) 0.0284 (12) 0.0331 (12) 0.0127 (9) 0.0131 (9) 0.0063 (9)
C10 0.0257 (11) 0.0367 (13) 0.0256 (10) 0.0144 (10) 0.0157 (9) 0.0113 (9)
C11 0.0174 (9) 0.0242 (10) 0.0233 (10) 0.0077 (8) 0.0092 (8) 0.0104 (8)
C12 0.0175 (9) 0.0154 (9) 0.0226 (9) 0.0069 (7) 0.0079 (8) 0.0100 (7)
C13 0.0216 (10) 0.0218 (10) 0.0255 (10) 0.0108 (8) 0.0098 (8) 0.0132 (8)
C14 0.0305 (12) 0.0291 (11) 0.0236 (10) 0.0146 (10) 0.0112 (9) 0.0139 (9)
C15 0.0316 (12) 0.0213 (11) 0.0251 (11) 0.0071 (9) 0.0031 (9) 0.0071 (9)
C16 0.0219 (11) 0.0220 (11) 0.0326 (12) 0.0024 (9) 0.0058 (9) 0.0089 (9)
C17 0.0201 (10) 0.0196 (10) 0.0287 (10) 0.0060 (8) 0.0104 (8) 0.0110 (8)
C18 0.0200 (9) 0.0191 (9) 0.0228 (9) 0.0097 (8) 0.0122 (8) 0.0120 (8)
C19 0.0243 (10) 0.0201 (10) 0.0284 (10) 0.0082 (8) 0.0143 (9) 0.0126 (8)
C20 0.0370 (13) 0.0227 (11) 0.0358 (12) 0.0133 (10) 0.0215 (10) 0.0190 (10)
C21 0.0403 (14) 0.0394 (14) 0.0441 (14) 0.0236 (12) 0.0217 (12) 0.0318 (12)
C22 0.0243 (12) 0.0525 (17) 0.0478 (15) 0.0158 (12) 0.0116 (11) 0.0357 (14)
C23 0.0199 (10) 0.0316 (12) 0.0356 (12) 0.0069 (9) 0.0106 (9) 0.0219 (10)
C24 0.0159 (9) 0.0252 (10) 0.0209 (9) 0.0081 (8) 0.0070 (8) 0.0097 (8)
C25 0.0229 (11) 0.0282 (12) 0.0347 (12) 0.0144 (9) 0.0076 (9) 0.0103 (10)
C26 0.0217 (12) 0.0435 (15) 0.0497 (16) 0.0166 (11) 0.0105 (11) 0.0130 (13)
C27 0.0200 (11) 0.0465 (16) 0.0527 (16) 0.0072 (11) 0.0150 (11) 0.0218 (14)
C28 0.0262 (13) 0.0395 (15) 0.0630 (18) 0.0097 (11) 0.0167 (12) 0.0322 (14)
C29 0.0216 (11) 0.0350 (13) 0.0496 (15) 0.0127 (10) 0.0150 (11) 0.0278 (12)
C30 0.0208 (10) 0.0204 (10) 0.0236 (10) 0.0118 (8) 0.0100 (8) 0.0115 (8)
C31 0.0352 (13) 0.0260 (11) 0.0273 (11) 0.0163 (10) 0.0071 (10) 0.0134 (9)
C32 0.0438 (15) 0.0329 (13) 0.0403 (14) 0.0248 (12) 0.0120 (12) 0.0223 (11)
C33 0.0376 (13) 0.0249 (12) 0.0465 (14) 0.0204 (11) 0.0179 (12) 0.0183 (11)
C34 0.0304 (12) 0.0219 (11) 0.0335 (12) 0.0132 (9) 0.0152 (10) 0.0087 (9)
C35 0.0213 (10) 0.0202 (10) 0.0238 (10) 0.0097 (8) 0.0098 (8) 0.0093 (8)
C36 0.0226 (10) 0.0250 (10) 0.0195 (9) 0.0154 (8) 0.0091 (8) 0.0120 (8)
C37 0.0246 (11) 0.0393 (14) 0.0319 (12) 0.0155 (10) 0.0143 (10) 0.0157 (10)
C38 0.0430 (16) 0.0624 (19) 0.0491 (16) 0.0326 (15) 0.0350 (14) 0.0348 (15)
C39 0.076 (2) 0.0585 (19) 0.0360 (14) 0.0490 (18) 0.0393 (15) 0.0307 (14)
C40 0.068 (2) 0.0340 (14) 0.0219 (11) 0.0274 (14) 0.0168 (12) 0.0101 (10)
C41 0.0364 (13) 0.0240 (11) 0.0215 (10) 0.0124 (10) 0.0105 (9) 0.0094 (9)

Octa-µ-carbonyl-dicarbonyltetrakis(triphenylphosphane)palladiumdirhenium (2). Geometric parameters (Å, º)

Re1—Pd1i 2.7748 (2) C15—H15 0.9500
Re1—Pd1 2.7555 (2) C15—C16 1.394 (4)
Re1—Pd2i 2.7796 (2) C16—H16 0.9500
Re1—Pd2 2.7582 (2) C16—C17 1.383 (3)
Re1—C1 1.921 (2) C17—H17 0.9500
Re1—C2 2.058 (2) C18—C19 1.400 (3)
Re1—C3 2.062 (2) C18—C23 1.391 (3)
Re1—C4 2.092 (2) C19—H19 0.9500
Re1—C5i 2.087 (2) C19—C20 1.393 (3)
Pd1—Re1i 2.7747 (2) C20—H20 0.9500
Pd1—Pd2 2.9678 (2) C20—C21 1.379 (4)
Pd1—Pd2i 2.9909 (2) C21—H21 0.9500
Pd1—P1 2.3291 (5) C21—C22 1.393 (4)
Pd1—C2i 2.170 (2) C22—H22 0.9500
Pd1—C4 2.088 (2) C22—C23 1.392 (3)
Pd2—Re1i 2.7796 (2) C23—H23 0.9500
Pd2—Pd1i 2.9910 (2) C24—C25 1.398 (3)
Pd2—P2 2.3317 (5) C24—C29 1.393 (3)
Pd2—C3 2.158 (2) C25—H25 0.9500
Pd2—C5 2.094 (2) C25—C26 1.387 (4)
P1—C6 1.825 (2) C26—H26 0.9500
P1—C12 1.830 (2) C26—C27 1.385 (4)
P1—C18 1.825 (2) C27—H27 0.9500
P2—C24 1.822 (2) C27—C28 1.389 (4)
P2—C30 1.819 (2) C28—H28 0.9500
P2—C36 1.821 (2) C28—C29 1.390 (3)
O1—C1 1.140 (3) C29—H29 0.9500
O2—C2 1.158 (3) C30—C31 1.398 (3)
O3—C3 1.162 (2) C30—C35 1.396 (3)
O4—C4 1.167 (3) C31—H31 0.9500
O5—C5 1.161 (2) C31—C32 1.386 (3)
C2—Pd1i 2.170 (2) C32—H32 0.9500
C5—Re1i 2.087 (2) C32—C33 1.387 (4)
C6—C7 1.403 (3) C33—H33 0.9500
C6—C11 1.389 (3) C33—C34 1.383 (4)
C7—H7 0.9500 C34—H34 0.9500
C7—C8 1.385 (3) C34—C35 1.390 (3)
C8—H8 0.9500 C35—H35 0.9500
C8—C9 1.385 (3) C36—C37 1.398 (3)
C9—H9 0.9500 C36—C41 1.386 (3)
C9—C10 1.376 (3) C37—H37 0.9500
C10—H10 0.9500 C37—C38 1.386 (4)
C10—C11 1.398 (3) C38—H38 0.9500
C11—H11 0.9500 C38—C39 1.379 (5)
C12—C13 1.394 (3) C39—H39 0.9500
C12—C17 1.400 (3) C39—C40 1.374 (5)
C13—H13 0.9500 C40—H40 0.9500
C13—C14 1.397 (3) C40—C41 1.386 (3)
C14—H14 0.9500 C41—H41 0.9500
C14—C15 1.381 (3)
Pd1—Re1—Pd1i 99.105 (5) C6—C7—H7 119.7
Pd1—Re1—Pd2i 65.413 (5) C8—C7—C6 120.6 (2)
Pd1i—Re1—Pd2i 64.596 (5) C8—C7—H7 119.7
Pd1—Re1—Pd2 65.131 (5) C7—C8—H8 120.2
Pd2—Re1—Pd1i 65.445 (5) C7—C8—C9 119.6 (2)
Pd2—Re1—Pd2i 99.238 (5) C9—C8—H8 120.2
C1—Re1—Pd1 131.04 (7) C8—C9—H9 119.9
C1—Re1—Pd1i 129.69 (7) C10—C9—C8 120.3 (2)
C1—Re1—Pd2 133.48 (7) C10—C9—H9 119.9
C1—Re1—Pd2i 127.28 (7) C9—C10—H10 119.7
C1—Re1—C2 83.99 (9) C9—C10—C11 120.7 (2)
C1—Re1—C3 85.84 (9) C11—C10—H10 119.7
C1—Re1—C4 83.85 (9) C6—C11—C10 119.5 (2)
C1—Re1—C5i 81.63 (9) C6—C11—H11 120.3
C2—Re1—Pd1 141.37 (6) C10—C11—H11 120.3
C2—Re1—Pd1i 50.76 (6) C13—C12—P1 119.88 (16)
C2—Re1—Pd2 78.91 (6) C13—C12—C17 118.49 (19)
C2—Re1—Pd2i 109.51 (6) C17—C12—P1 121.62 (16)
C2—Re1—C3 87.43 (8) C12—C13—H13 119.8
C2—Re1—C4 166.84 (8) C12—C13—C14 120.4 (2)
C2—Re1—C5i 91.78 (8) C14—C13—H13 119.8
C3—Re1—Pd1i 109.34 (6) C13—C14—H14 119.8
C3—Re1—Pd1 80.75 (6) C15—C14—C13 120.4 (2)
C3—Re1—Pd2 50.73 (6) C15—C14—H14 119.8
C3—Re1—Pd2i 143.08 (6) C14—C15—H15 120.2
C3—Re1—C4 86.69 (8) C14—C15—C16 119.6 (2)
C3—Re1—C5i 167.46 (8) C16—C15—H15 120.2
C4—Re1—Pd1 48.71 (5) C15—C16—H16 119.9
C4—Re1—Pd1i 142.40 (5) C17—C16—C15 120.2 (2)
C4—Re1—Pd2i 82.00 (5) C17—C16—H16 119.9
C4—Re1—Pd2 106.14 (5) C12—C17—H17 119.5
C5i—Re1—Pd1 107.18 (6) C16—C17—C12 120.9 (2)
C5i—Re1—Pd1i 79.46 (5) C16—C17—H17 119.5
C5i—Re1—Pd2 141.24 (5) C19—C18—P1 123.40 (16)
C5i—Re1—Pd2i 48.43 (5) C23—C18—P1 117.73 (16)
C5i—Re1—C4 91.42 (8) C23—C18—C19 118.9 (2)
Re1—Pd1—Re1i 80.894 (5) C18—C19—H19 119.8
Re1i—Pd1—Pd2 57.781 (5) C20—C19—C18 120.3 (2)
Re1i—Pd1—Pd2i 57.011 (4) C20—C19—H19 119.8
Re1—Pd1—Pd2 57.477 (4) C19—C20—H20 119.8
Re1—Pd1—Pd2i 57.681 (5) C21—C20—C19 120.3 (2)
Pd2—Pd1—Pd2i 90.135 (6) C21—C20—H20 119.8
P1—Pd1—Re1i 133.608 (14) C20—C21—H21 120.0
P1—Pd1—Re1 143.861 (14) C20—C21—C22 119.9 (2)
P1—Pd1—Pd2i 143.699 (14) C22—C21—H21 120.0
P1—Pd1—Pd2 125.624 (14) C21—C22—H22 120.0
C2i—Pd1—Re1i 47.26 (6) C23—C22—C21 119.9 (2)
C2i—Pd1—Re1 122.58 (6) C23—C22—H22 120.0
C2i—Pd1—Pd2i 72.07 (5) C18—C23—C22 120.6 (2)
C2i—Pd1—Pd2 100.12 (6) C18—C23—H23 119.7
C2i—Pd1—P1 93.27 (6) C22—C23—H23 119.7
C4—Pd1—Re1 48.82 (6) C25—C24—P2 123.95 (18)
C4—Pd1—Re1i 125.79 (6) C29—C24—P2 117.27 (17)
C4—Pd1—Pd2 99.39 (6) C29—C24—C25 118.8 (2)
C4—Pd1—Pd2i 76.94 (5) C24—C25—H25 119.8
C4—Pd1—P1 100.27 (6) C26—C25—C24 120.3 (2)
C4—Pd1—C2i 143.15 (8) C26—C25—H25 119.8
Re1—Pd2—Re1i 80.762 (5) C25—C26—H26 119.8
Re1—Pd2—Pd1i 57.545 (5) C27—C26—C25 120.5 (2)
Re1i—Pd2—Pd1 57.623 (5) C27—C26—H26 119.8
Re1—Pd2—Pd1 57.392 (5) C26—C27—H27 120.2
Re1i—Pd2—Pd1i 56.904 (4) C26—C27—C28 119.7 (2)
Pd1—Pd2—Pd1i 89.865 (6) C28—C27—H27 120.2
P2—Pd2—Re1i 139.454 (14) C27—C28—H28 120.0
P2—Pd2—Re1 138.742 (14) C27—C28—C29 119.9 (3)
P2—Pd2—Pd1i 128.138 (15) C29—C28—H28 120.0
P2—Pd2—Pd1 141.995 (15) C24—C29—H29 119.6
C3—Pd2—Re1 47.70 (5) C28—C29—C24 120.8 (2)
C3—Pd2—Re1i 123.96 (5) C28—C29—H29 119.6
C3—Pd2—Pd1i 99.53 (5) C31—C30—P2 122.07 (17)
C3—Pd2—Pd1 74.39 (5) C35—C30—P2 119.19 (16)
C3—Pd2—P2 96.08 (6) C35—C30—C31 118.7 (2)
C5—Pd2—Re1 124.34 (6) C30—C31—H31 119.9
C5—Pd2—Re1i 48.21 (6) C32—C31—C30 120.3 (2)
C5—Pd2—Pd1i 99.26 (6) C32—C31—H31 119.9
C5—Pd2—Pd1 74.81 (6) C31—C32—H32 119.8
C5—Pd2—P2 96.36 (6) C31—C32—C33 120.5 (2)
C5—Pd2—C3 143.64 (8) C33—C32—H32 119.8
C6—P1—Pd1 112.32 (7) C32—C33—H33 120.0
C6—P1—C12 100.69 (9) C34—C33—C32 119.9 (2)
C12—P1—Pd1 117.97 (7) C34—C33—H33 120.0
C18—P1—Pd1 112.89 (7) C33—C34—H34 120.1
C18—P1—C6 105.65 (10) C33—C34—C35 119.8 (2)
C18—P1—C12 105.98 (9) C35—C34—H34 120.1
C24—P2—Pd2 111.89 (7) C30—C35—H35 119.6
C30—P2—Pd2 116.83 (7) C34—C35—C30 120.9 (2)
C30—P2—C24 106.51 (10) C34—C35—H35 119.6
C30—P2—C36 101.65 (10) C37—C36—P2 117.43 (17)
C36—P2—Pd2 114.10 (7) C41—C36—P2 123.41 (18)
C36—P2—C24 104.65 (10) C41—C36—C37 119.1 (2)
O1—C1—Re1 178.1 (2) C36—C37—H37 119.9
Re1—C2—Pd1i 81.98 (7) C38—C37—C36 120.1 (2)
O2—C2—Re1 152.98 (18) C38—C37—H37 119.9
O2—C2—Pd1i 124.90 (17) C37—C38—H38 119.8
Re1—C3—Pd2 81.57 (7) C39—C38—C37 120.4 (3)
O3—C3—Re1 152.27 (17) C39—C38—H38 119.8
O3—C3—Pd2 126.08 (16) C38—C39—H39 120.2
Pd1—C4—Re1 82.47 (7) C40—C39—C38 119.6 (2)
O4—C4—Re1 149.43 (17) C40—C39—H39 120.2
O4—C4—Pd1 128.10 (16) C39—C40—H40 119.6
Re1i—C5—Pd2 83.36 (7) C39—C40—C41 120.8 (3)
O5—C5—Re1i 149.52 (17) C41—C40—H40 119.6
O5—C5—Pd2 127.10 (16) C36—C41—C40 120.0 (3)
C7—C6—P1 115.78 (16) C36—C41—H41 120.0
C11—C6—P1 124.87 (17) C40—C41—H41 120.0
C11—C6—C7 119.32 (19)
Pd1—P1—C6—C7 −58.98 (17) C15—C16—C17—C12 0.0 (4)
Pd1—P1—C6—C11 119.34 (17) C17—C12—C13—C14 1.2 (3)
Pd1—P1—C12—C13 −21.58 (19) C18—P1—C6—C7 177.54 (16)
Pd1—P1—C12—C17 157.12 (15) C18—P1—C6—C11 −4.1 (2)
Pd1—P1—C18—C19 171.11 (16) C18—P1—C12—C13 106.03 (18)
Pd1—P1—C18—C23 −9.1 (2) C18—P1—C12—C17 −75.28 (19)
Pd2—P2—C24—C25 −139.46 (18) C18—C19—C20—C21 0.8 (4)
Pd2—P2—C24—C29 38.6 (2) C19—C18—C23—C22 0.9 (4)
Pd2—P2—C30—C31 −162.18 (17) C19—C20—C21—C22 −0.6 (4)
Pd2—P2—C30—C35 14.8 (2) C20—C21—C22—C23 0.6 (4)
Pd2—P2—C36—C37 66.91 (19) C21—C22—C23—C18 −0.8 (4)
Pd2—P2—C36—C41 −109.26 (18) C23—C18—C19—C20 −0.9 (3)
P1—C6—C7—C8 177.66 (18) C24—P2—C30—C31 72.0 (2)
P1—C6—C11—C10 −178.91 (17) C24—P2—C30—C35 −111.09 (18)
P1—C12—C13—C14 179.96 (17) C24—P2—C36—C37 −170.48 (18)
P1—C12—C17—C16 −179.77 (18) C24—P2—C36—C41 13.4 (2)
P1—C18—C19—C20 178.85 (17) C24—C25—C26—C27 0.3 (4)
P1—C18—C23—C22 −178.9 (2) C25—C24—C29—C28 −1.0 (4)
P2—C24—C25—C26 178.2 (2) C25—C26—C27—C28 0.1 (5)
P2—C24—C29—C28 −179.2 (2) C26—C27—C28—C29 −0.9 (5)
P2—C30—C31—C32 177.2 (2) C27—C28—C29—C24 1.4 (5)
P2—C30—C35—C34 −176.80 (17) C29—C24—C25—C26 0.1 (4)
P2—C36—C37—C38 −177.0 (2) C30—P2—C24—C25 −10.7 (2)
P2—C36—C41—C40 175.83 (19) C30—P2—C24—C29 167.39 (19)
C6—P1—C12—C13 −144.12 (17) C30—P2—C36—C37 −59.76 (19)
C6—P1—C12—C17 34.58 (19) C30—P2—C36—C41 124.07 (19)
C6—P1—C18—C19 −65.8 (2) C30—C31—C32—C33 −0.3 (4)
C6—P1—C18—C23 114.00 (18) C31—C30—C35—C34 0.2 (3)
C6—C7—C8—C9 1.1 (4) C31—C32—C33—C34 −0.1 (4)
C7—C6—C11—C10 −0.6 (3) C32—C33—C34—C35 0.5 (4)
C7—C8—C9—C10 0.0 (4) C33—C34—C35—C30 −0.6 (4)
C8—C9—C10—C11 −1.4 (4) C35—C30—C31—C32 0.2 (4)
C9—C10—C11—C6 1.7 (3) C36—P2—C24—C25 96.5 (2)
C11—C6—C7—C8 −0.8 (3) C36—P2—C24—C29 −85.4 (2)
C12—P1—C6—C7 67.42 (18) C36—P2—C30—C31 −37.3 (2)
C12—P1—C6—C11 −114.25 (19) C36—P2—C30—C35 139.62 (18)
C12—P1—C18—C19 40.5 (2) C36—C37—C38—C39 1.1 (4)
C12—P1—C18—C23 −139.70 (18) C37—C36—C41—C40 −0.3 (3)
C12—C13—C14—C15 −0.3 (3) C37—C38—C39—C40 −0.6 (4)
C13—C12—C17—C16 −1.1 (3) C38—C39—C40—C41 −0.4 (4)
C13—C14—C15—C16 −0.8 (4) C39—C40—C41—C36 0.8 (4)
C14—C15—C16—C17 1.0 (4) C41—C36—C37—C38 −0.7 (4)

Symmetry code: (i) −x, −y+1, −z+1.

Octa-µ-carbonyl-dicarbonyltetrakis(triphenylphosphane)palladiumdirhenium (2). Hydrogen-bond geometry (Å, º)

Cg1 and Cg3 are the centroids of the C6–C11 and C18–C23 rings, respectively.

D—H···A D—H H···A D···A D—H···A
C9—H9···O5ii 0.95 2.49 3.188 (3) 130
C39—H39···O2iii 0.95 2.60 3.491 (4) 157
C20—H20···Cg1iv 0.95 2.84 3.635 (3) 142
C34—H34···Cg3v 0.95 2.90 3.683 (3) 140

Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) −x, −y+1, −z+2; (iv) −x+1, −y+2, −z+1; (v) x, y−1, z.

Funding Statement

This work was funded by Russian Foundation for Basic Research grant 19-33-90199 to RFBR.

References

  1. Adams, R. D., Pearl, W. C., Wong, Y. O., Hall, M. B. & Walensky, J. R. (2015). Inorg. Chem. 54, 3536–3544. [DOI] [PubMed]
  2. Adams, R. D., Wong, Y. O. & Zhang, Q. (2013). Organometallics, 32, 7540–7546.
  3. Bonarowska, M., Malinowski, A. & Karpiński, Z. (1999). Appl. Catal. Gen. 188, 145–154.
  4. Bruker. (2015). APEX2 and SAINT, v8, 37A. Bruker AXS Inc, Madison, Wisconsin, USA.
  5. Churchill, M. R. & Bau, R. (1968). Inorg. Chem. 7, 2606–2614.
  6. Ciani, G., D’Alfonso, G., Freni, M., Romiti, P. & Sironi, A. (1978). J. Organomet. Chem. 157, 199–208.
  7. Cordero, B., Gómez, V., Platero-Prats, A. E., Revés, M., Echeverría, J., Cremades, E., Barragán, F. & Alvarez, S. (2008). Dalton Trans. pp. 2832–2838. [DOI] [PubMed]
  8. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  9. Fehlhammer, W. P., Bliss, T., Fuchs, J. & Holzmann, G. (1992). Z. Naturforsch. Teil B, 47, 79–89.
  10. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  11. Heckenroth, M., Neels, A., Stoeckli-Evans, H. & Albrecht, M. (2006). Inorg. Chim. Acta, 359, 1929–1938.
  12. Juszczyk, W. & Karpiński, Z. (2001). Appl. Catal. Gen. 206, 67–78.
  13. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  14. Malinowski, A., Juszczyk, W., Bonarowska, M., Pielaszek, J. & Karpinski, Z. (1998). J. Catal. 177, 153–163.
  15. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  16. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  17. Spek, A. L. (2015). Acta Cryst. C71, 9–18. [DOI] [PubMed]
  18. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  19. Thompson, S. T. & Lamb, H. H. (2016). ACS Catal. 6, 7438–7447.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, 1, 2. DOI: 10.1107/S2056989021009270/tx2041sup1.cif

e-77-01014-sup1.cif (8.3MB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S2056989021009270/tx20411sup2.hkl

e-77-01014-1sup2.hkl (718.4KB, hkl)

Structure factors: contains datablock(s) 2. DOI: 10.1107/S2056989021009270/tx20412sup3.hkl

e-77-01014-2sup3.hkl (919KB, hkl)

CCDC references: 2108168, 2108167

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES